101
|
Uzoukwu EU, Phandanouvong-Lozano V, Usman H, Sfeir C, Niepa THR. Droplet-based microsystems as novel assessment tools for oral microbial dynamics. Biotechnol Adv 2022; 55:107903. [PMID: 34990774 DOI: 10.1016/j.biotechadv.2021.107903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
The human microbiome comprises thousands of microbial species that live in and on the body and play critical roles in human health and disease. Recent findings on the interplay among members of the oral microbiome, defined by a personalized set of microorganisms, have elucidated the role of bacteria and yeasts in oral health and diseases including dental caries, halitosis, and periodontal infections. However, the majority of these studies rely on traditional culturing methods which are limited in their ability of replicating the oral microenvironment, and therefore fail to evaluate key microbial interactions in microbiome dynamics. Novel culturing methods have emerged to address this shortcoming. Here, we reviewed the potential of droplet-based microfluidics as an alternative approach for culturing microorganisms and assessing the oral microbiome dynamics. We discussed the state of the art and recent progress in the field of oral microbiology. Although at its infancy, droplet-based microtechnology presents an interesting potential for elucidating oral microbial dynamics and pathophysiology. We highlight how new findings provided by current microfluidic-based methodologies could advance the investigation of the oral microbiome. We anticipate that our work involving the droplet-based microfluidic technique with a semipermeable membrane will lay the foundations for future microbial dynamics studies and further expand the knowledge of the oral microbiome and its implication in oral health.
Collapse
Affiliation(s)
| | | | - Huda Usman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA
| | - Charles Sfeir
- Department of Bioengineering, University of Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, PA, USA; The Center for Craniofacial Regeneration, University of Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Tagbo H R Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, PA, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, PA, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.
| |
Collapse
|
102
|
ASSESSMENT OF BIOCHEMICAL INDICATORS OF ORAL FLUID IN CHILDREN WITH EXCESSIVE BODY WEIGHT WITH THE USE OF THERAPEUTIC AND PREVENTIVE COMPLEX. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-4-82-197-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
103
|
Qi Y, Wu HM, Yang Z, Zhou YF, Jin L, Yang MF, Wang FY. New Insights into the Role of Oral Microbiota Dysbiosis in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:42-55. [PMID: 33527328 DOI: 10.1007/s10620-021-06837-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory disorders with a prolonged duration characterized by recurrent relapse and remission. The exact etiology of IBD remains poorly understood despite the identification of relevant risk factors, including individual genetic susceptibility, environmental triggers, and disruption of immune homeostasis. Dysbiosis of the gut microbiota is believed to exacerbate the progression of IBD. Recently, increasing evidence has also linked oral microbiota dysbiosis with the development of IBD. On the one hand, IBD patients show significantly unbalanced composition and function of the oral microbiota known as dysbiosis. On the other, overabundances of oral commensal bacteria with opportunistic pathogenicity have been found in the gut microbiota of IBD patients. Herein, we review the current information on the causative factors of IBD, especially recent evidence of IBD-associated oral microbiota dysbiosis, which has seldom been covered in the previous literature review, highlighting the pathogenic mechanisms of specific oral bacteria in the development of IBD. Ectopic colonization of several oral bacteria, including a subset of Porphyromonas gingivalis, Streptococcus mutans, Fusobacterium nucleatum, Campylobacter concisus, and Klebsiella pneumoniae, may lead to destruction of the intestinal epithelial barrier, excessive secretion of inflammatory cytokines, disruption of the host immune system, and dysbiosis of gut microbiota, consequently aggravating chronic intestinal inflammation. Studying oral microbiota dysbiosis may open future horizons for understanding IBD pathogenesis and provide novel biomarkers for IBD. This review also presents the current treatment and new perspectives for IBD treatment.
Collapse
Affiliation(s)
- Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Hui-Min Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Yi-Fei Zhou
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao-Fang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China.
| |
Collapse
|
104
|
Nijakowski K, Rutkowski R, Eder P, Korybalska K, Witowski J, Surdacka A. Changes in Salivary Parameters of Oral Immunity after Biologic Therapy for Inflammatory Bowel Disease. Life (Basel) 2021; 11:life11121409. [PMID: 34947940 PMCID: PMC8708388 DOI: 10.3390/life11121409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
We previously observed that inflammatory bowel disease (IBD) may compromise oral host defense, as assessed by decreased salivary levels of immunoglobulin A (IgA) and myeloperoxidase (MPO). Biologic therapy with inhibitors of cytokines or adhesion molecules is increasingly used for patients with IBD. Little is known, however, about how this treatment modality affects the release and properties of saliva. Here, we aimed to determine how biologic therapy in patients who had not responded to previous standard treatment with conventional drugs affected the salivary concentration of IgA and MPO. To this end, unstimulated whole mixed saliva was collected before treatment or after 10-12 weeks of therapy from 27 patients with Crohn's disease (CD) and 24 patients with ulcerative colitis (UC). After the induction phase of therapy with biologics, salivary levels of IgA and MPO increased significantly in UC, but not in CD patients. These increases were approximately 8-fold and 6-fold, for IgA and MPO, respectively. Moreover, these effects occurred in UC patients who responded successfully to therapy, but not in those who failed to improve. Furthermore, the relative increases in salivary IgA and MPO correlated with the relative decrease in UC severity, as assessed by the Mayo scale. These data indicate that the successful therapy with biologics in UC patients results also in improved oral host defense. However, it remains to be determined why such an effect does not occur during therapy for CD.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Correspondence:
| | - Rafał Rutkowski
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (R.R.); (K.K.); (J.W.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (R.R.); (K.K.); (J.W.)
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (R.R.); (K.K.); (J.W.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
105
|
DeClercq V, Nearing JT, Langille MGI. Investigation of the impact of commonly used medications on the oral microbiome of individuals living without major chronic conditions. PLoS One 2021; 16:e0261032. [PMID: 34882708 PMCID: PMC8659300 DOI: 10.1371/journal.pone.0261032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Commonly used medications produce changes in the gut microbiota, however, the impact of these medications on the composition of the oral microbiota is understudied. METHODS Saliva samples were obtained from 846 females and 368 males aged 35-69 years from a Canadian population cohort, the Atlantic Partnership for Tomorrow's Health (PATH). Samples were analyzed by 16S rRNA gene sequencing and differences in microbial community compositions between nonusers, single-, and multi-drug users as well as the 3 most commonly used medications (thyroid hormones, statins, and proton pump inhibitors (PPI)) were examined. RESULTS Twenty-six percent of participants were taking 1 medication and 21% were reported taking 2 or more medications. Alpha diversity indices of Shannon diversity, Evenness, Richness, and Faith's phylogenetic diversity were similar among groups, likewise beta diversity as measured by Bray-Curtis dissimilarity (R2 = 0.0029, P = 0.053) and weighted UniFrac distances (R2 = 0.0028, P = 0.161) were non-significant although close to our alpha value threshold (P = 0.05). After controlling for covariates (sex, age, BMI), six genera (Saprospiraceae uncultured, Bacillus, Johnsonella, Actinobacillus, Stenotrophomonas, and Mycoplasma) were significantly different from non-medication users. Thyroid hormones, HMG-CoA reductase inhibitors (statins) and PPI were the most reported medications. Shannon diversity differed significantly among those taking no medication and those taking only thyroid hormones, however, there were no significant difference in other measures of alpha- or beta diversity with single thyroid hormone, statin, or PPI use. Compared to participants taking no medications, the relative abundance of eight genera differed significantly in participants taking thyroid hormones, six genera differed in participants taking statins, and no significant differences were observed with participants taking PPI. CONCLUSION The results from this study show negligible effect of commonly used medications on microbial diversity and small differences in the relative abundance of specific taxa, suggesting a minimal influence of commonly used medication on the salivary microbiome of individuals living without major chronic conditions.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Jacob T. Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G. I. Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
106
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
107
|
Roslund MI, Puhakka R, Nurminen N, Oikarinen S, Siter N, Grönroos M, Cinek O, Kramná L, Jumpponen A, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. ENVIRONMENT INTERNATIONAL 2021; 157:106811. [PMID: 34403882 DOI: 10.1016/j.envint.2021.106811] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. RESULTS Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. CONCLUSIONS This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.
Collapse
Affiliation(s)
- Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Nathan Siter
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Ondřej Cinek
- Department of Pediatrics, Second Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Lenka Kramná
- Department of Pediatrics, Second Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan KS66506, KS, United States of America
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Juho Rajaniemi
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Turku, Finland.
| |
Collapse
|
108
|
The oral microbial composition and diversity affect the clinical course of palmoplantar pustulosis patients after dental focal infection treatment. J Dermatol Sci 2021; 104:193-200. [PMID: 34823927 DOI: 10.1016/j.jdermsci.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) is a chronic pustular dermatosis on the palms and soles. Dental focal infections are known as the major worsening factor for PPP. Recent our study of oral microbiome demonstrated dysbiosis in PPP patients. While almost half of the PPP patients improved after treatment of dental focal infections, a certain number of patients did not improve. OBJECTIVE To investigate the oral microbial factors affecting the clinical course of PPP after treatment of dental focal infection. METHODS The oral microbiota of healthy controls (n = 10), improved (n = 7) and not-improved (n = 6) patients were analyzed by sequencing of bacterial 16S ribosomal RNA gene. RESULTS The UniFrac analysis suggested the differences of oral microbiota between improved and not-improved patients. The prevalence of the phylum Proteobacteria was lower in improved patients than in not-improved patients. When the alpha microbial diversity was assessed by Shannon index, Pielou's index and the average operational taxonomic units (OTUs), not-improved patients had a lower-diversity microbiota compared to improved patients. The degree of changes of oral microbiota after dental focal infection treatment was higher in improved patients than in not-improved patients. Six genera showed significant correlation with blood test data of PPP patients. CONCLUSION Our findings suggested that oral microbial compositions and diversity could account for the distinct clinical course of PPP patients after treatment of dental focal infection. Oral microbiome analysis of PPP patients may provide a predictive factor for clinical responsiveness to dental focal infection treatment.
