101
|
Li G, Xiao Y, Zhang L. Cocaine induces apoptosis in fetal rat myocardial cells through the p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther 2005; 312:112-9. [PMID: 15365088 DOI: 10.1124/jpet.104.073494] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine induces apoptosis in fetal rat myocardial cells (FRMCs). However, the mechanisms are not clear. The present study examined the role of p38 mitogen-activated protein kinase (MAPK) and cytochrome c release in the cocaine-induced apoptosis in primary culture of FRMCs prepared from the fetal heart of gestational age of 21 days. Cocaine induced time-dependent, concurrent increases in cytochrome c release and activities of caspase-9 and caspase-3, which preceded apoptosis. Caspase-8 was not activated. In accordance, cyclosporin A and the inhibitors of caspase-9 and caspase-3 inhibited cocaine-induced caspase activation and apoptosis. Cocaine stimulated a transient increase in the p38 MAPK activity at a time point of 15 min but reduced the extracellular signal-regulated kinase (ERK) activity at 5 and 15 min in FRMCs. The p38alpha MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] inhibited cocaine-induced activation of caspases and apoptosis. In contrast, the p38beta MAPK and mitogen-activated protein kinase kinase/ERK inhibitors SB 202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole] and PD98059 (2'-amino-3'-methoxyflavone), respectively, increased apoptosis in the absence of cocaine and potentiated cocaine-induced apoptosis. Consistent with its inhibition of apoptosis, SB203580 inhibited cocaine-induced cytochrome c release and activation of caspase-9 and caspase-3. In addition, cocaine induced a decrease in Bcl-2 protein levels, with no effect on Bax levels. The cocaine-mediated reduction of Bcl-2 levels was not affected with SB203580 and the caspase inhibitors. The results suggest that in FRMCs, p38alpha MAPK plays an important role in the cocaine-induced apoptosis by promoting cytochrome c release, downstream or independent of Bcl-2 protein-mediated regulation. In contrast, p38beta MAPK and ERK protect fetal myocardial cells against apoptosis.
Collapse
Affiliation(s)
- Guohu Li
- Center for Perinatal Biology, Department of Pharmacology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
102
|
Sheikh-Hamad D, Gustin MC. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 2004; 287:F1102-10. [PMID: 15522988 DOI: 10.1152/ajprenal.00225.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adaptation to hypertonicity in mammalian cells is driven by multiple signaling pathways that include p38 kinase, Fyn, the catalytic subunit of PKA, ATM, and JNK2. In addition to the well-characterized tonicity enhancer (TonE)-TonE binding protein interaction, other transcription factors (and their respective cis elements) can potentially respond to hypertonicity. This review summarizes the current knowledge about the signaling pathways that regulate the adaptive response to osmotic stress and discusses new insights from yeast that could be relevant to the osmostress response in mammals.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
103
|
Bogoyevitch MA, Court NW. Counting on mitogen-activated protein kinases—ERKs 3, 4, 5, 6, 7 and 8. Cell Signal 2004; 16:1345-54. [PMID: 15381250 DOI: 10.1016/j.cellsig.2004.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 05/12/2004] [Indexed: 11/19/2022]
Abstract
Signal transduction pathways in eukaryotic cells integrate diverse extracellular signals, and regulate complex biological responses such as growth, differentiation and death. One group of proline-directed Ser/Thr protein kinases, the mitogen-activated protein kinases (MAPKs), plays a central role in these signalling pathways. Much attention has focused in recent years on three subfamilies of MAPKs, the extracellular signal regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the p38 MAPKs. However, the ERK family is broader than the ERK1 and ERK2 proteins that have been the subject of most studies in this area. Here we overview the work on ERKs 3 to 8, emphasising where possible their biological activities as well as distinctive biochemical properties. It is clear from these studies that these additional ERKs show similarities to ERK1 and ERK2, but with some interesting differences that challenge the paradigm of the archetypical ERK1/2 MAPK pathway.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
104
|
Wang Q, Yerukhimovich M, Gaarde WA, Popoff IJ, Doerschuk CM. MKK3 and -6-dependent activation of p38alpha MAP kinase is required for cytoskeletal changes in pulmonary microvascular endothelial cells induced by ICAM-1 ligation. Am J Physiol Lung Cell Mol Physiol 2004; 288:L359-69. [PMID: 15516490 DOI: 10.1152/ajplung.00292.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-alpha-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38alpha demonstrated that inhibition of the protein expression of p38alpha 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38beta; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the alpha-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.
Collapse
Affiliation(s)
- Qin Wang
- Division of Integrative Biology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
105
|
Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F, Kuhlendahl S, Leal-Ortiz S, Goedert M, Garner C, Cuenda A. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 2004; 380:19-30. [PMID: 14741046 PMCID: PMC1224136 DOI: 10.1042/bj20031628] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 01/07/2004] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
SAPK3 (stress-activated protein kinase-3, also known as p38gamma) is a member of the mitogen-activated protein kinase family; it phosphorylates substrates in response to cellular stress, and has been shown to bind through its C-terminal sequence to the PDZ domain of alpha1-syntrophin. In the present study, we show that SAP90 [(synapse-associated protein 90; also known as PSD-95 (postsynaptic density-95)] is a novel physiological substrate for both SAPK3/p38gamma and the ERK (extracellular-signal-regulated protein kinase). SAPK3/p38gamma binds preferentially to the third PDZ domain of SAP90 and phosphorylates residues Thr287 and Ser290 in vitro, and Ser290 in cells in response to cellular stresses. Phosphorylation of SAP90 is dependent on the binding of SAPK3/p38gamma to the PDZ domain of SAP90. It is not blocked by SB 203580, which inhibits SAPK2a/p38alpha and SAPK2b/p38beta but not SAPK3/p38gamma, or by the ERK pathway inhibitor PD 184352. However, phosphorylation is abolished when cells are treated with a cell-permeant Tat fusion peptide that disrupts the interaction of SAPK3/p38gamma with SAP90. ERK2 also phosphorylates SAP90 at Thr287 and Ser290 in vitro, but this does not require PDZ-dependent binding. SAP90 also becomes phosphorylated in response to mitogens, and this phosphorylation is prevented by pretreatment of the cells with PD 184352, but not with SB 203580. In neurons, SAP90 and SAPK3/p38gamma co-localize and they are co-immunoprecipitated from brain synaptic junctional preparations. These results demonstrate that SAP90 is a novel binding partner for SAPK3/p38gamma, a first physiological substrate described for SAPK3/p38gamma and a novel substrate for ERK1/ERK2, and that phosphorylation of SAP90 may play a role in regulating protein-protein interactions at the synapse in response to adverse stress- or mitogen-related stimuli.
Collapse
Affiliation(s)
- Guadalupe Sabio
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Tosti E, Waldbaum L, Warshaw G, Gross EA, Ruggieri R. The stress kinase MRK contributes to regulation of DNA damage checkpoints through a p38gamma-independent pathway. J Biol Chem 2004; 279:47652-60. [PMID: 15342622 DOI: 10.1074/jbc.m409961200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage induced by ionizing radiation (IR) activates a complex cellular response that includes checkpoints leading to cell cycle arrest. The stress-activated mitogen-activated protein kinase (MAPK) p38gamma has been implicated in the G(2) phase checkpoint induced by IR. We recently discovered MRK as a member of the MAPK kinase kinase family that activates p38gamma. Here we investigated the role of MRK in the checkpoint response to IR. We identified autophosphorylation sites on MRK that are important for its kinase activity. A phosphospecific antibody that recognizes these sites showed that MRK is activated upon IR in a rapid and sustained manner. MRK depletion by RNA interference resulted in defective S and G(2) checkpoints induced by IR that were accompanied by reduced Chk2 phosphorylation and delayed Cdc25A degradation. We also showed that Chk2 is a substrate for MRK in vitro and is phosphorylated at Thr(68) by active MRK in cells. MRK depletion also increased sensitivity to the killing effects of IR. In addition, MRK depletion reduced IR-induced activation of p38gamma but had no effect on p38alpha activation, indicating that MRK is a specific activator of p38gamma after IR. Inhibition of p38gamma by RNA interference, however, did not impair IR-induced checkpoints. Thus, in response to IR MRK controls two independent pathways: the Chk2-Cdc25A pathway leading to cell cycle arrest and the p38gamma MAPK pathway.
