101
|
Deighan WI, Winton VJ, Melani RD, Anderson LC, McGee JP, Schachner LF, Barnidge D, Murray D, Alexander HD, Gibson DS, Deery MJ, McNicholl FP, McLaughlin J, Kelleher NL, Thomas PM. Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing. Clin Chem Lab Med 2020; 59:653-661. [PMID: 33079696 DOI: 10.1515/cclm-2020-1072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
Objectives Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. Methods Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. Results We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. Conclusions Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities.
Collapse
Affiliation(s)
- W Ian Deighan
- Department of Clinical Chemistry, Altnagelvin Area Hospital, Londonderry, UK
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - John P McGee
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Luis F Schachner
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - David Barnidge
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David Murray
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - David S Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | | | - Joseph McLaughlin
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Neil L Kelleher
- Proteomics Center of Excellence & Departments of Chemistry and Molecular Biology,Northwestern University, Evanston, IL, USA
| | - Paul M Thomas
- Proteomics Center of Excellence & Departments of Chemistry and Molecular Biology,Northwestern University, Evanston, IL, USA
| |
Collapse
|
102
|
den Boer MA, Greisch JF, Tamara S, Bondt A, Heck AJR. Selectivity over coverage in de novo sequencing of IgGs. Chem Sci 2020; 11:11886-11896. [PMID: 33520151 PMCID: PMC7814886 DOI: 10.1039/d0sc03438j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD) to provide straightforward-to-read sequence ladders for the variable parts of both the light and heavy chains, with a preference for the functionally important CDR3. We optimized this method on the therapeutic antibody Trastuzumab and demonstrate its applicability on two monoclonal quartets of the four IgG subclasses, IgG1, IgG2, IgG3 and IgG4. The method is based on proteolytically separating the variable F(ab')2 part from the conserved Fc part, whereafter the F(ab')2 portions are mass-analyzed and fragmented by ECD. Pure ECD, without additional collisional activation, leads to straightforward-to-read sequence tags covering the CDR3 of both the light and heavy chains. Using molecular modelling and structural analysis, we discuss and explain this selective fragmentation behavior and describe how structural features of the different IgG subclasses lead to distinct fragmentation patterns. Overall, we foresee that pure ECD on F(ab')2 or Fab molecules can become a valuable tool for the de novo sequencing of serum antibodies.
Collapse
Affiliation(s)
- Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Jean-Francois Greisch
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
103
|
Tromp AT, Zhao Y, Jongerius I, Heezius ECJM, Abrial P, Ruyken M, van Strijp JAG, de Haas CJC, Spaan AN, van Kessel KPM, Henry T, Haas PJA. Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. Dis Model Mech 2020; 13:dmm045534. [PMID: 32471891 PMCID: PMC7541340 DOI: 10.1242/dmm.045534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial pathogens have evolved to secrete strong anti-inflammatory proteins that target the immune system. It was long speculated whether these virulence factors could serve as therapeutics in diseases in which abnormal immune activation plays a role. We adopted the secreted chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) as a model virulence factor-based therapeutic agent for diseases in which C5AR1 stimulation plays an important role. We show that the administration of CHIPS in human C5AR1 knock-in mice successfully dampens C5a-mediated neutrophil migration during immune complex-initiated inflammation. Subsequent CHIPS toxicology studies in animal models were promising. However, during a small phase I trial, healthy human volunteers showed adverse effects directly after CHIPS administration. Subjects showed clinical signs of anaphylaxis with mild leukocytopenia and increased C-reactive protein concentrations, which are possibly related to the presence of relatively high circulating anti-CHIPS antibodies and suggest an inflammatory response. Even though our data in mice show CHIPS as a potential anti-inflammatory agent, safety issues in human subjects temper the use of CHIPS in its current form as a therapeutic candidate. The use of staphylococcal proteins, or other bacterial proteins, as therapeutics or immune-modulators in humans is severely hampered by pre-existing circulating antibodies.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Yuxi Zhao
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Sanquin Research, Department of Immunopathology, 1006AD Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Erik C J M Heezius
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Pauline Abrial
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- Sanquin Research, Department of Immunopathology, 1006AD Amsterdam, The Netherlands
| | - Pieter-Jan A Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
104
|
Elmore ZC, Oh DK, Simon KE, Fanous MM, Asokan A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI Insight 2020; 5:139881. [PMID: 32941184 PMCID: PMC7566709 DOI: 10.1172/jci.insight.139881] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Preexisting humoral immunity to recombinant adeno-associated virus (AAV) vectors restricts the treatable patient population and efficacy of human gene therapies. Approaches to clear neutralizing antibodies (NAbs), such as plasmapheresis and immunosuppression, are either ineffective or cause undesirable side effects. Here, we describe a clinically relevant strategy to rapidly and transiently degrade NAbs before AAV administration using an IgG-degrading enzyme (IdeZ). We demonstrate that recombinant IdeZ efficiently cleaved IgG in dog, monkey, and human antisera. Prophylactically administered IdeZ cleaved circulating human IgG in mice and prevented AAV neutralization in vivo. In macaques, a single intravenous dose of IdeZ rescued AAV transduction by transiently reversing seropositivity. Importantly, IdeZ efficiently cleaved NAbs and rescued AAV transduction in mice passively immunized with individual human donor sera representing a diverse population. Our antibody clearance approach presents a potentially new paradigm for expanding the prospective patient cohort and improving efficacy of AAV gene therapy.
Collapse
Affiliation(s)
| | | | | | | | - Aravind Asokan
- Department of Surgery and
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Pratt School of Engineering, and
- Regeneration Next, Duke University, Durham, North Carolina, USA
| |
Collapse
|
105
|
Adam BA, Gebel HM. IgE in Antibody-Mediated Rejection: A Novel Pathogenic Mechanism? Clin J Am Soc Nephrol 2020; 15:1392-1393. [PMID: 33028604 PMCID: PMC7536743 DOI: 10.2215/cjn.13000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Howard M Gebel
- Department of Pathology, Emory University, Atlanta, Georgia
| |
Collapse
|
106
|
Syed S, Viazmina L, Mager R, Meri S, Haapasalo K. Streptococci and the complement system: interplay during infection, inflammation and autoimmunity. FEBS Lett 2020; 594:2570-2585. [PMID: 32594520 DOI: 10.1002/1873-3468.13872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022]
Abstract
Streptococci are a broad group of Gram-positive bacteria. This genus includes various human pathogens causing significant morbidity and mortality. Two of the most important human pathogens are Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A streptococcus or GAS). Streptococcal pathogens have evolved to express virulence factors that enable them to evade complement-mediated attack. These include factor H-binding M (S. pyogenes) and pneumococcal surface protein C (PspC) (S. pneumoniae) proteins. In addition, S. pyogenes and S. pneumoniae express cytolysins (streptolysin and pneumolysin), which are able to destroy host cells. Sometimes, the interplay between streptococci, the complement, and antistreptococcal immunity may lead to an excessive inflammatory response or autoimmune disease. Understanding the fundamental role of the complement system in microbial clearance and the bacterial escape mechanisms is of paramount importance for understanding microbial virulence, in general, and, the conversion of commensals to pathogens, more specifically. Such insights may help to identify novel antibiotic and vaccine targets in bacterial pathogens to counter their growing resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Larisa Viazmina
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Finland.,Humanitas University, Milano, Italy
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| |
Collapse
|
107
|
D’Ippolito RA, Panepinto MC, Mahoney KE, Bai DL, Shabanowitz J, Hunt DF. Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Anal Chem 2020; 92:10470-10477. [PMID: 32597636 PMCID: PMC8106826 DOI: 10.1021/acs.analchem.0c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor. Low concentration samples resulted in the elimination of large peptide products due to a greater number of enzymatic cleavages. A competitive inhibitor rich in arginine residues reduced the number of enzymatic cleavages to the protein and retained large molecular weight products. The digestion of a bispecific antibody with competitive inhibition of aspergillopepsin I maintained large peptide products better suited for sequence reconstruction, resulting in complete sequence coverage from a single LC-MS/MS analysis.
