101
|
Luo Q, Di T, Chen Z, Peng J, Sun J, Xia Z, Pan W, Luo F, Lu F, Sun Y, Yang L, Zhang L, Miao‐Zhen Q, Yang D. A novel prognostic model predicts overall survival in colon cancer based on
RNA
splicing regulation gene expression. Cancer Sci 2022; 113:3330-3346. [PMID: 35792657 PMCID: PMC9530871 DOI: 10.1111/cas.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Colon cancer is the third most common cancer and the second leading cause of cancer‐related death worldwide. Dysregulated RNA splicing factors have been reported to be associated with tumorigenesis and development in colon cancer. In this study, we interrogated clinical and RNA expression data of colon cancer patients from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) database. Genes regulating RNA splicing correlated with survival in colon cancer were identified and a risk score model was constructed using Cox regression analyses. In the risk model, RNA splicing factor peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PPARGC1) is correlated with a good survival outcome, whereas Cdc2‐like kinase 1(CLK1), CLK2, and A‐kinase anchor protein 8‐like (AKAP8L) with a bad survival outcome. The risk model has a good performance for clinical prognostic prediction both in the TCGA cohort and the other two validation cohorts. In the tumor microenvironment (TME) analysis, the immune score was higher in the low‐risk group, and TME‐related pathway gene expression was also higher in low‐risk group. We further verified the mRNA and protein expression levels of these four genes in the adjacent nontumor, tumor, and liver metastasis tissues of colon cancer patients, which were consistent with bioinformatics analysis. In addition, knockdown of AKAP8L can suppress the proliferation and migration of colon cancer cells. Animal studies have also shown that AKAP8L knockdown can inhibit tumor growth in colon cancer in vivo. We established a prognostic risk model for colon cancer based on genes related to RNA splicing regulation and uncovered the role of AKAP8L in promoting colon cancer progression.
Collapse
Affiliation(s)
- Qiu‐Yun Luo
- The Eighth Affiliated Hospital, Sun Yat‐sen University 518033 Shenzhen China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Tian Di
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Zhi‐Gang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Medical Oncology, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Jian‐Hong Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Colorectal Surgery, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Clinical Research, The Third Affiliated Hospital 510060 Guangzhou China
| | - Zeng‐Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Wen‐Tao Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Fan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Fei‐Teng Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Yu‐Ting Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Li‐Qiong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Clinical Laboratory, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Qiu Miao‐Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Medical Oncology, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| | - Da‐Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐sen University Cancer Center 510060 Guangzhou China
- Department of Experimental Research, Sun Yat‐Sen University Cancer Center 510060 Guangzhou China
| |
Collapse
|
102
|
Emerging Blood-Based Biomarkers for Predicting Immunotherapy Response in NSCLC. Cancers (Basel) 2022; 14:cancers14112626. [PMID: 35681606 PMCID: PMC9179588 DOI: 10.3390/cancers14112626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Treatment with immunotherapy has been established as a standard treatment for lung cancer in recent years. Unfortunately, still, only a small proportion of patients benefit from the treatment, being the first leading cause of cancer death worldwide. Therefore, there is an urgent need for predictive biomarkers to help clinicians to discern whose patients are more likely to respond to immunotherapy. Since liquid biopsy opens the door to select patients and monitor the response during the treatment in a non-invasive way, in this review, we focus on the most relevant and recent results based on blood soluble biomarkers. Abstract Immunotherapy with Immune Checkpoint Inhibitors (ICIs) has demonstrated a profitable performance for Non-Small Cell Lung Cancer (NSCLC) cancer treatment in some patients; however, there is still a percentage of patients in whom immunotherapy does not provide the desired results regarding beneficial outcomes. Therefore, obtaining predictive biomarkers for ICI response will improve the treatment management in clinical practice. In this sense, liquid biopsy appears as a promising method to obtain samples in a minimally invasive and non-biased way. In spite of its evident potential, the use of these circulating biomarkers is still very limited in the real clinical practice, mainly due to the huge heterogeneity among the techniques, the lack of consensus, and the limited number of patients included in these previous studies. In this work, we review the pros and cons of the different proposed biomarkers, such as soluble PD-L1, circulating non-coding RNA, circulating immune cells, peripheral blood cytokines, and ctDNA, obtained from liquid biopsy to predict response to ICI treatment at baseline and to monitor changes in tumor and tumor microenvironment during the course of the treatment in NSCLC patients.
Collapse
|
103
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
104
|
Targeting the Axl and mTOR Pathway Synergizes Immunotherapy and Chemotherapy to Butylidenephthalide in a Recurrent GBM. JOURNAL OF ONCOLOGY 2022; 2022:3236058. [PMID: 35646111 PMCID: PMC9132698 DOI: 10.1155/2022/3236058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Background. The role of inherent tumor heterogeneity and an immunosuppressive microenvironment in therapeutic resistance has been determined to be of importance for the better management of glioblastoma multiforme (GBM). Some studies have suggested that combined drugs with divergent mechanisms may be promising in treating recurrent GBM. Methods. Intracranial sustained (Z)-n-butylidenephthalide [(Z)-BP] delivery through Cerebraca Wafers (CWs) to eliminate unresectable brain tumors was combined with the administration of temozolomide (TMZ), pembrolizumab, and cytokine-induced killer (CIK) cells for treating a patient with recurrent glioblastoma. Neurological adverse events and wound healing delay were monitored for estimating tolerance and efficacy. Response Assessment in Neuro-Oncology criteria were applied to evaluate progression-free survival (PFS); further, the molecular characteristics of GBM tissues were analyzed, and the underlying mechanism was investigated using primary culture. Results. Intracerebral (Z)-BP in residual tumors could not only inhibit cancer stem cells but also increase interferon gamma levels in serum, which then led to the regression of GBM and an immune-responsive microenvironment. Targeting receptor tyrosine kinases, including Axl and epidermal growth factor receptor (EGFR), and inhibiting the mechanistic target of rapamycin (mTOR) through (Z)-BP were determined to synergize CIK cells in the presence of pembrolizumab and TMZ in recurrent GBM. Therefore, this well-tolerated regimen could simultaneously block multiple cancer pathways, which allowed extended PFS and improved quality of life for 22 months. Conclusion. Given the several unique functions of (Z)-BP, greater sensitivity of chemotherapy and the synergism of pembrolizumab and CIK cells could have affected the excellent prognosis seen in this patient with recurrent GBM.
Collapse
|
105
|
Yoshikawa K, Ishida M, Yanai H, Tsuta K, Sekimoto M, Sugie T. Prognostic significance of the expression levels of T‑cell immunoglobulin mucin‑3 and its ligand galectin‑9 for relapse‑free survival in triple‑negative breast cancer. Oncol Lett 2022; 23:197. [PMID: 35572493 PMCID: PMC9100485 DOI: 10.3892/ol.2022.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
T-cell immunoglobulin mucin-3 (TIM-3) expressed at the T-cell surface acts as an immune checkpoint when bound by its ligand galectin-9. Blockade of immunosuppression by the TIM3/galectin-9 signalling pathway may offer novel therapeutic approaches for cancer immunotherapy. Consistent with this, TIM-3 expression is associated with poorer prognosis in several different types of cancer, possibly as a result of suppression of anticancer immunosurveillance. A number of studies have now documented some effectiveness of immune checkpoint blockade even in triple-negative breast cancer (TNBC), which is highly aggressive. However, clinical responses are relatively weak, suggesting that several different pathways may be involved. In this context, the role of the TIM-3/galectin-9 checkpoint in TNBC is not clear. The present study aimed to determine the clinicopathological significance of TIM-3 and galectin-9 expression in this cancer. To this end, 62 patients with TNBC undergoing surgery at Kansai Medical University Hospital (Hirakata, Japan), but not given neoadjuvant chemotherapy, were examined. Tissue microarrays were employed for immunohistochemistry to analyse associations of TIM-3 and galectin-9 expression and their impact on relapse-free survival relative to other poor prognostic risk factors. Galectin-9 expression was detected in 49 of 62 patient samples (79%), and TIM-3 in 30 of them (48.4%). Tumour cell galectin-9 expression was associated with a more favourable prognosis (P=0.027) as was TIM-3 expression on tumour-infiltrating lymphocytes (P=0.007). Multivariate analysis indicated that galectin-9- and TIM-3-double-positivity was significantly associated with a more favourable prognosis compared with galectin-9 and/or TIM-3 negativity (P=0.044). Thus, the TIM-3/galectin-9 signalling pathway may impact anticancer immune reactions in the tumour microenvironment of patients with TNBC. Further investigation will be necessary to determine the molecular mechanisms underlying these relationships.