Collapse
|
109
|
Qian J, Lu J, Huang Y, Wang M, Chen B, Bao J, Wang L, Cui D, Luo B, Yan F. Periodontitis Salivary Microbiota Worsens Colitis. J Dent Res 2021; 101:559-568. [PMID: 34796773 DOI: 10.1177/00220345211049781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evidence suggests that periodontitis contributes to the pathogenesis of inflammatory bowel disease, including Crohn's disease and ulcerative colitis. However, few studies have examined the role of swallowing and saliva in the pathogenesis of gastrointestinal diseases. Saliva contains an enormous number of oral bacteria and is swallowed directly into the intestine. Here, we explored the influence of periodontitis salivary microbiota on colonic inflammation and possible mechanisms in dextran sulfate sodium (DSS)-induced colitis. The salivary microbiota was collected from healthy individuals and those with periodontitis and gavaged to C57BL/6 mice. Periodontitis colitis was induced by DSS for 5 d and ligature for 1 wk. The degree of colon inflammation was evaluated through hematoxylin and eosin staining, ELISA, and quantitative real-time polymerase chain reaction. Immune parameters were measured with quantitative real-time polymerase chain reaction, flow cytometry, and immunofluorescence. The gut microbiota and metabolome analyses were performed via 16S rRNA gene sequencing and liquid chromatography-mass spectrometry. Although no significant colitis-associated phenotypic changes were found under physiologic conditions, periodontitis salivary microbiota exacerbated colitis in a periodontitis colitis model after DSS induction. The immune response more closely resembled the pathology of ulcerative colitis, including aggravated macrophage M2 polarization and Th2 cell induction (T helper 2). Inflammatory bowel disease-associated microbiota, such as Blautia, Helicobacter, and Ruminococcus, were changed in DSS-induced colitis after periodontitis salivary microbiota gavage. Periodontitis salivary microbiota decreased unsaturated fatty acid levels and increased arachidonic acid metabolism in DSS-induced colitis, which was positively correlated with Aerococcus and Ruminococcus, suggesting the key role of these metabolic events and microbes in the exacerbating effect of periodontitis salivary microbiota on experimental colitis. Our study demonstrated that periodontitis contributes to the pathogenesis of colitis through the swallowing of salivary microbiota, confirming the role of periodontitis in systemic disease and providing new insights into the etiology of gastrointestinal inflammatory diseases.
Collapse
Affiliation(s)
- J Qian
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - J Lu
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Y Huang
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - M Wang
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - B Chen
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - J Bao
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - L Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - D Cui
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - B Luo
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - F Yan
- Affiliated Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
110
|
García-Mena J, Corona-Cervantes K, Cuervo-Zanatta D, Benitez-Guerrero T, Vélez-Ixta JM, Zavala-Torres NG, Villalobos-Flores LE, Hernández-Quiroz F, Perez-Cruz C, Murugesan S, Bastida-González FG, Zárate-Segura PB. Gut microbiota in a population highly affected by obesity and type 2 diabetes and susceptibility to COVID-19. World J Gastroenterol 2021; 27:7065-7079. [PMID: 34887628 PMCID: PMC8613652 DOI: 10.3748/wjg.v27.i41.7065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it is currently causing a catastrophic pandemic affecting humans worldwide. This disease has been lethal for approximately 3.12 million people around the world since January 2020. Globally, among the most affected countries, Mexico ranks third in deaths after the United States of America and Brazil. Although the high number of deceased people might also be explained by social aspects and lifestyle customs in Mexico, there is a relationship between this high proportion of deaths and comorbidities such as high blood pressure (HBP), type 2 diabetes, obesity, and metabolic syndrome. The official epidemiological figures reported by the Mexican government have indicated that 18.4% of the population suffers from HBP, close to 10.3% of adults suffer from type 2 diabetes, and approximately 36.1% of the population suffers from obesity. Disbalances in the gut microbiota (GM) have been associated with these diseases and with COVID-19 severity, presumably due to inflammatory dysfunction. Recent data about the association between GM dysbiosis and metabolic diseases could suggest that the high levels of susceptibility to SARS-CoV-2 infection and COVID-19 morbidity in the Mexican population are primarily due to the prevalence of type 2 diabetes, obesity, and metabolic syndrome.
Collapse
Affiliation(s)
- Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Daniel Cuervo-Zanatta
- Departamento de Genética y Biología Molecular and Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Tizziani Benitez-Guerrero
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Norma Gabriela Zavala-Torres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Loan Edel Villalobos-Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Fernando Hernández-Quiroz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | - Claudia Perez-Cruz
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, Mexico
| | | | | | | |
Collapse
|
111
|
Nijakowski K, Gruszczyński D, Surdacka A. Oral Health Status in Patients with Inflammatory Bowel Diseases: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111521. [PMID: 34770034 PMCID: PMC8582688 DOI: 10.3390/ijerph182111521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic disorders that affect the gastrointestinal tract, including the oral cavity. This systematic review was designed to answer the question “Is there a relationship between oral health status and inflammatory bowel diseases?”. Following the inclusion and exclusion criteria, fifteen studies were included (according to PRISMA statement guidelines). Due to their heterogeneity, only six articles about the prevalence of periodontal disease in IBD patients were included in the meta-analysis. Both Crohn’s disease (CD) and ulcerative colitis (UC) patients had an increased odds of periodontitis coincidence compared to the controls, more than 2- and 3-fold, respectively. Moreover, in most studies, patients with IBD were characterized by higher values of caries indices. In conclusion, despite the conducted systematic review, the risk of oral diseases in IBD patients cannot be clearly established due to the possible association of other factors, e.g., sociodemographic or environmental factors.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Correspondence:
| | - Dawid Gruszczyński
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
112
|
Li H, Wang Y, Zhang Z, Tan Y, Chen Z, Wang X, Pei T, Wang L. Identifying Microbe-Disease Association Based on a Novel Back-Propagation Neural Network Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2502-2513. [PMID: 32305935 DOI: 10.1109/tcbb.2020.2986459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the years, numerous evidences have demonstrated that microbes living in the human body are closely related to human life activities and human diseases. However, traditional biological experiments are time-consuming and expensive, so it has become a research topic in bioinformatics to predict potential microbe-disease associations by adopting computational methods. In this study, a novel calculative method called BPNNHMDA is proposed to identify potential microbe-disease associations. In BPNNHMDA, a novel neural network model is first designed to infer potential microbe-disease associations, its input signal is a matrix of known microbe-disease associations, and its output signal is matrix of potential microbe-disease associations probabilities. And moreover, in the novel neural network model, a new activation function is designed to activate the hidden layer and the output layer based on the hyperbolic tangent function, and its initial connection weights are optimized by adopting Gaussian Interaction Profile kernel (GIP) similarity for microbes, which can improve the training speed of BPNNHMDA efficiently. Finally, in order to verify the performance of our prediction model, different frameworks such as the Leave-One-Out Cross Validation (LOOCV) and k-Fold Cross Validation ( k-Fold CV) are implemented on BPNNHMDA respectively. Simulation results illustrate that BPNNHMDA can achieve reliable AUCs of 0.9242, 0.9127 ± 0.0009 and 0.8955 ± 0.0018 in LOOCV, 5-Fold CV and 2-Fold CV separately, which are superior to previous state-of-the-art methods. Furthermore, case studies of inflammatory bowel disease (IBD), asthma and obesity demonstrate that BPNNHMDA has excellent prediction ability in practical applications as well.
Collapse
|
113
|
Imai J, Ichikawa H, Kitamoto S, Golob JL, Kaneko M, Nagata J, Takahashi M, Gillilland MG, Tanaka R, Nagao-Kitamoto H, Hayashi A, Sugihara K, Bishu S, Tsuda S, Ito H, Kojima S, Karakida K, Matsushima M, Suzuki T, Hozumi K, Watanabe N, Giannobile WV, Shirai T, Suzuki H, Kamada N. A potential pathogenic association between periodontal disease and Crohn's disease. JCI Insight 2021; 6:148543. [PMID: 34710061 PMCID: PMC8675195 DOI: 10.1172/jci.insight.148543] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Oral conditions are relatively common in patients with inflammatory bowel disease (IBD). However, the contribution of oral maladies to gut inflammation remains unexplored. Here, we investigated the effect of periodontitis on disease phenotypes of patients with IBD. In all, 60 patients with IBD (42 with ulcerative colitis [UC] and 18 with Crohn’s disease [CD]) and 45 healthy controls (HCs) without IBD were recruited for this clinical investigation. The effects of incipient periodontitis on the oral and gut microbiome as well as IBD characteristics were examined. In addition, patients were prospectively monitored for up to 12 months after enrollment. We found that, in both patients with UC and those with CD, the gut microbiome was significantly more similar to the oral microbiome than in HCs, suggesting that ectopic gut colonization by oral bacteria is increased in patients with IBD. Incipient periodontitis did not further enhance gut colonization by oral bacteria. The presence of incipient periodontitis did not significantly affect the clinical outcomes of patients with UC and CD. However, the short CD activity index increased in patients with CD with incipient periodontitis but declined or was unchanged during the study period in patients without periodontitis. Thus, early periodontitis may associate with worse clinically symptoms in some patients with CD.