Collapse
Affiliation(s)
- Robert A. D’Ippolito
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Maria C. Panepinto
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Keira E. Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Donald F. Hunt
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
108
|
Ge S, Chu M, Choi J, Louie S, Vo A, Jordan SC, Toyoda M. Imlifidase Inhibits HLA Antibody-mediated NK Cell Activation and Antibody-dependent Cell-mediated Cytotoxicity (ADCC) In Vitro. Transplantation 2020; 104:1574-1579. [PMID: 32732834 DOI: 10.1097/tp.0000000000003023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important pathway responsible for antibody-mediated rejection (AMR). Imlifidase (IdeS) cleaves human IgG into F(ab')2 and Fc fragments, potentially inhibiting ADCC. Here we examined the effect of IdeS on allo-antibody-mediated NK cell activation (Allo-CFC) and ADCC in vitro. METHODS For Allo-CFC, normal whole blood was incubated with third-party peripheral blood mononuclear cells (PBMCs) pretreated with anti-HLA antibody positive (HS) or negative (NC) sera to measure IFNγ+ NK cell%. For ADCC, normal PBMCs were incubated with Farage B (FB) cells with HS or NC sera to measure 7-AAD+ lysed FB cell%. To assess the effect of IdeS on these assays, serum-treated PBMCs (Allo-CFC-1) and serum used for PBMC pretreatment (Allo-CFC-2) in Allo-CFC, and serum used for ADCC were preincubated with IdeS. Sera from IdeS-treated patients were also tested for Allo-CFC (Allo-CFC-3). RESULTS IFNγ+ NK cell% were significantly elevated in HS versus NC sera in Allo-CFC-1 (10 ± 3% versus 2 ± 1%, P = 0.001), Allo-CFC-2 (20 ± 10% versus 4 ± 2%, P = 0.01) and 7AAD+ FB cell% (11 ± 3% versus 4 ± 2%, P = 0.02) in ADCC. These were significantly reduced by IdeS treatment. Patient sera with significantly reduced anti-HLA antibody levels at 1 day postimlifidase lost the capacity to activate NK cells in Allo-CFC-3, but those at 1-3 months postimlifidase regained the capacity. CONCLUSIONS IdeS inhibited NK cell activation and ADCC in vitro and in treated patients. These results and reported inhibition of complement activating anti-HLA antibodies by IdeS suggest its possible role in treatment of AMR.
Collapse
Affiliation(s)
- Shili Ge
- Transplant Immunology Laboratory, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Maggie Chu
- Transplant Immunology Laboratory, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jua Choi
- Department of Medicine, Division of Nephrology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Sabrina Louie
- Department of Medicine, Division of Nephrology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ashley Vo
- Department of Medicine, Division of Nephrology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stanley C Jordan
- Department of Medicine, Division of Nephrology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mieko Toyoda
- Transplant Immunology Laboratory, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
109
|
Salvà-Serra F, Jaén-Luchoro D, Jakobsson HE, Gonzales-Siles L, Karlsson R, Busquets A, Gomila M, Bennasar-Figueras A, Russell JE, Fazal MA, Alexander S, Moore ERB. Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies. Sci Rep 2020; 10:11656. [PMID: 32669560 PMCID: PMC7363880 DOI: 10.1038/s41598-020-68249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023] Open
Abstract
We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198T and CCUG 4207T, the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198T and CCUG 4207T are derived from deposit of the same strain at two different culture collections. NCTC 8198T was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207T was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden.
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Hedvig E Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
- Nanoxis Consulting AB, 400 16, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | | | - Julie E Russell
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Mohammed Abbas Fazal
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Sarah Alexander
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
110
|
Jordan SC, Ammerman N, Choi J, Huang E, Peng A, Sethi S, Najjar R, Kim I, Toyoda M, Kumar S, Lim K, Vo A. The role of novel therapeutic approaches for prevention of allosensitization and antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:42-56. [PMID: 32538536 DOI: 10.1111/ajt.15913] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Modification of pathogenic antibodies and their effector functions in autoimmune diseases or use of B cell/plasma cell-directed anticancer therapies have illuminated the biologic relevance of B cells, plasma cells (PCs), and pathogenic antibodies and complement in alloimmunity. They have also rejuvenated interest in how B cells mediate multiple effector functions that include antibody production, antigen presentation to T cells, costimulation, and the production of immune stimulating and immune modulatory cytokines that drive dysfunctional immune responses. Current methods to reduce alloantibodies are only modestly successful. Rituximab is used for desensitization and antibody-mediated rejection (AMR) treatment by targeting CD20 found on B-lymphocytes. However, PCs do not express CD20, likely explaining the limited success of this approach. Intravenous immunoglobulin and plasmapheresis (PLEX) have limited success due to antibody rebound. Despite attempts to develop tolerable therapeutics for management of AMR, none, to date, have been universally accepted or obtained Food and Drug Administration approval. Lack of approved therapeutics often results in patients having a much shorter graft survival due to AMR. Repurposing drugs from autoimmunity and cancer immunotherapy has rapidly yielded important advancements in the care of AMR patients. Here we discuss emerging therapeutics aimed at prevention and treatment of AMR.
Collapse
Affiliation(s)
- Stanley C Jordan
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Noriko Ammerman
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jua Choi
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Edmund Huang
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alice Peng
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Supreet Sethi
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reiad Najjar
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Irene Kim
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mieko Toyoda
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sanjeev Kumar
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kathlyn Lim
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ashley Vo
- Comprehensive Transplant Center, Transplant Immunotherapy Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
111
|
Leborgne C, Barbon E, Alexander JM, Hanby H, Delignat S, Cohen DM, Collaud F, Muraleetharan S, Lupo D, Silverberg J, Huang K, van Wittengerghe L, Marolleau B, Miranda A, Fabiano A, Daventure V, Beck H, Anguela XM, Ronzitti G, Armour SM, Lacroix-Desmazes S, Mingozzi F. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med 2020; 26:1096-1101. [PMID: 32483358 DOI: 10.1038/s41591-020-0911-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Neutralizing antibodies to adeno-associated virus (AAV) vectors are highly prevalent in humans1,2, and block liver transduction3-5 and vector readministration6; thus, they represent a major limitation to in vivo gene therapy. Strategies aimed at overcoming anti-AAV antibodies are being studied7, which often involve immunosuppression and are not efficient in removing pre-existing antibodies. Imlifidase (IdeS) is an endopeptidase able to degrade circulating IgG that is currently being tested in transplant patients8. Here, we studied if IdeS could eliminate anti-AAV antibodies in the context of gene therapy. We showed efficient cleavage of pooled human IgG (intravenous Ig) in vitro upon endopeptidase treatment. In mice passively immunized with intravenous Ig, IdeS administration decreased anti-AAV antibodies and enabled efficient liver gene transfer. The approach was scaled up to nonhuman primates, a natural host for wild-type AAV. IdeS treatment before AAV vector infusion was safe and resulted in enhanced liver transduction, even in the setting of vector readministration. Finally, IdeS reduced anti-AAV antibody levels from human plasma samples in vitro, including plasma from prospective gene therapy trial participants. These results provide a potential solution to overcome pre-existing antibodies to AAV-based gene therapy.
Collapse
Affiliation(s)
- Christian Leborgne
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | - Elena Barbon
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | | | | | - Sandrine Delignat
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Fanny Collaud
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | | | - Dan Lupo
- Spark Therapeutics, Philadelphia, PA, USA
| | | | | | - Laetitia van Wittengerghe
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | - Béatrice Marolleau
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | - Adeline Miranda
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | - Anna Fabiano
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | - Victoria Daventure
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Heena Beck
- Spark Therapeutics, Philadelphia, PA, USA
| | | | - Giuseppe Ronzitti
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France
| | | | - Sebastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, Paris, France.
| | - Federico Mingozzi
- Généthon INTEGRARE UMR-S951 (Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Université Paris Saclay), Evry, France. .,Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
112
|
Rosenstein S, Vaisman-Mentesh A, Levy L, Kigel A, Dror Y, Wine Y. Production of F(ab') 2 from Monoclonal and Polyclonal Antibodies. ACTA ACUST UNITED AC 2020; 131:e119. [PMID: 32319727 DOI: 10.1002/cpmb.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antibodies are widely used in therapeutic, diagnostic, and research applications, and antibody derivatives such as F(ab')2 fragments are used when only a particular antibody region is required. F(ab')2 can be produced through antibody engineering, but some applications require F(ab')2 produced from an original formulated antibody or directly from a polyclonal antibody pool. The cysteine protease immunoglobulin-degrading enzyme (IdeS) from Streptococcus pyogenes digests immunoglobulin G (IgG) specifically and efficiently to produce F(ab')2 . Here we detail the production and purification of recombinant IdeS; its utilization to digest monoclonal or polyclonal antibodies to F(ab')2 fragments; and F(ab')2 purification through consecutive affinity chromatography steps. The resultant F(ab')2 exhibit high purity, retain antigen-binding functionality, and are readily utilizable in various downstream applications. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Production and purification of F(ab')2 fragments from monoclonal and polyclonal antibodies using IdeS Alternate Protocol: Purification of polyclonal antigen-specific F(ab')2 fragments from human serum or secretions Support Protocol: Production and purification of IdeS.