Collapse
Affiliation(s)
- Katsuhiro Yoshikawa
- Department of Pathology and Division of Diagnostic Pathology, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Mitsuaki Ishida
- Department of Pathology and Division of Diagnostic Pathology, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Hirotsugu Yanai
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Koji Tsuta
- Department of Pathology and Division of Diagnostic Pathology, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Tomoharu Sugie
- Department of Surgery, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| |
Collapse
|
106
|
Morrell ED, Brager C, Ramos KJ, Chai XY, Kapnadak SG, Edelman J, Matute-Bello G, Altemeier WA, Hwang B, Mulligan MS, Bhatraju PK, Wurfel MM, Mikacenic C, Lease ED, Limaye AP, Fisher CE. CXCL10 and Soluble Programmed Death-Ligand 1 during Respiratory Viral Infections Are Associated with Chronic Lung Allograft Dysfunction in Lung Transplant Recipients. Am J Respir Cell Mol Biol 2022; 66:577-579. [PMID: 35486077 PMCID: PMC9116355 DOI: 10.1165/rcmb.2021-0404le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Eric D Morrell
- University of Washington Seattle, Washington.,VA Puget Sound Health Care System Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | | | | | - Xin-Ya Chai
- University of Washington Seattle, Washington
| | | | - Jeffrey Edelman
- University of Washington Seattle, Washington.,VA Puget Sound Health Care System Seattle, Washington
| | - Gustavo Matute-Bello
- University of Washington Seattle, Washington.,VA Puget Sound Health Care System Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | - William A Altemeier
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | - Billanna Hwang
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | - Michael S Mulligan
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | | | - Mark M Wurfel
- University of Washington Seattle, Washington.,University of Washington at South Lake Union Campus Seattle, Washington
| | | | | | | | | |
Collapse
|
107
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
108
|
Niu M, Liu Y, Yi M, Jiao D, Wu K. Biological Characteristics and Clinical Significance of Soluble PD-1/PD-L1 and Exosomal PD-L1 in Cancer. Front Immunol 2022; 13:827921. [PMID: 35386715 PMCID: PMC8977417 DOI: 10.3389/fimmu.2022.827921] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint pathway consisting of the cell membrane-bound molecule programmed death protein 1 (PD-1) and its ligand PD-L1 has been found to mediate negative regulatory signals that effectively inhibit T-cell proliferation and function and impair antitumor immune responses. Considerable evidence suggests that the PD-1/PD-L1 pathway is responsible for tumor immune tolerance and immune escape. Blockage of this pathway has been found to reverse T lymphocyte depletion and restore antitumor immunity. Antagonists targeting this pathway have shown significant clinical activity in specific cancer types. Although originally identified as membrane-type molecules, several other forms of PD-1/PD-L1 have been detected in the blood of cancer patients, including soluble PD-1/PD-L1 (sPD-1/sPD-L1) and exosomal PD-L1 (exoPD-L1), increasing the composition and functional complications of the PD-1/PD-L1 signaling pathway. For example, sPD-1 has been shown to block the PD-1/PD-L immunosuppressive pathway by binding to PD-L1 and PD-L2, whereas the role of sPD-L1 and its mechanism of action in cancer remain unclear. In addition, many studies have investigated the roles of exoPD-L1 in immunosuppression, as a biomarker for tumor progression and as a predictive biomarker for response to immunotherapy. This review describes the molecular mechanisms underlying the generation of sPD-1/sPD-L1 and exoPD-L1, along with their biological activities and methods of detection. In addition, this review discusses the clinical importance of sPD-1/sPD-L1 and exoPD-L1 in cancer, including their predictive and prognostic roles and the effects of treatments that target these molecules.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| |
Collapse
|
109
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
110
|
Won JE, Byeon Y, Wi TI, Lee CM, Lee JH, Kang TH, Lee JW, Lee Y, Park YM, Han HD. Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches. J Immunother Cancer 2022; 10:jitc-2021-003928. [PMID: 35228265 PMCID: PMC8886443 DOI: 10.1136/jitc-2021-003928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cytotoxic CD8+ T cell-based cancer immunotherapy has been extensively studied and applied, however, tumor cells are known to evade immune responses through the expression of immune checkpoints, such as programmed death ligand 1 (PD-L1). To overcome these issues, antibody-based immune checkpoint blockades (eg, antiprogrammed cell death 1 (anti-PD-1) and anti-PD-L1) have been revolutionized to improve immune responses. However, their therapeutic efficacy is limited to 15%-20% of the overall objective response rate. Moreover, PD-L1 is secreted from tumor cells, which can interrupt antibody-mediated immune reactions in the tumor microenvironment. METHODS We developed poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) encapsulating PD-L1 small interfering RNA (siRNA) and PD-1 siRNA, as a delivery platform to silence immune checkpoints. This study used the TC-1 and EG7 tumor models to determine the potential therapeutic efficacy of the PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs, on administration twice per week for 4 weeks. Moreover, we observed combination effect of PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs and PLGA (antigen+adjuvant)-NPs using TC-1 and EG7 tumor-bearing mouse models. RESULTS PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs boosted the host immune reaction by restoring CD8+ T cell function and promoting cytotoxic CD8+ T cell responses. We demonstrated that the combination of NP-based therapeutic vaccine and PLGA (siRNA)-NPs resulted in significant inhibition of tumor growth compared with the control and antibody-based treatments (p<0.001). The proposed system significantly inhibited tumor growth compared with the antibody-based approaches. CONCLUSION Our findings suggest a potential combination approach for cancer immunotherapy using PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs and PLGA (antigen+adjuvant)-NPs as novel immune checkpoint silencing agents.
Collapse
Affiliation(s)
- Ji Eun Won
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Youngseon Byeon
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Tae In Wi
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Chan Mi Lee
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Ju Hyeong Lee
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Tae Heung Kang
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Jeong-Won Lee
- Department of Obstertrics and Gynecology, Samsung Medical Center, Sungkyunkwan University, Seoul, The Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, The Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| | - Hee Dong Han
- Department of Immunology, Konkuk University School of Medicine, Chungju, The Republic of Korea
| |
Collapse
|
111
|
Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther 2022; 30:1018-1035. [PMID: 34793975 PMCID: PMC8899522 DOI: 10.1016/j.ymthe.2021.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China.
| |
Collapse
|
112
|
Yang X, Ma L, Zhang X, Huang L, Wei J. Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute myeloid leukemia. Exp Hematol Oncol 2022; 11:11. [PMID: 35236415 PMCID: PMC8889667 DOI: 10.1186/s40164-022-00263-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases arising from the bone marrow (BM), and approximately 30% of MDS eventually progress to AML, associated with increasingly aggressive neoplastic hematopoietic clones and poor survival. Dysregulated immune microenvironment has been recognized as a key pathogenic driver of MDS and AML, causing high rate of intramedullary apoptosis in lower-risk MDS to immunosuppression in higher-risk MDS and AML. Immune checkpoint molecules, including programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), play important roles in oncogenesis by maintaining an immunosuppressive tumor microenvironment. Recently, both molecules have been examined in MDS and AML. Abnormal inflammatory signaling, genetic and/or epigenetic alterations, interactions between cells, and treatment of patients all have been involved in dysregulating PD-1/PD-L1 signaling in these two diseases. Furthermore, with the PD-1/PD-L1 pathway activated in immune microenvironment, the milieu of BM shift to immunosuppressive, contributing to a clonal evolution of blasts. Nevertheless, numerous preclinical studies have suggested a potential response of patients to PD-1/PD-L1 blocker. Current clinical trials employing these drugs in MDS and AML have reported mixed clinical responses. In this paper, we focus on the recent preclinical advances of the PD-1/PD-L1 signaling in MDS and AML, and available and ongoing outcomes of PD-1/PD-L1 inhibitor in patients. We also discuss the novel PD-1/PD-L1 blocker-based immunotherapeutic strategies and challenges, including identifying reliable biomarkers, determining settings, and exploring optimal combination therapies.
Collapse
Affiliation(s)
- Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
113
|
Abstract
The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Anand V R Kornepati
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ratna K Vadlamudi
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, USA
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX, USA.
- MD Anderson Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
114
|
In vitro and in vivo functions of T cells produced in complemented thymi of chimeric mice generated by blastocyst complementation. Sci Rep 2022; 12:3242. [PMID: 35217706 PMCID: PMC8881621 DOI: 10.1038/s41598-022-07159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Blastocyst complementation is an intriguing way of generating humanized animals for organ preparation in regenerative medicine and establishing novel models for drug development. Confirming that complemented organs and cells work normally in chimeric animals is critical to demonstrating the feasibility of blastocyst complementation. Here, we generated thymus-complemented chimeric mice, assessed the efficacy of anti-PD-L1 antibody in tumor-bearing chimeric mice, and then investigated T-cell function. Thymus-complemented chimeric mice were generated by injecting C57BL/6 (B6) embryonic stem cells into Foxn1nu/nu morulae or blastocysts. Flow cytometry data showed that the chimeric mouse thymic epithelial cells (TECs) were derived from the B6 cells. T cells appeared outside the thymi. Single-cell RNA-sequencing analysis revealed that the TEC gene-expression profile was comparable to that in B6 mice. Splenic T cells of chimeric mice responded very well to anti-CD3 stimulation in vitro; CD4+ and CD8+ T cells proliferated and produced IFNγ, IL-2, and granzyme B, as in B6 mice. Anti-PD-L1 antibody treatment inhibited MC38 tumor growth in chimeric mice. Moreover, in the chimeras, anti-PD-L1 antibody restored T-cell activation by significantly decreasing PD-1 expression on T cells and increasing IFNγ-producing T cells in the draining lymph nodes and tumors. T cells produced by complemented thymi thus functioned normally in vitro and in vivo. To successfully generate humanized animals by blastocyst complementation, both verification of the function and gene expression profiling of complemented organs/cells in interspecific chimeras will be important in the near future.
