101
|
Selleghin-Veiga G, Magpali L, Picorelli A, Silva FA, Ramos E, Nery MF. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds. J Mol Evol 2024; 92:300-316. [PMID: 38735005 DOI: 10.1007/s00239-024-10170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
Collapse
Affiliation(s)
- Giovanna Selleghin-Veiga
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Letícia Magpali
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Agnello Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Felipe A Silva
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Elisa Ramos
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
102
|
Simusika P, Okamoto M, Dapat C, Muleya W, Malisheni M, Azam S, Imamura T, Saito M, Mwape I, Mpabalwani E, Monze M, Oshitani H. Characterization of human respiratory syncytial virus in children with severe acute respiratory infection before and during the COVID-19 pandemic. IJID REGIONS 2024; 11:100354. [PMID: 38596821 PMCID: PMC11002793 DOI: 10.1016/j.ijregi.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Objectives Annual outbreaks of human respiratory syncytial virus (HRSV) are caused by newly introduced and locally persistent strains. During the COVID-19 pandemic, global and local circulation of HRSV significantly decreased. This study was conducted to characterize HRSV in 2018-2022 and to analyze the impact of COVID-19 on the evolution of HRSV. Design/methods Combined oropharyngeal and nasopharyngeal swabs were collected from children hospitalized with severe acute respiratory infection at two hospitals in Zambia. The second hypervariable region of the attachment gene G was targeted for phylogenetic analysis. Results Of 3113 specimens, 504 (16.2%) were positive for HRSV, of which 131 (26.0%) and 66 (13.1%) were identified as HRSVA and HRSVB, respectively. In early 2021, an increase in HRSV was detected, caused by multiple distinct clades of HRSVA and HRSVB. Some were newly introduced, whereas others resulted from local persistence. Conclusions This study provides insights into the evolution of HRSV, driven by global and local circulation. The COVID-19 pandemic had a temporal impact on the evolution pattern of HRSV. Understanding the evolution of HRSV is vital for developing strategies for its control.
Collapse
Affiliation(s)
- Paul Simusika
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
- University Teaching Hospitals, Pathology and Microbiology Department, Virology Laboratory, Lusaka, Zambia
- Levy Mwanawasa Medical University, Institute of Basic and Biomedical Sciences ,Lusaka, Zambia
| | - Michiko Okamoto
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
| | - Clyde Dapat
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
| | - Walter Muleya
- University of Zambia, School of Veterinary Medicine, Department of Biomedical Sciences, Lusaka, Zambia
| | - Moffat Malisheni
- University Teaching Hospitals, Pathology and Microbiology Department, Virology Laboratory, Lusaka, Zambia
| | - Sikandar Azam
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
| | - Takeaki Imamura
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
| | - Mayuko Saito
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
| | - Innocent Mwape
- Center for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Evans Mpabalwani
- University of Zambia, School of Medicine, Department of Pediatrics and Child Health, Lusaka, Zambia
| | - Mwaka Monze
- University Teaching Hospitals, Pathology and Microbiology Department, Virology Laboratory, Lusaka, Zambia
| | - Hitoshi Oshitani
- Tohoku University Graduate School of Medicine, Department of Virology, Sendai, Japan
| |
Collapse
|
103
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
104
|
Edwards SV, Cloutier A, Cockburn G, Driver R, Grayson P, Katoh K, Baldwin MW, Sackton TB, Baker AJ. A nuclear genome assembly of an extinct flightless bird, the little bush moa. SCIENCE ADVANCES 2024; 10:eadj6823. [PMID: 38781323 PMCID: PMC11809649 DOI: 10.1126/sciadv.adj6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
We present a draft genome of the little bush moa (Anomalopteryx didiformis)-one of approximately nine species of extinct flightless birds from Aotearoa, New Zealand-using ancient DNA recovered from a fossil bone from the South Island. We recover a complete mitochondrial genome at 249.9× depth of coverage and almost 900 megabases of a male moa nuclear genome at ~4 to 5× coverage, with sequence contiguity sufficient to identify more than 85% of avian universal single-copy orthologs. We describe a diverse landscape of transposable elements and satellite repeats, estimate a long-term effective population size of ~240,000, identify a diverse suite of olfactory receptor genes and an opsin repertoire with sensitivity in the ultraviolet range, show that the wingless moa phenotype is likely not attributable to gene loss or pseudogenization, and identify potential function-altering coding sequence variants in moa that could be synthesized for future functional assays. This genomic resource should support further studies of avian evolution and morphological divergence.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Robert Driver
- Department of Biology, East Carolina University, E 5th Street, Greenville, NC 27605, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Kazutaka Katoh
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Maude W. Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Timothy B. Sackton
- Informatics Group, Harvard University, 38 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J. Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, ON M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
| |
Collapse
|
105
|
MacDonald N, Raven N, Diep W, Evans S, Pannipitiya S, Bramwell G, Vanbeek C, Thomas F, Russell T, Dujon AM, Telonis-Scott M, Ujvari B. The molecular evolution of cancer associated genes in mammals. Sci Rep 2024; 14:11650. [PMID: 38773187 PMCID: PMC11109183 DOI: 10.1038/s41598-024-62425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.