Collapse
Affiliation(s)
- Shai Rosenstein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Anna Vaisman-Mentesh
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Limor Levy
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Aya Kigel
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Yael Dror
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Yariv Wine
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
113
|
Youssef EG, Zhang L, Alkhazraji S, Gebremariam T, Singh S, Yount NY, Yeaman MR, Uppuluri P, Ibrahim AS. Monoclonal IgM Antibodies Targeting Candida albicans Hyr1 Provide Cross-Kingdom Protection Against Gram-Negative Bacteria. Front Immunol 2020; 11:76. [PMID: 32153560 PMCID: PMC7045048 DOI: 10.3389/fimmu.2020.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/13/2020] [Indexed: 02/03/2023] Open
Abstract
Recent years have seen an unprecedented rise in the incidence of multidrug-resistant (MDR) Gram-negative bacteria (GNBs) such as Acinetobacter and Klebsiella species. In view of the shortage of novel drugs in the pipeline, alternative strategies to prevent, and treat infections by GNBs are urgently needed. Previously, we have reported that the Candida albicans hypha-regulated protein Hyr1 shares striking three-dimensional structural homology with cell surface proteins of Acinetobacter baumannii. Moreover, active vaccination with rHyr1p-N or passive immunization with anti-Hyr1p polyclonal antibody protects mice from Acinetobacter infection. In the present study, we use molecular modeling to guide design of monoclonal antibodies (mAbs) generated against Hyr1p and show them to bind to priority surface antigens of Acinetobacter and Klebsiella pneumoniae. The anti-Hyr1 mAbs block damage to primary endothelial cells induced by the bacteria and protect mice from lethal pulmonary infections mediated by A. baumannii or K. pneumoniae. Our current studies emphasize the potential of harnessing Hyr1p mAbs as a cross-kingdom immunotherapeutic strategy against MDR GNBs.
Collapse
Affiliation(s)
- Eman G. Youssef
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Lina Zhang
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Sondus Alkhazraji
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shakti Singh
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nannette Y. Yount
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Michael R. Yeaman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Priya Uppuluri
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
114
|
Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: A review of recent advances and future perspectives. J Pharm Biomed Anal 2020; 179:112991. [DOI: 10.1016/j.jpba.2019.112991] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022]
|
115
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
116
|
Vaisman-Mentesh A, Rosenstein S, Yavzori M, Dror Y, Fudim E, Ungar B, Kopylov U, Picard O, Kigel A, Ben-Horin S, Benhar I, Wine Y. Molecular Landscape of Anti-Drug Antibodies Reveals the Mechanism of the Immune Response Following Treatment With TNFα Antagonists. Front Immunol 2019; 10:2921. [PMID: 31921180 PMCID: PMC6930160 DOI: 10.3389/fimmu.2019.02921] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
Drugs formulated from monoclonal antibodies (mAbs) are clinically effective in various diseases. Repeated administration of mAbs, however, elicits an immune response in the form of anti-drug-antibodies (ADA), thereby reducing the drug's efficacy. Notwithstanding their importance, the molecular landscape of ADA and the mechanisms involved in their formation are not fully understood. Using a newly developed quantitative bio-immunoassay, we found that ADA concentrations specific to TNFα antagonists can exceed extreme concentrations of 1 mg/ml with a wide range of neutralization capacity. Our data further suggest a preferential use of the λ light chain in a subset of neutralizing ADA. Moreover, we show that administration of TNFα antagonists result in a vaccine-like response whereby ADA formation is governed by the extrafollicular T cell-independent immune response. Our bio-immunoassay coupled with insights on the nature of the immune response can be leveraged to improve mAb immunogenicity assessment and facilitate improvement in therapeutic intervention strategies.
Collapse
Affiliation(s)
- Anna Vaisman-Mentesh
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Shai Rosenstein
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Miri Yavzori
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yael Dror
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ella Fudim
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Bella Ungar
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kopylov
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Orit Picard
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Aya Kigel
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Shomron Ben-Horin
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Itai Benhar
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yariv Wine
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
117
|
Prendecki M, Pusey C. Plasma exchange in anti-glomerular basement membrane disease. Presse Med 2019; 48:328-337. [DOI: 10.1016/j.lpm.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
|
118
|
Melani RD, Srzentić K, Gerbasi VR, McGee JP, Huguet R, Fornelli L, Kelleher NL. Direct measurement of light and heavy antibody chains using ion mobility and middle-down mass spectrometry. MAbs 2019; 11:1351-1357. [PMID: 31607219 PMCID: PMC6816405 DOI: 10.1080/19420862.2019.1668226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The analysis of monoclonal antibodies (mAbs) by a middle-down mass spectrometry (MS) approach is a growing field that attracts the attention of many researchers and biopharmaceutical companies. Usually, liquid fractionation techniques are used to separate mAbs polypeptides chains before MS analysis. Gas-phase fractionation techniques such as high-field asymmetric waveform ion mobility spectrometry (FAIMS) can replace liquid-based separations and reduce both analysis time and cost. Here, we present a rapid FAIMS tandem MS method capable of characterizing the polypeptide sequence of mAbs light and heavy chains in an unprecedented, easy, and fast fashion. This new method uses commercially available instruments and takes ~24 min, which is 40-60% faster than regular liquid chromatography-MS/MS analysis, to acquire fragmentation data using different dissociation methods.
Collapse
Affiliation(s)
- Rafael D Melani
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Vincent R Gerbasi
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | - John P McGee
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Luca Fornelli
- Department of Biology, University of Oklahoma , Norman , OK , USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| |
Collapse
|
119
|
Rieckmann K, Seydel A, Klose K, Alber G, Baums CG, Schütze N. Vaccination with the immunoglobulin M-degrading enzyme of Streptococcus suis, Ide Ssuis, leads to protection against a highly virulent serotype 9 strain. Vaccine X 2019; 3:100046. [PMID: 31709420 PMCID: PMC6831886 DOI: 10.1016/j.jvacx.2019.100046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023] Open
Abstract
IdeSsuis vaccination of piglets significantly reduced survival of S. suis cps9 in blood. IdeSsuis reactive T helper cells producing TNF-α, IL-17A or IFN-ɣ were detectable. Vaccination resulted in protection against mortality induced by cps9 challenge.
Vaccination of weaning piglets with the recombinant IgM degrading enzyme of Streptococcus suis (S. suis), rIdeSsuis, elicits protection against disease caused by serotype (cps) 2 infection. In Europe, S. suis cps9 is at least as important as cps2 in causing severe herd problems associated with meningitis, septicemia and arthritis. The objective of this study was to determine humoral and cellular immunogenicities of rIdeSsuis suckling piglet vaccination and to investigate protection against a virulent cps9 strain. Vaccination in the 2nd and 4th week of life with rIdeSsuis and an oil-in-water adjuvant induced seroconversion against IdeSsuis in 13 of 20 vaccinated piglets. In the 5th week, survival of the S. suis cps9 strain was significantly reduced in the blood of prime-booster vaccinated piglets. After a 2nd booster vaccination IdeSsuis-reactive T helper (Th) cells partially producing TNF-α, IL-17A or IFN-ɣ were detectable in rIdeSsuis-vaccinated but not in placebo-treated piglets and frequencies of IdeSsuis-reactive Th cells correlated with α-IdeSsuis–IgG levels. An intravenous challenge, conducted with a cps9 strain of sequence type (ST) 94, led to 89% mortality in placebo-treated piglets due to septicemia and meningitis. In contrast, all rIdeSsuis prime-booster-booster vaccinated littermates survived the challenge despite signs of disease such as fever and lameness. In conclusion, the described rIdeSsuis vaccination induces humoral and detectable IdeSsuis-reactive Th cell responses and leads to protection against a highly virulent cps9 strain.
