101
|
Haura EB, Turkson J, Jove R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. ACTA ACUST UNITED AC 2005; 2:315-24. [PMID: 16264989 DOI: 10.1038/ncponc0195] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/04/2005] [Indexed: 02/07/2023]
Abstract
Members of the signal transducers and activators of transcription (STAT) pathway, which were originally identified as key components linking cytokine signals to transcriptional events in cells, have recently been demonstrated to have a major role in cancer. They are cytoplasmic proteins that form functional dimers with each other when activated by tyrosine phosphorylation. Activated STAT proteins translocate to the nucleus to regulate expression of genes by binding to specific elements within gene promoters. Constitutive activation of the STAT family members Stat3 and Stat5, and/or loss of Stat1 signaling, is found in a large group of diverse tumors. Increasing evidence demonstrates that STAT proteins can regulate many pathways important in oncogenesis including cell-cycle progression, apoptosis, tumor angiogenesis, tumor-cell invasion and metastasis, and tumor-cell evasion of the immune system. Based on these findings, a growing effort is underway to target STAT proteins directly and indirectly for cancer therapy. This review will highlight STAT signaling pathways, STAT target genes involved in cancer, evidence for STAT activation in human cancers, and therapeutic strategies to target STAT molecules for anticancer therapy.
Collapse
Affiliation(s)
- Eric B Haura
- Thoracic Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| | | | | |
Collapse
|
102
|
Howe CL. Modeling the signaling endosome hypothesis: why a drive to the nucleus is better than a (random) walk. Theor Biol Med Model 2005; 2:43. [PMID: 16236165 PMCID: PMC1276819 DOI: 10.1186/1742-4682-2-43] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/19/2005] [Indexed: 01/01/2023] Open
Abstract
Background Information transfer from the plasma membrane to the nucleus is a universal cell biological property. Such information is generally encoded in the form of post-translationally modified protein messengers. Textbook signaling models typically depend upon the diffusion of molecular signals from the site of initiation at the plasma membrane to the site of effector function within the nucleus. However, such models fail to consider several critical constraints placed upon diffusion by the cellular milieu, including the likelihood of signal termination by dephosphorylation. In contrast, signaling associated with retrogradely transported membrane-bounded organelles such as endosomes provides a dephosphorylation-resistant mechanism for the vectorial transmission of molecular signals. We explore the relative efficiencies of signal diffusion versus retrograde transport of signaling endosomes. Results Using large-scale Monte Carlo simulations of diffusing STAT-3 molecules coupled with probabilistic modeling of dephosphorylation kinetics we found that predicted theoretical measures of STAT-3 diffusion likely overestimate the effective range of this signal. Compared to the inherently nucleus-directed movement of retrogradely transported signaling endosomes, diffusion of STAT-3 becomes less efficient at information transfer in spatial domains greater than 200 nanometers from the plasma membrane. Conclusion Our model suggests that cells might utilize two distinct information transmission paradigms: 1) fast local signaling via diffusion over spatial domains on the order of less than 200 nanometers; 2) long-distance signaling via information packets associated with the cytoskeletal transport apparatus. Our model supports previous observations suggesting that the signaling endosome hypothesis is a subset of a more general hypothesis that the most efficient mechanism for intracellular signaling-at-a-distance involves the association of signaling molecules with molecular motors that move along the cytoskeleton. Importantly, however, cytoskeletal association of membrane-bounded complexes containing ligand-occupied transmembrane receptors and downstream effector molecules provides the ability to regenerate signals at any point along the transmission path. We conclude that signaling endosomes provide unique information transmission properties relevant to all cell architectures, and we propose that the majority of relevant information transmitted from the plasma membrane to the nucleus will be found in association with organelles of endocytic origin.
Collapse
Affiliation(s)
- Charles L Howe
- Departments of Neuroscience and Neurology, Mayo Clinic College of Medicine, Guggenheim 442-C, Rochester, MN 55905, USA.
| |
Collapse
|
103
|
Chua JJE, Bhuvanakantham R, Chow VTK, Ng ML. Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3beta protein. Virus Res 2005; 112:85-94. [PMID: 15878791 DOI: 10.1016/j.virusres.2005.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 11/29/2022]
Abstract
A combination of yeast two-hybrid library screening, co-immunoprecipitation and immunofluorescence microscopy demonstrated that dengue-2 virus non-structural 1 (NS1) protein can interact with an N-terminally truncated form of human STAT3beta (DeltaN40-STAT3beta) protein. The NS1 protein interacted with the activated STAT3beta protein in vesicle-like structures in the cell cytoplasm. In addition, transfection of dendritic cells with plasmid expressing NS1 protein also resulted in significant induction of tumor necrosis factor-alpha (TNFalpha) and interleukin-6 (IL-6). Since the STAT3beta protein is an acute-phase response factor, its interaction with NS1 protein may influence the pathological changes observed in dengue fever, dengue hemorrhagic fever and dengue shock syndrome.