Collapse
Affiliation(s)
- Jin Imai
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hitoshi Ichikawa
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Kitamoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Jonathan L Golob
- Division of Infectious Diseases, University of Michigan, Ann Arbor, United States of America
| | - Motoki Kaneko
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Junko Nagata
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Miho Takahashi
- Department of Oral and Maxillofacial Surgery, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Merritt G Gillilland
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Rika Tanaka
- Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroko Nagao-Kitamoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Atsushi Hayashi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Kohei Sugihara
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Shrinivas Bishu
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Shingo Tsuda
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Hiroyuki Ito
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Seiichiro Kojima
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Kazunari Karakida
- Department of Oral and Maxillofacial Surgery, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Masashi Matsushima
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Takayoshi Suzuki
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanagawa, Japan
| | - Norihito Watanabe
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, United States of America
| | - Takayuki Shirai
- Department of Internal Medicine, Tokai University School of Medicine Hachioji Hospital, Tokyo, Japan
| | - Hidekazu Suzuki
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Nobuhiko Kamada
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
114
|
Qing Y, Xu L, Cui G, Sun L, Hu X, Yang X, Jiang J, Zhang J, Zhang T, Wang T, He L, Wang J, Wan C. Salivary microbiome profiling reveals a dysbiotic schizophrenia-associated microbiota. NPJ SCHIZOPHRENIA 2021; 7:51. [PMID: 34711862 PMCID: PMC8553823 DOI: 10.1038/s41537-021-00180-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a debilitating mental disorder and often has a prodromal period, referred to as clinical high risk (CHR) for psychosis, prior to the first episode. The etiology and pathogenesis of schizophrenia remain unclear. Despite the human gut microbiome being associated with schizophrenia, the role of the oral microbiome, which is a vital player in the mouth-body connection, is not well understood. To address this, we performed 16S rRNA gene sequencing to investigate the salivary microbiome in 85 patients with drug-naïve first-episode schizophrenia (FES), 43 individuals at CHR, and 80 healthy controls (HCs). The salivary microbiome of FES patients was characterized by higher α-diversity and lower β-diversity heterogeneity than those of CHR subjects and HCs. Proteobacteria, the predominant phylum, was depleted, while Firmicutes and the Firmicutes/Proteobacteria ratio was enriched, in a stepwise manner from HC to CHR to FES. H2S-producing bacteria exhibited disease-stage-specific enrichment and could be potential diagnostic biomarkers for FES and CHR. Certain salivary microbiota exhibited disease-specific correlation patterns with symptomatic severities, peripheral pro-inflammatory cytokines, thioredoxin, and S100B in FES. Furthermore, the metabolic functions from inferred metagenomes of the salivary microbiome were disrupted in FES, especially amino acid metabolism, carbohydrate metabolism, and xenobiotic degradation. This study has established a link between salivary microbiome alterations and disease initiation and provided the hypothesis of how the oral microbiota could influence schizophrenia.
Collapse
Affiliation(s)
- Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Xu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
115
|
Oka A, Okano M. Relationship between Saliva and Sublingual Immunotherapy. Pathogens 2021; 10:pathogens10111358. [PMID: 34832517 PMCID: PMC8623708 DOI: 10.3390/pathogens10111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The demand for allergen specific immunotherapy (AIT), especially sublingual immunotherapy (SLIT), is increasing because of its efficacy in inducing clinical remission of allergic diseases and its low risk of side effects. Since not all patients that undergo SLIT demonstrate an improvement in allergic symptoms, the development of biomarkers to predict the outcome and adjuvants for SLIT is desired. Saliva is the first target with which tablets used in SLIT come into contact, and salivary pH, chemical properties or microbiome composition are reported to possibly be associated with the outcome of SLIT. Antibodies such as IgG4 and IgA not only in the serum but also in the saliva are increased after SLIT and may also be associated with the efficacy of SLIT. The development of the metagenomic sequencing technique makes it possible to determine the microbiome composition and ratio of each bacterium, and researchers can investigate the relationships between specific bacteria and the immune response. Some bacteria are reported to improve the SLIT outcome and have the potential to be used as biomarkers for the selection of patients and as adjuvants in SLIT. Here, we introduce biomarkers for SLIT and present recent findings regarding the relationship between saliva and SLIT.
Collapse
Affiliation(s)
- Aiko Oka
- Correspondence: (A.O.); (M.O.); Tel.: +81-476-35-5600 (A.O. & M.O.)
| | - Mitsuhiro Okano
- Correspondence: (A.O.); (M.O.); Tel.: +81-476-35-5600 (A.O. & M.O.)
| |
Collapse
|
116
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
117
|
Clinical study showing a lower abundance of Neisseria in the oral microbiome aligns with low birth weight pregnancy outcomes. Clin Oral Investig 2021; 26:2465-2478. [PMID: 34622310 PMCID: PMC8898250 DOI: 10.1007/s00784-021-04214-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The objective of this study was to examine the association between the oral microbiome and pregnancy outcomes, specifically healthy or preterm low birth weight (PLBW) in individuals with and without periodontal disease (PD). MATERIAL AND METHODS In this prospective clinical trial, we recruited 186 pregnant women, 17 of whom exhibited PD and delivered PLBW infants (PD-PLBW group). Of the remaining women, 155 presented PD and delivered healthy infants; 18 of these subjects with similar periodontal condition and age matched to the PD-PLBW group, and they became the PD-HD group. From the total group, 11 women exhibited healthy gingiva and had a healthy delivery (HD) and healthy infants (H-HD group), and 3 exhibited healthy gingiva and delivered PLBW infants (H-PLBW group). Periodontal parameters were recorded, and subgingival plaque and serum were collected during 26-28 gestational weeks. For the plaque samples, microbial abundance and diversity were accessed by 16S rRNA sequencing. RESULTS Women with PD showed an enrichment in the genus Porphyromonas, Treponema, and Filifactor, whereas women with healthy gingiva showed an enrichment in Streptococcus, Actinomyces, and Corynebacterium, independently of the birth status. Although no significant difference was found in the beta diversity between the 4 groups, women that had PLBW infants presented a significantly lower abundance of the genus Neisseria, independently of PD status. CONCLUSION Lower levels of Neisseria align with preterm low birth weight in pregnant women, whereas a higher abundance of Treponema, Porphyromonas, Fretibacterium, and Filifactor and a lower abundance of Streptococcus may contribute to periodontal disease during pregnancy. CLINICAL RELEVANCE The oral commensal Neisseria have potential in the prediction of PLBW.
Collapse
|
118
|
Potential of Salivary Biomarkers in Autism Research: A Systematic Review. Int J Mol Sci 2021; 22:ijms221910873. [PMID: 34639213 PMCID: PMC8509590 DOI: 10.3390/ijms221910873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
The diagnostic process for autism spectrum disorders (ASD) is based on a behavioral analysis of the suspected individual. Despite intensive research, no specific and valid biomarker has been identified for ASD, but saliva, with its advantages such as non-invasive collection, could serve as a suitable alternative to other body fluids. As a source of nucleic acid of both human and microbial origin, protein and non-protein molecules, saliva offers a complex view on the current state of the organism. Additionally, the use of salivary markers seems to be less complicated not only for ASD screening but also for revealing the etiopathogenesis of ASD, since enrolling neurotypical counterparts willing to participate in studies may be more feasible. The aim of the presented review is to provide an overview of the current research performed on saliva in relation to ASD, mutual complementing, and discrepancies that result in difficulties applying the observed markers in clinical practice. We emphasize the methodological limitations of saliva collection and processing as well as the lack of information regarding ASD diagnosis, which is critically discussed.
Collapse
|
119
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
120
|
Read E, Curtis MA, Neves JF. The role of oral bacteria in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2021; 18:731-742. [PMID: 34400822 DOI: 10.1038/s41575-021-00488-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Over the past two decades, the importance of the microbiota in health and disease has become evident. Pathological changes to the oral bacterial microbiota, such as those occurring during periodontal disease, are associated with multiple inflammatory conditions, including inflammatory bowel disease. However, the degree to which this association is a consequence of elevated oral inflammation or because oral bacteria can directly drive inflammation at distal sites remains under debate. In this Perspective, we propose that in inflammatory bowel disease, oral disease-associated bacteria translocate to the intestine and directly exacerbate disease. We propose a multistage model that involves pathological changes to the microbial and immune compartments of both the oral cavity and intestine. The evidence to support this hypothesis is critically evaluated and the relevance to other diseases in which oral bacteria have been implicated (including colorectal cancer and liver disease) are discussed.
Collapse
Affiliation(s)
- Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, UK.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD Programme, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, King's College London, London, UK
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, UK.
| |
Collapse
|
121
|
Potential Salivary Markers for Differential Diagnosis of Crohn's Disease and Ulcerative Colitis. Life (Basel) 2021; 11:life11090943. [PMID: 34575091 PMCID: PMC8469159 DOI: 10.3390/life11090943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
The properties of the saliva of patients with inflammatory bowel disease (IBD) are poorly recognized. Likewise, the diagnostic potential of saliva for differentiating various forms of IBD is largely unexplored. Therefore, we compared the concentrations of several parameters in unstimulated whole mixed saliva collected in a standardized manner from patients with active IBD unresponsive to conventional therapy. The samples were received from 27 patients with Crohn’s disease (CD), 24 patients with ulcerative colitis (UC), and 51 healthy individuals. Compared to the controls, the salivary concentrations of S100A8/calprotectin, myeloperoxidase, and IgA were significantly decreased in both CD and UC patients. In addition, patients with UC had decreased levels of TNF-R1 and decreased catalase activity. Interestingly, the concentrations of myeloperoxidase and TNF-R1 showed a high differentiation potential for CD and UC (AUC = 0.690 and 0.672, respectively). All these findings are discussed in the context of host defense in the oral cavity, patients’ prior treatment regimens, and smoking habits.