Collapse
Affiliation(s)
- Karoline Rieckmann
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Anna Seydel
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Christoph G Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Nicole Schütze
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
120
|
Bernard PE, Kachroo P, Eraso JM, Zhu L, Madry JE, Linson SE, Ojeda Saavedra M, Cantu C, Musser JM, Olsen RJ. Polymorphisms in Regulator of Cov Contribute to the Molecular Pathogenesis of Serotype M28 Group A Streptococcus. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2002-2018. [PMID: 31369755 PMCID: PMC6892226 DOI: 10.1016/j.ajpath.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are signal transduction proteins that enable bacteria to respond to external stimuli by altering the global transcriptome. Accessory proteins interact with TCSs to fine-tune their activity. In group A Streptococcus (GAS), regulator of Cov (RocA) is an accessory protein that functions with the control of virulence regulator/sensor TCS, which regulates approximately 15% of the GAS transcriptome. Whole-genome sequencing analysis of serotype M28 GAS strains collected from invasive infections in humans identified a higher number of missense (amino acid-altering) and nonsense (protein-truncating) polymorphisms in rocA than expected. We hypothesized that polymorphisms in RocA alter the global transcriptome and virulence of serotype M28 GAS. We used naturally occurring clinical isolates with rocA polymorphisms (n = 48), an isogenic rocA deletion mutant strain, and five isogenic rocA polymorphism mutant strains to perform genome-wide transcript analysis (RNA sequencing), in vitro virulence factor assays, and mouse and nonhuman primate pathogenesis studies to test this hypothesis. Results demonstrated that polymorphisms in rocA result in either a subtle transcriptome change, causing a wild-type-like virulence phenotype, or a substantial transcriptome change, leading to a significantly increased virulence phenotype. Each polymorphism had a unique effect on the global GAS transcriptome. Taken together, our data show that naturally occurring polymorphisms in one gene encoding an accessory protein can significantly alter the global transcriptome and virulence phenotype of GAS, an important human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica E Madry
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Sarah E Linson
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Concepcion Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Texas A&M Health Science Center College of Medicine, Bryan, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
121
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
122
|
Segelmark M, Björck L. Streptococcal Enzymes as Precision Tools Against Pathogenic IgG Autoantibodies in Small Vessel Vasculitis. Front Immunol 2019; 10:2165. [PMID: 31616410 PMCID: PMC6763725 DOI: 10.3389/fimmu.2019.02165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 11/24/2022] Open
Abstract
In primary systemic small vessel vasculitis autoantibodies are common and seem to play an important role in the pathogenesis. Autoantibodies in vasculitis are preferentially directed against components of the immune system or directly against components of the vessel wall. Plasmapheresis is often applied in emergency situationists when the function of vital organs is jeopardized, the level of clinical evidence to apply such therapy, however, varies between low and non-existing. Plasmapheresis is a blunt and unspecific instrument that requires several sessions to achieve a substantial reduction of autoantibody levels. IdeS and EndoS are two relatively recently discovered enzymes produced by S. pyogenes, that have a remarkable capacity to degrade and disarm IgG. They have shown positive results in several in vivo models of autoimmunity, and treatment with IdeS has successfully been used to inactivate HLA alloantibodies in patients undergoing renal transplantation. Both IdeS and EndoS have the potential to become precision tools to replace plasmapheresis in the treatment of vasculitic emergencies and a clinical trial of IdeS in anti-GBM vasculitis is now ongoing.
Collapse
Affiliation(s)
- Mårten Segelmark
- Nephrology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Björck
- Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
123
|
Henderson SR, Salama AD. Diagnostic and management challenges in Goodpasture's (anti-glomerular basement membrane) disease. Nephrol Dial Transplant 2019; 33:196-202. [PMID: 28459999 DOI: 10.1093/ndt/gfx057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Goodpasture's or anti-glomerular basement membrane (GBM) disease is classically characterized by the presence of circulating autoantibodies directed against the non-collagenous domain of the α3 chain of type IV collagen, targeting glomerular and alveolar basement membranes, and associated with rapidly progressive crescentic glomerulonephritis, with alveolar haemorrhage in over half the patients. However, there are increasing examples of variants or atypical presentations of this disease, and novel therapeutic options have been proposed, which nephrologists should be aware of. The pathophysiology of this condition has been understood through molecular analysis of the antibody-antigen interactions and the use of human leucocyte antigen-transgenic animals, while the association of anti-GBM antibodies with anti-neutrophil cytoplasm antibodies and their combined impact on disease phenotype is increasingly recognized, providing some insights into the basis of glomerular damage and autoimmunity.
Collapse
Affiliation(s)
- Scott R Henderson
- Centre for Nephrology, Division of Medicine, University College London, Royal Free Hospital, London, UK
| | - Alan D Salama
- Centre for Nephrology, Division of Medicine, University College London, Royal Free Hospital, London, UK
| |
Collapse
|
124
|
Abstract
Modification of pathogenic antibodies for autoimmune diseases illuminated the biologic relevance of B cells, plasma cells, and pathogenic antibodies in autoimmunity. They have also rejuvenated interest in how B cells mediate multiple effector functions that include antibody production, antigen presentation to T cells, costimulation, and the production of immune stimulating and immune modulatory cytokines. Repurposing these drugs from autoimmunity and cancer immunotherapy has yielded important advancements in the care of antibody-mediated rejection patients and novel drug development aimed at HLA desensitization have recently emerged. We now stand on an important threshold that promises many advances in the care of our allosensitized patients. We hope that these initial advances will encourage basic scientist, clinical investigators, industry, National Institutes of Health, our academic societies, and the Food and Drug Administration to continue support of these important objectives. These advances clearly have implications for sensitized patients receiving solid organ transplants and antibody-mediated rejection treatment. Modification of alloimmunity and alloantibodies will also have relevance to xenotransplantation where the xenoantibodies present a formidable obstacle to advancement of this important therapy. Working together, we can advance transplant therapeutics where biologic agents are likely to play novel and important roles. Here, we discuss novel drugs emerging in this area.
Collapse
|
125
|
Akiba H, Satoh R, Nagata S, Tsumoto K. Effect of allotypic variation of human IgG1 on the thermal stability of disulfide-linked knobs-into-holes mutants of the Fc for stable bispecific antibody design. Antib Ther 2019; 2:65-69. [PMID: 33928224 PMCID: PMC7990158 DOI: 10.1093/abt/tbz008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Background Disulfide-linked knobs-into-holes (dKiH) mutation is a well-validated antibody engineering technique to force heterodimer formation of different Fcs for efficient production of bispecific antibodies. An artificial disulfide bond is created between mutated cysteine residues in CH3 domain of human IgG1 Fc whose positions are 354 of the “knob” and 349 of the “hole” heavy chains. The disulfide bond is located adjacent to the exposed loop with allotypic variations at positions 356 and 358. Effects of the variation on the biophysical property of the Fc protein with dKiH mutations have not been reported. Methods We produced dKiH Fc proteins of high purity by affinity-tag fusion to the hole chain and IdeS treatment, which enabled removal of mispaired side products. Thermal stability was analyzed in a differential scanning calorimetry instrument. Results We firstly analyzed the effect of the difference in allotypes of the Fcs on the thermal stability of the heterodimeric Fc. We observed different melting profiles of the two allotypes (G1m1 and nG1m1) showing slightly higher melting temperature of G1m1 than nG1m1. Additionally, we showed different characteristics among heterodimers with different combinations of the allotypes in knob and hole chains. Conclusion Allotypic variations affected melting profiles of dKiH Fc proteins possibly with larger contribution of variations adjacent to the disulfide linkage.