Collapse
Affiliation(s)
- John Jia-En Chua
- Programme in Infectious Diseases and Flavivirology Laboratory, Department of Microbiology, Faculty of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
104
|
Abstract
Activation of the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) in cancer cells facilitates immune escape. A recent study now shows how small-molecule inhibitors of IDO can be used to leverage the efficacy of traditional chemotherapeutic drugs that are used to treat cancer in the clinic. By promoting antitumor immune responses in combination with cytotoxic chemotherapy, IDO inhibitors may offer a drug-based strategy to more effectively attack systemic cancer.
Collapse
Affiliation(s)
- Alexander J Muller
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA.
| | | |
Collapse
|
105
|
Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM. WW Domain–Containing Proteins, WWOX and YAP, Compete for Interaction with ErbB-4 and Modulate Its Transcriptional Function. Cancer Res 2005; 65:6764-72. [PMID: 16061658 DOI: 10.1158/0008-5472.can-05-1150] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The WW domain-containing oxidoreductase, WWOX, is a tumor suppressor that is deleted or altered in several cancer types. We recently showed that WWOX interacts with p73 and AP-2gamma and suppresses their transcriptional activity. Yes-associated protein (YAP), also containing WW domains, was shown to associate with p73 and enhance its transcriptional activity. In addition, YAP interacts with ErbB-4 receptor tyrosine kinase and acts as transcriptional coactivator of the COOH-terminal fragment (CTF) of ErbB-4. Stimulation of ErbB-4-expressing cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) results in the proteolytic cleavage of its cytoplasmic domain and translocation of this domain to the nucleus. Here we report that WWOX physically associates with the full-length ErbB-4 via its first WW domain. Coexpression of WWOX and ErbB-4 in HeLa cells followed by treatment with TPA results in the retention of ErbB-4 in the cytoplasm. Moreover, in MCF-7 breast carcinoma cells, expressing high levels of endogenous WWOX, endogenous ErbB-4 is also retained in the cytoplasm. In addition, our results show that interaction of WWOX and ErbB-4 suppresses transcriptional coactivation of CTF by YAP in a dose-dependent manner. A mutant form of WWOX lacking interaction with ErbB-4 has no effect on this coactivation of ErbB-4. Furthermore, WWOX is able to inhibit coactivation of p73 by YAP. In summary, our data indicate that WWOX antagonizes the function of YAP by competing for interaction with ErbB-4 and other targets and thus affect its transcriptional activity.
Collapse
Affiliation(s)
- Rami I Aqeilan
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Silver DL, Geisbrecht ER, Montell DJ. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 2005; 132:3483-92. [PMID: 16000386 DOI: 10.1242/dev.01910] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The evolutionarily conserved JAK/STAT signaling pathway is essential for the proliferation, survival and differentiation of many cells including cancer cells. Recent studies have implicated this transcriptional pathway in the process of cell migration in humans, mice, Drosophila and Dictyostelium. In the Drosophila ovary, JAK/STAT signaling is necessary and sufficient for the specification and migration of a group of cells called the border cells; however, it is not clear to what extent the requirement for cell fate is distinct from that for cell migration. We found that STAT protein is enriched in the migrating border cells throughout their migration and is an indicator of cells with highest JAK/STAT activity. In addition, stat(ts) mutants exhibited border cell migration defects after just 30 minutes at the non-permissive temperature, prior to any detectable change in the expression of cell fate markers. At later times, cell fate changes became evident, indicating that border cell fate is labile. JAK/STAT signaling was also required for organization of the border cell cluster. Finally, we show that both the accumulation of STAT protein and nuclear accumulation are positively regulated by JAK/STAT activity. The activity of the pathway is negatively regulated by overexpression of a SOCS protein and by blocking endocytosis. Together, our findings suggest that the requirement for STAT in border cells extends beyond the initial specification and delamination of cells from the epithelium.