Collapse
|
115
|
Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 2022; 19:287-305. [DOI: 10.1038/s41571-022-00601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
|
116
|
Fukuda Y, Bustos MA, Cho SN, Roszik J, Ryu S, Lopez VM, Burks JK, Lee JE, Grimm EA, Hoon DSB, Ekmekcioglu S. Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma. Cell Death Dis 2022; 13:117. [PMID: 35121729 PMCID: PMC8816905 DOI: 10.1038/s41419-022-04552-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Soluble forms of receptors play distinctive roles in modulating signal-transduction pathways. Soluble CD74 (sCD74) has been identified in sera of inflammatory diseases and implicated in their pathophysiology; however, few relevant data are available in the context of cancer. Here we assessed the composition and production mechanisms, as well as the clinical significance and biological properties, of sCD74 in melanoma. Serum sCD74 levels were significantly elevated in advanced melanoma patients compared with normal healthy donors, and the high ratio of sCD74 to macrophage-migration inhibitory factor (MIF) conferred significant predictive value for prolonged survival in these patients (p = 0.0035). Secretion of sCD74 was observed primarily in melanoma cell lines as well as a THP-1 line of macrophages from monocytes and primary macrophages, especially in response to interferon-γ (IFN-γ). A predominant form that showed clinical relevance was the 25-KDa sCD74, which originated from the 33-KDa isoform of CD74. The release of this sCD74 was regulated by either a disintegrin and metalloproteinase-mediated cell-surface cleavage or cysteine-protease-mediated lysosomal cleavage, depending on cell types. Both recombinant and THP-1 macrophage-released endogenous sCD74 suppressed melanoma cell growth and induced apoptosis under IFN-γ stimulatory conditions via inhibiting the MIF/CD74/AKT-survival pathway. Our findings demonstrate that the interplay between sCD74 and MIF regulates tumor progression and determines patient outcomes in advanced melanoma.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Sung-Nam Cho
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason Roszik
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Victor M Lopez
- Department of Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dave S B Hoon
- Department of Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
117
|
[Research Progress of Immunotherapy Biomarkers for Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:46-53. [PMID: 35078285 PMCID: PMC8796128 DOI: 10.3779/j.issn.1009-3419.2021.102.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lung cancer is one of the most prevalent malignancies with the highest morbidity and mortality rates worldwide. In recent years, with the development of immune-oncology research and several therapeutic antibodies have reach the clinic, many breakthroughs have been made in immunotherapy. The advent of immunotherapy has revolutionized the treatment of NSCLC, but the response and durable clinical benefit are only observed in a small subset of patients. Therefore, strategies to screen the potential beneficial population and improve the efficacy of immunotherapy remain an essential topic. In the current article, the author review the biomarkers that have potential to better predict responders to immunotherapy and to provide ideas for the clinical application of immunotherapy.
.
Collapse
|
118
|
Sun Y, Hu L, Yang P, Zhang M, Wang X, Xiao H, Qiao C, Wang J, Luo L, Feng J, Zheng Y, Wang Y, Shi Y, Chen G. pH Low Insertion Peptide-Modified Programmed Cell Death-Ligand 1 Potently Suppresses T-Cell Activation Under Acidic Condition. Front Immunol 2021; 12:794226. [PMID: 35003115 PMCID: PMC8733706 DOI: 10.3389/fimmu.2021.794226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death-ligand 1 (PD-L1)/PD-1 axis is critical for maintenance of immune homeostasis by limiting overactivation of effector T-cell responses. The impairment of PD-L1/PD-1 signals play an important role in the pathogenesis of inflammatory diseases, making this pathway an ideal target for novel therapeutics to induce immune tolerance. Given weakly acidic environment as a putative hallmark of inflammation, in this study we designed a new cargo by linking the ectodomain of murine PD-L1 to the N terminus of pHLIPs, a low pH-responding and membrane-insertion peptide, and demonstrated its potent immune-suppressive activity. Specifically, PD-L1-pHLIP spanned the cellular membrane and perfectly recognized its ligand PD-1 in acidic buffer. Immobile PD-L1-pHLIP actively inhibited T-cell proliferation and IFN-γ production. Importantly, soluble PD-L1-pHLIP retained its function to dampen T-cell responses under acidic condition instead of neutral aqueous solution. Overall, these data suggest that PD-L1-pHLIP has potentials to be a novel therapeutic avenue for T-cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ying Sun
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Peng Yang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
119
|
PD-L1: Can it be a biomarker for the prognosis or a promising therapeutic target in cervical cancer? Int Immunopharmacol 2021; 103:108484. [PMID: 34954558 DOI: 10.1016/j.intimp.2021.108484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common in the female genital tract and remains a leading cause that threatens the health and lives of women worldwide, although preventive vaccines and early diagnosis have reduced mortality. While treatment by operation and chemoradiotherapy for early-stage patients achieve good outcomes, the great majority of cervical cancers caused by the human papilloma virus (HPV) make immunotherapy realizable for patients with advanced and recurrent cervical cancer. To date, some clinical trials of checkpoint immunotherapy in cervical cancer have indicated significant benefits of programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors, providing strong evidence for PD-1/PD-L1 as a therapeutic target. In this review article, we discuss the role of PD-L1 and the application of PD-L1 inhibitors in cervical cancer, with the aim of providing direction for future research.
Collapse
|
120
|
Zhu L, Wang Z, Sun Y, Giamas G, Stebbing J, Yu Z, Peng L. A Prediction Model Using Alternative Splicing Events and the Immune Microenvironment Signature in Lung Adenocarcinoma. Front Oncol 2021; 11:778637. [PMID: 35004299 PMCID: PMC8728792 DOI: 10.3389/fonc.2021.778637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlternative splicing (AS) is a gene regulatory mechanism that drives protein diversity. Dysregulation of AS is thought to play an essential role in cancer initiation and development. This study aimed to construct a prognostic signature based on AS and explore the role in the tumor immune microenvironment (TIME) in lung adenocarcinoma.MethodsWe analyzed transcriptome profiling and clinical lung adenocarcinoma data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq. Prognosis-related AS events were analyzed by univariate Cox regression analysis. Gene set enrichment analyses (GSEA) were performed for functional annotation. Prognostic signatures were identified and validated using univariate and multivariate Cox regression, LASSO regression, Kaplan–Meier survival analyses, and proportional hazards model. The context of TIME in lung adenocarcinoma was also analyzed. Gene and protein expression data of Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) were obtained from ONCOMINE and Human Protein Atlas. Splicing factor (SF) regulatory networks were visualized.ResultsA total of 19,054 survival-related AS events in lung adenocarcinoma were screened in 1,323 genes. Exon skip (ES) and mutually exclusive exons (ME) exhibited the most and fewest AS events, respectively. Based on AS subtypes, eight AS prognostic signatures were constructed. Patients with high-risk scores were associated with poor overall survival. A nomogram with good validity in prognostic prediction was generated. AUCs of risk scores at 1, 2, and 3 years were 0.775, 0.736, and 0.759, respectively. Furthermore, the prognostic signatures were significantly correlated with TIME diversity and immune checkpoint inhibitor (ICI)-related genes. Low-risk patients had a higher StromalScore, ImmuneScore, and ESTIMATEScore. AS-based risk score signature was positively associated with CD8+ T cells. CDKN2A was also found to be a prognostic factor in lung adenocarcinoma. Finally, potential functions of SFs were determined by regulatory networks.ConclusionTaken together, our findings show a clear association between AS and immune cell infiltration events and patient outcome, which could provide a basis for the identification of novel markers and therapeutic targets for lung adenocarcinoma. SF networks provide information of regulatory mechanisms.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Department of Respiratory Disease, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Zhentao Yu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Center, National Cancer Center, Shenzhen, China
- *Correspondence: Ling Peng, ; Zhentao Yu,
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People’s Hospital, Hangzhou, China
- *Correspondence: Ling Peng, ; Zhentao Yu,
| |
Collapse
|
121
|
Cheng Y, Wang C, Wang Y, Dai L. Soluble PD-L1 as a predictive biomarker in lung cancer: a systematic review and meta-analysis. Future Oncol 2021; 18:261-273. [PMID: 34874185 DOI: 10.2217/fon-2021-0641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: We performed a meta-analysis to evaluate the association between soluble PD-L1 (sPD-L1) and survival outcomes and treatment response in lung cancer. Methods & methods: Eligible studies were obtained by searching PubMed, EMBASE and Web of Science. Pooled effect estimates were calculated for overall survival (OS), progression-free survival (PFS) and objective response rate (ORR). Results: Twelve eligible studies with 1188 lung cancer patients were included. High sPD-L1 was significantly associated with worse OS (hazard ratio [HR] = 2.20; 95% CI: 1.59-3.05; p < 0.001) and PFS (HR = 2.42; 95% CI: 1.72-3.42; p < 0.001) in patients treated with immune checkpoint inhibitors (ICIs). Meanwhile, high sPD-L1 predicted worse OS (HR = 1.60; 95% CI: 1.31-1.96; p < 0.001) and lower ORR (odds ratio = 0.52; 95% CI: 0.35-0.80; p = 0.002) in patients treated with non-ICI therapies. Conclusion: sPD-L1 is a potential predictive biomarker of lung cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| | - Chong Wang
- Minimally Invasive Treatment Center, Beijing Chest Hospital, Beijing 101149, China
| | - Yan Wang
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| | - Li Dai
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| |
Collapse
|
122
|
Sagawa R, Sakata S, Gong B, Seto Y, Takemoto A, Takagi S, Ninomiya H, Yanagitani N, Nakao M, Mun M, Uchibori K, Nishio M, Miyazaki Y, Shiraishi Y, Ogawa S, Kataoka K, Fujita N, Takeuchi K, Katayama R. Soluble PD-L1 through alternative polyadenylation works as a decoy in lung cancer immunotherapy. JCI Insight 2021; 7:153323. [PMID: 34874919 PMCID: PMC8765052 DOI: 10.1172/jci.insight.153323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis is a novel development in anticancer therapy and has been applied to clinical medicine. However, there are still some problems, including a relatively low response rate, innate mechanisms of resistance against immune checkpoint blockades, and the absence of reliable biomarkers to predict responsiveness. In this study of in vitro and in vivo models, we demonstrate that PD-L1-vInt4, a splicing variant of PD-L1, plays a role as a decoy in anti-PD-L1 antibody treatment. First, we showed that PD-L1-vInt4 was detectable in clinical samples and that it was possible to visualize the secreting variants with IHC. By overexpressing the PD-L1-secreted splicing variant on MC38 cells, we observed that an immune-suppressing effect was not induced by their secretion alone. We then demonstrated that PD-L1-vInt4 secretion resisted anti-PD-L1 antibody treatment, compared with wild type PD-L1, which was explicable by the PD-L1-vInt4's decoying of the anti-PD-L1 antibody. The decoying function of PD-L1 splicing variants may be one of the reasons for cancers being resistant to anti-PD-L1 therapy. Measuring serum PD-L1 levels might be helpful in deciding the therapeutic strategy.