Collapse
Affiliation(s)
- Hiroki Akiba
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Reiko Satoh
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Medical Proteomics Laboratory, The Institute of Medical Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
126
|
Zhu Y, Ahluwalia D, Chen Y, Belakavadi M, Katiyar A, Das TK. Characterization of therapeutic antibody fragmentation using automated capillary western blotting as an orthogonal analytical technique. Electrophoresis 2019; 40:2888-2898. [PMID: 31271455 DOI: 10.1002/elps.201900119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 11/06/2022]
Abstract
Fragmentation in protein-based molecules continues to be a challenge during manufacturing and storage, and requires an appropriate control strategy to ensure purity and integrity of the drug product. Electrophoretic and chromatographic methods are commonly used for monitoring the fragments. However, size-exclusion chromatography often suffers from low resolution of low molecular weight fragments. Electrophoretic methods like CE-SDS are not compatible with enriching fragments for additional characterization tests such as MS. These limitations may result in inadequate control strategy for monitoring and characterizing fragments for protein-based molecules. Capillary western blotting was used in this study as an orthogonal method for characterization of fragments in an IgG1 antibody under reduced conditions. To achieve a comprehensive mapping of various fragments generated by thermal stress, capillary western profiles were generated using recognition antibodies for IgG kappa (κ) light chain, Fc, and Fab regions that enabled unambiguous fragment identification. Additionally, three different enzymatic digestion methods (IdeS, PNGase F, and IgdE) were applied coupled with capillary western blotting for clip identifications. Finally, complementary data collected using traditional chromatographic and electrophoretic methods allowed to establish a comparison of analytical profiles with an added benefit of fragment identification offered by capillary western profiling. In addition to various Fc and Fab-related low molecular weight fragments, a non-reducible thio-ether linked 75 kDa HL fragment was also identified.
Collapse
Affiliation(s)
- Yunxiao Zhu
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Deepti Ahluwalia
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Yingchen Chen
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Madesh Belakavadi
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Amit Katiyar
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA.,Analytical and Formulation Sciences, Patheon, Thermo Fisher Scientific, Princeton, NJ, USA
| | - Tapan K Das
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| |
Collapse
|
127
|
Shah KS, Patel J. Desensitization in heart transplant recipients: Who, when, and how. Clin Transplant 2019; 33:e13639. [PMID: 31206862 DOI: 10.1111/ctr.13639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 01/15/2023]
Abstract
The number of heart transplant candidates who have pre-formed antibodies against human leukocyte antigens (HLAs) is increasing over time. The purpose of this review is to discuss the process of antibody desensitization for heart transplant candidates. Specifically, we review the current status of antibody detection including identification, strength, and potential pathogenicity. We discuss which patients and when should they undergo desensitization therapies during heart transplant evaluation. Specific therapies including mechanical removal of antibodies, intravenous immunoglobulins, and novel immunosuppressive agents targeting antibody production will be discussed. Finally, future research strategies to develop novel desensitization therapies for heart transplant candidates will be reviewed.
Collapse
Affiliation(s)
- Kevin S Shah
- Cedars-Sinai Smidt Heart Institute, Los Angeles, California
| | - Jignesh Patel
- Cedars-Sinai Smidt Heart Institute, Los Angeles, California
| |
Collapse
|
128
|
A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies. Nat Commun 2019; 10:2727. [PMID: 31227708 PMCID: PMC6588558 DOI: 10.1038/s41467-019-10583-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/17/2019] [Indexed: 12/01/2022] Open
Abstract
A fundamental challenge in medical microbiology is to characterize the dynamic protein–protein interaction networks formed at the host–pathogen interface. Here, we generate a quantitative interaction map between the significant human pathogen, Streptococcus pyogenes, and proteins from human saliva and plasma obtained via complementary affinity-purification and bacterial-surface centered enrichment strategies and quantitative mass spectrometry. Perturbation of the network using immunoglobulin protease cleavage, mixtures of different concentrations of saliva and plasma, and different S. pyogenes serotypes and their isogenic mutants, reveals how changing microenvironments alter the interconnectivity of the interaction map. The importance of host immunoglobulins for the interaction with human complement proteins is demonstrated and potential protective epitopes of importance for phagocytosis of S. pyogenes cells are localized. The interaction map confirms several previously described protein–protein interactions; however, it also reveals a multitude of additional interactions, with possible implications for host–pathogen interactions involving other bacterial species. Characterizing host-pathogen protein interactions can help elucidate the molecular basis of bacterial infections. Here, the authors use an integrative proteomics approach to generate a quantitative map of protein interactions between Streptococcus pyogenes and human saliva and plasma.
Collapse
|
129
|
Weber SS, Stoycheva D, Nimmerjahn F, Oxenius A. Two sequential layers of antibody-mediated control of Legionella pneumophila infection. Eur J Immunol 2019; 49:1415-1420. [PMID: 31074841 DOI: 10.1002/eji.201948106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/10/2019] [Accepted: 05/09/2019] [Indexed: 02/01/2023]
Abstract
Protective immunity against intracellular pathogens, including bacteria, usually relies on cellular immunity. However, antibodies are also implicated in mediating protection against intracellular bacteria. In case of airway infection with Legionella pneumophila (Lpn), the causative agent of Legionnaires' disease, pre-existing Lpn-specific antibodies were shown to afford protection within two days of infection. Here we dissected the early kinetics of Ab-mediated protection against airway Lpn infection and observed two kinetically and mechanistically distinct phases of protection by passively administered antibodies. Within the first hour of infection, Lpn-opsonizing antibodies provided almost 10-fold protection in an antibody Fc-dependent, but FcR-independent manner. Later on, by two days post infection, Lpn-specific Ab-mediated protection strictly involved FcγR, Syk kinase activity in alveolar macrophages and induction of reactive oxygen species (ROS). The findings presented here contribute to the understanding of the mechanisms of Ab-mediated control of Lpn infection in actively or passively immunized individuals.
Collapse
Affiliation(s)
- Stefan S Weber
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| | - Diana Stoycheva
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| | - Falk Nimmerjahn
- Institute of Genetics, University of Erlangen-Nuernberg, Erwin-Rommelstr. 3, Erlangen, Germany
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, Switzerland
| |
Collapse
|
130
|
Therapeutic protein purity and fragmented species characterization by capillary electrophoresis sodium dodecyl sulfate using systematic hybrid cleavage and forced degradation. Anal Bioanal Chem 2019; 411:5617-5629. [DOI: 10.1007/s00216-019-01942-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
131
|
Nielsen TB, Thomsen RP, Mortensen MR, Kjems J, Nielsen PF, Nielsen TE, Kodal ALB, Cló E, Gothelf KV. Peptide‐Directed DNA‐Templated Protein Labelling for The Assembly of a Pseudo‐IgM. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Thorbjørn B. Nielsen
- Research ChemistryNovo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Rasmus P. Thomsen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Denmark
| | - Michael R. Mortensen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO) Denmark
| | - Per Franklin Nielsen
- Analysis and MS Characterisation 2Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Thomas E. Nielsen
- Research ChemistryNovo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | | | - Emiliano Cló
- Research ChemistryNovo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
132
|
Maibom-Thomsen SL, Trier NH, Holm BE, Hansen KB, Rasmussen MI, Chailyan A, Marcatili P, Højrup P, Houen G. Immunoglobulin G structure and rheumatoid factor epitopes. PLoS One 2019; 14:e0217624. [PMID: 31199818 PMCID: PMC6568389 DOI: 10.1371/journal.pone.0217624] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Antibodies are important for immunity and exist in several classes (IgM, IgD, IgA, IgG, IgE). They are composed of symmetric dimeric molecules with two antigen binding regions (Fab) and a constant part (Fc), usually depicted as Y-shaped molecules. Rheumatoid factors found in patients with rheumatoid arthritis are autoantibodies binding to IgG and paradoxically appear to circulate in blood alongside with their antigen (IgG) without reacting with it. Here, it is shown that rheumatoid factors do not react with native IgG in solution, and that their epitopes only become accessible upon certain physico-chemical treatments (e.g. heat treatment at 57 °C), by physical adsorption on a hydrophobic surface or by antigen binding. Moreover, chemical cross-linking in combination with mass spectrometry showed that the native state of IgG is a compact (closed) form and that the Fab parts of IgG shield the Fc region and thereby control access of rheumatoid factors and presumably also some effector functions. It can be inferred that antibody binding to pathogen surfaces induces a conformational change, which exposes the Fc part with its effector sites and rheumatoid factor epitopes. This has strong implications for understanding antibody structure and physiology and necessitates a conceptual reformulation of IgG models.