Collapse
Affiliation(s)
- Elena Tosti
- Center for Oncology and Cell Biology, North Shore-Long Island Jewish Research Institute, Manhasset, New York 11030, USA
| | | | | | | | | |
Collapse
|
107
|
Kuma Y, Campbell DG, Cuenda A. Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta. Biochem J 2004; 379:133-9. [PMID: 14680475 PMCID: PMC1224046 DOI: 10.1042/bj20031559] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 12/10/2003] [Accepted: 12/17/2003] [Indexed: 01/23/2023]
Abstract
The endogenous glycogen synthase in extracts from mouse skeletal muscle, liver and brain bound specifically to SAPK2b (stress-activated protein kinase 2b)/p38b, but not to other members of the group of SAPK/p38 kinases. Glycogen synthase was phosphorylated in vitro more efficiently by SAPK2b/p38b than by SAPK2a/p38a, SAPK3/p38g or SAPK4/p38d. SAPK2b/p38b phosphorylated glycogen synthase in vitro at residues Ser644, Ser652, Thr718 and Ser724, two of which (Ser644 and Ser652) are also phosphorylated by glycogen synthase kinase 3. Thr718 and Ser724 are novel sites not known to be phosphorylated by other protein kinases. Glycogen synthase becomes phosphorylated at Ser644 in response to osmotic shock; this phosphorylation is prevented by pretreatment of the cells with SB 203580, which inhibits SAPK2a/p38a and SAPK2b/p38b activity. In vitro, phosphorylation of glycogen synthase by SAPK2b/p38b alone had no significant effect on its activity, indicating that phosphorylation at residue Ser644 itself is insufficient to decrease glycogen synthase activity. However, after phosphorylation by SAPK2b/p38b, subsequent phosphorylation at Ser640 by glycogen synthase kinase 3 decreased the activity of glycogen synthase. This decrease was not observed when SAPK2b/p38b activity was blocked with SB 203580. These results suggest that SAPK2b/p38b may be a priming kinase that allows glycogen synthase kinase 3 to phosphorylate Ser640 and thereby inhibit glycogen synthase activity.
Collapse
Affiliation(s)
- Yvonne Kuma
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
108
|
Court NW, Kuo I, Quigley O, Bogoyevitch MA. Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3. Biochem Biophys Res Commun 2004; 319:130-7. [PMID: 15158451 DOI: 10.1016/j.bbrc.2004.04.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Indexed: 11/28/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) transduce extracellular signals into responses such as growth, differentiation, and death through their phosphorylation of specific substrate proteins. Early studies showed the consensus sequence (Pro/X)-X-(Ser/Thr)-Pro to be phosphorylated by MAPKs. Docking domains such as the "kinase interaction motif" (KIM) also appear to be crucial for efficient substrate phosphorylation. Here, we show that stress-activated protein kinase-3 (SAPK3), a p38 MAPK subfamily member, localizes to the mitochondria. Activated SAPK3 phosphorylates the mitochondrial protein Sab, an in vitro substrate of c-Jun N-terminal kinase (JNK). Sab phosphorylation by SAPK3 was dependent on the most N-terminal KIM (KIM1) of Sab and occurred primarily on Ser321. This appeared to be dependent on the position of Ser321 within Sab and the sequence immediately surrounding it. Our results suggest that SAPK3 and JNK may share a common target at the mitochondria and provide new insights into the substrate recognition by SAPK3.
Collapse
Affiliation(s)
- Naomi W Court
- Cell Signalling Laboratory, Biochemistry and Molecular Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
109
|
Bazuine M, Carlotti F, Tafrechi RSJ, Hoeben RC, Maassen JA. Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 and -4 Attenuate p38 MAPK during Dexamethasone-Induced Insulin Resistance in 3T3-L1 Adipocytes. Mol Endocrinol 2004; 18:1697-707. [PMID: 15184525 DOI: 10.1210/me.2003-0213] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prolonged use of glucocorticoids induces pronounced insulin resistance in vivo. In vitro, treatment of 3T3-L1 adipocytes with dexamethasone for 48 h reduces the maximal level of insulin- and stress (arsenite)-induced glucose uptake by approximately 50%. Although phosphatidylinositol 3-kinase signaling was slightly attenuated, phosphorylation of its downstream effectors such as protein kinase B and protein kinase C-lambda remained intact. Nor was any effect of dexamethasone treatment observed on insulin- or arsenite-induced translocation of glucose transporter 4 (GLUT4) toward the plasma membrane. However, for a maximal response to either arsenite- or insulin-induced glucose uptake in these cells, functional p38 MAPK signaling is required. Dexamethasone treatment markedly attenuated p38 MAPK phosphorylation coincident with an up-regulation of the MAPK phosphatases MKP-1 and MKP-4. Employing lentivirus-mediated ectopic expression in fully differentiated 3T3-L1 adipocytes demonstrated a differential effect of these phosphatases: whereas MKP-1 was a more potent inhibitor of insulin-induced glucose uptake, MKP-4 more efficiently inhibited arsenite-induced glucose uptake. This coincided with the effects of these phosphatases on p38 MAPK phosphorylation, i.e. MKP-1 and MKP-4 attenuated p38 MAPK phosphorylation by insulin and arsenite, respectively. Taken together, these data provide evidence that in 3T3-L1 adipocytes dexamethasone inhibits the activation of the GLUT4 in the plasma membrane by a p38 MAPK-dependent process, rather than in a defect in GLUT4 translocation per se.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
110
|
Eckert RL, Crish JF, Efimova T, Dashti SR, Deucher A, Bone F, Adhikary G, Huang G, Gopalakrishnan R, Balasubramanian S. Regulation of Involucrin Gene Expression. J Invest Dermatol 2004; 123:13-22. [PMID: 15191537 DOI: 10.1111/j.0022-202x.2004.22723.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The epidermis is a dynamic renewing structure that provides life-sustaining protection from the environment. The major cell type of the epidermis, the epidermal keratinocyte, undergoes a carefully choreographed program of differentiation. Alteration of these events results in a variety of debilitating and life-threatening diseases. Understanding how this process is regulated is an important current goal in biology. In this review, we summarize the literature regarding regulation of involucrin, an important marker gene that serves as a model for understanding the mechanisms that regulate the differentiation process. Current knowledge describing the role of transcription factors and signaling cascades in regulating involucrin gene expression are presented. These studies describe a signaling cascade that includes the novel protein kinase C isoforms, Ras, MEKK1, MEK3, and a p38delta-extracellular signal regulated kinase 1/2 complex. This cascade regulates activator protein one, Sp1, and CCATT/enhancer-binding protein transcription factor DNA binding to two discrete involucrin promoter regions, the distal- and proximal-regulatory regions, to regulate involucrin gene expression.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ackerley S, Grierson AJ, Banner S, Perkinton MS, Brownlees J, Byers HL, Ward M, Thornhill P, Hussain K, Waby JS, Anderton BH, Cooper JD, Dingwall C, Leigh PN, Shaw CE, Miller CCJ. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol Cell Neurosci 2004; 26:354-64. [PMID: 15207859 DOI: 10.1016/j.mcn.2004.02.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/17/2004] [Accepted: 02/25/2004] [Indexed: 11/25/2022] Open
Abstract
Neurofilament middle and heavy chains (NFM and NFH) are heavily phosphorylated on their carboxy-terminal side-arm domains in axons. The mechanisms that regulate this phosphorylation are complex. Here, we demonstrate that p38alpha, a member of the stress-activated protein kinase family, will phosphorylate NFM and NFH on their side-arm domains. Aberrant accumulations of neurofilaments containing phosphorylated NFM and NFH side-arms are a pathological feature of amyotrophic lateral sclerosis (ALS) and we also demonstrate that p38alpha and active forms of p38 family kinases are associated with these accumulations. This is the case for sporadic and familial forms of ALS and also in a transgenic mouse model of ALS caused by expression of mutant superoxide dismutase-1 (SOD1). Thus, p38 kinases may contribute to the aberrant phosphorylation of NFM and NFH side-arms in ALS.
Collapse
Affiliation(s)
- Steven Ackerley
- Departments of Neuroscience and Neurology, The Institute of Psychiatry, Kings College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Lüschen S, Scherer G, Ussat S, Ungefroren H, Adam-Klages S. Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kappaB, elicits caspase activity, and enhances cytotoxicity. Exp Cell Res 2004; 293:196-206. [PMID: 14729457 DOI: 10.1016/j.yexcr.2003.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.
Collapse
Affiliation(s)
- Silke Lüschen
- Institute of Immunology, Christian-Albrechts-University, Michaelisstrasse 5, D-24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
113
|
Newton R, Holden N. Inhibitors of p38 mitogen-activated protein kinase: potential as anti-inflammatory agents in asthma? BioDrugs 2004; 17:113-29. [PMID: 12641490 DOI: 10.2165/00063030-200317020-00004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma is an inflammatory disease of the airways, which in patients with mild to moderate symptoms is adequately controlled by either beta(2)-adrenoceptor agonists or corticosteroids, or a combination of both. Despite this, there are classes of patients that fail to respond to these treatments. In addition, there is a general trend towards increasing morbidity and mortality due to asthma, which suggests that there is a need for new and improved treatments. The p38 mitogen-activated protein kinases (MAPKs) represent a point of convergence for multiple signalling processes that are activated in inflammation and that impact on a diverse range of events that are important in inflammation. Small molecule pyridinyl imidazole inhibitors of p38 MAPK have proved to be highly effective in reducing various parameters of inflammation, in particular cytokine expression. Like corticosteroids, inhibitors of p38 MAPK appear to be able to repress gene expression at multiple levels, for example, by transcriptional, posttranscriptional and translational repression, and this raises the possibility of a similarly broad spectrum of anti-inflammatory activities. Indeed these molecules have proved to be effective in numerous in vitro and in vivo models of inflammation and septicaemia, which suggests that such compounds may be effective as therapeutic agents against inflammatory disorders. Despite these very promising indications of the possible therapeutic use of p38 MAPK inhibitors, a number of events that are p38-dependent are in fact also beneficial to the resolution or modulation of diseases such as asthma. We conclude that the overall effect of p38 MAPK inhibition would be beneficial in inflammatory diseases such as rheumatoid arthritis and asthma. However, these drugs may result in a complex phenotype that will require careful evaluation. Currently, a number of second or third generation inhibitors of p38 MAPK are being tested in phase I and phase II clinical trials.