Collapse
|
122
|
Li L, Deng X, Zou Y, Lv X, Guo Y. Characterization of the nasopharynx microbiota in patients with nasopharyngeal carcinoma vs. healthy controls. Braz J Microbiol 2021; 52:1873-1880. [PMID: 34491569 DOI: 10.1007/s42770-021-00594-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC), an epithelial-originated malignant tumor, has a special geographic distribution. However, the etiology of NPC has not been examined in detail. Increasing pieces of evidence indicate that the microbiome may contribute to head and neck squamous cell carcinoma. Until now, there is limited information on the role of the microbiome in NPC, so we assessed variations in the nasopharynx microbiota of patients with NPC relative to the bacterial in health controls. METHODS Nasopharynx lavage fluid (NLF) samples were collected from 11 NPC patients and 5 volunteer controls. 16S rRNA sequencing and comparative analyses of NLF bacterial microbiome between NPC patients and controls were performed. RESULTS NLF microbial alpha-diversity by the Shannon index and Simpson index decreased significantly in the NPC patients when compared with the controls. Beta-diversity by principal component analysis exhibited separated patterns of the NPC patients and healthy controls. Thirty-one genera differed significantly between the NPC patient group and healthy control group. The abundance of 17 bacteria was correlated with primary tumor size and invaded lymph node size. Functional gene prediction analysis showed that 9 gene function pathways were significantly different between the two groups. CONCLUSION Our results demonstrated that the nasopharynx microbiota in NPC patients was different from that of the healthy controls, suggesting that the nasopharynx microenvironment might be related to NPC.
Collapse
Affiliation(s)
- Longjie Li
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Xiaoqin Deng
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Yang Zou
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - XiuPeng Lv
- Department of Radiation Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Yanjie Guo
- Department of Microecology, School of Basic Medical Science, Dalian Medical University, No. 9, West Segment of South Lvshun Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
123
|
Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies. mSystems 2021; 6:e0075021. [PMID: 34427527 PMCID: PMC8407471 DOI: 10.1128/msystems.00750-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The advent of high-throughput sequencing techniques has recently provided an astonishing insight into the composition and function of the human microbiome. Next-generation sequencing (NGS) has become the gold standard for advanced microbiome analysis; however, 3rd generation real-time sequencing, such as Oxford Nanopore Technologies (ONT), enables rapid sequencing from several kilobases to >2 Mb with high resolution. Despite the wide availability and the enormous potential for clinical and translational applications, ONT is poorly standardized in terms of sampling and storage conditions, DNA extraction, library creation, and bioinformatic classification. Here, we present a comprehensive analysis pipeline with sampling, storage, DNA extraction, library preparation, and bioinformatic evaluation for complex microbiomes sequenced with ONT. Our findings from buccal and rectal swabs and DNA extraction experiments indicate that methods that were approved for NGS microbiome analysis cannot be simply adapted to ONT. We recommend using swabs and DNA extractions protocols with extended washing steps. Both 16S rRNA and metagenomic sequencing achieved reliable and reproducible results. Our benchmarking experiments reveal thresholds for analysis parameters that achieved excellent precision, recall, and area under the precision recall values and is superior to existing classifiers (Kraken2, Kaiju, and MetaMaps). Hence, our workflow provides an experimental and bioinformatic pipeline to perform a highly accurate analysis of complex microbial structures from buccal and rectal swabs. IMPORTANCE Advanced microbiome analysis relies on sequencing of short DNA fragments from microorganisms like bacteria, fungi, and viruses. More recently, long fragment DNA sequencing of 3rd generation sequencing has gained increasing importance and can be rapidly conducted within a few hours due to its potential real-time sequencing. However, the analysis and correct identification of the microbiome relies on a multitude of factors, such as the method of sampling, DNA extraction, sequencing, and bioinformatic analysis. Scientists have used different protocols in the past that do not allow us to compare results across different studies and research fields. Here, we provide a comprehensive workflow from DNA extraction, sequencing, and bioinformatic workflow that allows rapid and accurate analysis of human buccal and rectal swabs with reproducible protocols. This workflow can be readily applied by many scientists from various research fields that aim to use long-fragment microbiome sequencing.
Collapse
|
124
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
125
|
Variations in the oral microbiome are associated with depression in young adults. Sci Rep 2021; 11:15009. [PMID: 34294835 PMCID: PMC8298414 DOI: 10.1038/s41598-021-94498-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
A growing body of evidence supports an important role for alterations in the brain-gut-microbiome axis in the aetiology of depression and other psychiatric disorders. The potential role of the oral microbiome in mental health has received little attention, even though it is one of the most diverse microbiomes in the body and oral dysbiosis has been linked to systemic diseases with an underlying inflammatory aetiology. This study examines the structure and composition of the salivary microbiome for the first time in young adults who met the DSM-IV criteria for depression (n = 40) and matched controls (n = 43) using 16S rRNA gene-based next generation sequencing. Subtle but significant differences in alpha and beta diversity of the salivary microbiome were observed, with clear separation of depressed and healthy control cohorts into distinct clusters. A total of 21 bacterial taxa were found to be differentially abundant in the depressed cohort, including increased Neisseria spp. and Prevotella nigrescens, while 19 taxa had a decreased abundance. In this preliminary study we have shown that the composition of the oral microbiome is associated with depression in young adults. Further studies are now warranted, particuarly investigations into whether such shifts play any role in the underling aetiology of depression.
Collapse
|
126
|
Jonduo ME, Wawae L, Masiria G, Suda W, Hattori M, Takayasu L, Abdad MY, Greenhill AR, Horwood PF, Pomat W, Umezaki M. Gut microbiota composition in obese and non-obese adult relatives from the highlands of Papua New Guinea. FEMS Microbiol Lett 2021; 367:5918384. [PMID: 33021675 DOI: 10.1093/femsle/fnaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a condition that results from an imbalance between energy intake and expenditure. Recently, obesity has been linked to differences in the composition of gut microbiota. To examine this association in Papua New Guinea (PNG) highlanders, fecal samples were collected from 18 adults; nine obese participants were paired with their non-obese relative. Amplification of the 16S rRNA gene targeting the V1-V2 region was performed on DNA extracts for each participant, with high-quality sequences selected and used for operational taxonomic unit clustering. The data showed Firmicutes and Bacteroidetes were the two dominant phyla, while at genus level Prevotella was the most dominant genus in all of the samples. Nonetheless, statistical evaluation of potential association between nutritional status and bacterial abundance at both phyla and genus levels showed no significant difference. Further studies, ideally in both rural and urban areas, are needed to evaluate the role of the gut microbiome in the occurrence of obesity in PNG and other resource-limited settings.
Collapse
Affiliation(s)
- Marinjho E Jonduo
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan.,Papua New Guinea Institute of Medical Research, Eastern Highlands Province 441, Papua New Guinea
| | - Lorry Wawae
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Geraldine Masiria
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Wataru Suda
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Lena Takayasu
- Papua New Guinea Institute of Medical Research, Eastern Highlands Province 441, Papua New Guinea
| | - Mohammad Y Abdad
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, 16Jln Tan Tock Seng, Singapore 308442
| | - Andrew R Greenhill
- School of Science, Psychology and Sport, Federation University Australia, Churchill 3353, Australia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Eastern Highlands Province 441, Papua New Guinea
| | - Masahiro Umezaki
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
127
|
Casu C, Mosaico G, Natoli V, Scarano A, Lorusso F, Inchingolo F. Microbiota of the Tongue and Systemic Connections: The Examination of the Tongue as an Integrated Approach in Oral Medicine. HYGIENE 2021; 1:56-68. [DOI: 10.3390/hygiene1020006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The tongue is able to quickly reflect the state of health or disease of the human body. Tongue inspection is an important diagnostic approach. It is a unique method that allows to explore the pathogenesis of diseases based on the guiding principles of the holistic concept that involves the observation of changes in the lining of the tongue in order to understand the physiological functions and pathological changes of the body. It is a potential method of screening and early detection of cancer. However, the subjective inspection of the tongue has a low reliability index, and therefore computerized systems of acquisition of diagnostic bioinformation have been developed to analyze the lining of the tongue. Next-generation sequencing technology is used to determine the V2–V4 hypervariable regions of 16S rRNA to study the microbiota. A lot of neoplasms are identified only at an advanced phase, while in the early stages, many subjects remain in an asymptomatic form. On the contrary, the early diagnosis is able to increase the prognosis of cancer and improve the survival rates of subjects. Evidently, it is necessary to develop new strategies in oral medicine for the early diagnosis of diseases, and the diagnosis of the tongue as a minimally invasive method is certainly one of them.
Collapse
Affiliation(s)
- Cinzia Casu
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, 09126 Cagliari, Italy
| | | | - Valentino Natoli
- DDS, Private Dental Practice, 72015 Fasano, Italy
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | | |
Collapse
|
128
|
Imai J, Kitamoto S, Kamada N. The pathogenic oral-gut-liver axis: new understandings and clinical implications. Expert Rev Clin Immunol 2021; 17:727-736. [PMID: 34057877 DOI: 10.1080/1744666x.2021.1935877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oral health is closely related to extra-oral disease status, as may be represented by the manifestations of gastrointestinal and liver diseases. AREAS COVERED This review focuses on the roles that the oral-gut or the oral-gut-liver axis play in the pathogenesis of inflammatory bowel disease, colorectal cancer, metabolic fatty liver disease, and nonalcoholic steatohepatitis. The discussion will begin with clinical data, including data from preclinical animal models, to elucidate mechanisms. We will also discuss ways to target oral dysbiosis and oral inflammation to treat gastrointestinal and liver diseases. EXPERT OPINION Several studies have demonstrated that oral pathobionts can translocate to the gastrointestinal tract where they contribute to inflammation and tumorigenesis. Furthermore, oral bacteria that migrate to the gastrointestinal tract can disseminate to the liver and cause hepatic disease. Thus, oral bacteria that ectopically colonize the intestine may serve as biomarkers for gastrointestinal and liver diseases. Also, understanding the characteristics of the oral-gut and oral-gut-liver microbial and immune axes will provide new insights into the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jin Imai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
129
|
Sano H, Wakui A, Kawachi M, Washio J, Abiko Y, Mayanagi G, Yamaki K, Tanaka K, Takahashi N, Sato T. Profiling system of oral microbiota utilizing polymerase chain reaction-restriction fragment length polymorphism analysis. J Oral Biosci 2021; 63:292-297. [PMID: 34111508 DOI: 10.1016/j.job.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Profiling of oral microbiota has traditionally been performed using conventional methods. These methods are relatively time-consuming and labor-intensive. Metagenomic analysis of oral microbiota using high-speed next-generation sequencing is a highly promising technology. However, it is expensive. This study sought to develop a simple and cost-effective profiling method for oral microbiota using 16S rRNA gene polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of PCR-amplified 16S ribosomal RNA genes. METHODS Oral isolates of 59 bacterial species from human saliva, including Streptococcus, Actinomyces, and Veillonella, were cultured anaerobically on CDC Anaerobe 5% sheep blood agar plates. Genomic DNA was extracted from single colonies and 16S rRNA genes were PCR-amplified using the 27F and 1492R universal primers. The PCR products were purified and characterized by single digestion with HpaII restriction endonuclease. 16S rRNA gene sequences were obtained from the GenBank database, and the expected restriction profiles were compared with the RFLP patterns obtained from agarose gel electrophoresis. RESULTS Sixty-five RFLP patterns were obtained from 27 genera and 59 species. The expected fragment sizes of these species were calculated based on GenBank 16S rRNA gene sequences. Fifty-nine patterns were obtained from the analysis of GenBank sequences. The RFLP patterns produced with HpaII distinguished many oral bacterial species. RFLP patterns enabling identification of oral bacteria were generated. The 16S rRNA gene PCR-RFLP analysis did not require expensive equipment and reagents and was cost-effective. CONCLUSION PCR-RFLP analysis based on 16S rRNA genes could be an alternative method for oral microbiota analysis in smaller laboratories.