Collapse
Affiliation(s)
- Ray Sagawa
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Bo Gong
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masayuki Nakao
- Division of Thoracic Surgery, Cancer Institute Hospital of Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Mingyon Mun
- Division of Thoracic Surgery, Cancer Institute Hospital of Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
123
|
Palicelli A, Bonacini M, Croci S, Bisagni A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Gandhi J, Tafuni A, Melli B. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 7: PD-L1 Expression in Liquid Biopsy. J Pers Med 2021; 11:1312. [PMID: 34945784 PMCID: PMC8709072 DOI: 10.3390/jpm11121312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is an accessible, non-invasive diagnostic tool for advanced prostate cancer (PC) patients, potentially representing a real-time monitoring test for tumor evolution and response to treatment through the analysis of circulating tumor cells (CTCs) and exosomes. We performed a systematic literature review (PRISMA guidelines) to describe the current knowledge about PD-L1 expression in liquid biopsies of PC patients: 101/159 (64%) cases revealed a variable number of PD-L1+ CTCs. Outcome correlations should be investigated in larger series. Nuclear PD-L1 expression by CTCs was occasionally associated with worse prognosis. Treatment (abiraterone, enzalutamide, radiotherapy, checkpoint-inhibitors) influenced PD-L1+ CTC levels. Discordance in PD-L1 status was detected between primary vs. metastatic PC tissue biopsies and CTCs vs. corresponding tumor tissues. PD-L1 is also released by PC cells through soluble exosomes, which could inhibit the T cell function, causing immune evasion. PD-L1+ PC-CTC monitoring and genomic profiling may better characterize the ongoing aggressive PC forms compared to PD-L1 evaluation on primary tumor biopsies/prostatectomy specimens (sometimes sampled a long time before recurrence/progression). Myeloid-derived suppressor cells and dendritic cells (DCs), which may have immune-suppressive effects in tumor microenvironment, have been found in PC patients circulation, sometimes expressing PD-L1. Occasionally, their levels correlated to clinical outcome. Enzalutamide-progressing castration-resistant PC patients revealed increased PD-1+ T cells and circulating PD-L1/2+ DCs.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
124
|
Wan WJ, Huang G, Wang Y, Tang Y, Li H, Jia CH, Liu Y, You BG, Zhang XN. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy. Acta Biomater 2021; 136:473-484. [PMID: 34571271 DOI: 10.1016/j.actbio.2021.09.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
The continuous activation and expansion of tumor-specific T cells by various means are the main goal of cancer immunotherapy. Tumor cells overexpress fibrinogen-like protein 1 (FGL1) and programmmed death-ligand 1 (PD-L1), which respectively bind to lymphocyte-activation gene 3 (LAG-3) and programmmed death-1(PD-1) on T cells, forming important signaling pathways (FGL1/LAG-3 and PD-1/PD-L1) that negatively regulate immune responses. In order to interfere with the inhibitory function of FGL1 and PD-L1 proteins, we designed a new type of reactive oxygen species (ROS)-sensitive nanoparticles to load FGL1 siRNA (siFGL1) and PD-L1 siRNA (siPD-L1), which was formed from a stimuli-responsive polymer with a poly-l-lysine-thioketal and modified cis-aconitate to facilitate endosomal escape. Moreover, tumor-penetrating peptide iRGD and ROS-responsive nanoparticles were co-administered to further enhance the delivery efficiency of siFGL1 and siPD-L1, thereby significantly reducing the protein levels of FGL1 and PD-L1 in tumor cells. Our findings indicated that the dual delivery of FGL1/PD-L1 siRNA was a new and powerful treatment method, which was characterized by increasing the infiltration of effector CD4+ and CD8+ T cells, effectively alleviating the tumor immunosuppressive microenvironment. These findings also supported the superiority and feasibility of nanoparticle-mediated tumor immunotherapy, and may provide a different perspective for cancer treatment. STATEMENT OF SIGNIFICANCE: In addition to the idea that cancer vaccines can promote T cell immune responses, nanoparticle delivery modulators (such as small interfering RNA (siRNA) targeting immunosuppressive pathways) may provide more information for the research of nanoparticle-mediated cancer immunotherapy. In this study, we designed a new intelligent nano-delivery system for co-delivery of siFGL1 and siPD-L1, and demonstrated the ability to down-regulate the expression levels of FGL1 and PD-L1 proteins in tumor cells in vitro and in vivo. The constructed nanoparticle had a good tumor microenvironment responsiveness, and the delivery efficiency was enhanced by co-injection with tumor penetrating peptide iRGD. This project proposed a new strategy for tumor immunotherapy based on smart nano-delivery systems, and explored more possibilities for tumor therapy.
Collapse
Affiliation(s)
- Wen-Jun Wan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yu Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hui Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Chang-Hao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Beng-Gang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
125
|
Yu X, Li W, Young KH, Li Y. Posttranslational Modifications in PD-L1 Turnover and Function: From Cradle to Grave. Biomedicines 2021; 9:1702. [PMID: 34829931 PMCID: PMC8615371 DOI: 10.3390/biomedicines9111702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is one of the most classic immune checkpoint molecules. Cancer cells express PD-L1 to inhibit the activity of effector T cells' cytotoxicity through programmed death 1 (PD-1) engagement in exposure to inflammatory cytokines. PD-L1 expression levels on cancer cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for regulating PD-L1 expression is essential for improving the clinical response rate and efficacy of PD-1/PD-L1 blockade. Posttranslational modifications (PTMs), including phosphorylation, glycosylation, ubiquitination, and acetylation, regulate PD-L1 stability, cellular translocation, and interaction with its receptor. A coordinated positive and negative regulation via PTMs is required to ensure the balance and function of the PD-L1 protein. In this review, we primarily focus on the roles of PTMs in PD-L1 expression, trafficking, and antitumor immune response. We also discuss the implication of PTMs in anti-PD-1/PD-L1 therapies.
Collapse
Affiliation(s)
- Xinfang Yu
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| | - Wei Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| |
Collapse
|
126
|
Kiritsy MC, McCann K, Mott D, Holland SM, Behar SM, Sassetti CM, Olive AJ. Mitochondrial respiration contributes to the interferon gamma response in antigen-presenting cells. eLife 2021; 10:e65109. [PMID: 34726598 PMCID: PMC8598164 DOI: 10.7554/elife.65109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ). Using CRISPR-Cas9, we performed a series of genome-wide knockout screens in murine macrophages to identify the regulators of IFNγ-inducible T cell stimulatory or inhibitory proteins MHCII, CD40, and PD-L1. Our multiscreen approach enabled us to identify novel pathways that preferentially control functionally distinct proteins. Further integration of these screening data implicated complex I of the mitochondrial respiratory chain in the expression of all three markers, and by extension the IFNγ signaling pathway. We report that the IFNγ response requires mitochondrial respiration, and APCs are unable to activate T cells upon genetic or chemical inhibition of complex I. These findings suggest a dichotomous metabolic dependency between IFNγ and toll-like receptor signaling, implicating mitochondrial function as a fulcrum of innate immunity.
Collapse
Affiliation(s)
- Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Katelyn McCann
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Daniel Mott
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
127
|
Oh SY, Kim S, Keam B, Kim TM, Kim DW, Heo DS. Soluble PD-L1 is a predictive and prognostic biomarker in advanced cancer patients who receive immune checkpoint blockade treatment. Sci Rep 2021; 11:19712. [PMID: 34611279 PMCID: PMC8492653 DOI: 10.1038/s41598-021-99311-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Circulating soluble programmed death-1 ligand (sPD-L1) is measurable in the serum of cancer patients. This study aimed to investigate the significance of sPD-L1 in cancer patients receiving immune checkpoint inhibitor therapy. Blood samples were obtained before and after immune checkpoint inhibitor therapy (January 2015 to January 2019). The study cohort consisted of 128 patients who were diagnosed with non-small cell lung cancer (n = 50), melanoma (n = 31), small cell lung cancer (n = 14), urothelial carcinoma (n = 13), and other cancers (n = 20). Patients with a high level (> 11.0 pg/μL) of sPD-L1 were more likely to exhibit progressive disease compared with those with a low level (41.8% versus 20.7%, p = 0.013). High sPD-L1 was also associated with worse prognosis; the median PFS was 2.9 (95% confidence interval [CI] 2.1-3.7) months versus 6.3 (95% CI 3.0-9.6) months (p = 0.023), and the median OS was 7.4 (95% CI 6.3-8.5) months versus 13.3 (95% CI 9.2-17.4) months (p = 0.005). In the multivariate analyses, high sPD-L1 was an independent prognostic factor for both decreased PFS (HR 1.928, p = 0.038) and OS (HR 1.788, p = 0.004). sPD-L1 levels did not correlate with tissue PD-L1 expression. However, sPD-L1 levels were positively correlated with neutrophil to lymphocyte ratios and negatively correlated with both the proportion and the total number of lymphocytes. We found that high pretreatment sPD-L1 levels were associated with progressive disease and were an independent prognostic factor predicting lower PFS and OS in these patients.