Collapse
Affiliation(s)
- Robert Newton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
114
|
Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ. p38gamma MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2003; 286:R342-9. [PMID: 14592936 DOI: 10.1152/ajpregu.00563.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle expresses at least three p38 MAPKs (alpha, beta, gamma). However, no studies have examined the potential regulation of glucose uptake by p38gamma, the isoform predominantly expressed in skeletal muscle and highly regulated by exercise. L6 myotubes were transfected with empty vector (pCAGGS), activating MKK6 (MKK6CA), or p38gamma-specific siRNA. MKK6CA-transfected cells had higher rates of basal 2-deoxy-d-[3H]glucose (2-DG) uptake (P < 0.05) but lower rates of 2,4-dinitrophenol (DNP)-stimulated glucose uptake, an uncoupler of oxidative phosphorylation that operates through an insulin-independent mechanism (P < 0.05). These effects were reversed when MKK6CA cells were cotransfected with p38gamma-specific siRNA. To determine whether the p38gamma isoform is involved in the regulation of contraction-stimulated glucose uptake in adult skeletal muscle, the tibialis anterior muscles of mice were injected with pCAGGS or wild-type p38gamma (p38gammaWT) followed by intramuscular electroporation. Basal and contraction-stimulated 2-DG uptake in vivo was determined 14 days later. Overexpression of p38gammaWT resulted in higher basal rates of glucose uptake compared with pCAGGS (P < 0.05). Muscles overexpressing p38gammaWT showed a trend for lower in situ contraction-mediated glucose uptake (P = 0.08) and significantly lower total GLUT4 levels (P < 0.05). These data suggest that p38gamma increases basal glucose uptake and decreases DNP- and contraction-stimulated glucose uptake, partially by affecting levels of glucose transporter expression in skeletal muscle. These findings are consistent with the hypothesis that activation of stress kinases such as p38 are negative regulators of stimulated glucose uptake in peripheral tissues.
Collapse
Affiliation(s)
- Richard C Ho
- Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
115
|
Lui P, Zeng C, Acton S, Cok S, Sexton A, Morrison AR. Effects of p38MAPK isoforms on renal mesangial cell inducible nitric oxide synthase expression. Am J Physiol Cell Physiol 2003; 286:C145-52. [PMID: 14522818 DOI: 10.1152/ajpcell.00233.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38alpha and -beta2 are ubiquitously expressed, whereas p38gamma and -delta appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38alpha mRNA expressed at the highest level, followed by p38gamma and the lowest levels of expression by p38beta2 and -delta. To determine the functional effects of these proteins on interleukin (IL)-1beta-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38gamma and -delta had minimal effects on iNOS expression, p38alpha and -beta2 significantly altered its expression. p38alpha mutant and p38beta2 wild-type dose dependently inhibited IL-1beta-induced iNOS expression. These data suggest that p38alpha and beta2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins.
Collapse
Affiliation(s)
- Paul Lui
- Department of Medicine, Renal Division, Washington University School of Medicine, Box 8126, 660 South Euclid, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
116
|
Efimova T, Broome AM, Eckert RL. A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. J Biol Chem 2003; 278:34277-85. [PMID: 12810719 DOI: 10.1074/jbc.m302759200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p38 MAPK isoforms are important in the regulation of a variety of cellular processes. Among the four described p38 isoforms, p38 alpha, beta, and delta are expressed in keratinocytes (Dashti, S. R., Efimova, T., and Eckert, R. L. (2001) J. Biol. Chem. 276, 8059-8063). However, very little is known about how individual p38 isoforms regulate keratinocyte function. In the present study, we use okadaic acid (OA) as a tool to study the role of p38 MAPKs as regulators of keratinocyte differentiation. We demonstrate that OA activates p38 delta but not other p38 isoforms. p38 delta activation is increased as early as 0.5 h after OA addition, and activity is maximal at 8 and 24 h. ERK1 and ERK2 activity are reduced on an identical time course. We show that p38 delta forms a complex with ERK1/2, and overexpression of p38 delta inhibits ERK1/2 activity without reducing ERK1/2 level. Thus, p38 delta may directly suppress ERK1/2 activity. Additional studies show that p38 delta is expressed in the epidermis, suggesting a role for p38 delta in regulating differentiation. To evaluate its function, we show that increased p38 delta activity is associated with increased levels of AP1 and CAATT enhancer binding protein factors, increased binding of these factors to the involucrin (hINV) promoter, and increased expression. Moreover, these responses are maintained in the presence of SB203580, an agent that inhibits p38 alpha and beta, further suggesting a central role for the p38 delta isoform. Dominant-negative p38 also inhibits these responses. These unique observations suggest that p38 delta is the major p38 isoform driving suprabasal hINV gene expression and that p38 delta directly regulates ERK1/2 activity via formation of a p38 delta-ERK1/2 complex.
Collapse
Affiliation(s)
- Tatiana Efimova
- Case Western Reserve University School of Medicine, Department of Physiology and Biophysics, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
117
|
Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2:717-26. [PMID: 12951578 DOI: 10.1038/nrd1177] [Citation(s) in RCA: 942] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p38 MAP kinases are a family of serine/threonine protein kinases that play important roles in cellular responses to external stress signals. Since their identification about 10 years ago, much has been learned of the activation and regulation of the p38 MAP kinase pathways. Inhibitors of two members of the p38 family have been shown to have anti-inflammatory effects in preclinical disease models, primarily through the inhibition of the expression of inflammatory mediators. Several promising compounds have also progressed to clinical trials. In this review, we provide an overview of the role of p38 MAP kinases in stress-activated pathways and the progress towards clinical development of p38 MAP kinase inhibitors in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Sanjay Kumar
- GlaxoSmithKline Pharmaceuticals Research & Development, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA
| | | | | |
Collapse
|
118
|
Deb DK, Sassano A, Lekmine F, Majchrzak B, Verma A, Kambhampati S, Uddin S, Rahman A, Fish EN, Platanias LC. Activation of protein kinase C delta by IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:267-273. [PMID: 12817007 DOI: 10.4049/jimmunol.171.1.267] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of the type II IFN (IFN-gamma) receptor results in activation of the Janus kinase-Stat pathway and induction of gene transcription via IFN-gamma-activated site (GAS) elements in the promoters of IFN-gamma-inducible genes. An important event in IFN-gamma-dependent gene transcription is phosphorylation of Stat1 on Ser(727), which is regulated by a kinase activated downstream of the phosphatidylinositol 3'-kinase. Here we provide evidence that a member of the protein kinase C (PKC) family of proteins is activated downstream of the phosphatidylinositol 3'-kinase and is engaged in IFN-gamma signaling. Our data demonstrate that PKCdelta is rapidly phosphorylated during engagement of the type II IFNR and its kinase domain is induced. Subsequently, the activated PKCdelta associates with a member of the Stat family of proteins, Stat1, which acts as a substrate for its kinase activity and undergoes phosphorylation on Ser(727). Inhibition of PKCdelta activity diminishes phosphorylation of Stat1 on Ser(727) and IFN-gamma-dependent transcriptional regulation via IFN-gamma-activated site elements, without affecting the phosphorylation of the protein on Tyr(701). Thus, PKCdelta is activated during engagement of the IFN-gamma receptor and plays an important role in IFN-gamma signaling by mediating serine phosphorylation of Stat1 and facilitating transcription of IFN-gamma-stimulated genes.