Collapse
Affiliation(s)
- Hiroto Sano
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata 951-8518, Japan
| | - Anna Wakui
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata 951-8518, Japan
| | - Miho Kawachi
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata 951-8518, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-0872, Japan
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-0872, Japan
| | - Gen Mayanagi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-0872, Japan
| | - Keiko Yamaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-0872, Japan
| | - Kaori Tanaka
- Division of Anaerobic Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-0872, Japan
| | - Takuichi Sato
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata 951-8518, Japan.
| |
Collapse
|
130
|
Heboyan A, Manrikyan M, Zafar MS, Rokaya D, Nushikyan R, Vardanyan I, Vardanyan A, Khurshid Z. Bacteriological Evaluation of Gingival Crevicular Fluid in Teeth Restored Using Fixed Dental Prostheses: An In Vivo Study. Int J Mol Sci 2021; 22:ijms22115463. [PMID: 34067261 PMCID: PMC8196846 DOI: 10.3390/ijms22115463] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The present in vivo study determined the microbiological counts of the gingival crevicular fluid (GCF) among patients with fixed dental prostheses fabricated using three different techniques. A total of 129 subjects were divided into three study groups: first, cobalt-chrome-based, metal-ceramic prostheses fabricated by the conventional method (MC, n = 35); the second group consisted of cobalt-chrome-based, metal-ceramic prostheses fabricated by the computer-aided design and computer-aided manufacturing (CAD/CAM) technique (CC-MC, n = 35); the third group comprised zirconia-based ceramic prostheses fabricated using the CAD/CAM technique (CC-Zr, n = 35). The control consisted of 24 patients using prostheses fabricated with either MC, CC-MC, or CC-Zr. The GCF was obtained from the subjects before treatment, and 6 and 12 months after the prosthetic treatment. Bacteriological and bacterioscopic analysis of the GCF was performed to analyze the patients’ GCF. The data were analyzed using SPSS V20 (IBM Company, Chicago, IL, USA). The number of microorganisms of the gingival crevicular fluid in all groups at 12 months of prosthetic treatment reduced dramatically compared with the data obtained before prosthetic treatment. Inflammatory processes in the periodontium occurred slowly in the case of zirconium oxide-based ceramic constructions due to their biocompatibility with the mucous membranes and tissues of the oral cavity as well as a reduced risk of dental biofilm formation. This should be considered by dentists and prosthodontists when choosing restoration materials for subjects with periodontal pathology.
Collapse
Affiliation(s)
- Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia;
- Correspondence: (A.H.); (D.R.); Tel.: +374-93211221 (A.H.)
| | - Mikayel Manrikyan
- Department of Pediatric Dentistry and Orthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia; (M.M.); (I.V.)
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
- Correspondence: (A.H.); (D.R.); Tel.: +374-93211221 (A.H.)
| | - Ruzan Nushikyan
- Davidyants Laboratories, Department of Microbiology, GYSANE Limited Liability Company, Yerevan 0054, Armenia;
| | - Izabella Vardanyan
- Department of Pediatric Dentistry and Orthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia; (M.M.); (I.V.)
| | - Anna Vardanyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University, Str. Koryun 2, Yerevan 0025, Armenia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
131
|
Rao B, Lou J, Lu H, Liang H, Li J, Zhou H, Fan Y, Zhang H, Sun Y, Zou Y, Wu Z, Jiang Y, Ren Z, Yu Z. Oral Microbiome Characteristics in Patients With Autoimmune Hepatitis. Front Cell Infect Microbiol 2021; 11:656674. [PMID: 34094998 PMCID: PMC8170700 DOI: 10.3389/fcimb.2021.656674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a common cause of liver cirrhosis. To identify the characteristics of the oral microbiome in patients with AIH, we collected 204 saliva samples including 68 AIH patients and 136 healthy controls and performed microbial MiSeq sequencing after screening. All samples were randomly divided into discovery cohorts (46 AIH and 92 HCs) and validation cohorts (22 AIH and 44 HCs). Moreover, we collected samples of 12 AIH patients from Hangzhou for cross-regional validation. We described the oral microbiome characteristics of AIH patients and established a diagnostic model. In the AIH group, the oral microbiome diversity was significantly increased. The microbial communities remarkably differed between the two groups. Seven genera, mainly Fusobacterium, Actinomyces and Capnocytophaga, were dominant in the HC group, while 51 genera, Streptococcus, Veillonella and Leptotrichia, were enriched in the AIH group. Notably, we found 23 gene functions, including Membrane Transport, Carbohydrate Metabolism, and Glycerolipid metabolism that were dominant in AIH and 31 gene functions that prevailed in HCs. We further investigated the correlation between the oral microbiome and clinical parameters. The optimal 5 microbial markers were figured out through a random forest model, and the distinguishing potential achieved 99.88% between 46 AIH and 92 HCs in the discovery cohort and 100% in the validation cohort. Importantly, the distinguishing potential reached 95.55% in the cross-regional validation cohort. In conclusion, this study is the first to characterize the oral microbiome in AIH patients and to report the successful establishment of a diagnostic model and the cross-regional validation of microbial markers for AIH. Importantly, oral microbiota-targeted biomarkers may be able to serve as powerful and noninvasive diagnostic tools for AIH.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, Yiwu Central Hospital, Yiwu, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongxia Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajuan Fan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
132
|
Malm MO, Jemt T, Stenport VF. Patient factors related to early implant failures in the edentulous jaw: A large retrospective case-control study. Clin Implant Dent Relat Res 2021; 23:466-476. [PMID: 33999522 DOI: 10.1111/cid.13009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dental implants provide anchorage for dental prostheses to restore functions for individuals with edentulous jaws. During the healing phase, proper osseointegration is required to prevent early implant failure. More knowledge is needed regarding factors related to early failure of dental implants. PURPOSE The aim of the present study was to identify possible risk factors for early implant failure, with respect to anamnestic and clinical parameters. MATERIALS AND METHODS All patients with edentulous jaws with early implant failure (n = 408) from one referral clinic were compared with a matched control group (n = 408) with no implant failure. Early implant failure was identified during the first year of prosthetic function. Matching was performed on age, gender, year of surgery, type of jaw, and type of implant surface. In addition, data on anamnestic and clinical parameters were collected. The data were analyzed with a multivariable logistic regression model using early implant failure as the binary outcome. RESULTS Five anamnestic factors were statistically significant with respect to higher probability for early implant failure: systemic disease, allergies in general, food allergies, smoking, and intake of analgesic medication. Four clinical conditions (i.e., implants in the opposing jaw, low primary stability, reduced bone volume, and healing complications) were also related to higher probability for early implant failure. CONCLUSIONS This study identified nine factors associated with early implant failure, several related to patient's general health. Further investigations are needed to fully understand the causality between the obtained variables and early implant failure.
Collapse
Affiliation(s)
- Malin Olsson Malm
- Brånemark Clinic, Public Dental Service, Region of Västra Götaland, Gothenburg, Sweden.,Department of Prosthodontics and Dental Material Science, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Torsten Jemt
- Brånemark Clinic, Public Dental Service, Region of Västra Götaland, Gothenburg, Sweden.,Department of Prosthodontics and Dental Material Science, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Victoria Franke Stenport
- Brånemark Clinic, Public Dental Service, Region of Västra Götaland, Gothenburg, Sweden.,Department of Prosthodontics and Dental Material Science, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
133
|
Somineni HK, Weitzner JH, Venkateswaran S, Dodd A, Prince J, Karikaran A, Sauer CG, Abramowicz S, Zwick ME, Cutler DJ, Okou DT, Chopra P, Kugathasan S. Site- and Taxa-Specific Disease-Associated Oral Microbial Structures Distinguish Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:1889-1900. [PMID: 34002220 PMCID: PMC8599042 DOI: 10.1093/ibd/izab082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The gut and oral microbiome have independently been shown to be associated with inflammatory bowel disease (IBD). However, it is not known to what extent gut and oral microbial disease markers converge in terms of their composition in IBD. Further, the spatial and temporal variation within the oral microenvironments of IBD remain to be elucidated. PATIENTS AND METHODS We used a prospectively recruited cohort of patients with IBD (n = 47) and unrelated healthy control patients (n = 18) to examine the spatial and temporal distribution of microbiota within the various oral microenvironments, represented by saliva, tongue, buccal mucosa, and plaque, and compared them with stool. Microbiome characterization was performed using 16S rRNA gene sequencing. RESULTS The oral microbiome displayed IBD-associated dysbiosis, in a site- and taxa-specific manner. Plaque samples depicted a relatively severe degree of dysbiosis, and the disease-associated dysbiotic bacterial groups were predominantly the members of the phylum Firmicutes. Our 16S rRNA gene analyses show that oral microbiota can distinguish patients with IBD from healthy control patients, with salivary microbiota performing the best, closely matched by stool and other oral sites. Longitudinal profiles of microbial composition suggest that some taxa are more consistently perturbed than others, preferentially in a site-dependent fashion. CONCLUSIONS Collectively, these data indicate the potential of using oral microbial profiles in screening and monitoring patients with IBD. Furthermore, these results support the importance of spatial and longitudinal microbiome sampling to interpret disease-associated dysbiotic states and eventually to gain insights into disease pathogenesis.