Collapse
Affiliation(s)
- So Yeon Oh
- Medical Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University and Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Biomedical Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Biomedical Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University and Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dae Seog Heo
- Biomedical Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
128
|
Baldelli E, Hodge KA, Bellezza G, Shah NJ, Gambara G, Sidoni A, Mandarano M, Ruhunusiri C, Dunetz B, Abu-Khalaf M, Wulfkuhle J, Gallagher RI, Liotta L, de Bono J, Mehra N, Riisnaes R, Ravaggi A, Odicino F, Sereni MI, Blackburn M, Zupa A, Improta G, Demsko P, Crino' L, Ludovini V, Giaccone G, Petricoin EF, Pierobon M. PD-L1 quantification across tumor types using the reverse phase protein microarray: implications for precision medicine. J Immunother Cancer 2021; 9:e002179. [PMID: 34620701 PMCID: PMC8499669 DOI: 10.1136/jitc-2020-002179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anti-programmed cell death protein 1 and programmed cell death ligand 1 (PD-L1) agents are broadly used in first-line and second-line treatment across different tumor types. While immunohistochemistry-based assays are routinely used to assess PD-L1 expression, their clinical utility remains controversial due to the partial predictive value and lack of standardized cut-offs across antibody clones. Using a high throughput immunoassay, the reverse phase protein microarray (RPPA), coupled with a fluorescence-based detection system, this study compared the performance of six anti-PD-L1 antibody clones on 666 tumor samples. METHODS PD-L1 expression was measured using five antibody clones (22C3, 28-8, CAL10, E1L3N and SP142) and the therapeutic antibody atezolizumab on 222 lung, 71 ovarian, 52 prostate and 267 breast cancers, and 54 metastatic lesions. To capture clinically relevant variables, our cohort included frozen and formalin-fixed paraffin-embedded samples, surgical specimens and core needle biopsies. Pure tumor epithelia were isolated using laser capture microdissection from 602 samples. Correlation coefficients were calculated to assess concordance between antibody clones. For two independent cohorts of patients with lung cancer treated with nivolumab, RPPA-based PD-L1 measurements were examined along with response to treatment. RESULTS Median-center PD-L1 dynamic ranged from 0.01 to 39.37 across antibody clones. Correlation coefficients between the six antibody clones were heterogeneous (range: -0.48 to 0.95) and below 0.50 in 61% of the comparisons. In nivolumab-treated patients, RPPA-based measurement identified a subgroup of tumors, where low PD-L1 expression equated to lack of response. CONCLUSIONS Continuous RPPA-based measurements capture a broad dynamic range of PD-L1 expression in human specimens and heterogeneous concordance levels between antibody clones. This high throughput immunoassay can potentially identify subgroups of tumors in which low expression of PD-L1 equates to lack of response to treatment.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Neil J Shah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Guido Gambara
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Martina Mandarano
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Chamodya Ruhunusiri
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | - Maysa Abu-Khalaf
- Department of Medical Oncology, Sidney Kimmel Cancer Center at Jefferson Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | | | - Niven Mehra
- The Institute of Cancer Research, London, UK
| | | | - Antonella Ravaggi
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Isabella Sereni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Matthew Blackburn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Angela Zupa
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Unita' Operativa di Anatomia Patologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB, Rionero In Vulture, Italy
| | - Giuseppina Improta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Unita' Operativa di Anatomia Patologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB, Rionero In Vulture, Italy
| | - Perry Demsko
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Lucio Crino'
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Vienna Ludovini
- Division of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
129
|
Tan X, Shi L, Banerjee P, Liu X, Guo HF, Yu J, Bota-Rabassedas N, Rodriguez BL, Gibbons DL, Russell WK, Creighton CJ, Kurie JM. A protumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. J Clin Invest 2021; 131:137186. [PMID: 32931483 DOI: 10.1172/jci137186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Therapeutic strategies designed to target TP53-deficient cancer cells remain elusive. Here, we showed that TP53 loss initiated a pharmacologically actionable secretory process that drove lung adenocarcinoma (LUAD) progression. Molecular, biochemical, and cell biological studies showed that TP53 loss increased the expression of Golgi reassembly and stacking protein 55 kDa (G55), a Golgi stacking protein that maintains Golgi organelle integrity and is part of a GOLGIN45 (G45)-myosin IIA-containing protein complex that activates secretory vesicle biogenesis in the Golgi. TP53 loss activated G55-dependent secretion by relieving G55 and myosin IIA from miR-34a-dependent silencing. G55-dependent secreted proteins enhanced the proliferative and invasive activities of TP53-deficient LUAD cells and promoted angiogenesis and CD8+ T cell exhaustion in the tumor microenvironment. A small molecule that blocks G55-G45 interactions impaired secretion and reduced TP53-deficient LUAD growth and metastasis. These results identified a targetable secretory vulnerability in TP53-deficient LUAD cells.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
130
|
Massaro C, Min W, Pegtel DM, Baglio SR. Harnessing EV communication to restore antitumor immunity. Adv Drug Deliv Rev 2021; 176:113838. [PMID: 34144088 DOI: 10.1016/j.addr.2021.113838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Restoring effective anti-tumor immune responses to cure cancer is a promising strategy, but challenging to achieve due to the intricate crosstalk between tumor and immune cells. While it is established that tumor cells acquire traits to escape immune recognition, the involvement of extracellular vesicles (EVs) in curbing immune cell activation is rapidly emerging. By assisting cancer cells in spreading immunomodulatory signals in the form of (glyco)proteins, lipids, nucleic acids and metabolic regulators, EVs recently emerged as versatile mediators of immune suppression. Blocking their action might reactivate immune cell function and natural antitumor immune responses. Alternatively, EV communication may be exploited to boost anti-tumor immunity. Indeed, novel insights into EV biology paved the way for efficient ex vivo production of 'rationally engineered' EVs that function as potent antitumor vaccines or carry out specific functional tasks. In this review we discuss the latest findings on immune regulation by cancer EVs and explore how EV-mediated communication can be either targeted or harnessed to restore immunity as a means for cancer therapy.
Collapse
|
131
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
132
|
Khan M, Arooj S, Wang H. Soluble B7-CD28 Family Inhibitory Immune Checkpoint Proteins and Anti-Cancer Immunotherapy. Front Immunol 2021; 12:651634. [PMID: 34531847 PMCID: PMC8438243 DOI: 10.3389/fimmu.2021.651634] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Co-inhibitory B7-CD28 family member proteins negatively regulate T cell responses and are extensively involved in tumor immune evasion. Blockade of classical CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) and PD-1 (programmed cell death protein-1) checkpoint pathways have become the cornerstone of anti-cancer immunotherapy. New inhibitory checkpoint proteins such as B7-H3, B7-H4, and BTLA (B and T lymphocyte attenuator) are being discovered and investigated for their potential in anti-cancer immunotherapy. In addition, soluble forms of these molecules also exist in sera of healthy individuals and elevated levels are found in chronic infections, autoimmune diseases, and cancers. Soluble forms are generated by proteolytic shedding or alternative splicing. Elevated circulating levels of these inhibitory soluble checkpoint molecules in cancer have been correlated with advance stage, metastatic status, and prognosis which underscore their broader involvement in immune regulation. In addition to their potential as biomarker, understanding their mechanism of production, biological activity, and pathological interactions may also pave the way for their clinical use as a therapeutic target. Here we review these aspects of soluble checkpoint molecules and elucidate on their potential for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
133
|
Wen M, Cao Y, Wu B, Xiao T, Cao R, Wang Q, Liu X, Xue H, Yu Y, Lin J, Xu C, Xu J, OuYang B. PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain. Nat Commun 2021; 12:5106. [PMID: 34429434 PMCID: PMC8384847 DOI: 10.1038/s41467-021-25416-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic domain of PD-L1 (PD-L1-CD) regulates PD-L1 degradation and stability through various mechanism, making it an attractive target for blocking PD-L1-related cancer signaling. Here, by using NMR and biochemical techniques we find that the membrane association of PD-L1-CD is mediated by electrostatic interactions between acidic phospholipids and basic residues in the N-terminal region. The absence of the acidic phospholipids and replacement of the basic residues with acidic residues abolish the membrane association. Moreover, the basic-to-acidic mutations also decrease the cellular abundance of PD-L1, implicating that the electrostatic interaction with the plasma membrane mediates the cellular levels of PD-L1. Interestingly, distinct from its reported function as an activator of AMPK in tumor cells, the type 2 diabetes drug metformin enhances the membrane dissociation of PD-L1-CD by disrupting the electrostatic interaction, thereby decreasing the cellular abundance of PD-L1. Collectively, our study reveals an unusual regulatory mechanism that controls the PD-L1 level in tumor cells, suggesting an alternative strategy to improve the efficacy of PD-L1-related immunotherapies.