Collapse
Affiliation(s)
| | - Nicole Hartwig Trier
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| | - Bettina Eide Holm
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| | - Kirsten Beth Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anna Chailyan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Paolo Marcatili
- Department of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
133
|
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins (Basel) 2019; 11:toxins11060332. [PMID: 31212697 PMCID: PMC6628391 DOI: 10.3390/toxins11060332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies.
Collapse
|
134
|
Nielsen TB, Thomsen RP, Mortensen MR, Kjems J, Nielsen PF, Nielsen TE, Kodal ALB, Cló E, Gothelf KV. Peptide-Directed DNA-Templated Protein Labelling for The Assembly of a Pseudo-IgM. Angew Chem Int Ed Engl 2019; 58:9068-9072. [PMID: 30995340 DOI: 10.1002/anie.201903134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/15/2019] [Indexed: 12/30/2022]
Abstract
The development of methods for conjugation of DNA to proteins is of high relevance for the integration of protein function and DNA structures. Here, we demonstrate that protein-binding peptides can direct a DNA-templated reaction, selectively furnishing DNA-protein conjugates with one DNA label. Quantitative conversion of oligonucleotides is achieved at low stoichiometries and the reaction can be performed in complex biological matrixes, such as cell lysates. Further, we have used a star-like pentameric DNA nanostructure to assemble five DNA-Rituximab conjugates, made by our reported method, into a pseudo-IgM antibody structure that was subsequently characterized by negative-stain transmission electron microscopy (nsTEM) analysis.
Collapse
Affiliation(s)
- Thorbjørn B Nielsen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark.,Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Rasmus P Thomsen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Denmark
| | - Michael R Mortensen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, and Interdisciplinary Nanoscience Centre (iNANO), Denmark
| | - Per Franklin Nielsen
- Analysis and MS Characterisation 2, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Thomas E Nielsen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Anne Louise B Kodal
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Emiliano Cló
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
135
|
Naegeli A, Bratanis E, Karlsson C, Shannon O, Kalluru R, Linder A, Malmström J, Collin M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J Exp Med 2019; 216:1615-1629. [PMID: 31092533 PMCID: PMC6605743 DOI: 10.1084/jem.20190293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
EndoS from Streptococcus pyogenes hydrolyzes the functionally important glycan on the Fc portion of IgG during infections in humans. In mice with IgG mediated immunity against the M1 protein on the bacteria, EndoS is a virulence factor. Streptococcus pyogenes (Group A streptococcus; GAS) is a human pathogen causing diseases from uncomplicated tonsillitis to life-threatening invasive infections. GAS secretes EndoS, an endoglycosidase that specifically cleaves the conserved N-glycan on IgG antibodies. In vitro, removal of this glycan impairs IgG effector functions, but its relevance to GAS infection in vivo is unclear. Using targeted mass spectrometry, we characterized the effects of EndoS on host IgG glycosylation during the course of infections in humans. Substantial IgG glycan hydrolysis occurred at the site of infection and systemically in the severe cases. We demonstrated decreased resistance to phagocytic killing of GAS lacking EndoS in vitro and decreased virulence in a mouse model of invasive infection. This is the first described example of specific bacterial IgG glycan hydrolysis during infection and thereby verifies the hypothesis that EndoS modifies antibodies in vivo. This mechanisms of immune evasion could have implications for treatment of severe GAS infections and for future efforts at vaccine development.
Collapse
Affiliation(s)
- Andreas Naegeli
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Bratanis
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Christofer Karlsson
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Raja Kalluru
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
136
|
Bratanis E, Lood R. A Novel Broad-Spectrum Elastase-Like Serine Protease From the Predatory Bacterium Bdellovibrio bacteriovorus Facilitates Elucidation of Site-Specific IgA Glycosylation Pattern. Front Microbiol 2019; 10:971. [PMID: 31130941 PMCID: PMC6510308 DOI: 10.3389/fmicb.2019.00971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
The increased interest in predatory bacteria due to their ability to kill antibiotic resistant bacteria has also highlighted their inherent plethora of hydrolytic enzymes, and their potential as natural sources of novel therapeutic agents and biotechnological tools. Here, we have identified and characterized a novel protease from the predatory bacterium Bdellovibrio bacteriovorus: BspE (Bdellovibrio elastase-like serine protease). Mapping preferential sites of proteolytic activity showed a single proteolytic cleavage site of native plasma IgA (pIgA) in the Fc-tail; as well as in the secretory component (SC) of secretory IgA (SIgA). Proteolysis of other native immunoglobulins and plasma proteins was either absent (IgG1 and 2, IgM, albumin and orosomucoid) or unspecific with multiple cleavage sites (IgG3 and 4, IgE, IgD). BspE displayed a broad activity against most amino acid bonds in shorter peptides and denatured proteins, with a slight preference for hydrolysis C-terminal of Y, V, F, S, L, R, P, E, and K. BspE autoproteolysis results in numerous cleavage products sustaining activity for more than 6 h. The enzymatic activity remained stable at pH 5.0-9.0 but was drastically reduced in the presence of MnCl2 and completely inhibited by ZnCl2. The hydrolysis of pIgA was subsequently utilized for the specific glycan characterization of the released pIgA Fc-tail (Asn459). Besides contributing to the basic knowledge of Bdellovibrio biology and proteases, we propose that BspE could be used as a potential tool to investigate the importance, and biological function of the pIgA Fc-tail. IMPORTANCE Antibodies are well-established as key components of the immune system, and the importance of antibody glycosylation is steadily gaining recognition. Modifications of antibodies by glycosylation creates a vast repertoire of antibody glycovariants with distinctive and diverse functions in the immune system. Most of the available information regarding antibody glycosylation is based on studies with IgG, which have contributed greatly to the advance of therapeutic antibody treatments. However, much is still unknown regarding the importance of glycosylation and the Fc-structure for the remaining antibody classes. Such research has proven to be technically challenging and demonstrates a need for novel tools to facilitate such investigations. Here we have identified and characterized a novel protease from B. bacteriovorus, facilitating the study of plasma IgA by cleaving the Fc-tail, including the Asn459 N-glycan. This further highlights the potential of B. bacteriovorus as a source to identify potential novel biotechnological tools.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
137
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
138
|
Crystal structure of a mammalian Wnt–frizzled complex. Nat Struct Mol Biol 2019; 26:372-379. [DOI: 10.1038/s41594-019-0216-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/27/2019] [Indexed: 11/08/2022]
|
139
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
140
|
Cleavage of anti-PF4/heparin IgG by a bacterial protease and potential benefit in heparin-induced thrombocytopenia. Blood 2019; 133:2427-2435. [PMID: 30917957 DOI: 10.1182/blood.2019000437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is due to immunoglobulin G (IgG) antibodies, which bind platelet factor 4 (PF4) modified by polyanions, such as heparin (H). IgG/PF4/polyanion complexes directly activate platelets via Fc gamma type 2 receptor A (FcγRIIA) receptors. A bacterial protease, IgG-degrading enzyme of Streptococcus pyogenes (IdeS), cleaves the hinge region of heavy-chain IgG, abolishing its ability to bind FcγR, including FcγRIIA. We evaluated whether cleavage of anti-PF4/H IgG by IdeS could suppress the pathogenicity of HIT antibodies. IdeS quickly cleaved purified 5B9, a monoclonal chimeric anti-PF4/H IgG1, which led to the formation of single cleaved 5B9 (sc5B9), without any reduction in binding ability to the PF4/H complex. However, as compared with uncleaved 5B9, the affinity of sc5B9 for platelet FcγRIIA was greatly reduced, and sc5B9 was also unable to induce heparin-dependent platelet activation. In addition, incubating IdeS in whole blood containing 5B9 or HIT plasma samples led to cleavage of anti-PF4/H antibodies, which fully abolished the ability to induce heparin-dependent platelet aggregation and tissue factor messenger RNA synthesis by monocytes. Also, when whole blood was perfused in von Willebrand factor-coated microfluidic channels, platelet aggregation and fibrin formation induced by 5B9 with heparin was strongly reduced after IdeS treatment. Finally, IdeS prevented thrombocytopenia and hypercoagulability induced by 5B9 with heparin in transgenic mice expressing human PF4 and FcγRIIA receptors. In conclusion, cleavage of anti-PF4/H IgG by IdeS abolishes heparin-dependent cellular activation induced by HIT antibodies. IdeS injection could be a potential treatment of patients with severe HIT.