Collapse
Affiliation(s)
- Hari K Somineni
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA,Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia, USA
| | - Jordan H Weitzner
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anne Dodd
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jarod Prince
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arjuna Karikaran
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cary G Sauer
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shelly Abramowicz
- Department of Surgery, Division of Oral and Maxillofacial Surgery, Emory University, Atlanta, Georgia, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - David T Okou
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA,Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia, USA,Department of Human Genetics, Emory University, Atlanta, Georgia, USA,Address correspondence to: Subra Kugathasan, MD, Division of Pediatric Gastroenterology, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, W-427, Atlanta, GA 30322 ()
| |
Collapse
|
134
|
Gallagher K, Catesson A, Griffin JL, Holmes E, Williams HRT. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. J Crohns Colitis 2021; 15:813-826. [PMID: 33175138 DOI: 10.1093/ecco-jcc/jjaa227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The inflammatory bowel diseases [IBD], Crohn's disease and ulcerative colitis, are chronic, idiopathic gastrointestinal diseases. Although their precise aetiology is unknown, it is thought to involve a complex interaction between genetic predisposition and an abnormal host immune response to environmental exposures, probably microbial. Microbial dysbiosis has frequently been documented in IBD. Metabolomics [the study of small molecular intermediates and end products of metabolism in biological samples] provides a unique opportunity to characterize disease-associated metabolic changes and may be of particular use in quantifying gut microbial metabolism. Numerous metabolomic studies have been undertaken in IBD populations, identifying consistent alterations in a range of molecules across several biological matrices. This systematic review aims to summarize these findings. METHODS A comprehensive, systematic search was carried out using Medline and Embase. All studies were reviewed by two authors independently using predefined exclusion criteria. Sixty-four relevant papers were assessed for quality and included in the review. RESULTS Consistent metabolic perturbations were identified, including increases in levels of branched chain amino acids and lipid classes across stool, serum, plasma and tissue biopsy samples, and reduced levels of microbially modified metabolites in both urine [such as hippurate] and stool [such as secondary bile acids] samples. CONCLUSIONS This review provides a summary of metabolomic research in IBD to date, highlighting underlying themes of perturbed gut microbial metabolism and mammalian-microbial co-metabolism associated with disease status.
Collapse
Affiliation(s)
- Kate Gallagher
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Alexandra Catesson
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Julian L Griffin
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK
| | - Elaine Holmes
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Institute of Health Futures, Murdoch University, Perth, WA, Australia
| | - Horace R T Williams
- Department of Metabolism Digestion and Reproduction, Imperial College London, UK.,Department of Gastroenterology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
135
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
136
|
Gomez-Casado C, Sanchez-Solares J, Izquierdo E, Díaz-Perales A, Barber D, Escribese MM. Oral Mucosa as a Potential Site for Diagnosis and Treatment of Allergic and Autoimmune Diseases. Foods 2021; 10:970. [PMID: 33925074 PMCID: PMC8146604 DOI: 10.3390/foods10050970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Most prevalent food allergies during early childhood are caused by foods with a high allergenic protein content, such as milk, egg, nuts, or fish. In older subjects, some respiratory allergies progressively lead to food-induced allergic reactions, which can be severe, such as urticaria or asthma. Oral mucosa remodeling has been recently proven to be a feature of severe allergic phenotypes and autoimmune diseases. This remodeling process includes epithelial barrier disruption and the release of inflammatory signals. Although little is known about the immune processes taking place in the oral mucosa, there are a few reports describing the oral mucosa-associated immune system. In this review, we will provide an overview of the recent knowledge about the role of the oral mucosa in food-induced allergic reactions, as well as in severe respiratory allergies or food-induced autoimmune diseases, such as celiac disease.
Collapse
Affiliation(s)
- Cristina Gomez-Casado
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Javier Sanchez-Solares
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Elena Izquierdo
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Araceli Díaz-Perales
- Center of Plant Biotechnology and Genomics, Technical University of Madrid, 28040 Madrid, Spain;
| | - Domingo Barber
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - María M. Escribese
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| |
Collapse
|
137
|
Xu L, Wu Z, Wang Y, Wang S, Shu C, Duan Z, Deng S. High-throughput sequencing identifies salivary microbiota in Chinese caries-free preschool children with primary dentition. J Zhejiang Univ Sci B 2021; 22:285-294. [PMID: 33835762 DOI: 10.1631/jzus.b2000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The study aimed at identifying salivary microbiota in caries-free Chinese preschool children using high-throughput sequencing. METHODS Saliva samples were obtained from 35 caries-free preschool children (18 boys and 17 girls) with primary dentition, and 16S ribosomal DNA (rDNA) V3-V4 hypervariable regions of the microorganisms were analyzed using Illumina MiSeq. RESULTS At 97% similarity level, all of these reads were clustered into 334 operational taxonomic units (OTUs). Among these, five phyla (Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Candidate division TM7) and 13 genera (Streptococcus, Rothia, Granulicatella, Prevotella, Enterobacter, Veillonella, Neisseria, Staphylococcus, Janthinobacterium, Pseudomonas, Brevundimonas, Devosia, and Gemella) were the most dominant, constituting 99.4% and 89.9% of the salivary microbiota, respectively. The core salivary microbiome comprised nine genera (Actinomyces, Capnocytophaga, Gemella, Granulicatella, Lachnoanaerobaculum, Neisseria, Porphyromonas, Rothia,and Streptococcus). Analysis of microbial diversity and community structure revealed a similar pattern between male and female subjects. The difference in microbial community composition between them was mainly attributed to Neisseria (P=0.023). Furthermore, functional prediction revealed that the most abundant genes were related to amino acid transport and metabolism. CONCLUSIONS Our results revealed the diversity and composition of salivary microbiota in caries-free preschool children, with little difference between male and female subjects. Identity of the core microbiome, coupled with prediction of gene function, deepens our understanding of oral microbiota in caries-free populations and provides basic information for associating salivary microecology and oral health.
Collapse
Affiliation(s)
- Lei Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Zhifang Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yuan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Sa Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Chang Shu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Zhuhui Duan
- Department of Stomatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
138
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
139
|
Xu L, Wang Y, Wu Z, Deng S. Salivary microbial community alterations due to probiotic yogurt in preschool children with healthy deciduous teeth. Arch Microbiol 2021; 203:3045-3053. [PMID: 33783590 DOI: 10.1007/s00203-021-02292-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
Probiotics are considered valuable to human health since they improve intestinal microbial balance. Probiotics are orally taken and affect the oral microbiota, which is one of the most important parts of the human microbial community. However, there is little information on the effects of probiotics on the oral microbiota. Caries-free preschool children (N = 6) with complete deciduous dentition were enrolled and given 100 g probiotic yogurt daily for 1 year. Salivary samples were collected every 6 months and then sequenced by Illumina MiSeq system based on 16S rDNA V3-V4 hypervariable regions. The data were analyzed to obtain the changes in microbiota profiles before and after the probiotic yogurt consumption. The α diversity analysis showed that salivary microbial diversity and richness were similar between the groups. The β diversity analysis showed that salivary microbial community structure changed with the consumption of probiotic yogurt. The variation of the microbial community composition was mainly due to 9 genera; for 7 genera (Campylobacter, Haemophilus, Lautropia, Bacillus, Catonella, Lactococcus, and Solibacillus) increased, while 2 genera (Gemella, and Streptococcus) decreased. The variation of salivary microbiota structure and composition with the consumption of probiotic yogurt was revealed. This expands overall insights on the effects of probiotic products on oral microecology. It further provides a basis for predicting possible relations between probiotic interventions and oral health in preschool children.
Collapse
Affiliation(s)
- Lei Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Yuan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - ZhiFang Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - ShuLi Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
140
|
Zhang Y, Qiao D, Chen R, Zhu F, Gong J, Yan F. The Association between Periodontitis and Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6692420. [PMID: 33778080 PMCID: PMC7981176 DOI: 10.1155/2021/6692420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been reported that patients with inflammatory bowel disease (IBD) are more susceptible to periodontitis. However, data regarding the risk of periodontitis in IBD patients are scarce, and results from individual studies remain controversial. The aim of this study is to investigate the risk of periodontitis in IBD patients. METHODS Web of Science, PubMed, and Embase were searched for studies investigating the risk of periodontitis in the IBD patient population from Jan. 2000 to Nov. 2020. Articles were included if they contained the number of people with IBD diagnosed with periodontitis (or periodontal disease parameters) compared with a control group. Case reports, reviews, animal studies, and articles without available abstracts were excluded. A pooled odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the association between periodontitis and IBD. RESULTS Six studies were included in the meta-analysis. The overall risk of periodontitis was significantly higher in IBD patients than controls (OR: 2.10, 95% CI: 1.60-2.74; I 2 = 27%). In particular, Crohn's disease (CD) and ulcerative colitis (UC) were both linked to an increased risk of periodontitis (OR: 1.72, 95% CI: 1.36-2.19; I 2 = 0% for CD vs. OR:2.39, 95% CI: 1.19-4.80; I 2 = 85% for UC). CONCLUSIONS IBD patients are at higher risk of periodontitis than controls. After subgroup analysis, the elevated risk remained significant when analyzing CD or UC alone. UC patients were at higher risk of developing periodontitis than CD patients.