Collapse
Affiliation(s)
- Nick MacDonald
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Nynke Raven
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Wendy Diep
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Samantha Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Senuri Pannipitiya
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Caitlin Vanbeek
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Tracey Russell
- Faculty of Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Burwood, Burwood, VIC, 3125, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
106
|
Marinho MDS, Ferreira GM, Grosche VR, Nicolau-Junior N, Campos TDL, Santos IA, Jardim ACG. Evolutionary Profile of Mayaro Virus in the Americas: An Update into Genome Variability. Viruses 2024; 16:809. [PMID: 38793690 PMCID: PMC11126029 DOI: 10.3390/v16050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024] Open
Abstract
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.
Collapse
Affiliation(s)
- Mikaela dos Santos Marinho
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Giulia Magalhães Ferreira
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Victória Riquena Grosche
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto 15054-000, SP, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil;
| | - Túlio de Lima Campos
- Aggeu Magalhães Institute (Fiocruz), Bioinformatics Core Facility, Recife 50740-465, PE, Brazil;
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, ICBIM, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia 38405-319, MG, Brazil; (M.d.S.M.); (G.M.F.); (V.R.G.)
- Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
107
|
Franzo G, Tucciarone CM, Faustini G, Poletto F, Baston R, Cecchinato M, Legnardi M. Reconstruction of Avian Reovirus History and Dispersal Patterns: A Phylodynamic Study. Viruses 2024; 16:796. [PMID: 38793677 PMCID: PMC11125613 DOI: 10.3390/v16050796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs the evolution and molecular epidemiology of different ARV genotypes using a phylodynamic approach, benefiting from a collection of more than one thousand sigma C (σC) sequences sampled over time at a worldwide level. ARVs' origin was estimated to occur several centuries ago, largely predating the first clinical reports. The origins of all genotypes were inferred at least one century ago, and their emergence and rise reflect the intensification of the poultry industry. The introduction of vaccinations had only limited and transitory effects on viral circulation and further expansion was observed, particularly after the 1990s, likely because of the limited immunity and the suboptimal and patchy vaccination application. In parallel, strong selective pressures acted with different strengths and directionalities among genotypes, leading to the emergence of new variants. While preventing the spread of new variants with different phenotypic features would be pivotal, a phylogeographic analysis revealed an intricate network of viral migrations occurring even over long distances and reflecting well-established socio-economic relationships.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (F.P.); (R.B.); (M.C.); (M.L.)
| | | | | | | | | | | | | |
Collapse
|
108
|
Dong HV, Tran GTH, Vu TTT, Le NHT, Nguyen YTH, Rapichai W, Rattanasrisomporn A, Boonkaewwan C, Bui DAT, Rattanasrisomporn J. Duck Tembusu virus in North Vietnam: epidemiological and genetic analysis reveals novel virus strains. Front Vet Sci 2024; 11:1366904. [PMID: 38812564 PMCID: PMC11134369 DOI: 10.3389/fvets.2024.1366904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Tembusu virus (TMUV) is an important infectious disease, causing economic losses in duck production. Since the first report of TMUV infection in Vietnam in 2020, the disease has persisted and affected poultry production in the country. This study conducted epidemiological and genetic characterization of the viral strains circulating in north Vietnam based on 130 pooled tissue samples collected in six provinces/cities during 2021. The TMUV genome was examined using conventional PCR. The results indicated that 21 (16.15%) samples and 9 (23.68%) farms were positive for the viral genome. The positive rate was 59.26% for ducks at ages 2-4 weeks, which was significantly higher than for ducks at ages >4 weeks and < 2 weeks. Genetic analysis of the partial envelope gene (891 bp) sequences indicated that the five Vietnamese TMUVs shared 99.55-100% nucleotide identity, while the rates were in the range 99.59-100% based on the pre-membrane gene sequences (498 bp). The five Vietnamese TMUV strains obtained formed a novel single subcluster. These strains were closely related to Chinese strains and differed from the vaccine strain, suggesting that Vietnamese TMUV strains were field viruses. It needs to be further studied on vaccine development to prevent effects of TMUV infection on poultry production across Vietnam.