Collapse
Affiliation(s)
- Maorong Wen
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yunlei Cao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wu
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Taoran Xiao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyu Cao
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xiwei Liu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Hongjuan Xue
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yu
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jialing Lin
- grid.266902.90000 0001 2179 3618Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.266900.b0000 0004 0447 0018Stephenson Cancer Center, Oklahoma City, OK USA
| | - Chenqi Xu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jie Xu
- grid.8547.e0000 0001 0125 2443Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bo OuYang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
134
|
IL-27 Mediates PD-L1 Expression and Release by Human Mesothelioma Cells. Cancers (Basel) 2021; 13:cancers13164011. [PMID: 34439164 PMCID: PMC8393193 DOI: 10.3390/cancers13164011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is a rare tumor with an unfavorable prognosis. MM genesis involves asbestos-mediated local inflammation, supported by several cytokines, including IL-6. Recent data showed that targeting PD-1/PD-L1 is an effective therapy in MM. Here, we investigated the effects of IL-6 trans-signaling and the IL-6-related cytokine IL-27 on human MM cells in vitro by Western blot analysis of STAT1/3 phosphorylation. The effects on PD-L1 expression were tested by qRT-PCR and flow-cytometry and the release of soluble (s)PD-L1 by ELISA. We also measured the concentrations of sPD-L1 and, by multiplexed immunoassay, IL-6 and IL-27 in pleural fluids obtained from 77 patients in relation to survival. IL-27 predominantly mediates STAT1 phosphorylation and increases PD-L1 gene and surface protein expression and sPD-L1 release by human MM cells in vitro. IL-6 has limited activity, whereas a sIL-6R/IL-6 chimeric protein mediates trans-signaling predominantly via STAT3 phosphorylation but has no effect on PD-L1 expression and release. IL-6, IL-27, and sPD-L1 are present in pleural fluids and show a negative correlation with overall survival, but only IL-27 shows a moderate albeit significant correlation with sPD-L1 levels. Altogether these data suggest a potential role of IL-27 in PD-L1-driven immune resistance in MM.
Collapse
|
135
|
Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021; 13:795-824. [PMID: 34367478 PMCID: PMC8316870 DOI: 10.4252/wjsc.v13.i7.795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.
Collapse
Affiliation(s)
| | | | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
136
|
Zouein J, Kesrouani C, Kourie HR. PD-L1 expression as a predictive biomarker for immune checkpoint inhibitors: between a dream and a nightmare. Immunotherapy 2021; 13:1053-1065. [PMID: 34190579 DOI: 10.2217/imt-2020-0336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PD-L1 is an important predictive biomarker for treatment by immune checkpoint inhibitors (ICIs). ICIs are now indicated for the treatment of various cancer depending on the level of expression of PD-L1 on tumor cells. PD-L1 testing is done using immunohistochemistry with five different assays approved as companion diagnostic for ICIs. However, these assays have different score reporting methods and do not accurately measure PD-L1 expression. Exosomal PD-L1 testing has recently emerged as an alternative for cell-surface PD-L1 testing however studies are still premature and more extensive knowledge about this new potential biomarker is needed.
Collapse
Affiliation(s)
- Joseph Zouein
- Department of Hematology-Oncology, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Carole Kesrouani
- Department of Pathology, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
137
|
Ying H, Zhang X, Duan Y, Lao M, Xu J, Yang H, Liang T, Bai X. Non-cytomembrane PD-L1: An atypical target for cancer. Pharmacol Res 2021; 170:105741. [PMID: 34174446 DOI: 10.1016/j.phrs.2021.105741] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Programmed death ligand 1 (PD-L1) has conventionally been considered as a type I transmembrane protein that can interact with its receptor, programmed cell death 1 (PD-1), thus inducing T cell deactivation and immune escape. However, targeting the PD-1/PD-L1 axis has achieved adequate clinical responses in very few specific malignancies. Recent studies have explored the extracellularly and subcellularly located PD-L1, namely, nuclear PD-L1 (nPD-L1), cytoplasmic PD-L1 (cPD-L1), soluble PD-L1 (sPD-L1), and extracellular vesicle PD-L1 (EV PD-L1), which might shed light on the resistance to anti-PD1/PDL1 therapy. In this review, we summarize the four atypical localizations of PD-L1 with a focus on their novel functions, such as gene transcription regulation, therapeutic efficacy prediction, and resistance to various cancer therapies. Additionally, we highlight that non-cytomembrane PD-L1s are of significant cancer diagnostic value and are promising therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou 310003, Zhejiang, China.
| |
Collapse
|
138
|
A structural perspective on the design of decoy immune modulators. Pharmacol Res 2021; 170:105735. [PMID: 34146695 DOI: 10.1016/j.phrs.2021.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Therapeutic mAbs have dominated the class of immunotherapeutics in general and immune checkpoint inhibitors in particular. The high specificity of mAbs to the target molecule as well as their extended half-life and (or) the effector functions raised by the Fc part are some of the important aspects that contribute to the success of this class of therapeutics. Equally potential candidates are decoys and their fusions that can address some of the inherent limitations of mAbs, like immunogenicity, resistance development, low bio-availability and so on, besides maintaining the advantages of mAbs. The decoys are molecules that trap the ligands and prevent them from interacting with the signaling receptors. Although a few FDA-approved decoy immune modulators are very successful, the potential of this class of drugs is yet to be fully realized. Here, we review various strategies employed in fusion protein therapeutics with a focus on the design of decoy immunomodulators from the structural perspective and discuss how the information on protein structure and function can strategically guide the development of next-generation immune modulators.
Collapse
|
139
|
Bailly C, Thuru X, Quesnel B. Soluble Programmed Death Ligand-1 (sPD-L1): A Pool of Circulating Proteins Implicated in Health and Diseases. Cancers (Basel) 2021; 13:3034. [PMID: 34204509 PMCID: PMC8233757 DOI: 10.3390/cancers13123034] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Upon T-cell receptor stimulation, the Programmed cell Death-1 receptor (PD-1) expressed on T-cells can interact with its ligand PD-L1 expressed at the surface of cancer cells or antigen-presenting cells. Monoclonal antibodies targeting PD-1 or PD-L1 are routinely used for the treatment of cancers, but their clinical efficacy varies largely across the variety of tumor types. A part of the variability is linked to the existence of several forms of PD-L1, either expressed on the plasma membrane (mPD-L1), at the surface of secreted cellular exosomes (exoPD-L1), in cell nuclei (nPD-L1), or as a circulating, soluble protein (sPD-L1). Here, we have reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein. sPD-L1 isoforms can be generated essentially by two non-exclusive processes: (i) proteolysis of m/exoPD-L1 by metalloproteases, such as metalloproteinases (MMP) and A disintegrin and metalloproteases (ADAM), which are capable of shedding membrane PD-L1 to release an active soluble form, and (ii) the alternative splicing of PD-L1 pre-mRNA, leading in some cases to the release of sPD-L1 protein isoforms lacking the transmembrane domain. The expression and secretion of sPD-L1 have been observed in a large variety of pathologies, well beyond cancer, notably in different pulmonary diseases, chronic inflammatory and autoimmune disorders, and viral diseases. The expression and role of sPD-L1 during pregnancy are also evoked. The structural heterogeneity of sPD-L1 proteins, and associated functional/cellular plurality, should be kept in mind when considering sPD-L1 as a biomarker or as a drug target. The membrane, exosomal and soluble forms of PD-L1 are all integral parts of the highly dynamic PD-1/PD-L1 signaling pathway, essential for immune-tolerance or immune-escape.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
140
|
Mori K, Pradere B, Quhal F, Katayama S, Mostafaei H, Laukhtina E, Schuettfort VM, D'Andrea D, Egawa S, Bensalah K, Schmidinger M, Powles T, Shariat SF. Differences in oncological and toxicity outcomes between programmed cell death-1 and programmed cell death ligand-1 inhibitors in metastatic renal cell carcinoma: A systematic review and meta-analysis. Cancer Treat Rev 2021; 99:102242. [PMID: 34153830 DOI: 10.1016/j.ctrv.2021.102242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The programmed cell death ligand-1 (PD-L1)/programmed cell death-1 (PD-1) pathway is important in metastatic renal cell carcinoma (mRCC). However, some dissimilarities between anti-PD-1 and anti-PD-L1 inhibitors have emerged. We aimed to assess differences between anti-PD-1 and anti-PD-L1 combination immunotherapies as first-line treatments in mRCC patients. METHODS Multiple databases (PubMed, Web of Science, and Scopus) were searched for articles published until March 2021. Studies were eligible if they compared overall survival (OS), progression-free survival (PFS), objective response rates (ORR), complete response rates (CRR), and adverse events. RESULTS Five studies met the eligibility criteria. PD-1 combination therapy was associated with significantly better OS and PFS and higher ORR and CRR than sunitinib (hazard ratio [HR]: 0.60, 95% confidence interval [CI]: 0.40-0.89; HR: 0.52, 95% CI: 0.37-0.75; odds ratio [OR]: 3.20, 95% CI: 2.18-4.68; and OR: 3.05, 95% CI: 2.13-4.37, respectively; P < 0.001). For all oncological outcomes, anti-PD-1 agents were superior to anti-PD-L1 agents based on HR and OR (OS: HR = 0.88, PFS: HR = 0.76, ORR: OR = 1.85, and CRR: OR = 2.24). Conversely, anti-PD-L1 agents were superior to anti-PD-1 agents in their safety profiles. In network meta-analyses, pembrolizumab plus lenvatinib seemed the worst tolerated anti-PD-1 combination therapy. CONCLUSIONS Our analysis indicates the superior oncologic benefits of first-line anti-PD-1 combination therapies over anti-PD-L1 combination therapies in mRCC patients. This biological difference is of vital importance for clinical treatment decision making and the design of future rational combination therapy trials in mRCC.