Collapse
Affiliation(s)
- Dilip K Deb
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Salameh A, Polontchouk L, Dhein S, Hagendorff A, Pfeiffer D. Chronic regulation of the expression of the gap junction protein connexin 43 in transfected HeLa cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 368:33-40. [PMID: 12827213 DOI: 10.1007/s00210-003-0760-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 04/03/2003] [Indexed: 11/27/2022]
Abstract
Gap junction channels are essential for intercellular communication. Among the most abundant gap junction channel proteins is connexin 43 (Cx43). The goal of our study was to find out, whether Cx43 content may be regulated via adenylyl cyclase (AC)/cAMP/protein kinase A (PKA), protein kinase C (PKC) pathways or by a tyrosine kinase coupled pathway, i.e. TNF alpha-receptor dependent pathway. Therefore, we used HeLa cells transfected with Cx43 and exposed these cells for 24 h to either db-cAMP (10(-4)M), forskolin (10(-5)M), the phorbolester phorbol-12,13-didecanoate PDD (10(-7)M) (or its inactive form 4 alpha-PDD), TNF alpha (10 U/ml) with or without additional treatment with the MAP kinase inhibitors SB203580 (10(-5) M, p38 MAP-kinase inhibitor) or the MEK1-inhibitor PD98059 (10(-5)M). Cx43 content was analysed using Western blot analysis. All results were confirmed by a second series of identical experiments using Cx43 immunohistochemistry. We found significantly enhanced Cx43 content in cells treated with db-cAMP, forskolin, PDD or TNF alpha (p<0.05), while 4 alpha-PDD or the solvent DMSO exerted no effect. These increases in Cx43 content could be completely suppressed by SB203580 (p<0.05) but not by PD98059. In absence of a stimulating drug, these inhibitors (SB203580 or PD98059) did not affect Cx43 content. Additional PCR experiments revealed increases in Cx43-mRNA under the influence of db-cAMP, forskolin, PDD or TNFalpha (p<0.05), which all could be completely suppressed by SB203580. From these results we conclude that 1.Cx43 content can be regulated via AC/cAMP/PKA, PKC and TNF alpha-receptor-dependent pathways 2. Activation of p38 MAP kinase is a common pathway for regulation of Cx43 content in HeLa cells
Collapse
Affiliation(s)
- A Salameh
- Medizinische Klinik I, Abteilung Kardiologie, Universitätsklinik Leipzig, Johannisallee 32, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
120
|
Guo X, Gerl RE, Schrader JW. Defining the involvement of p38alpha MAPK in the production of anti- and proinflammatory cytokines using an SB 203580-resistant form of the kinase. J Biol Chem 2003; 278:22237-42. [PMID: 12637577 DOI: 10.1074/jbc.m300847200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its lack of specificity, the inhibitor SB 203580 has been widely used to implicate p38 mitogen-activated protein kinase (MAPK) in the synthesis of many cytokines. Here we show unequivocally that the production of interleukin (IL)-1beta, IL-6, IL-10, and tumor necrosis factor alpha (TNFalpha) requires p38 MAPK activity by demonstrating that the inhibitory effects of SB 203580 were reversed by expression of an SB 203580-resistant form of p38alpha (SBR-p38alpha) that fails to bind to SB 203580. This strategy established the requirement for p38 activity for the lipopolysaccharide-stimulated production of IL-10, IL-1beta, and IL-6 by the monocytic cell WEHI 274 and the production of IL-6 and TNFalpha stimulated by ligation of the Fc-gamma receptor of the mast cell MC/9. Expression of SBR-p38alpha in primary macrophages abrogated the ability of SB 203580 to inhibit the lipopolysaccharide-stimulated production of TNFalpha but not of IL-10. Expression of SBR-p38alpha in primary T lymphocytes abrogated the ability of SB 203580 to inhibit the production of interferon-gamma induced by co-ligation of CD3 and CD28 but not the production of interferon-gamma or IL-10 induced by IL-12. These results suggest that the levels of p38 MAPK activity required for maximal cytokine production vary with different cytokines and stimuli.
Collapse
Affiliation(s)
- Xuecui Guo
- Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
121
|
Chen Z, Raman M, Chen L, Lee SF, Gilman AG, Cobb MH. TAO (thousand-and-one amino acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J Biol Chem 2003; 278:22278-83. [PMID: 12665513 DOI: 10.1074/jbc.m301173200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TAO (for thousand-and-one amino acids) protein kinases activate p38 mitogen-activated protein (MAP) kinase cascades in vitro and in cells by phosphorylating the MAP/ERK kinases (MEKs) 3 and 6. We found that TAO2 activity was increased by carbachol and that carbachol and the heterotrimeric G protein Galphao could activate p38 in 293 cells. Using dominant interfering kinase mutants, we found that MEKs 3 and 6 and TAOs were required for p38 activation by carbachol or the constitutively active mutant GalphaoQ205L. To explore events downstream of TAOs, the effects of TAO2 on ternary complex factors (TCFs) were investigated. Transfection studies demonstrated that TAO2 stimulates phosphorylation of the TCF Elk1 on the major activating site, Ser383, and that TAO2 stimulates transactivation of Elk1 and the related TCF, Sap1. Reporter activity was reduced by the p38-selective inhibitor SB203580. Taken together, these studies suggest that TAO protein kinases relay signals from carbachol through heterotrimeric G proteins to the p38 MAP kinase, which then activates TCFs in the nucleus.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
122
|
Fernando P, Megeney LA, Heikkila JJ. Phosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recovery. Exp Cell Res 2003; 286:175-85. [PMID: 12749847 DOI: 10.1016/s0014-4827(03)00067-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small heat shock proteins (hsps) act as molecular chaperones by preventing the thermal aggregation and unfolding of cellular protein; however, the manner by which cells regulate chaperone activity remains unclear. In the present study, we examined the role of phosphorylation on the chaperone function of the Xenopus small hsp30. Both heat stress and sodium arsenite treatment in A6 cells resulted in a rapid activation of p38alpha and MAPKAPK-2. Surprisingly, the association of MAPKAPK-2 with hsp30 and its subsequent phosphorylation were more prevalent during recovery after heat stress. Treatment of A6 cells with SB203580, an inhibitor of the p38 MAP kinase pathway, resulted in a loss of hsp30 phosphorylation. Phosphorylation resulted in the formation of smaller multimeric hsp30 complexes and resulted in a significant loss of secondary structure. Consequently the phosphorylation-induced structural changes severely compromised the ability of hsp30 to prevent the heat-induced aggregation of citrate synthase and luciferase in vitro. We confirmed that the loss of chaperone activity was coincident with an attenuated binding of phosphorylated hsp30 with target proteins. Our data suggest that phosphorylation may be necessary to regulate the post-heat stress molecular chaperone activity of hsp30.
Collapse
Affiliation(s)
- Pasan Fernando
- Ottawa Health Research Institute, Ottawa General Hospital, Center for Molecular Medicine, Ottawa, Ontario, Canada K1H 8L6
| | | | | |
Collapse
|
123
|
Grant S, Fisher PB, Dent P. The role of signal transduction pathways in drug and radiation resistance. Cancer Treat Res 2003; 112:89-108. [PMID: 12481713 DOI: 10.1007/978-1-4615-1173-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Steven Grant
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
124
|
Eckert RL, Efimova T, Balasubramanian S, Crish JF, Bone F, Dashti S. p38 Mitogen-activated protein kinases on the body surface--a function for p38 delta. J Invest Dermatol 2003; 120:823-8. [PMID: 12713588 DOI: 10.1046/j.1523-1747.2003.12120.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The p38 family of mitogen-activated protein kinases includes p38 alpha (SAPK2a, CSBP), p38 beta (SAPK2b), p38 delta (SAPK4), and p38 gamma (SAPK3/ERK6). p38 alpha and p38 beta are widely expressed p38 isoforms that are involved in regulation of cell proliferation, differentiation, development, and response to stress. Relatively less is known regarding the function of the p38 delta isoform. In this review, we discuss the role of the p38 alpha, p38 beta, and p38 gamma isoforms and then present recent findings that define a role for p38 delta as a regulator of differentiation-dependent gene expression in keratinocytes.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
125
|
Nishigaki K, Thompson D, Yugawa T, Rulli K, Hanson C, Cmarik J, Gutkind JS, Teramoto H, Ruscetti S. Identification and characterization of a novel Ste20/germinal center kinase-related kinase, polyploidy-associated protein kinase. J Biol Chem 2003; 278:13520-30. [PMID: 12574163 DOI: 10.1074/jbc.m208601200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel protein kinase, polyploidy-associated protein kinase (PAPK), was isolated using a subtraction cDNA library approach from a mouse erythroleukemia cell line that had been induced to polyploidy after serum withdrawal. PAPK shares homology with members of the Ste20/germinal center kinase family of protein kinases and is ubiquitously expressed as two spliced forms, PAPK-A and PAPK-B, that encode for proteins of 418 and 189 amino acids, respectively. The expression of endogenous PAPK-A protein increased after growth factor withdrawal in murine hematopoietic and fibroblast cells. When tested in an in vitro kinase assay, PAPK-A was activated in response to the stress-inducing agent hydrogen peroxide and slightly by fetal calf serum. Biochemical characterization of the PAPK-A-initiated pathway revealed that this novel kinase does not affect MAP kinase activity but can stimulate both c-Jun N-terminal kinase 1 (JNK1) and ERK6/p38 gamma. The kinase activity of PAPK appears to be required for the activation of ERK6/p38 gamma but not JNK1. When an inducible construct of PAPK-A was expressed in stably transfected NIH3T3 cells, the cells exhibited distinct cytoskeletal changes and became resistant to apoptotic cell death induced by serum withdrawal, effects of PAPK that require its kinase activity. These data suggest that PAPK is a new member of the Ste20/germinal center kinase family that modulates cytoskeletal organization and cell survival.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- Culture Media, Serum-Free