Collapse
Affiliation(s)
- Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Dan Qiao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Rixin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Feng Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| |
Collapse
|
141
|
Dong T, Zhao F, Yuan K, Zhu X, Wang N, Xia F, Lu Y, Huang Z. Association Between Serum Thyroid-Stimulating Hormone Levels and Salivary Microbiome Shifts. Front Cell Infect Microbiol 2021; 11:603291. [PMID: 33718264 PMCID: PMC7952758 DOI: 10.3389/fcimb.2021.603291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
High serum thyroid-stimulating hormone (TSH) levels are linked to many metabolic disorders, but the effects of TSH levels on the oral microbiota are still largely unknown. This study aimed to explore the association between the salivary microbiome in adults and serum TSH levels. Saliva and fasting blood samples were obtained from a health census conducted in Southeast China. All participants were divided according to serum TSH levels. The microbial genetic profiles and changes were acquired by 16S rDNA sequencing and bioinformatics analysis. Relevant anthropometric and biochemical measurements such as insulin resistance, blood lipids, and body composition were evaluated with laboratory tests and physical examinations. The salivary microbiome in individuals with higher TSH level showed significantly higher taxa diversity. Principal coordinates analysis and partial least squares discriminant analysis showed distinct clustering in the Abnormal and Normal Groups (Adonis, P=0.0320). Granulicatella was identified as a discriminative genus for comparison of the two groups. Fasting serum insulin, Homeostatic Model Assessment for Insulin Resistance, and hemoglobin A1 were elevated in the Abnormal Group (P<0.05), showing the presence of insulin resistance in individuals with abnormal higher serum TSH levels. Distance-based redundancy analysis revealed the association of this distinctive difference with salivary microbiome. In conclusion, shifts in microbial profile were observed in the saliva of individuals with different serum TSH levels, and insulin resistance may play an important role in the biochemical and microbial alteration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fen Zhao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaohan Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
142
|
Hu S, Png E, Gowans M, Ong DEH, de Sessions PF, Song J, Nagarajan N. Ectopic gut colonization: a metagenomic study of the oral and gut microbiome in Crohn's disease. Gut Pathog 2021; 13:13. [PMID: 33632307 PMCID: PMC7905567 DOI: 10.1186/s13099-021-00409-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study aims to characterize, the gut and oral microbiome in Asian subjects with Crohn's disease (CD) using whole genome shotgun sequencing, thereby allowing for strain-level comparison. METHODS A case-control study with age, sex and ethnicity matched healthy controls was conducted. CD subjects were limited to well-controlled patients without oral manifestations. Fecal and saliva samples were collected for characterization of gut and oral microbiome respectively. Microbial DNA were extracted, libraries prepared and sequenced reads profiled. Taxonomic diversity, taxonomic association, strain typing and microbial gene pathway analyses were conducted. RESULTS The study recruited 25 subjects with CD and 25 healthy controls. The oral microbe Streptococcus salivarius was found to be enriched and of concordant strains in the gut and oral microbiome of Crohn's disease subjects. This was more likely in CD subjects with higher Crohn's Disease Activity Index (184.3 ± 2.9 vs 67.1 ± 82.5, p = 0.012) and active disease status (Diarrhoea/abdominal pain/blood-in-stool/fever and fatigue) (p = 0.016). Gut species found to be significantly depleted in CD compared to control (Relative abundance: Median[Range]) include: Faecalibacterium prausnitzii (0.03[0.00-4.56] vs 13.69[5.32-18.71], p = 0.010), Roseburia inulinivorans (0.00[0.00-0.03] vs 0.21[0.01-0.53], p = 0.010) and Alistipes senegalensis (0.00[0.00-0.00] vs 0.00[0.00-0.02], p = 0.029). While Clostridium nexile (0.00[0.00-0.12] vs 0.00[0.00-0.00], p = 0.038) and Ruminococcus gnavus (0.43[0.02-0.33] vs 0.00[0.00-0.13], p = 0.043) were found to be enriched. C. nexile enrichment was not found in CD subjects of European descent. Microbial arginine (Linear-discriminant-analysis: 3.162, p = 0.001) and isoprene (Linear-discriminant-analysis: 3.058, p < 0.001) pathways were found at a higher relative abundance level in gut microbiome of Crohn's disease. CONCLUSIONS There was evidence of ectopic gut colonization by oral bacteria, especially during the active phase of CD. Previously studied gut microbial differences were detected, in addition to novel associations which could have resulted from geographical/ethnic differences to subjects of European descent. Differences in microbial pathways provide possible targets for microbiome modification.
Collapse
Affiliation(s)
- Shijia Hu
- Discipline of Orthodontics and Paediatric Dentistry, Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore, 119085, Singapore.
| | - Eileen Png
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore
| | - Michelle Gowans
- Division of Gastroenterology & Hepatology, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - David E H Ong
- Division of Gastroenterology & Hepatology, National University Hospital, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore
| | - Jie Song
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Singapore, 138672, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
143
|
Byrd KM, Gulati AS. The "Gum-Gut" Axis in Inflammatory Bowel Diseases: A Hypothesis-Driven Review of Associations and Advances. Front Immunol 2021; 12:620124. [PMID: 33679761 PMCID: PMC7933581 DOI: 10.3389/fimmu.2021.620124] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
In modern medicine, the oral cavity has often been viewed as a passive conduit to the upper airways and gastrointestinal tract; however, its connection to the rest of the body has been increasingly explored over the last 40 years. For several diseases, the periodontium and gingiva are at the center of this oral-systemic link. Over 50 systemic conditions have been specifically associated with gingival and periodontal inflammation, including inflammatory bowel diseases (IBD), which have recently been elevated from simple "associations" to elegant, mechanistic investigations. IBD and periodontitis have been reported to impact each other's progression via a bidirectional relationship whereby chronic oral or intestinal inflammation can impact the other; however, the precise mechanisms for how this occurs remain unclear. Classically, the etiology of gingival inflammation (gingivitis) is oral microbial dysbiosis in the subgingival crevice that can lead to destructive periodontal disease (periodontitis); however, the current understanding of gingival involvement in IBD is that it may represent a separate disease entity from classical gingivitis, arising from mechanisms related to systemic inflammatory activation of niche-resident immune cells. Synthesizing available evidence, we hypothesize that once established, IBD can be driven by microbiomial and inflammatory changes originating specifically from the gingival niche through saliva, thereby worsening IBD outcomes and thus perpetuating a vicious cycle. In this review, we introduce the concept of the "gum-gut axis" as a framework for examining this reciprocal relationship between the periodontium and the gastrointestinal tract. To support and explore this gum-gut axis, we 1) provide a narrative review of historical studies reporting gingival and periodontal manifestations in IBD, 2) describe the current understanding and advances for the gum-gut axis, and 3) underscore the importance of collaborative treatment and research plans between oral and GI practitioners to benefit this patient population.
Collapse
Affiliation(s)
- Kevin M. Byrd
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
- Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, United States
| | - Ajay S. Gulati
- Division of Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
144
|
Xu D, Xu H, Zhang Y, Wang M, Chen W, Gao R. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities. J Transl Med 2021; 19:66. [PMID: 33579301 PMCID: PMC7881563 DOI: 10.1186/s12967-021-02732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Microbes are closely related to human health and diseases. Identification of disease-related microbes is of great significance for revealing the pathological mechanism of human diseases and understanding the interaction mechanisms between microbes and humans, which is also useful for the prevention, diagnosis and treatment of human diseases. Considering the known disease-related microbes are still insufficient, it is necessary to develop effective computational methods and reduce the time and cost of biological experiments. METHODS In this work, we developed a novel computational method called MDAKRLS to discover potential microbe-disease associations (MDAs) based on the Kronecker regularized least squares. Specifically, we introduced the Hamming interaction profile similarity to measure the similarities of microbes and diseases besides Gaussian interaction profile kernel similarity. In addition, we introduced the Kronecker product to construct two kinds of Kronecker similarities between microbe-disease pairs. Then, we designed the Kronecker regularized least squares with different Kronecker similarities to obtain prediction scores, respectively, and calculated the final prediction scores by integrating the contributions of different similarities. RESULTS The AUCs value of global leave-one-out cross-validation and 5-fold cross-validation achieved by MDAKRLS were 0.9327 and 0.9023 ± 0.0015, which were significantly higher than five state-of-the-art methods used for comparison. Comparison results demonstrate that MDAKRLS has faster computing speed under two kinds of frameworks. In addition, case studies of inflammatory bowel disease (IBD) and asthma further showed 19 (IBD), 19 (asthma) of the top 20 prediction disease-related microbes could be verified by previously published biological or medical literature. CONCLUSIONS All the evaluation results adequately demonstrated that MDAKRLS has an effective and reliable prediction performance. It may be a useful tool to seek disease-related new microbes and help biomedical researchers to carry out follow-up studies.