Collapse
Affiliation(s)
- Debra L Silver
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 212052, USA
| | | | | |
Collapse
|
107
|
Yang XL, Huang YZ, Xiong WC, Mei L. Neuregulin-induced expression of the acetylcholine receptor requires endocytosis of ErbB receptors. Mol Cell Neurosci 2005; 28:335-46. [PMID: 15691714 DOI: 10.1016/j.mcn.2004.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 09/27/2004] [Accepted: 10/02/2004] [Indexed: 11/24/2022] Open
Abstract
Neuregulin-induced expression of the acetylcholine receptor (AChR) contributes to high concentration of the receptor at the neuromuscular junction (NMJ). Neuregulin-1 activates ErbB tyrosine kinases and subsequently intracellular kinases including Erk that is required for induced AChR expression. Recent studies demonstrate that ligand-induced internalization may regulate signaling of various receptor tyrosine kinases. However, the role of induced ErbB endocytosis in regulating AChR expression was unclear. Here we provide evidence that ErbB tyrosine kinases became rapidly internalized in response to neuregulin. The internalization required the kinase activity of ErbB proteins and involved a clathrin-dependent endocytic pathway. Moreover, neuregulin-induced Erk activation and AChR expression were attenuated when ErbB endocytosis was blocked. These results indicate that ErbB proteins undergo endocytosis in response to neuregulin, and this process is required for neuregulin signaling and induced AChR expression.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Department of Neurobiology, University of Alabama at Birmingham, Civitan International Research Center, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
108
|
Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, Bartholomeusz G, Shih JY, Hung MC. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7:575-89. [PMID: 15950906 DOI: 10.1016/j.ccr.2005.05.007] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/08/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Epidermal growth factor receptor (EGFR) exists in the nucleus of highly proliferative cells where it functions as a transcription factor. Although EGFR has transactivational activity, it lacks a DNA binding domain and, therefore, may require a DNA binding transcription cofactor for its transcriptional function. Here, we report that EGFR physically interacts with signal transducers and activators of transcription 3 (STAT3) in the nucleus, leading to transcriptional activation of inducible nitric oxide synthase (iNOS). In breast carcinomas, nuclear EGFR positively correlates with iNOS. This study describes a mode of transcriptional control involving cooperated efforts of STAT3 and nuclear EGFR. Our work suggests that the deregulated iNOS/NO pathway may partly contribute to the malignant biology of tumor cells with high levels of nuclear EGFR and STAT3.
Collapse
|
109
|
Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005; 19:513-23. [PMID: 15703780 DOI: 10.1038/sj.leu.2403667] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that chronic lymphocytic leukemia (CLL) B cells secrete vascular endothelial growth factor (VEGF) in vitro, have constitutively active VEGF receptors R1 and R2, and respond to exogenous VEGF by specifically upregulating Mcl-1 and XIAP in association with decreased cell death. We found that epigallocatechin (EGCG) decreases VEGF receptor phosphorylation and induces apoptosis in CLL B cells. The mechanism(s) by which VEGF receptor activation increases Mcl-1 and XIAP and promotes survival remains unknown. To further define the signaling pathway mediating VEGF induction of antiapoptotic proteins in CLL B-cells, we investigated downstream effects of VEGF-VEGF receptor binding on the STAT signaling pathway. We find that CLL B cells abundantly express cytoplasmic serine phosphorylated (p)-STAT-1 and p-STAT-3, VEGF-R1/2 are physically associated with p-STAT-1 and p-STAT-3, and p-STAT-3 (but not p-STAT-1) is found in the CLL nucleus. VEGF receptor ligation selectively induces activation and perinuclear translocation of STAT 3 through receptor-mediated endocytosis. The inhibition of VEGF receptor activation with either tyrosine kinase inhibitors or VEGF neutralizing antibodies inhibit VEGF receptor phosphorylation, decrease p-STAT-3 (serine 727), Mcl-1, and induces cell death in CLL B cells. Thus, a VEGF-VEGF receptor pathway in CLL B cells can be linked to activation of STAT proteins that are able to enhance their apoptotic resistance.