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- Leukemia, Erythroblastic, Acute
- MAP Kinase Signaling System/genetics
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polyploidy
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kazuo Nishigaki
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Ermert M, Kuttner D, Eisenhardt N, Dierkes C, Seeger W, Ermert L. Cyclooxygenase-2-dependent and thromboxane-dependent vascular and bronchial responses are regulated via p38 mitogen-activated protein kinase in control and endotoxin-primed rat lungs. J Transl Med 2003; 83:333-47. [PMID: 12649334 DOI: 10.1097/01.lab.0000059924.47118.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are part of an intracellular signaling machinery consisting of three known distinct pathways, each leading to activation of a different protein kinase: p38, ERK (extracellular signal-regulated kinase), or JNK (c-Jun N-terminal kinase). We investigated the role of the p38 MAPK pathway in the phenomenon of lung endotoxin "priming": incubation of perfused rat lungs with lipopolysaccharide (LPS) for 2 hours results in drastically enhanced cyclooxygenase-2-dependent and thromboxane synthase-dependent vasoconstriction and bronchoconstriction, including edema formation in response to a second inflammatory stimulus, such as arachidonic acid application. Two unrelated selective inhibitors of p38 (SB203580 and SC-68376) dose dependently suppressed the arachidonic acid-induced pulmonary artery pressor response, edema formation, and bronchoconstrictor response in both control lungs and lungs that underwent preceding endotoxin priming. In parallel, thromboxane, but not prostacyclin, released into the lung perfusate was dose dependently inhibited. Using immunohistochemical techniques in combination with quantitative microdensitometry, p38 was detected in nearly all cell types in control lungs, whereas the activated form p-p38 was only expressed in certain cell types, eg, bronchial epithelial cells, endothelial cells, alveolar macrophages, and vascular smooth muscle cells (SMC) of small vessels. In response to endotoxin, p-p38 expression was additionally observed in septal cells, bronchial SMC, and vascular SMC of larger pulmonary vessels and was increased in most other cell types including small-vessel SMC. We conclude that both immunolocalization of p38 activity and pharmacologic interventions support a strong role of the p38 MAPK pathway in establishing an active cyclooxygenase-2/thromboxane synthase axis in vascular and bronchial SMC, with up-regulation of this signaling cascade occurring in LPS priming and being responsible for enhanced pulmonary artery pressor response, edema formation, and bronchoconstriction. Moreover, LPS induces or increases phosphorylation of p38 in other lung cell types. The physiologic consequences of these events remain to be established.
Collapse
Affiliation(s)
- Monika Ermert
- Departments of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Hsu SC, Wu CC, Han J, Lai MZ. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood 2003; 101:970-6. [PMID: 12393706 DOI: 10.1182/blood-2002-03-0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive selection of thymocytes during T-cell development is mediated by T-cell receptor (TCR)-activated signals. For different mitogen-activated protein kinases (MAPKs) activated by TCR complex, a selective involvement of extracellular signal-regulated kinase, but not p38 MAPK, in positive selection has been suggested. Using transgenic mice with dominant-negative mutation of both MAP kinase kinase 3 (MMK3) and MKK6, we obtained mice with different extents of inhibition of p38 MAPK activation. Partial inhibition of p38 MAPK impaired CD4(-)CD8(-) thymocyte development and T-cell proliferation, but not positive selection. Interference with thymocyte positive selection was observed in mice with effective suppression of p38 MAPK. Our results suggest that, in addition to early thymocyte development, p38 is involved in positive selection.
Collapse
Affiliation(s)
- Shu-Ching Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
128
|
Liou AKF, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003; 69:103-42. [PMID: 12684068 DOI: 10.1016/s0301-0082(03)00005-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After a severe episode of ischemia, traumatic brain injury (TBI) or epilepsy, it is typical to find necrotic cell death within the injury core. In addition, a substantial number of neurons in regions surrounding the injury core have been observed to die via the programmed cell death (PCD) pathways due to secondary effects derived from the various types of insults. Apart from the cell loss in the injury core, cell death in regions surrounding the injury core may also contribute to significant losses in neurological functions. In fact, it is the injured neurons in these regions around the injury core that treatments are targeting to preserve. In this review, we present our cumulated understanding of stress-activated signaling pathways and apoptotic pathways in the research areas of ischemic injury, TBI and epilepsy and that gathered from concerted research efforts in oncology and other diseases. However, it is obvious that our understanding of these pathways in the context of acute brain injury is at its infancy stage and merits further investigation. Hopefully, this added research effort will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat these acute brain injuries.
Collapse
Affiliation(s)
- Anthony K F Liou
- Department of Neurology, University of Pittsburgh School of Medicine, S526 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
129
|
Mamay CL, Mingo-Sion AM, Wolf DM, Molina MD, Van Den Berg CL. An inhibitory function for JNK in the regulation of IGF-I signaling in breast cancer. Oncogene 2003; 22:602-14. [PMID: 12555073 DOI: 10.1038/sj.onc.1206186] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor-I receptor (IGF-IR) is frequently overexpressed in a variety of cancer types. Since many breast tumors and cancer cell lines overexpress IGF-IR, we tested IGF-I effects on chemotherapy-treated breast cancer cells. IGF-I protects from chemotherapy-induced apoptosis, suggesting that overlapping signaling pathways modulate IGF-I and chemotherapy treatment outcomes. Taxol and other chemotherapy drugs induce c-Jun N-terminal kinase (JNK), a kinase that conveys cellular stress and death signals. Notably, in this paper we show that IGF-I alone induces a potent JNK response and this activity is reversed by inhibition of phosphatidylinositol 3-kinase (PI 3-kinase) with LY294002 in MCF-7 but not T47D cells. Cotreatment of cells with chemotherapy and IGF-I leads to additive JNK responses. Using cells overexpressing Akt, we confirm that IGF-I-mediated survival is Akt dependent. In contrast, overexpression of JNK significantly enhances Taxol-induced apoptosis and inhibits IGF-I survival effects. Further, JNK attenuates anchorage-independent growth of MCF-7 cells. The inhibitory effect of JNK appears to be mediated by serine phosphorylation of IRS-1 (insulin receptor substrate) since both Taxol and IGF-I treatment enhanced Ser(312) IRS-1 phosphorylation, while LY294002 blocked IGF-I-mediated phosphorylation. Taken together, these data provide a mechanism whereby stress or growth factors activate JNK to reduce proliferation and/or survival in breast cancer cells.
Collapse
Affiliation(s)
- Cindy L Mamay
- Department of Biological Chemistry, University of California, Davis 95616-8655, USA
| | | | | | | | | |
Collapse
|
130
|
Ambrosino C, Mace G, Galban S, Fritsch C, Vintersten K, Black E, Gorospe M, Nebreda AR. Negative feedback regulation of MKK6 mRNA stability by p38alpha mitogen-activated protein kinase. Mol Cell Biol 2003; 23:370-81. [PMID: 12482988 PMCID: PMC140674 DOI: 10.1128/mcb.23.1.370-381.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 09/04/2002] [Accepted: 09/26/2002] [Indexed: 12/13/2022] Open
Abstract
p38 mitogen-activated protein (MAP) kinases play an important role in the regulation of cellular responses to all kinds of stresses. The most abundant and broadly expressed p38 MAP kinase is p38alpha, which can also control the proliferation, differentiation, and survival of several cell types. Here we show that the absence of p38alpha correlates with the up-regulation of one of its upstream activators, the MAP kinase kinase MKK6, in p38alpha(-/-) knockout mice and in cultured cells derived from them. In contrast, the expression levels of the p38 activators MKK3 and MKK4 are not affected in p38alpha-deficient cells. The increase in MKK6 protein concentration correlates with increased amounts of MKK6 mRNA in the p38alpha(-/-) cells. Pharmacological inhibition of p38alpha also up-regulates MKK6 mRNA levels in HEK293 cells. Conversely, reintroduction of p38alpha into p38alpha(-/-) cells reduces the levels of MKK6 protein and mRNA to the normal levels found in wild-type cells. Moreover, we show that the MKK6 mRNA is more stable in p38alpha(-/-) cells and that the 3'untranslated region of this mRNA can differentially regulate the stability of the lacZ reporter gene in a p38alpha-dependent manner. Our data indicate that p38alpha can negatively regulate the stability of the MKK6 mRNA and thus control the steady-state concentration of one of its upstream activators.