Collapse
Affiliation(s)
- Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China.
| | - Mingyi Wang
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| | - Wei Chen
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
145
|
Tanigawa T, Watanabe T, Higashimori A, Shimada S, Kitamura H, Kuzumoto T, Nadatani Y, Otani K, Fukunaga S, Hosomi S, Tanaka F, Kamata N, Nagami Y, Taira K, Shiba M, Suda W, Hattori M, Fujiwara Y. Rebamipide ameliorates indomethacin-induced small intestinal damage and proton pump inhibitor-induced exacerbation of this damage by modulation of small intestinal microbiota. PLoS One 2021; 16:e0245995. [PMID: 33507971 PMCID: PMC7842908 DOI: 10.1371/journal.pone.0245995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) induce small intestinal damage. It has been reported that rebamipide, a mucoprotective drug, exerts a protective effect against NSAID-induced small intestinal damage; however, the underlying mechanism remains unknown. In this study, we investigated the significance of the small intestinal microbiota in the protective effect of rebamipide against indomethacin-induced small intestinal damage in mice. A comprehensive analysis of the 16S rRNA gene sequencing revealed an alteration in the composition of the small intestinal microbiota at the species level, modulated by the administration of rebamipide and omeprazole. The transplantation of the small intestinal microbiota of the mice treated with rebamipide suppressed the indomethacin-induced small intestinal damage. Omeprazole, a proton pump inhibitor, exacerbated the indomethacin-induced small intestinal damage, which was accompanied by the alteration of the small intestinal microbiota. We found that the transplantation of the small intestinal microbiota of the rebamipide-treated mice ameliorated indomethacin-induced small intestinal damage and the omeprazole-induced exacerbation of the damage. These results suggest that rebamipide exerts a protective effect against NSAID-induced small intestinal damage via the modulation of the small intestinal microbiota, and that its ameliorating effect extends also to the exacerbation of NSAID-induced small intestinal damage by proton pump inhibitors.
Collapse
Affiliation(s)
- Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterology, Osaka City Juso Hospital, Osaka, Japan
- * E-mail:
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akira Higashimori
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sunao Shimada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterology, Osaka City Juso Hospital, Osaka, Japan
| | - Hiroyuki Kitamura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Kuzumoto
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shusei Fukunaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koichi Taira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Shiba
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
146
|
Elmaghrawy K, Hussey S, Moran GP. The Oral Microbiome in Pediatric IBD: A Source of Pathobionts or Biomarkers? Front Pediatr 2021; 8:620254. [PMID: 33553076 PMCID: PMC7859511 DOI: 10.3389/fped.2020.620254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
The oral cavity is continuous with the gastrointestinal tract and in children, oral health may be closely linked with the overall health of the GI tract. In the case of pediatric Crohn's disease (CD), oral manifestations are an important clinical indicator of intestinal disease. Recent studies of the microbiome in IBD suggest that translocation of oral microbes to the gut may be a common feature of the microbial dysbiosis which is a signature of both CD and ulcerative colitis (UC). Murine studies suggest that translocation of oral bacteria and yeasts to the lower GI tract may trigger inflammation in susceptible hosts, providing a mechanistic link to the development of IBD. Conversely, some studies have shown that dysbiosis of the oral microbiome may occur, possibly as a result of inflammatory responses and could represent a useful source of biomarkers of GI health. This review summarizes our current knowledge of the oral microbiome in IBD and presents current hypotheses on the potential role of this community in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Khalid Elmaghrawy
- School of Dental Science, Trinity College Dublin and Dublin Dental University Hospital, Dublin, Ireland
| | - Séamus Hussey
- Department of Paediatrics, University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
| | - Gary P. Moran
- School of Dental Science, Trinity College Dublin and Dublin Dental University Hospital, Dublin, Ireland
| |
Collapse
|
147
|
Comparison of oral microbiome profiles in 18-month-old infants and their parents. Sci Rep 2021; 11:861. [PMID: 33441592 PMCID: PMC7806650 DOI: 10.1038/s41598-020-78295-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
The onset and progress of dental caries and periodontal disease is associated with the oral microbiome. Therefore, it is important to understand the factors that influence oral microbiome formation. One of the factors that influence oral microbiome formation is the transmission of oral bacteria from parents. However, it remains unclear when the transmission begins, and the difference in contributions of father and mother. Here, we focused on the oral microbiome of 18-month-old infants, at which age deciduous dentition is formed and the oral microbiome is likely to become stable, with that of their parents. We collected saliva from forty 18-month-old infants and their parents and compared the diversity and composition of the microbiome using next-generation sequencing of 16S rRNA genes. The results showed that microbial diversity in infants was significantly lower than that in parents and composition of microbiome were significantly different between infants and parents. Meanwhile, the microbiome of the infants was more similar to that of their mothers than unrelated adults. The bacteria highly shared between infants and parents included not only commensal bacteria but also disease related bacteria. These results suggested that the oral microbiome of the parents influences that of their children aged < 18 months.
Collapse
|
148
|
Yahara K, Suzuki M, Hirabayashi A, Suda W, Hattori M, Suzuki Y, Okazaki Y. Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nat Commun 2021; 12:27. [PMID: 33397904 PMCID: PMC7782811 DOI: 10.1038/s41467-020-20199-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages), or bacterial viruses, are very diverse and highly abundant worldwide, including as a part of the human microbiomes. Although a few metagenomic studies have focused on oral phages, they relied on short-read sequencing. Here, we conduct a long-read metagenomic study of human saliva using PromethION. Our analyses, which integrate both PromethION and HiSeq data of >30 Gb per sample with low human DNA contamination, identify hundreds of viral contigs; 0-43.8% and 12.5-56.3% of the confidently predicted phages and prophages, respectively, do not cluster with those reported previously. Our analyses demonstrate enhanced scaffolding, and the ability to place a prophage in its host genomic context and enable its taxonomic classification. Our analyses also identify a Streptococcus phage/prophage group and nine jumbo phages/prophages. 86% of the phage/prophage group and 67% of the jumbo phages/prophages contain remote homologs of antimicrobial resistance genes. Pan-genome analysis of the phages/prophages reveals remarkable diversity, identifying 0.3% and 86.4% of the genes as core and singletons, respectively. Furthermore, our study suggests that oral phages present in human saliva are under selective pressure to escape CRISPR immunity. Our study demonstrates the power of long-read metagenomics utilizing PromethION in uncovering bacteriophages and their interaction with host bacteria.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Science, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Science, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo City, Japan
| | - Yusuke Okazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
149
|
Khasnobish A, Takayasu L, Watanabe KI, Nguyen TTT, Arakawa K, Hotta O, Joh K, Nakano A, Hosomi S, Hattori M, Suda W, Morita H. Dysbiosis in the Salivary Microbiome Associated with IgA Nephropathy-A Japanese Cohort Study. Microbes Environ 2021; 36. [PMID: 34078780 PMCID: PMC8209455 DOI: 10.1264/jsme2.me21006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IgA nephropathy is one of the leading causes of chronic kidney disease in Japan. Since the origin and mechanisms by which IgA nephropathy develops currently remain unclear, a confirmed disease diagnosis is currently only possible by highly invasive renal biopsy. With the background of the salivary microbiome as a rich source of biomarkers for systemic diseases, we herein primarily aimed to investigate the salivary microbiome as a tool for the non-invasive diagnosis of IgA nephropathy. In a comparison of salivary microbiome profiles using 16S rRNA amplicon sequencing, significant differences were observed in microbial diversity and richness between IgA nephropathy patients and healthy controls. Furthermore, recent studies reported that patients with IgA nephropathy are more likely to develop inflammatory bowel diseases and that chronic inflammation of the tonsils triggered the recurrence of IgA nephropathy. Therefore, we compared the salivary microbiome of IgA nephropathy patients with chronic tonsillitis and ulcerative colitis patients. By combining the genera selected by the random forest algorithm, we were able to distinguish IgA nephropathy from healthy controls with an area under the curve (AUC) of 0.90, from the ulcerative colitis group with AUC of 0.88, and from the chronic tonsillitis group with AUC of 0.70. Additionally, the genus Neisseria was common among the selected genera that facilitated the separation of the IgA nephropathy group from healthy controls and the chronic tonsillitis group. The present results indicate the potential of the salivary microbiome as a biomarker for the non-invasive diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Anushka Khasnobish
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University
| | - Lena Takayasu
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo
| | - Ken-Ichi Watanabe
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine
| | - Tien Thi Thuy Nguyen
- Faculty of Engineering and Technology College of Agriculture and Forestry, Hue University
| | - Kensuke Arakawa
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University
| | | | - Kensuke Joh
- Department of Pathology, Tohoku University Graduate School of Medicine
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences
| | - Hidetoshi Morita
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University
| |
Collapse
|
150
|
Zorba M, Melidou A, Patsatsi A, Ioannou E, Kolokotronis A. The possible role of oral microbiome in autoimmunity. Int J Womens Dermatol 2020; 6:357-364. [PMID: 33898698 PMCID: PMC8060669 DOI: 10.1016/j.ijwd.2020.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The human microbiome refers to the entire habitat, including microorganisms, their genomes and the surrounding environmental conditions of the microbial ecosystem. When the equilibrium between microbial habitats and host is disturbed, dysbiosis is caused. The oral microbiome (OMB) has been implicated in the manifestation of many intra- and extraoral diseases. Lately, there has been an intense effort to investigate and specify the relationship between microbial complexes, especially that of the oral cavity and intestine and autoimmunity. This study aimed to review the current literature about the possible role of the OMB in the pathogenesis of autoimmune diseases. METHODS We searched for published articles in English indexed in PubMed, Medline, Research Gate and Google Scholar using a search strategy that included terms for oral microbiome, autoimmune diseases, dysbiosis and next-generation sequencing. RESULTS An important number of articles were gathered and used for the description of the possible impact of dysbiosis of OMB in the pathogenesis of Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis, Behcet's disease, Crohn's disease and psoriasis. CONCLUSION This review article draws attention to the relationship between OMB and the triggering of a number of autoimmune diseases. Although this specific topic has been previously reviewed, herein, the authors review recent literature regarding the full list of nosological entities related to the OMB, point out the interaction between the microbiome and sex hormones with regard to their role in autoimmunity and discuss novel and promising therapeutic approaches for systemic autoimmune diseases. Furthermore, the question arises of whether the OMB is associated with oral bullous autoimmune diseases.
Collapse
Affiliation(s)
- Matina Zorba
- Department of Oral Medicine and Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Angeliki Melidou
- Department of Microbiology, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Aikaterini Patsatsi
- Second Dermatology Department of Papageorgiou General Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Greece
| | - Eleftheria Ioannou
- Department of Biological Applications and Technology, Aristotle University of Thessaloniki, Greece
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|