Collapse
Affiliation(s)
- Y K Lee
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
110
|
Runyan CE, Schnaper HW, Poncelet AC. The Role of Internalization in Transforming Growth Factor β1-induced Smad2 Association with Smad Anchor for Receptor Activation (SARA) and Smad2-dependent Signaling in Human Mesangial Cells. J Biol Chem 2005; 280:8300-8. [PMID: 15613484 DOI: 10.1074/jbc.m407939200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent data investigating the role of the Smad anchor for receptor activation (SARA) in TGF-beta signaling have suggested that it has a crucial function in both aiding the recruitment of Smad to the TGF-beta receptor, and ensuring appropriate subcellular localization of the activated receptor-bound complex. The FYVE domain in SARA directs its localization to early endosomal compartments where it can interact with both the TGF-beta receptors and Smads. However, the necessity of endocytosis in the TGF-beta response remains controversial. We sought to examine the role of internalization in TGF-beta/Smad signaling in human kidney mesangial cells. Using co-immunoprecipitation studies, we show that endogenous Smad2 interacts with SARA after TGF-beta1 stimulation. Inhibition of clathrin-mediated internalization only slightly affects TGF-beta1-stimulated association between SARA and Smad2, Smad2 phosphorylation, or Smad2 interaction with Smad4. However, endocytosis inhibition decreases TGF-beta1-induced Smad2 nuclear translocation and thus abrogates Smad2-dependent transcriptional responses. The TGF-beta1-stimulated association between SARA and Smad2 peaks at 30 min followed by separation of the complex components. However, under conditions of inhibited endocytosis, Smad2 remains bound to SARA for at least 6 h without a significant decline in associated levels. This lack of complex dissociation correlates with a lack of Smad2 nuclear accumulation and reduction of Smad2-dependent ARE-Luc reporter activity. Our data therefore suggest that endocytosis plays a critical role in TGF-beta signaling in mesangial cells, and that internalization enhances the dissociation of Smad2 from the TGF-beta receptor-SARA complex, allowing Smad2 to accumulate in the nucleus and modulate target gene transcription.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
111
|
Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 2005; 11:312-9. [PMID: 15711557 DOI: 10.1038/nm1196] [Citation(s) in RCA: 850] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/05/2005] [Indexed: 02/06/2023]
Abstract
Immune escape is a crucial feature of cancer progression about which little is known. Elevation of the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) in tumor cells can facilitate immune escape. Not known is how IDO becomes elevated or whether IDO inhibitors will be useful for cancer treatment. Here we show that IDO is under genetic control of Bin1, which is attenuated in many human malignancies. Mouse knockout studies indicate that Bin1 loss elevates the STAT1- and NF-kappaB-dependent expression of IDO, driving escape of oncogenically transformed cells from T cell-dependent antitumor immunity. In MMTV-Neu mice, an established breast cancer model, we show that small-molecule inhibitors of IDO cooperate with cytotoxic agents to elicit regression of established tumors refractory to single-agent therapy. Our findings suggest that Bin1 loss promotes immune escape in cancer by deregulating IDO and that IDO inhibitors may improve responses to cancer chemotherapy.
Collapse
Affiliation(s)
- Alexander J Muller
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | |
Collapse
|
112
|
Gururaj A, Kumar R. Polypeptide growth factors and their receptors. Cancer Treat Res 2005; 126:1-14. [PMID: 16209060 DOI: 10.1007/0-387-24361-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Anupama Gururaj
- The University of Texas MD Anderson Cancer Center, Molecular and Cellular Oncology, Houston, TX, USA
| | | |
Collapse
|
113
|
Li L, Shaw PE. A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochem Biophys Res Commun 2004; 322:1005-11. [PMID: 15336564 DOI: 10.1016/j.bbrc.2004.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Indexed: 01/02/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins are activated by cytokines and growth factors to play distinct roles in immune responses and developmental processes. STATs were thought to exist as latent, cytoplasmic monomers and activation to require dimer formation was mediated exclusively by reciprocal phospho-tyrosine/SH2-domain interactions, but recent evidence of cytoplasmic STAT complexes, including dimers, and unphosphorylated STATs in the nucleus has challenged these notions. STAT complexes detected by conventional SDS-PAGE, including a STAT3 dimer, have been reported. We show that such complexes can form during cell lysis and be disrupted with DTT, suggesting inter-chain disulphide bridging. STAT3 also forms a related complex in cells upon oxidative stress. We map the interaction to the amino-terminal domain of STAT3 and use mass spectrometry to implicate cysteine 259 as the reactive residue. The redox sensitivity of STAT3 may be significant, given its activation in cells in response to reactive oxygen species.
Collapse
Affiliation(s)
- Li Li
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | |
Collapse
|
114
|
Vuong BQ, Arenzana TL, Showalter BM, Losman J, Chen XP, Mostecki J, Banks AS, Limnander A, Fernandez N, Rothman PB. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome. Mol Cell Biol 2004; 24:9092-101. [PMID: 15456882 PMCID: PMC517868 DOI: 10.1128/mcb.24.20.9092-9101.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 02/13/2004] [Accepted: 06/15/2004] [Indexed: 01/09/2023] Open
Abstract
The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.
Collapse
Affiliation(s)
- Bao Q Vuong
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, USA [corrected]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Li L, Hooi D, Chhabra SR, Pritchard D, Shaw PE. Bacterial N-acylhomoserine lactone-induced apoptosis in breast carcinoma cells correlated with down-modulation of STAT3. Oncogene 2004; 23:4894-902. [PMID: 15064716 DOI: 10.1038/sj.onc.1207612] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell growth is promoted by mitogens and survival factors, which activate intracellular signalling pathways to control cell cycle progression and cellular integrity. Proliferation signals are transmitted through Ras and Rho family small G-proteins coupled to mitogen-activated protein kinase (MAPK) cascades, while survival signals are propagated by lipid-dependent kinases such as phosphatidylinositide 3-kinases (PI3Ks) and protein kinase B (Akt/PKB). Recently, signal transducer and activator of transcription (STAT) proteins were identified as positive regulators of proliferation in a variety of cell types. Persistent activation of these pathways is associated with tumour cell growth, whereas their inhibition can halt proliferation and precipitate apoptotic cell death. The human pathogen Pseudomonas aeruginosa uses quorum-sensing signal molecules (QSSMs) to regulate virulence gene expression. QSSMs also suppress host immune responses although the mechanism of suppression is unknown. Here, we demonstrate that the QSSM N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) from P. aeruginosa blocks proliferation and induces apoptosis in human BC cell lines. Analyses of signalling events reveal that OdDHL has little or no effect on MAPK cascades, partially inhibits the Akt/PKB pathway and ablates STAT3 activity. Pharmacological inhibition of each pathway independently indicates that STAT3 activity is critical for BC cell proliferation and survival, while a constitutively active STAT3 confers resistance to OdDHL. These results support the notion of OdDHL as a bioactive molecule in eukaryotic systems and a paradigm for a novel class of antiproliferative compounds.