Collapse
|
131
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
132
|
Verma A, Mohindru M, Deb DK, Sassano A, Kambhampati S, Ravandi F, Minucci S, Kalvakolanu DV, Platanias LC. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. J Biol Chem 2002; 277:44988-95. [PMID: 12239215 DOI: 10.1074/jbc.m207176200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arsenic trioxide induces differentiation and apoptosis of malignant cells in vitro and in vivo, but the mechanisms by which such effects occur have not been elucidated. In the present study we provide evidence that arsenic trioxide induces activation of the small G-protein Rac1 and the alpha and beta isoforms of the p38 mitogen-activated protein (MAP) kinase in several leukemia cell lines. Such activation of Rac1 and p38-isoforms results in downstream engagement of the MAP kinase-activated protein kinase-2 and is enhanced by pre-treatment of cells with ascorbic acid. Interestingly, pharmacological inhibition of p38 potentiates arsenic-dependent apoptosis and suppression of growth of leukemia cell lines, suggesting that this signaling cascade negatively regulates induction of antileukemic responses by arsenic trioxide. Consistent with this, overexpression of a dominant-negative p38 mutant (p38betaAGF) enhances the antiproliferative effects of arsenic trioxide on target cells. To further define the relevance of activation of the Rac1/p38 MAP kinase pathway in the induction of arsenic-dependent antileukemic effects, studies were performed using bone marrows from patients with chronic myelogenous leukemia. Arsenic trioxide suppressed the growth of leukemic myeloid (CFU-GM) progenitors from such patients, whereas concomitant pharmacological inhibition of the p38 pathway enhanced its growth-suppressive effects. Altogether, these data provide evidence for a novel function of the p38 MAP kinase pathway, acting as a negative regulator of arsenic trioxide-induced apoptosis and inhibition of malignant cell growth.
Collapse
Affiliation(s)
- Amit Verma
- Robert H. Lurie Comprehensive Cancer Center and Section of Hematology-Oncology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Although microglial cells are thought to play a beneficial role in the regeneration and plasticity of the central nervous system (CNS), recent studies have indicated that at least some molecules released by microglia may be harmful in acute brain insults and neurodegenerative diseases. Therefore, the pathways mediating the synthesis and release of these neurotoxic compounds are of importance. p38 and p44/42 families of mitogen-activated protein kinases (MAPKs) in microglia respond strongly to various extracellular stimuli, such as ATP, thrombin, and beta-amyloid, a peptide thought to be responsible for the neuropathology in Alzheimer's disease. In this review we describe in vivo evidence implicating that p38 and p44/42 MAPKs may play a critical role in harmful microglial activation in acute brain injury, such as stroke, and in more chronic neurodegenerative diseases, such as Alzheimer's disease. We also clarify the extracellular signals responsible for activation of p38 and p44/42 MAPK in microglia and review the responses so far reported to be mediated by these kinases.
Collapse
Affiliation(s)
- Milla Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
134
|
Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem 2002; 383:1519-36. [PMID: 12452429 DOI: 10.1515/bc.2002.173] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes which connect cell-surface receptors to regulatory targets within cells and convert receptor signals into various outputs. In mammalian cells, four distinct MAPKs have been identified: the extracellular signal-related kinases (ERK)-1/2, the c-jun N-terminal kinases or stress-activated protein kinases 1 (JNK1/2/3, or SAPK1s), the p38 MAPKs (p38 alpha/beta/gamma/delta, or SAPK2s), and the ERK5 or big MAP kinase 1 (BMK1). The p38 MAPK cascade is activated by stress or cytokines and leads to phosphorylation of its central elements, the p38 MAPKs. Downstream of p38 MAPKs there is a diversification and extensive branching of signalling pathways. For that reason, we will focus in this review on the different signalling events that are triggered by p38 activity, and analyse how these events contribute to specific gene expression and cellular responses.
Collapse
Affiliation(s)
- Yu Shi
- Hannover Medical School, Institute of Biochemistry, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | |
Collapse
|
135
|
Koul HK, Menon M, Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Huang M. COM crystals activate the p38 mitogen-activated protein kinase signal transduction pathway in renal epithelial cells. J Biol Chem 2002; 277:36845-52. [PMID: 12121971 DOI: 10.1074/jbc.m200832200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction of calcium oxalate monohydrate (COM) crystals with renal cells has been shown to result in altered gene expression, DNA synthesis, and cell death. In the current study the role of a stress-specific p38 MAP kinase-signaling pathway in mediating these effects of COM crystals was investigated. Exposure of cells to COM crystals (20 microg/cm(2)) rapidly stimulated strong phosphorylation and activation of p38 mitogen-activated protein kinase (p38 MAP kinase) and re-initiation of DNA synthesis. Inhibition of COM crystal binding to the cells by heparin blocked the effects of COM crystals on p38 MAPK activation. We also show that specific inhibition of p38 MAPK by 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl) imidazole (SB203580) or by overexpression of a dominant negative mutant of p38 MAP kinase abolishes COM crystal-induced re-initiation of DNA synthesis. The inhibition is dose-dependent and correlates with in situ activity of native p38 MAP kinase, determined as mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) activity in cell extracts. In summary, inhibiting activation of p38 MAPK pathway abrogated the DNA synthesis in response to COM crystals. These data are the first demonstrations of activation of the p38 MAPK signaling pathway by COM crystals and suggest that, in response to COM crystals, this pathway transduces critical signals governing the re-initiation of DNA synthesis in renal epithelial cells.
Collapse
Affiliation(s)
- Hari K Koul
- Biochemistry and Molecular Biology Laboratory, Vattikuti Urology Institute, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
136
|
Seta KA, Spicer Z, Yuan Y, Lu G, Millhorn DE. Responding to hypoxia: lessons from a model cell line. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re11. [PMID: 12189251 DOI: 10.1126/stke.2002.146.re11] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mammalian cells require a constant supply of oxygen to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. It is, therefore, not surprising that sophisticated mechanisms have evolved that allow cells to adapt to hypoxia. "Oxygen-sensing" is a special phenotype that functions to detect changes in oxygen tension and to transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in various organisms. Oxygen-sensing cells can be segregated into two distinct cell types: those that functionally depolarize (excitable) and those that do not functionally depolarize (nonexcitable) in response to reduced oxygen. Theoretically, excitable cells have all the same signaling capabilities as the nonexcitable cells, but the nonexcitable cells cannot have all the signaling capabilities as excitable cells. A number of signaling pathways have been identified that regulate gene expression during hypoxia. These include the Ca2+-calmodulin pathway, the 3'-5' adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, the p42 and p44 mitogen-activated protein kinase [(MAPK); also known as the extracellular signal-related kinase (ERK) for ERK1 and ERK2] pathway, the stress-activated protein kinase (SAPK; also known as p38 kinase) pathway, and the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. In this review, we describe hypoxia-induced signaling in the model O2-sensing rat pheochromocytoma (PC12) cell line, the current level of understanding of the major signaling events that are activated by reduced O2, and how these signaling events lead to altered gene expression in both excitable and nonexcitable oxygen-sensing cells.
Collapse
Affiliation(s)
- K A Seta
- Department of Genome Science and the Genome Research Institute, 231 Albert Sabin Way, P.O. Box 670505, University of Cincinnati, Cincinnati, OH 45267-0505, USA
| | | | | | | | | |
Collapse
|
137
|
Seta KA, Spicer Z, Yuan Y, Lu G, Millhorn DE. Responding to Hypoxia: Lessons From a Model Cell Line. Sci Signal 2002. [DOI: 10.1126/scisignal.1462002re11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
138
|
Buchsbaum RJ, Connolly BA, Feig LA. Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 2002; 22:4073-85. [PMID: 12024021 PMCID: PMC133864 DOI: 10.1128/mcb.22.12.4073-4085.2002] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 12/10/2001] [Accepted: 02/25/2002] [Indexed: 11/20/2022] Open
Abstract
Tiam1 and Ras-GRF1 are guanine nucleotide exchange factors (GEFs) that activate the Rac GTPase. The two GEFs have similar N-terminal regions containing pleckstrin homology domains followed by coiled-coils and additional sequences that function together to allow regulated GEF activity. Here we show that this N-terminal region of both proteins binds to the scaffold protein IB2/JIP2. IB2/JIP2 is a scaffold for the p38 mitogen-activated protein (MAP) kinase cascade because it binds to the Rac target MLK3, the MAP kinase kinase MKK3, and the p38 MAP kinase. Expression of IB2/JIP2 in cells potentiates the ability of Tiam1 or Ras-GRF1 to activate the p38 MAP kinase cascade but not the Jnk MAP kinase cascade. In addition, Tiam1 or Ras-GRF1 binding to IB2/JIP2 increases the association of the components of the p38 MAP kinase signaling cassette with IB2/JIP2 in cells and activates scaffold-associated p38. These findings imply that Tiam1 and Ras-GRF1 can contribute to Rac signaling specificity by their ability to form a complex with a scaffold that binds components of one of the many known Rac effector pathways.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Department of Biochemistry, Tufts University School of Medicine and Division of Hematology/Oncology, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
139
|
Abstract
Combined appearance of different cardiovascular risk factors seems to be more prevalent in individuals with decreased insulin sensitivity and increased visceral obesity, thereby being components of the so-called metabolic syndrome or syndrome X. Alterations in the abundance and activity of transcription factors lead to complex dysregulation of gene expression, which might be a key to understand insulin resistance-associated clinical clustering of coronary risk factors at the cellular or gene regulatory level. Recent examples are members of the nuclear hormone receptor superfamily-for example, peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding proteins (SREBPs). Besides their regulation by metabolites and nutrients, these transcription factors are also targets of hormones (like insulin and leptin), growth factors, inflammatory signals, and drugs. Major signaling pathways coupling transcription factors to extracellular stimuli are the MAP kinase cascades. We have recently shown that SREBPs appear to be substrates of MAP kinases and propose that SREBP-1 might play a role in the development of cellular features belonging to lipid toxicity and possibly syndrome X. Thus, the metabolic syndrome appears to be not only a disease or state of altered glucose tolerance, plasma lipid levels, blood pressure, and body fat distribution, but rather a complex clinical phenomenon of dysregulated gene expression.