Collapse
|
141
|
Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Russo TA, Balthasar JP. Antibody Dependent Enhancement of Acinetobacter baumannii Infection in a Mouse Pneumonia Model. J Pharmacol Exp Ther 2019; 368:475-489. [PMID: 30606761 DOI: 10.1124/jpet.118.253617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii has become a pathogen of increasing medical importance because of the emergence of multidrug-resistant strains and the high rate of mortality of infected patients. Promising animal study results have been reported recently with active and passive immunization against A. baumannii virulence factors. In the present study, a monoclonal IgG3 antibody, 8E3, was developed with specificity for the K2 capsular polysaccharide of A. baumannii, and its therapeutic potential was assessed. 8E3 enhanced macrophage-mediated bactericidal activity against the A. baumannii clinical strain AB899. However, 8E3 treatment (passive immunization) of AB899-infected mice led to a substantial increase in mortality and to substantial increases in bacterial load in blood, lung, and in splenic samples. In vitro investigations showed a large binding capacity in the supernatant of bacterial cultures, suggesting that shed capsule components act as a binding sink for 8E3. Investigations of 8E3 pharmacokinetics in mice demonstrated that unbound concentrations of the antibody dropped below detection limits within 24 hours after a 200 mg/kg dose. However, total concentrations of antibody declined slowly, with an apparent terminal half-life (t 1/2) of 6.7-8.0 days, suggesting that the vast majority of 8E3 in blood is bound (e.g., with soluble capsule components in blood). We hypothesize that high concentrations of 8E3-capsule immune complexes act to inhibit bacterial clearance in vivo. To the best of our knowledge, this is the first demonstration of antibody-dependent enhancement of A. baumannii infection, and these observations highlight the complexity of antibody-based therapy for A. baumannii infections.
Collapse
Affiliation(s)
- Shun Xin Wang-Lin
- Departments of Pharmaceutical Sciences (S.X.W.-L., J.P.B.), Medicine (R.O., J.M.B., U.M., T.A.R.), Microbiology and Immunology (T.A.R.), and The Witebsky Center for Microbial Pathogenesis (T.A.R.), University at Buffalo, State University of New York, Buffalo, New York; and Veterans Administration Western New York Healthcare System, Buffalo, New York (R.O., J.M.B., U.M., T.A.R.)
| | - Ruth Olson
- Departments of Pharmaceutical Sciences (S.X.W.-L., J.P.B.), Medicine (R.O., J.M.B., U.M., T.A.R.), Microbiology and Immunology (T.A.R.), and The Witebsky Center for Microbial Pathogenesis (T.A.R.), University at Buffalo, State University of New York, Buffalo, New York; and Veterans Administration Western New York Healthcare System, Buffalo, New York (R.O., J.M.B., U.M., T.A.R.)
| | - Janet M Beanan
- Departments of Pharmaceutical Sciences (S.X.W.-L., J.P.B.), Medicine (R.O., J.M.B., U.M., T.A.R.), Microbiology and Immunology (T.A.R.), and The Witebsky Center for Microbial Pathogenesis (T.A.R.), University at Buffalo, State University of New York, Buffalo, New York; and Veterans Administration Western New York Healthcare System, Buffalo, New York (R.O., J.M.B., U.M., T.A.R.)
| | - Ulrike MacDonald
- Departments of Pharmaceutical Sciences (S.X.W.-L., J.P.B.), Medicine (R.O., J.M.B., U.M., T.A.R.), Microbiology and Immunology (T.A.R.), and The Witebsky Center for Microbial Pathogenesis (T.A.R.), University at Buffalo, State University of New York, Buffalo, New York; and Veterans Administration Western New York Healthcare System, Buffalo, New York (R.O., J.M.B., U.M., T.A.R.)
| | - Thomas A Russo
- Departments of Pharmaceutical Sciences (S.X.W.-L., J.P.B.), Medicine (R.O., J.M.B., U.M., T.A.R.), Microbiology and Immunology (T.A.R.), and The Witebsky Center for Microbial Pathogenesis (T.A.R.), University at Buffalo, State University of New York, Buffalo, New York; and Veterans Administration Western New York Healthcare System, Buffalo, New York (R.O., J.M.B., U.M., T.A.R.)
| | - Joseph P Balthasar
- Departments of Pharmaceutical Sciences (S.X.W.-L., J.P.B.), Medicine (R.O., J.M.B., U.M., T.A.R.), Microbiology and Immunology (T.A.R.), and The Witebsky Center for Microbial Pathogenesis (T.A.R.), University at Buffalo, State University of New York, Buffalo, New York; and Veterans Administration Western New York Healthcare System, Buffalo, New York (R.O., J.M.B., U.M., T.A.R.)
| |
Collapse
|
142
|
Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:155-167. [DOI: 10.1016/j.jchromb.2019.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
143
|
Lardinois OM, Deterding LJ, Hess JJ, Poulton CJ, Henderson CD, Jennette JC, Nachman PH, Falk RJ. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 2019; 14:e0213215. [PMID: 30818380 PMCID: PMC6395067 DOI: 10.1371/journal.pone.0213215] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Anti-neutrophil cytoplasmic autoantibodies (ANCA) directed against myeloperoxidase (MPO) and proteinase 3 (PR3) are pathogenic in ANCA-associated vasculitis (AAV). The respective role of IgG Fc and Fab glycosylation in mediating ANCA pathogenicity is incompletely understood. Herein we investigate in detail the changes in Fc and Fab glycosylation in MPO-ANCA and Pr3-ANCA and examine the association of glycosylation aberrancies with disease activity. Methodology Total IgG was isolated from serum or plasma of a cohort of 30 patients with AAV (14 MPO-ANCA; 16 PR3-ANCA), and 19 healthy control subjects. Anti-MPO specific IgG was affinity-purified from plasma of an additional cohort of 18 MPO-ANCA patients undergoing plasmapheresis. We used lectin binding assays, liquid chromatography, and mass spectrometry-based methods to analyze Fc and Fab glycosylation, the degree of sialylation of Fc and Fab fragments and to determine the exact localization of N-glycans on Fc and Fab fragments. Principal findings IgG1 Fc glycosylation of total IgG was significantly reduced in patients with active AAV compared to controls. Clinical remission was associated with complete glycan normalization for PR3-ANCA patients but not for MPO-ANCA patients. Fc-glycosylation of anti-MPO specific IgG was similar to total IgG purified from plasma. A major fraction of anti-MPO specific IgG harbor extensive glycosylation within the variable domain on the Fab portion. Conclusions/Significance Significant differences exist between MPO and PR3-ANCA regarding the changes in amounts and types of glycans on Fc fragment and the association with disease activity. These differences may contribute to significant clinical difference in the disease course observed between the two diseases.
Collapse
Affiliation(s)
- Olivier M. Lardinois
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Leesa J. Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Jacob J. Hess
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline J. Poulton
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Candace D. Henderson
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Charles Jennette
- Department of Pathology and Laboratory of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick H. Nachman
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ronald J. Falk
- UNC Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
144
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
145
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
146
|
Lu G, Holland LA. Profiling the N-Glycan Composition of IgG with Lectins and Capillary Nanogel Electrophoresis. Anal Chem 2018; 91:1375-1383. [PMID: 30525457 PMCID: PMC6335613 DOI: 10.1021/acs.analchem.8b03725] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Glycosylated human
IgG contains fucosylated biantennary N-glycans with
different modifications including N-acetylglucosamine,
which bisects the mannose core. Although
only a limited number of IgG N-glycan structures
are possible, human IgG N-glycans are predominantly
biantennary and fucosylated and contain varying levels of α2–6-linked
sialic acid, galactose, and bisected N-acetylglucosamine.