Collapse
Affiliation(s)
- Li Li
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
116
|
Benabdillah R, Mota LJ, Lützelschwab S, Demoinet E, Cornelis GR. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb Pathog 2004; 36:247-61. [PMID: 15043860 DOI: 10.1016/j.micpath.2003.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 12/29/2003] [Accepted: 12/30/2003] [Indexed: 12/15/2022]
Abstract
YopM is a type III secretion effector from Yersinia which contributes to pathogenicity but whose action still remains unclear. It is an acidic, leucine-rich repeats (LRR) containing protein which migrates to the nucleus of target cells in spite of the fact that it does not contain any classical nuclear localization signal (NLS). Using a yeast approach, we observed that the three first LRRs (LRR1-3) and the 32 C-terminal residues of YopM (YopMC-ter) act as NLSs in yeast. Furthermore, by transfection of HEK293T cells, we observed that YopMC-ter could direct large recombinant EGFP-LexA-AD proteins into the nucleus of mammalian cells confirming that it contains a NLS. Critical residues for nuclear targeting were identified by site-directed mutagenesis in YopMC-ter. In addition, we show that YopMC-ter NLS is crucial for the nuclear targeting of an EGFP-YopM fusion protein.
Collapse
Affiliation(s)
- Rachid Benabdillah
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology and Université catholique de Louvain, B1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
117
|
Sarcar B, Ghosh AK, Steele R, Ray R, Ray RB. Hepatitis C virus NS5A mediated STAT3 activation requires co-operation of Jak1 kinase. Virology 2004; 322:51-60. [PMID: 15063116 DOI: 10.1016/j.virol.2004.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Revised: 12/09/2003] [Accepted: 01/05/2004] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) is a major etiologic agent for chronic hepatitis worldwide and often leads to cirrhosis and hepatocellular carcinoma. However, the mechanism for development of chronic hepatitis or hepatocarcinogenesis by HCV remains unclear. Signal transducers and activators of transcription (STATs) family proteins function as the downstream effectors of cytokine signaling and play a critical role in cell growth regulation. In many cancers including liver, STAT3 is often constitutively activated, although the mechanism of persistent activation of STAT3 is unknown. The nonstructural protein 5A (NS5A) encoded from the HCV genome has shown cell growth regulatory properties. In this study, we have observed that HCV NS5A activates STAT3 phosphorylation, which in turn translocates into the nucleus. In vivo activation of STAT3 was also observed in the liver of transgenic mice expressing HCV NS5A. Introduction of NS5A in hepatoma cells modulated STAT3 downstream molecules Bcl-xL and p21 expression. To determine if STAT3 activation by NS5A could induce STAT3 mediated gene expression, a luciferase reporter construct based on a synthetic promoter was used to transfect hepatoma cells. Activation of endogenous cellular STAT3 by HCV NS5A induced luciferase gene expression through STAT3 specific binding elements. Our subsequent studies suggested that NS5A forms a complex with Jak1 and recruits STAT3 for activation. Taken together, our results suggested that NS5A activates STAT3 through co-operation of Jak1 kinase and activated STAT3 may contribute to HCV-mediated pathogenesis.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
118
|
Quadros MRD, Peruzzi F, Kari C, Rodeck U. Complex Regulation of Signal Transducers and Activators of Transcription 3 Activation in Normal and Malignant Keratinocytes. Cancer Res 2004; 64:3934-9. [PMID: 15173005 DOI: 10.1158/0008-5472.can-04-0214] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous work implicated activation of the signal transducer and activator of transcription (STAT)3 downstream of the epidermal growth factor receptor (EGFR) in the malignant phenotype of squamous carcinoma cells (SCC). Here, we show that EGFR-dependent STAT3 activation is restricted to malignant keratinocytes. Specifically, constitutive and epidermal growth factor-induced phosphorylation of STAT3 on Y705 was observed only in SCC but not in either immortalized (HaCaT) or normal keratinocyte strains. Furthermore, STAT3 activation as determined by DNA binding assays was restricted to SCC and dependent on EGFR activation. Forced expression of EGFR in immortalized keratinocytes (HaCaT cells) was associated with enhanced EGFR activation but not STAT3-Y705 phosphorylation. EGFR-dependent activation of mitogen-activated protein kinase (MAPK) kinase 1 negatively regulated STAT3-Y705 phosphorylation in normal and malignant keratinocytes. Together, these results underscore that EGFR activation is required but not sufficient for STAT3 activation to occur in malignant keratinocytes. They also highlight complex regulation of STAT3 phosphorylation through EGFR activation including negative regulation via the MAPK kinase/MAPK signaling pathway.