Collapse
Affiliation(s)
- Keiichiro Mori
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Benjamin Pradere
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Fahad Quhal
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Satoshi Katayama
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hadi Mostafaei
- Department of Urology, Medical University of Vienna, Vienna, Austria; Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ekaterina Laukhtina
- Department of Urology, Medical University of Vienna, Vienna, Austria; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Victor M Schuettfort
- Department of Urology, Medical University of Vienna, Vienna, Austria; Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David D'Andrea
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Shin Egawa
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Karim Bensalah
- Department of Urology, University of Rennes, Rennes, France
| | - Manuela Schmidinger
- Clinical Division of Oncology, Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Powles
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia; Research Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Urology, Weill Cornell Medical College, New York, NY, USA; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria.
| |
Collapse
|
141
|
Pezeshki PS, Mahdavi Sharif P, Rezaei N. Resistance mechanisms to programmed cell death protein 1 and programmed death ligand 1 inhibitors. Expert Opin Biol Ther 2021; 21:1575-1590. [PMID: 33984254 DOI: 10.1080/14712598.2021.1929919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the past few years, administrating monoclonal humanized antibodies, namely checkpoint inhibitors, against programmed cell death protein 1 (PD-1), and its ligand (PD-L1), has yielded reassuring tumor regression rates. Anti-PD-1/PD-L1 checkpoint inhibitors disrupt the engagement of PD-1 on T-cells and their ligands on tumor or other target cells and reactivate the tumor-specific T infiltrating lymphocytes (TILs), which are mostly in a state of anergy before the PD-1/PD-L1 blockade. However, a limited number of patients initially respond, and the others show a primary (innate) resistance. Moreover, the rate of relapse and tumor progression after a partial, or even complete response (secondary or acquired resistance) is relatively considerable.Areas covered: This paper presents a comprehensive discussion on the mechanisms of primary and secondary resistance to PD-1/PD-L1 blockade. Loss of T-cell infiltration or T-cell exclusion, lack of PD-L1 or PD-1 expression, and also lack of tumor immunogenicity are among the most important mechanisms, and also biomarkers of resistance in patients undergoing PD-1/PD-L1 blockade. Several somatic mutations in tumors are known to be related to at least one of the resistance mechanisms.Expert opinion: Identification of the novel resistance mechanisms suggests further combinatorial therapies to tackle primary and secondary resistance to PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
142
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
143
|
Duchemann B, Remon J, Naigeon M, Cassard L, Jouniaux JM, Boselli L, Grivel J, Auclin E, Desnoyer A, Besse B, Chaput N. Current and future biomarkers for outcomes with immunotherapy in non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:2937-2954. [PMID: 34295689 PMCID: PMC8264336 DOI: 10.21037/tlcr-20-839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors (ICI) have been validated as an effective new treatment strategy in several tumoral types including lung cancer. This remarkable shift in the therapeutic paradigm is in large part due to the duration of responses and long-term survival seen with ICI. However, despite this, the majority of cancer patients do not experience benefit from ICI. Even among patients who initially respond to ICI, disease progression may ultimately occur. Moreover, in some patients, these drugs may be associated with new patterns of progression such as pseudo-progression and hyper-progressive disease, and different toxicity profiles with immune-related adverse events. Therefore, the identification of predictive biomarkers may help to select those patients most likely to obtain a true benefit from these drugs, and avoid exposure to potential toxicity in patients who will not obtain clinical benefit, while also reducing the economic impact. In this review, we summarize current and promising potential predictive biomarkers of ICI in patients with non-small cell lung cancer (NSCLC), as well as pitfalls encountered with their use and areas of focus to optimize their routine clinical implementation.
Collapse
Affiliation(s)
- Boris Duchemann
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France.,University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, France.,Medical and Thoracic Oncology Department, Hopital Avicenne, AP-HP, Bobigny, France
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Marie Naigeon
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France.,University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Lydie Cassard
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Jean Mehdi Jouniaux
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Lisa Boselli
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Jonathan Grivel
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France
| | - Edouard Auclin
- Medical and Thoracic Oncology Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Aude Desnoyer
- University Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France.,Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Benjamin Besse
- University Paris-Saclay, Faculty of Medicine, Le Kremlin Bicêtre, France.,Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Gustave Roussy Cancer Campus, Laboratory of Immunomonitoring in Oncology, CNRS-UMS 3655 and INSERM-US23, Villejuif, France.,University Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France.,Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
144
|
Geerdes EE, Sideras K, Aziz MH, van Eijck CH, Bruno MJ, Sprengers D, Boor PPC, Kwekkeboom J. Cancer Cell B7-H3 Expression Is More Prevalent in the Pancreato-Biliary Subtype of Ampullary Cancer Than in Pancreatic Cancer. Front Oncol 2021; 11:615691. [PMID: 33996541 PMCID: PMC8117087 DOI: 10.3389/fonc.2021.615691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
B7-H3 is an immunomodulatory member of the B7-superfamily with limited expression in normal tissues, but overexpression in several types of cancer. Therefore it is currently being explored as a potential target for cancer immunotherapy. The biological relevance of B7-H3 expression in pancreatic cancer is unclear, while there are no data on B7-H3 expression in ampullary cancer. We aimed to compare intra-tumoral B7-H3 expression between these two closely related cancer types and analyze its association with post-surgical disease course. B7-H3 expression levels were determined by immunohistochemistry in tissue microarrays of resected tumors of 137 pancreatic cancer patients and 83 patients with ampullary cancer of the pancreato-biliary subtype. B7-H3 was more frequently expressed in cancer cells of ampullary cancer patients compared to pancreatic cancer patients (51% versus 21%; p< 0.001). In ampullary cancer patients, but not in pancreatic cancer patients, B7-H3 cancer cell expression was associated with longer disease-free survival and patient survival. However, the prognostic value of B7-H3 was lost upon adjustment for CA19-9 levels. The frequencies of B7-H3 expression in tumor stroma did not differ between the two types of cancer (66% versus 63%). In both cancer types, stromal B7-H3 expression was not associated with post-surgical disease course. Compared to pancreatic cancer, B7-H3 is more frequently expressed in cancer cells of patients with the pancreato-biliary subtype of ampullary cancer. These data suggest that B7-H3 may represent an interesting potential target for immunotherapy in ampullary cancer rather than in pancreatic cancer.
Collapse
Affiliation(s)
- Emma E Geerdes
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Kostandinos Sideras
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands.,Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - M Hosein Aziz
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
145
|
Oyanagi J, Koh Y, Sato K, Teraoka S, Tokudome N, Hayata A, Akamatsu H, Ozawa Y, Nakanishi M, Ueda H, Yamamoto N. Bloodborne Cytokines for Predicting Clinical Benefits and Immune-Related Adverse Events in Advanced Non-Small Cell Lung Cancer Treated With Anti-Programmed Cell Death 1 Inhibitors. Clin Lung Cancer 2021; 22:e833-e841. [PMID: 34049821 DOI: 10.1016/j.cllc.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Programmed cell death ligand 1 is a biomarker of immune checkpoint inhibitors (ICIs) for treating advanced non-small-cell lung cancer (NSCLC). Here, we evaluated serum proteins from patients with advanced NSCLC treated with ICIs to determine their potential as noninvasive predictive biomarkers for efficacy and immune-related adverse events (irAEs). PATIENTS AND METHODS Patients with advanced NSCLC who received nivolumab or pembrolizumab monotherapy until disease progression or unacceptable toxicity were integrated with previously reported nivolumab-treated patients. Blood samples were collected serially from baseline until the disease progressed. Serum protein levels were quantified using the Luminex assay. Associations of clinical benefit (CB) and onset of irAEs with serum protein levels were evaluated. RESULTS Sixty-three patients with advanced NSCLC were studied, and we used 63 and 47 paired serum samples at baseline and the second sampling point, respectively, for efficacy analysis. Baseline growth-regulated oncogene 1 (GRO-1) levels were significantly lower in durable CB (DCB) patients than in non-DCB patients (P < .05). Changes in monocyte chemoattractant protein 1 (MCP-1) levels significantly decreased between baseline and the second sampling point (P < .05). Patients with the low GRO-1/decreased MCP-1 subtype showed significantly longer progression-free survival (PFS) and overall survival (OS) than the high GRO-1/increased MCP-1 subgroup did (median PFS, not reached vs. 47 days, P < .0001; median OS, 985 days vs. 148 days, P = .0002, respectively). Elevated GRO-1 levels were associated with immune-related adverse event onset. CONCLUSIONS Serum GRO-1 and MCP-1 levels can identify patients with advanced NSCLC who are likely to benefit from ICI treatment. Time-course tracing of these protein levels might be valuable in ICI treatment.
Collapse
Affiliation(s)
- Jun Oyanagi
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Yasuhiro Koh
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan.
| | - Koichi Sato
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Nahomi Tokudome
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Atsushi Hayata
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Hiroaki Akamatsu
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Yuichi Ozawa
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Masanori Nakanishi
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Hiroki Ueda
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| |
Collapse
|
146
|
Xiong W, Gao Y, Wei W, Zhang J. Extracellular and nuclear PD-L1 in modulating cancer immunotherapy. Trends Cancer 2021; 7:837-846. [PMID: 33903073 DOI: 10.1016/j.trecan.2021.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Although targeting programmed death 1/programmed death ligand 1 (PD-1/PD-L1) has achieved durable responses and disease remission in patients with certain cancers, relatively low response rates and emerging resistance limit its clinical application. Hence, a more thorough understanding of regulatory mechanisms of the PD-1/PD-L1 axis is vital for developing combined therapeutic strategies to overcome hurdles of PD-1/PD-L1 blockade. Increasing evidence has demonstrated that PD-L1 can be secreted into the extracellular space or translocated into the nucleus, which also plays a critical role in regulating cancer immune evasion, tumorigenesis, and immunotherapy. In this review, we summarize these emerging roles of extracellular and nuclear PD-L1 and discuss future research directions and potential opportunities in translational medicine.