Collapse
Affiliation(s)
- Dirk Müller-Wieland
- Klinische Biochemie und Pathobiochemie, Deutsches Diabetes-Forschungsinstitut, Heinrich-Heine Universität Düsseldorf, Germany.
| | | |
Collapse
|
140
|
|
141
|
Zhao M, Liu Y, Wang X, New L, Han J, Brunk UT. Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS 2002; 110:458-68. [PMID: 12193207 DOI: 10.1034/j.1600-0463.2002.100604.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endocytosis of oxidized low density lipoproteins (oxLDL) by macrophages, mediated by scavenger receptors, is thought to play a central role in foam cell formation and, thus, in the pathogenesis of atherosclerosis. OxLDL activates several MAP kinases, including the ERK, JNK and p38 MAP kinases, but the role of these activations in oxLDL uptake has not been studied. In the present investigation, we find that SB203580, a specific inhibitor of p38, blocks oxLDL-exposed J774 cells from becoming foam cells. Inhibition of foam cell formation by blockade of the p38 pathway is, at least in part, due to inhibition of oxLDL-induced up-regulation of the scavenger receptor CD36. Using pharmaceutical inhibitors and dominant active MAP kinase kinases, we demonstrated that activation of the p38 pathway, but not the ERK or JNK pathways, is necessary and sufficient to transactivate PPARgamma, a nuclear receptor that has recently been shown to play a pivotal role in oxLDL-induced CD36 expression. Our results for the first time demonstrate a regulation of CD36 by p38, and the importance of the p38 pathway in regulation of foam cell formation.
Collapse
Affiliation(s)
- Ming Zhao
- Division of Pathology II, Faculty of Health Sciences, Linköping University, Sweden.
| | | | | | | | | | | |
Collapse
|
142
|
Yang TTC, Xiong Q, Enslen H, Davis RJ, Chow CW. Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol Cell Biol 2002; 22:3892-904. [PMID: 11997522 PMCID: PMC133816 DOI: 10.1128/mcb.22.11.3892-3904.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) is implicated in multiple biological processes, including cytokine gene expression, cardiac hypertrophy, and adipocyte differentiation. A conserved NFAT homology domain is identified in all NFAT members. Dephosphorylation of the NFAT homology region is critical for NFAT nuclear translocation and transcriptional activation. Here we demonstrate that NFATc4 is phosphorylated by p38 mitogen-activated protein (MAP) kinase but not by JNK. The p38 MAP kinase phosphorylates multiple residues, including Ser(168) and Ser(170), in the NFAT homology domain of NFATc4. Replacement of Ser(168,170) with Ala promotes nuclear localization of NFATc4 and increases NFAT-mediated transcription activity. Stable expression of Ala(168,170) NFATc4, but not of wild-type NFATc4, in NIH 3T3 cells promotes adipocyte formation under differentiation conditions. Molecular analysis indicates that peroxisome proliferator-activated receptor gamma 2 (PPAR gamma 2) is a target of NFAT. Two distinct NFAT binding elements are located in the PPAR gamma 2 gene promoter. Stable expression of Ala(168,170) NFATc4, but not of wild-type NFATc4, increases the expression of PPAR gamma, which contributes in part to increased adipocyte formation. Thus, NFAT regulates PPAR gamma gene expression and has a direct role in adipocyte differentiation.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Jack and Pearl Resnick Campus, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
143
|
Post GR, Swiderski C, Waldrop BA, Salty L, Glembotski CC, Wolthuis RMF, Mochizuki N. Guanine nucleotide exchange factor-like factor (Rlf) induces gene expression and potentiates alpha 1-adrenergic receptor-induced transcriptional responses in neonatal rat ventricular myocytes. J Biol Chem 2002; 277:15286-92. [PMID: 11847222 DOI: 10.1074/jbc.m111844200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of constitutively active Ras (V12Ras) in cultured neonatal rat ventricular myocytes or targeted cardiac expression of V12Ras in transgenic mice induces myocardial cell growth and expression of genes that are markers of cardiac hypertrophy including atrial natriuretic factor (ANF) and myosin light chain-2. However, the signaling pathways that modulate the effects of Ras on acquisition of the various features of cardiac hypertrophy are not known. We identified the Ral guanine nucleotide exchange factor-like factor (Rlf) in a yeast two-hybrid screen of human heart cDNA library using Ras as bait, suggesting that Ras signaling in the heart may involve Rlf. We demonstrate here that Rlf is expressed in human heart. Expression of wild type Rlf or Rlf-CAAX, a membrane-targeted mutant of Rlf, transactivated ANF and myosin light chain-2 promoters but did not activate canonical cAMP responsive elements or phorbol ester responsive elements, suggesting that Rlf expression does not lead to a generalized increase in transcription. Transfection of mutant ANF promoter-reporter gene constructs demonstrated that the proximal serum response element is both necessary and sufficient for Rlf-inducible ANF expression. Rlf-induced ANF promoter activation required Ral and Cdc42 but not RhoA, Rac1, ERK, or p38 kinase activation. In addition, Rlf potentiated alpha(1)-adrenergic receptor (alpha(1)-AR)-induced ANF expression. Prolonged activation of the alpha(1)-AR increases RalGTP levels in neonatal rat ventricular myocytes, further emphasizing a role for Ral guanine nucleotide exchange factors in alpha(1)-AR signaling. Overall, this study supports the concept that Rlf and Ral are important previously unrecognized signaling components that regulate transcriptional responses in myocardial cells.
Collapse
Affiliation(s)
- Ginell R Post
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
144
|
Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK. Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem 2002; 277:13321-30. [PMID: 11823457 DOI: 10.1074/jbc.m108203200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxalate, a metabolic end product, is an important factor in the pathogenesis of renal stone disease. Oxalate exposure to renal epithelial cells results in re-initiation of the DNA synthesis, altered gene expression, and apoptosis, but the signaling pathways involved in these diverse effects have not been evaluated. The effects of oxalate on mitogen- and stress-activated protein kinase signaling pathways were studied in LLC-PK1 cells. Exposure to oxalate (1 mM) rapidly stimulated robust phosphorylation and activation of p38 MAPK. Oxalate exposure also induced modest activation of JNK, as monitored by phosphorylation of c-Jun. In contrast, oxalate exposure had no effect on phosphorylation and enzyme activity of p42/44 MAPK. We also show that specific inhibition of p38 MAPK by 4(4-(fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)imidazole (SB203580) or by overexpression of a kinase-dead dominant negative mutant of p38 MAPK abolishes oxalate induced re-initiation of DNA synthesis in LLC-PK1 cells. The inhibition is dose-dependent and correlates with in situ activity of native p38 MAP kinase, determined as MAPK-activated protein kinase-2 activity in cell extracts. Thus, this study not only provides the first demonstration of selective activation of p38 MAPK and JNK signaling pathways by oxalate but also suggests that p38 MAPK activity is essential for the effects of oxalate on re-initiation of DNA synthesis.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Biochemistry and Molecular Biology Laboratory, Vattikuti Urology Institute, Henry Ford Health Sciences Center, One Ford Place, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
145
|
Jang MJ, Jwa M, Kim JH, Song K. Selective inhibition of MAPKK Wis1 in the stress-activated MAPK cascade of Schizosaccharomyces pombe by novel berberine derivatives. J Biol Chem 2002; 277:12388-95. [PMID: 11744736 DOI: 10.1074/jbc.m111018200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular molecular targets of novel berberine derivatives, HWY 289 and HWY 336, were identified by a screen of a variety of mutants in fission yeast Schizosaccharomyces pombe. HWY 289 and HWY 336 completely inhibited the proliferation of wild type as well as various mutant fission yeast cells (minimal inhibitory concentrations were 29.52 microm for HWY 289 and 11.83 microm for HWY 336), but did not affect the proliferation of Wis1 mitogen-activated protein kinase kinase (MAPKK) deletion mutants. In addition, HWY 289 with an IC(50) value of 7.3 microm or HWY 336 with IC(50) of 5.7 microm specifically inhibited in vitro kinase activities of purified Wis1, whereas either compound did not affect the activities of other kinases in the mitogen-activated protein kinase (MAPK) cascades of fission yeast. These genetic and biochemical results demonstrate the high degree of specificity of HWY 289 and HWY 336 to MAPKK Wis1 and suggest that the cytotoxicity of these compounds is not simply due to the inhibition of Wis1 kinase activity. High salt wash experiments have shown that strong noncovalent binding occurs between Wis1 and either HWY 289 or HWY 336. The preincubation of Wis1 kinase with ATP did not affect the inhibition of Wis1 by HWY 289 and HWY 336, but when Wis1 was preincubated with MBP, a protein substrate, Wis1 kinase activity was no longer inhibited. These observations demonstrate that HWY 289/HWY 336 do inhibit Wis1 kinase, not by binding to the ATP-binding site but by disturbing the binding of substrate to the kinase. Target validation of the complex of HWY 289/HWY 336 and Wis1 kinase will provide important clues for the mechanism of specific cytotoxicity of these compounds in S. pombe. On a broader aspect, it would create an initiative to further modify and develop compounds that selectively inhibit kinases and cause cytotoxicity in various MAPK cascades including those of mammals.