Collapse
Affiliation(s)
- Marlene R D Quadros
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
119
|
Kolesnikova L, Bamberg S, Berghöfer B, Becker S. The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 2004; 78:2382-93. [PMID: 14963134 PMCID: PMC369247 DOI: 10.1128/jvi.78.5.2382-2393.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP40, the matrix protein of Marburg virus, is a peripheral membrane protein that has been shown to associate with membranes of multivesicular bodies (MVBs) (L. Kolesnikova, H. Bugany, H.-D. Klenk, and S. Becker, J. Virol. 76:1825-1838, 2002). The present study revealed that VP40 is bound to cellular membranes rapidly after synthesis. Time course studies were performed to trace the distribution of VP40 during the course of expression. First, VP40 was homogenously distributed throughout the cytoplasm, although the majority of protein (70%) was already membrane associated. Next, VP40 accumulated in MVBs and in tubular protrusions emerging from MVBs. Finally, VP40 appeared in a patch-like pattern beneath the plasma membrane. These morphological results were supported by iodixanol density gradient analyses. The majority of VP40-positive membranes were first detected comigrating with small vesicles. VP40 was then shifted to fractions containing endosomal marker proteins, and later, to fractions containing plasma membrane marker proteins. Blocking of protein synthesis by use of cycloheximide at the time when VP40 was mainly associated with the small vesicles did not prevent the redistribution of VP40 to the late endosomes and further to the plasma membrane. The inhibition of intracellular vesicular trafficking by monensin significantly reduced the appearance of VP40 at the plasma membrane. In conclusion, we suggest that the transport of the Marburg virus matrix protein VP40 involves its accumulation in MVBs followed by the redistribution of VP40-enriched membrane clusters to the plasma membrane.
Collapse
Affiliation(s)
- Larissa Kolesnikova
- Institut für Virologie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
120
|
|
121
|
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
|
122
|
Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U. DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 2003; 17:1992-2005. [PMID: 12923054 PMCID: PMC196254 DOI: 10.1101/gad.268003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokine-dependent gene transcription greatly depends on the tyrosine phosphorylation ("activation") of Stat proteins at the cell membrane. This rapidly leads to their accumulation in the nucleus by an unknown mechanism. We performed microinjections of recombinant Stat1 protein to show that nuclear accumulation of phosphorylated Stat1 can occur without cytokine stimulation of cells. Microinjection of Stat1 antibody and treatment of cells with kinase or phosphatase inhibitors revealed that nuclear accumulation is a highly dynamic process sustained by Stat1 nucleocytoplasmic cycling and continuous kinase activity. By characterizing nuclear accumulation mutants, it is demonstrated that nuclear import and nuclear retention are two separate steps leading up to nuclear accumulation, with nonspecific DNA binding of activated Stat1 being sufficient for nuclear retention. Critical for nuclear buildup of Stat1 and the subsequent nuclear export is the point of time of tyrosine dephosphorylation, because our data indicate that activated Stat1 is incapable of leaving the nucleus and requires dephosphorylation to do so. It is demonstrated that the inactivation of Stat1 is controlled by its exchange reaction with DNA, whereby DNA binding protects Stat1 from dephosphorylation in a sequence-specific manner. Thus, during nuclear accumulation, a surprisingly simple mechanism integrates central aspects of cytokine-dependent gene regulation, for example, receptor monitoring, promoter occupancy, and transcription factor inactivation.
Collapse
Affiliation(s)
- Thomas Meyer
- Abteilung Zelluläre Signalverarbeitung, Freie Universität Berlin, Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
123
|
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374:1-20. [PMID: 12773095 PMCID: PMC1223585 DOI: 10.1042/bj20030407] [Citation(s) in RCA: 2390] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 04/30/2003] [Accepted: 05/29/2003] [Indexed: 12/11/2022]
Abstract
The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed.