Monitoring the relative abundance of bisecting N-acetylglucosamine
is relevant to physiological processes. A rapid, inexpensive, and
automated method is used to successfully profile N-linked IgG glycans
and is suitable to distinguish differences in bisection, galactosylation,
and sialylation in N-glycans derived from different
sources of human IgG. The separation is facilitated with self-assembled
nanogels that also contain a single stationary zone of lectin. When
the lectin specificity matches the N-glycan, the
peak disappears from the electropherogram, identifying the N-glycan structure. The nanogel electrophoresis generates
separation efficiencies of 500 000 plates and resolves the
positional isomers of monogalactosylated biantennary N-glycan and the monogalactosylated bisected N-glycan. Aleuria aurantia lectin, Erythrina cristagalli lectin (ECL), Sambucus nigra lectin, and Phaseolus vulgaris Erythroagglutinin (PHA-E) are used to
identify fucose, galactose, α2–6-linked sialic acid,
and bisected N-acetylglucosamine, respectively. Although
PHA-E lectin has a strong binding affinity for bisected N-glycans that also contain a terminal galactose on the α1–6-linked
mannose branch, this lectin has lower affinity for N-glycans containing terminal galactose and for agalactosylated bisected
biantennary N-glycans. The lower affinity to these
motifs is observed in the electropherograms as a change in peak width,
which when used in conjunction with the results from the ECL lectin
authenticates the composition of the agalactosylated bisected biantennary N-glycan. For runs performed at 17 °C, the precision
in migration time and peak area was less than or equal to 0.08 and
4% relative standard deviation, respectively. The method is compatible
with electrokinetic and hydrodynamic injections, with detection limits
of 70 and 300 pM, respectively.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| |
Collapse
|
147
|
Abstract
Autoimmunity is a leading cause of chronic kidney disease and loss of native and transplanted kidneys. Conventional immunosuppressive therapies can be effective but are non-specific, noncurative, and risk serious side effects such as life-threatening infection and cancer. Novel therapies and targeted interventions are urgently needed. In this brief review we explore diverse strategies currently in development and under consideration to interrupt underlying disease mechanisms in immune-mediated renal injury. Because autoantibodies are prominent in diagnosis and pathogenesis in multiple human glomerulopathies, we highlight several promising therapies that interfere with functions of early mediators (IgG and complement) of the effector arm and with an epicenter (the germinal center) for induction of humoral immunity.
Collapse
Affiliation(s)
- Mary Helen Foster
- a Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Medical and Research Services , Durham VA Medical Center , Durham , NC , USA
| | | |
Collapse
|
148
|
Palm F, Sjöholm K, Malmström J, Shannon O. Complement Activation Occurs at the Surface of Platelets Activated by Streptococcal M1 Protein and This Results in Phagocytosis of Platelets. THE JOURNAL OF IMMUNOLOGY 2018; 202:503-513. [PMID: 30541884 DOI: 10.4049/jimmunol.1800897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Platelets circulate the bloodstream and principally maintain hemostasis. Disturbed hemostasis, a dysregulated inflammatory state, and a decreased platelet count are all hallmarks of severe invasive Streptococcus pyogenes infection, sepsis. We have previously demonstrated that the released M1 protein from S. pyogenes activates platelets, and this activation is dependent on the binding of M1 protein, fibrinogen, and M1-specific IgG to platelets in susceptible donors. In this study, we characterize the M1-associated protein interactions in human plasma and investigate the acquisition of proteins to the surface of activated platelets and the consequences for platelet immune function. Using quantitative mass spectrometry, M1 protein was determined to form a protein complex in plasma with statistically significant enrichment of fibrinogen, IgG3, and complement components, especially C1q. Using flow cytometry, these plasma proteins were also confirmed to be acquired to the platelet surface, resulting in complement activation on M1-activated human platelets. Furthermore, we demonstrated an increased phagocytosis of M1-activated platelets by monocytes, which was not observed with other physiological platelet agonists. This reveals a novel mechanism of complement activation during streptococcal sepsis, which contributes to the platelet consumption that occurs in sepsis.
Collapse
Affiliation(s)
- Frida Palm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Kristoffer Sjöholm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
149
|
Dai J, Zhang Y. A Middle-Up Approach with Online Capillary Isoelectric Focusing/Mass Spectrometry for In-Depth Characterization of Cetuximab Charge Heterogeneity. Anal Chem 2018; 90:14527-14534. [DOI: 10.1021/acs.analchem.8b04396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Dai
- Separation and Analysis Technology Team, Bristol-Myers Squibb Research and Development, Post Office
Box 4000, Princeton, New Jersey 08543, United States
| | - Yingru Zhang
- Separation and Analysis Technology Team, Bristol-Myers Squibb Research and Development, Post Office
Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
150
|
Lorant T, Bengtsson M, Eich T, Eriksson B, Winstedt L, Järnum S, Stenberg Y, Robertson A, Mosén K, Björck L, Bäckman L, Larsson E, Wood K, Tufveson G, Kjellman C. Safety, immunogenicity, pharmacokinetics, and efficacy of degradation of anti-HLA antibodies by IdeS (imlifidase) in chronic kidney disease patients. Am J Transplant 2018; 18:2752-2762. [PMID: 29561066 PMCID: PMC6221156 DOI: 10.1111/ajt.14733] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/04/2018] [Accepted: 03/02/2018] [Indexed: 01/25/2023]
Abstract
Safety, immunogenicity, pharmacokinetics, and efficacy of the IgG-degrading enzyme of Streptococcus pyogenes (IdeS [imlifidase]) were assessed in a single-center, open-label ascending-dose study in highly sensitized patients with chronic kidney disease. Eight patients with cytotoxic PRAs (median cytotoxic PRAs of 64%) at enrollment received 1 or 2 intravenous infusions of IdeS on consecutive days (0.12 mg/kg body weight ×2 [n = 3]; 0.25 mg/kg ×1 [n = 3], or 0.25 mg/kg ×2 [n = 2]). IgG degradation was observed in all subjects after IdeS treatment, with <1% plasma IgG remaining within 48 hours and remaining low up to 7 days. Mean fluorescence intensity values of HLA class I and II reactivity were substantially reduced in all patients, and C1q binding to anti-HLA was abolished. IdeS also cleaved the IgG-type B cell receptor on CD19+ memory B cells. Anti-IdeS antibodies developed 1 week after treatment, peaking at 2 weeks. A few hours after the second IdeS infusion, 1 patient received a deceased donor kidney offer. At enrollment, the patient had a positive serum crossmatch (HLA-B7), detected by complement-dependent cytotoxicity, flow cytometry, and multiplex bead assays. After IdeS infusion (0.12 mg/kg ×2) and when the HLA-incompatible donor (HLA-B7+ ) kidney was offered, the HLA antibody profile was negative. The kidney was transplanted successfully.
Collapse
Affiliation(s)
- Tomas Lorant
- Department of Surgical SciencesSection of Transplantation SurgeryUppsala UniversityUppsalaSweden
| | - Mats Bengtsson
- Department of Immunology, Genetics and PathologySection of Clinical ImmunologyUppsala UniversityUppsalaSweden
| | - Torsten Eich
- Department of Immunology, Genetics and PathologySection of Clinical ImmunologyUppsala UniversityUppsalaSweden
| | - Britt‐Marie Eriksson
- Department of Medical SciencesSection of Infectious DiseasesUppsala UniversityUppsalaSweden
| | | | | | | | | | | | - Lars Björck
- Department of Clinical SciencesDivision of Infection MedicineLund UniversityLundSweden
| | - Lars Bäckman
- Department of Surgical SciencesSection of Transplantation SurgeryUppsala UniversityUppsalaSweden
| | - Erik Larsson
- Department of Immunology, Genetics and PathologySection of Molecular and Morphological PathologyUppsala UniversityUppsalaSweden
| | - Kathryn Wood
- Nuffield Department of Surgical SciencesOxford UniversityOxfordUK
| | - Gunnar Tufveson
- Department of Surgical SciencesSection of Transplantation SurgeryUppsala UniversityUppsalaSweden
| | | |
Collapse
|