Collapse
Affiliation(s)
- Wenjun Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
147
|
Qu Y, Wang H, Liu H, Sun X, Li J, Yu H. Molecular Mechanism of Expression Changes of Immunological Indexes of PD-1/sPD-L1 after Radiotherapy in Nonsmall Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8811751. [PMID: 33987445 PMCID: PMC8079205 DOI: 10.1155/2021/8811751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/27/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
It is aimed at investigating the changes of serum soluble programmed death-ligand 1 (sPD-L1) expression level in nonsmall cell lung cancer (NSCLC) before and after radiotherapy, the correlation of PD-L1, PD-1, and proteins of Akt (protein kinase B), mTOR, and HIF-1α, and the molecular mechanism of the PD-1/PD-L1 pathway in the development of NSCLS. A total of 126 NSCLC patients receiving radiotherapy in Liaoning Cancer Hospital from September 2018 to September 2019 were selected as the observation group, and another 58 healthy volunteers were selected as the control group. NSCLC patients were divided into group A (stage I-II, stereotactic radiotherapy) and group B (stage III, intensity-modulated radiation therapy) according to the cancer stage. The efficacy of radiotherapy was evaluated, and sPD-L1 expression was detected by ELISA. The immunohistochemical staining was adopted to detect protein expressions of Akt, mTOR, and HIF-1α in NSCLC tissues. The correlation between their expression and expression of PD-L1 and PD-1 was analyzed. The results showed that the overall response rate (ORR) of group A was 89.29%, the clinical benefit response (CBR) was 96.43%, the median survival time (MST) was 25 months, and the survival rate within three years was 72.56%. In group B, the ORR was 70.41%, the CBR was 97.96%, the MST was 18 months, and the survival rate within three years was 34.67%. Comparison of overall serum sPD-L1 expression in the control group, group A, and group B and between groups before radiotherapy was statistically significant (P < 0.01). After radiotherapy, serum sPD-L1 expression in group A and group B decreased compared with that before radiotherapy (P < 0.01). Among NSCLC patients, the positive expression rate of Akt, mTOR, and HIF-1α was 71.32%, 41.26%, and 80.65%, respectively. PD-L1 expression and Akt, mTOR, and HIF-1α expression showed a significant correlation. PD1 expression and Akt, mTOR, and HIF-1α expression also showed a significant correlation. It indicated that the expression level of sPD-L1 in NSCLC patients was higher than that in normal subjects, but the expression level of sPD-L1 was decreased after radiotherapy. PD-1/PD-L1 may play important roles in NSCLC procession through the Akt/mTOR and HIF-1α pathway.
Collapse
Affiliation(s)
- Yanli Qu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Huan Wang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Hangyu Liu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaohu Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Ji Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Hong Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| |
Collapse
|
148
|
Yoshizawa T, Uchibori K, Araki M, Matsumoto S, Ma B, Kanada R, Seto Y, Oh-Hara T, Koike S, Ariyasu R, Kitazono S, Ninomiya H, Takeuchi K, Yanagitani N, Takagi S, Kishi K, Fujita N, Okuno Y, Nishio M, Katayama R. Microsecond-timescale MD simulation of EGFR minor mutation predicts the structural flexibility of EGFR kinase core that reflects EGFR inhibitor sensitivity. NPJ Precis Oncol 2021; 5:32. [PMID: 33863983 PMCID: PMC8052404 DOI: 10.1038/s41698-021-00170-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Approximately 15–30% of patients with lung cancer harbor mutations in the EGFR gene. Major EGFR mutations (>90% of EGFR-mutated lung cancer) are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs). Many uncommon EGFR mutations have been identified, but little is known regarding their characteristics, activation, and sensitivity to various EGFR-TKIs, including allosteric inhibitors. We encountered a case harboring an EGFR-L747P mutation, originally misdiagnosed with EGFR-del19 mutation using a routine diagnostic EGFR mutation test, which was resistant to EGFR-TKI gefitinib. Using this minor mutation and common EGFR-activating mutations, we performed the binding free energy calculations and microsecond-timescale molecular dynamic (MD) simulations, revealing that the L747P mutation considerably stabilizes the active conformation through a salt-bridge formation between K745 and E762. We further revealed why several EGFR inhibitors, including the allosteric inhibitor, were ineffective. Our computational structural analysis strategy would be beneficial for future drug development targeting the EGFR minor mutations.
Collapse
Affiliation(s)
- Takahiro Yoshizawa
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Division of Respiratory Medicine, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.,Department of Clinical Oncology, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Ken Uchibori
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.,Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Shigeyuki Matsumoto
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kanagawa, Japan
| | - Biao Ma
- Research and Development Group for In Silico Drug Discovery, Center for Cluster Development and Coordination (CCD), Foundation for Biomedical Research and Innovation at Kobe (FBRI), Hyogo, Japan
| | - Ryo Kanada
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kanagawa, Japan
| | - Yosuke Seto
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Tomoko Oh-Hara
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Sumie Koike
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, , Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, , Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Satoshi Takagi
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Kazuma Kishi
- Division of Respiratory Medicine, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan.,Department of Clinical Oncology, Toho University School of Medicine, 6-11-1, Omorinishi, Ota-ku, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, the Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.
| | - Ryohei Katayama
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan.
| |
Collapse
|
149
|
Sun L, Gao F, Gao Z, Ao L, Li N, Ma S, Jia M, Li N, Lu P, Sun B, Ho M, Jia S, Ding T, Gao W. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma. J Immunother Cancer 2021; 9:e001875. [PMID: 33833049 PMCID: PMC8039282 DOI: 10.1136/jitc-2020-001875] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a cell surface glycoprotein that is pathologically highly expressed in hepatocellular carcinoma (HCC), is an attractive target for immunotherapies, including chimeric antigen receptor (CAR) T cells. The serum GPC3 is frequently elevated in HCC patients due to the shedding effect of cell surface GPC3. The shed GPC3 (sGPC3) is reported to block the function of cell-surface GPC3 as a negative regulator. Therefore, it would be worth investigating the potential influence of antigen shedding in anti-GPC3 CAR-T therapy for HCC. METHODS In this study, we constructed two types of CAR-T cells targeting distinct epitopes of GPC3 to examine how sGPC3 influences the activation and cytotoxicity of CAR-T cells in vitro and in vivo by introducing sGPC3 positive patient serum or recombinant sGPC3 proteins into HCC cells or by using sGPC3-overexpressing HCC cell lines. RESULTS Both humanized YP7 CAR-T cells and 32A9 CAR-T cells showed GPC3-specific antitumor functions in vitro and in vivo. The existence of sGPC3 significantly inhibited the release of cytokines and the cytotoxicity of anti-GPC3 CAR-T cells in vitro. In animal models, mice carrying Hep3B xenograft tumors expressing sGPC3 exhibited a worse response to the treatment with CAR-T cells under both a low and high tumor burden. sGPC3 bound to CAR-T cells but failed to induce the effective activation of CAR-T cells. Therefore, sGPC3 acted as dominant negative regulators when competed with cell surface GPC3 to bind anti-GPC3 CAR-T cells, leading to an inhibitory effect on CAR-T cells in HCC. CONCLUSIONS We provide a proof-of-concept study demonstrating that GPC3 shedding might cause worse response to CAR-T cell treatment by competing with cell surface GPC3 for CAR-T cell binding, which revealed a new mechanism of tumor immune escape in HCC, providing a novel biomarker for patient enrolment in future clinical trials and/or treatments with GPC3-targeted CAR-T cells.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Female
- Glypicans/antagonists & inhibitors
- Glypicans/blood
- Glypicans/immunology
- Immunotherapy, Adoptive
- Liver Neoplasms/blood
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocyte Activation
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Proof of Concept Study
- Protein Binding
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Luan Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhanhui Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Ao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sujuan Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Jia
- School of Chemistry and Molecular Biosciences, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
- Department of Biotherapy, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shaochang Jia
- Department of Biotherapy, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Tong Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
150
|
Zhang T, Zheng S, Liu Y, Li X, Wu J, Sun Y, Liu G. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer. DNA Repair (Amst) 2021; 102:103112. [PMID: 33838550 DOI: 10.1016/j.dnarep.2021.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Ovarian cancer has a poor prognosis due to drug resistance, relapse and metastasis. In recent years, immunotherapy has been applied in numerous cancers clinically. However, the effect of immunotherapy monotherapy in ovarian cancer is limited. DNA damage response (DDR) is an essential factor affecting the efficacy of tumor immunotherapy. Defective DNA repair may lead to carcinogenesis and tumor genomic instability, but on the other hand, it may also portend particular vulnerability of tumors and can be used as biomarkers for immunotherapy patient selection. Programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway mediates tumor immune escape, which may be a promising target for immunotherapy. Therefore, further understanding of the mechanism of PD-L1 expression after DDR may help guide the development of immunotherapy in ovarian cancer. In this review, we present the DNA damage repair pathway and summarize how DNA damage repair affects the PD-1/PD-L1 pathway in cancer cells. And then we look for biomarkers that affect efficacy or prognosis. Finally, we review the progress of PD-1/PD-L1-based immunotherapy in combination with other therapies that may affect the DDR pathway in ovarian cancer.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Shuangshuang Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yang Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Xiao Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Jing Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China.
| |
Collapse
|