Collapse
Affiliation(s)
- Peter C Heinrich
- Institut für Biochemie, RWTH Aachen, Universitätsklinikum, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
124
|
McBride KM, Reich NC. The ins and outs of STAT1 nuclear transport. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE13. [PMID: 12915721 DOI: 10.1126/stke.2003.195.re13] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is an inherent elegance in being in the right place at the right time. The STAT1 transcription factor possesses regulatory signals that ensure its distribution to the right cellular location at the right time. Latent STAT1 resides primarily in the cytoplasm, and there it responds to hormone signaling through tyrosine phosphorylation by Janus kinases or growth factor receptors. After phosphorylation, STAT1 dimerizes, and this conformational change reveals a nuclear import signal that is recognized by a specific nuclear import carrier. In the nucleus, the STAT1 dimer dissociates from the import carrier and binds to specific DNA target sites in the promoters of regulated genes. STAT1 is subsequently dephosphorylated in the nucleus by a constitutively active tyrosine phosphatase, leading to its dissociation from DNA. A nuclear export signal of STAT1 appears to be masked when dimers are bound to DNA, but it becomes accessible to the CRM1 export carrier after dissociation from DNA. CRM1 binds STAT1 and transports the transcription factor back to the cytoplasm. Studies show that the regulatory trafficking signals that guide the nuclear import and export of STAT1 reside within its DNA binding domain. The location of these signals indicates that their function has coevolved with the ability of STAT1 to bind DNA and regulate gene expression. The nuclear import and subsequent recycling of STAT1 to the cytoplasm are integral to its function as a signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Kevin M McBride
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | |
Collapse
|
125
|
|
126
|
Melen K, Fagerlund R, Franke J, Kohler M, Kinnunen L, Julkunen I. Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J Biol Chem 2003; 278:28193-200. [PMID: 12740372 DOI: 10.1074/jbc.m303571200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins actively transported into the nucleus via the classical nuclear import pathway contain nuclear localization signals (NLSs), which are recognized by the family of importin alpha molecules. Importin alpha contains 10 armadillo (arm) repeats, of which the N-terminal arm repeats 2-4 have been considered as the "major" NLS binding site. Interferon-activated, dimerized signal transducers and activators of transcription (STAT1 and STAT2) directly bind to importin alpha5 via a dimeric nonclassical NLS. Here we show by site-directed mutagenesis that the very C-terminal arm repeats 8 and 9 of importin alpha5 form a unique binding site for STAT1 homodimers and STAT1-STAT2 heterodimers. Influenza A virus nucleoprotein also contains a nonclassical NLS that is recognized by the C-terminal NLS binding site of importin alpha5, comprising arm repeats 7-9. Binding of influenza A virus nucleoprotein to importin alpha3 also occurs via the C-terminal arm repeats. Simian virus 40 large T antigen instead binds to the major N-terminal arm repeats of importin alpha3, indicating that one importin alpha molecule is able to use either its N- or C-terminal arm repeats for binding various NLS containing proteins.
Collapse
Affiliation(s)
- Krister Melen
- Laboratory of Infectious Disease Immunology, Department of Microbiology, National Public Health Institute, FIN-00300 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling is essential but not sufficient for full responses to the interferons (IFNs), most cytokines and some growth factors. The IFN-gamma and interleukin-6 (IL-6) response pathways have been used as model systems to investigate both the signals involved and their organisation. Activated STAT1 diffuses freely in the cytoplasmic and nuclear compartments of the cell providing a 'random walk' element in the IFN-gamma response. Completely foreign chimeric receptors and, remarkably, in the absence of STAT3, the endogenous IL-6 receptor can efficiently mediate an IFN-gamma-like response. Accordingly all of the signals required for an IFN-gamma response can be generated through physiological levels of a foreign ligand. JAK/STAT signalling, therefore, appears 'soft-wired', modular and highly flexible with substantial overlap between different response pathways. The data are consistent with a generic or 'core' set of signals from JAK/receptor complexes with 'add-on' modulation through specific receptor motifs. The cellular background likely profoundly affects the nature of the response.
Collapse
Affiliation(s)
- Ian M Kerr
- Cancer Research UK London Research Institute, Lincoln's Inn Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | | | |
Collapse
|
128
|
Steinman RA, Wentzel A, Lu Y, Stehle C, Grandis JR. Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by cdk2. Oncogene 2003; 22:3608-15. [PMID: 12789269 DOI: 10.1038/sj.onc.1206523] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The signal transducing protein Stat3 activates gene transcription in cells in response to multiple cytokines. Constitutive activation of Stat3 has been observed in solid tumors including head and neck squamous cell carcinoma. Stat3 activation in cancer has been associated with autocrine stimulatory loops and is believed to convey a growth advantage to cells. We now demonstrate ligand-independent activation of Stat3 by high cell density in multiple cancer cell lines. Activation of Stat3 is associated with antiproliferative rather than proliferative conditions. Interference with cdk2 activity upregulates Stat3 phosphorylation and Stat3-directed DNA-binding activity. Our data supports a model in which Stat3 activity is partially suppressed by cdk2 in growing cells and derepressed upon cell confluence.