Collapse
Affiliation(s)
- Myoung Jin Jang
- Department of Biochemistry, and Institute of Life science and Biotechnology, College of Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
146
|
Court NW, dos Remedios CG, Cordell J, Bogoyevitch MA. Cardiac expression and subcellular localization of the p38 mitogen-activated protein kinase member, stress-activated protein kinase-3 (SAPK3). J Mol Cell Cardiol 2002; 34:413-26. [PMID: 11991731 DOI: 10.1006/jmcc.2001.1523] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the interest in the roles that mitogen-activated protein kinases (MAPKs) play in the heart, the role of the different MAPK isoforms has been relatively poorly defined. A third isoform of p38 MAPK, known variously as stress-activated protein kinase-3 (SAPK3), p38- gamma or ERK6, has been previously shown to differ from p38- alpha/ beta both in its molecular weight and its lack of inhibition by the compound SB203580. We have generated monoclonal antibodies with specificity for SAPK3 demonstrated by immunoblot analysis, immunofluorescence studies, and cloning of SAPK3 from a rat heart cDNA expression library. By immunoblotting, we confirmed high expression of SAPK3 in fast, slow and mixed fibre types of murine skeletal muscle and observed significant expression restricted to heart, lung, thymus and testes. In addition to expression in normal heart (human, mouse, rat, dog and pig), we observed constant expression in diseased human heart, as well as control and hypertrophic cultured neonatal rat cardiac myocytes. Immunolocalization in cultured cardiac myocytes followed by confocal microscopy showed punctate, non-nuclear SAPK3 staining. In contrast, p38- alpha/ beta staining was non-punctate and distributed throughout the cytosol and nucleus. Whereas treatment with Leptomycin B to prevent nuclear export processes promoted higher levels of p38- alpha/ beta staining in cardiac myocyte nuclei, there was no apparent change in SAPK3 localization under these conditions. These differences between p38- alpha/ beta and SAPK3 probably reflect the specialized functions of SAPK3 and emphasize the need to evaluate SAPK3 upstream activators and downstream targets in the heart.
Collapse
Affiliation(s)
- Naomi W Court
- Department of Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
147
|
Buée-Scherrer V, Goedert M. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett 2002; 515:151-4. [PMID: 11943212 DOI: 10.1016/s0014-5793(02)02460-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tau is a microtubule-associated protein that is abnormally hyperphosphorylated in the filamentous lesions that define a number of neurodegenerative diseases collectively referred to as tauopathies. We previously showed that stress-activated protein (SAP) kinases phosphorylate tau protein at many of the hyperphosphorylated sites in vitro. Here we have developed a system to study the effects of five SAP kinases (SAPK1c/JNK1, SAPK2a/p38alpha, SAPK2b/p38beta, SAPK3/p38gamma and SAPK4/p38delta) on tau phosphorylation in intact cells. All kinases phosphorylated tau, albeit at different efficiencies. Tau was a good substrate for SAPK3/p38gamma and SAPK4/p38delta, a reasonable substrate for SAPK2b/p38beta and a relatively poor substrate for SAPK2a/p38alpha and SAPK1c/JNK1. These findings indicate that the aberrant activation of SAP kinases, especially SAPK3/p38gamma and SAPK4/p38delta, could play an important role in the abnormal hyperphosphorylation of tau that is an invariant feature of the tauopathies.
Collapse
Affiliation(s)
- Valérie Buée-Scherrer
- Medical Research Council Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | |
Collapse
|
148
|
Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A, Platanias LC. Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem 2002; 277:7726-7735. [PMID: 11773065 DOI: 10.1074/jbc.m106640200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I interferons (IFNs) are potent regulators of normal hematopoiesis in vitro and in vivo, but the mechanisms by which they suppress hematopoietic progenitor cell growth and differentiation are not known. In the present study we provide evidence that IFN alpha and IFN beta induce phosphorylation of the p38 mitogen-activated protein (Map) kinase in CD34+-derived primitive human hematopoietic progenitors. Such type I IFN-inducible phosphorylation of p38 results in activation of the catalytic domain of the kinase and sequential activation of the MAPK-activated protein kinase-2 (MapKapK-2 kinase), indicating the existence of a signaling cascade, activated downstream of p38 in hematopoietic progenitors. Our data indicate that activation of this signaling cascade by the type I IFN receptor is essential for the generation of the suppressive effects of type I IFNs on normal hematopoiesis. This is shown by studies demonstrating that pharmacological inhibitors of p38 reverse the growth inhibitory effects of IFN alpha and IFN beta on myeloid (colony-forming granulocytic-macrophage) and erythroid (burst-forming unit-erythroid) progenitor colony formation. In a similar manner, transforming growth factor beta, which also exhibits inhibitory effects on normal hematopoiesis, activates p38 and MapKapK-2 in human hematopoietic progenitors, whereas pharmacological inhibitors of p38 reverse its suppressive activities on both myeloid and erythroid colony formation. In further studies, we demonstrate that the primary mechanism by which the p38 Map kinase pathway mediates hematopoietic suppression is regulation of cell cycle progression and is unrelated to induction of apoptosis. Altogether, these findings establish that the p38 Map kinase pathway is a common effector for type I IFN and transforming growth factor beta signaling in human hematopoietic progenitors and plays a critical role in the induction of the suppressive effects of these cytokines on normal hematopoiesis.
Collapse
Affiliation(s)
- Amit Verma
- Section of Hematology-Oncology, Department of Medicine, University of Illinois at Chicago and West Side Veterans Affairs Medical Center, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Misra UK, Pizzo SV. Regulation of cytosolic phospholipase A2 activity in macrophages stimulated with receptor-recognized forms of alpha 2-macroglobulin: role in mitogenesis and cell proliferation. J Biol Chem 2002; 277:4069-78. [PMID: 11733496 DOI: 10.1074/jbc.m109764200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages exposed to receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) demonstrate increased DNA synthesis and cell division. In the current study, we have probed the role of cytosolic phospholipase A(2) (cPLA(2)) activity in the cellular response to alpha(2)M*. Ligation of the alpha(2)M* signaling receptor by alpha(2)M*, or its receptor binding fragment, increased cPLA(2) activity 2-3-fold in a concentration and time-dependent manner. This activation required a pertussis toxin-insensitive G protein. Cellular binding of alpha(2)M* also induced transient translocation of cPLA(2) activity to nuclei and membrane fractions. Inhibition of protein kinase C activity or chelation of Ca(2+) inhibited alpha(2)M*-induced increased cPLA(2) activity. Binding of alpha(2)M* to macrophages, moreover, increased phosphorylation of MEK 1/2, ERK 1/2, p38 MAPK, and JNK. Incubation of macrophages with inhibitors of MEK 1/2 or p38 MAPK before stimulation with alpha(2)M* profoundly decreased phosphorylation of MAPKs, blocking cPLA(2) activation. alpha(2)M*-induced increase in [(3)H]thymidine uptake and cell proliferation was completely abolished if activation of cPLA(2) was prevented. The response of macrophages to alpha(2)M* requires transcription factors nuclear factor kappaB, and cAMP-responsive element-binding protein as well as expression of the proto-oncogenes c-fos and c-myc. These studies indicate that the activation of cPLA(2) plays a crucial role in alpha(2)M*-induced mitogenesis and cell proliferation.
Collapse
Affiliation(s)
- Uma Kant Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 2771, USA
| | | |
Collapse
|
150
|
Adams JL, Badger AM, Kumar S, Lee JC. p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:1-60. [PMID: 11774793 DOI: 10.1016/s0079-6468(08)70091-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- J L Adams
- Smith Kline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | | | | | | |
Collapse
|