Collapse
Affiliation(s)
- Richard A Steinman
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
129
|
Abstract
Recent data have renewed interest in the possible nuclear localization of receptor tyrosine kinases, as well as their ligands. In one case, that of ErbB-4, the receptor is processed by two membrane-localized proteases to produce a soluble cytoplasmic domain fragment that includes the tyrosine kinase domain. This fragment, generated by a metalloprotease-dependent ectodomain cleavage followed by gamma-secretase cleavage within the transmembrane domain, is also found in the nucleus. Three other receptor tyrosine kinases have been detected in the nucleus in the absence of proteolytic processing. In some instances, nuclear localization of receptor tyrosine kinases is growth-factor-dependent and tentative evidence suggests a role in transcription.
Collapse
Affiliation(s)
- Graham Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
130
|
Abstract
Stat3 is the most pleiotropic member of the signal transducer and activator of transcription (STAT) family of transcription factors and mediates pivotal responses for the cytokine family. In resting cells, STATs, including Stat3, reside largely in the cytoplasm. Upon cytokine stimulation, they rapidly translocate to the nucleus, where they promote the expression of target genes. During the subsequent period of signal decay they are re-exported back to the cytoplasm in preparation for the next round of signaling. This process of nuclear export can be blocked by the fungal toxin leptomycin B (LMB). In contrast to what appears to be the case for Stat1, LMB treatment not only blocks the poststimulation export of Stat3 from the nucleus back to the cytoplasm, but also promotes the nuclear accumulation of Stat3 in resting cells. Remarkably, the LMB-dependent nuclear accumulation of Stat3 in resting cells is independent of tyrosine phosphorylation, highlighting the existence of a "basal" signaling pathway. Subsequent studies identified three nuclear export signal (NES) elements. Two of these elements, Stat3(306-318) and Stat3(404-414), corresponded to those recently identified in Stat1, and a third, Stat3(524-535), is novel. Stat3(306-318) appears to be important in the rapid nuclear export seen after stimulation (poststimulation export), whereas the Stat3(404-414) and Stat3(524-535) play a more important role in regulating basal nuclear export. In summary, these studies indicate that the process of Stat3 nuclear export is dependent on multiple NES elements.
Collapse
Affiliation(s)
- Samita Bhattacharya
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
131
|
Shah M, Patel K, Fried VA, Sehgal PB. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem 2002; 277:45662-9. [PMID: 12235142 DOI: 10.1074/jbc.m205935200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-6 (IL-6) initiates STAT3 signaling in plasma membrane rafts with the subsequent transit of Tyr-phosphorylated STAT3 (PY-STAT3) through the cytoplasmic compartment to the nucleus in association with accessory proteins. We initially identified caveolin-1 (cav-1) as a candidate STAT3-associated accessory protein due to its co-localization with STAT3 and PY-STAT3 in flotation raft fractions, and heat shock protein 90 (HSP90) due to its inclusion in cytosolic STAT3-containing 200-400-kDa complexes. Subsequent immunomagnetic bead pullout assays showed that STAT3, PY-STAT3, cav-1, and HSP90 interacted in plasma membrane and cytoplasmic complexes derived from uninduced and stimulated Hep3B cells. This was a general property of STAT3 in that these interactions were also observed in alveolar epithelial type II-like cells, lung fibroblasts, and pulmonary arterial endothelial cells. Exposure of Hep3B cells to the raft disrupter methyl-beta-cyclodextrin for 1-10 min followed by IL-6 stimulation for 15 min preferentially inhibited the appearance of PY-STAT3 in the cav-1-enriched sedimentable cytoplasmic fraction, suggesting that these complexes may represent a trafficking intermediate immediately downstream from the raft. Because IL-6 is known to function in the body in the context of fever, the possibility that HSP90 may help preserve IL-6-induced STAT3 signaling at elevated temperature was investigated. Geldanamycin, an HSP90 inhibitor, markedly inhibited IL-6-stimulated STAT3 signaling in Hep3B hepatocytes cultured overnight at 39.5 degrees C as evaluated by DNA-shift assays, trafficking of PY-STAT3 to the nucleus, cross-precipitation of HSP90 by anti-STAT3 polyclonal antibody, and reporter/luciferase construct experiments. Taken together, the data show that IL-6/raft/STAT3 signaling is a chaperoned pathway that involves cav-1 and HSP90 as accessory proteins and suggest a mechanism for the preservation of this signaling during fever.
Collapse
Affiliation(s)
- Mehul Shah
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|