Collapse
Affiliation(s)
- Hieu Van Dong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Giang Thi Huong Tran
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Tra Thi Thu Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ngan Hong Thi Le
- Dak Lak Sub-Department of Livestock Production and Animal Health, Dak Lak, Vietnam
| | - Yen Thi Hoang Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Chaiwat Boonkaewwan
- Akkhraratchakumari Veterinary College, Walailak University, Tha Sala District, Thailand
| | - Dao Anh Tran Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
109
|
Figueroa-Corona L, Baesen K, Bhattarai A, Kegley A, Sniezko RA, Wegrzyn J, De La Torre AR. Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine). Genes (Basel) 2024; 15:602. [PMID: 38790231 PMCID: PMC11121556 DOI: 10.3390/genes15050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pathogen perception generates the activation of signal transduction cascades to host defense. White pine blister rust (WPBR) is caused by Cronartium ribicola J.C. Fisch and affects a number of species of Pinus. One of the most severely affected species is Pinus albicaulis Engelm (whitebark pine). WPBR resistance in the species is a polygenic and complex trait that requires an optimized immune response. We identified early responses in 2-year-old seedlings after four days of fungal inoculation and compared the underlying transcriptomic response with that of healthy non-inoculated individuals. A de novo transcriptome assembly was constructed with 56,796 high quality-annotations derived from the needles of susceptible and resistant individuals in a resistant half-sib family. Differential expression analysis identified 599 differentially expressed transcripts, from which 375 were upregulated and 224 were downregulated in the inoculated seedlings. These included components of the initial phase of active responses to abiotic factors and stress regulators, such as those involved in the first steps of flavonoid biosynthesis. Four days after the inoculation, infected individuals showed an overexpression of chitinases, reactive oxygen species (ROS) regulation signaling, and flavonoid intermediates. Our research sheds light on the first stage of infection and emergence of disease symptoms among whitebark pine seedlings. RNA sequencing (RNA-seq) data encoding hypersensitive response, cell wall modification, oxidative regulation signaling, programmed cell death, and plant innate immunity were differentially expressed during the defense response against C. ribicola.
Collapse
Affiliation(s)
- Laura Figueroa-Corona
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA (A.R.D.L.T.)
| | - Kailey Baesen
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA (A.R.D.L.T.)
| | - Akriti Bhattarai
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR 97424, USA (R.A.S.)
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR 97424, USA (R.A.S.)
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA (A.R.D.L.T.)
| |
Collapse
|
110
|
Branda F, Romano C, Giovanetti M, Ciccozzi A, Ciccozzi M, Scarpa F. Emerging threats: Is highly pathogenic avian influenza A(H5N1) in dairy herds a prelude to a new pandemic? Travel Med Infect Dis 2024; 59:102721. [PMID: 38593968 DOI: 10.1016/j.tmaid.2024.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Rome, Italy; Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil; Climate Amplified Diseases and Epidemics (CLIMADE), Brazil, Americas
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
111
|
Ames M, Hamernik A, Behling W, Douches DS, Halterman DA, Bethke PC. A survey of the Sli gene in wild and cultivated potato. PLANT DIRECT 2024; 8:e589. [PMID: 38766508 PMCID: PMC11099725 DOI: 10.1002/pld3.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Inbred-hybrid breeding of diploid potatoes necessitates breeding lines that are self-compatible. One way of incorporating self-compatibility into incompatible cultivated potato (Solanum tuberosum) germplasm is to introduce the S-locus inhibitor gene (Sli), which functions as a dominant inhibitor of gametophytic self-incompatibility. To learn more about Sli diversity and function in wild species relatives of cultivated potato, we obtained Sli gene sequences that extended from the 5'UTR to the 3'UTR from 133 individuals from 22 wild species relatives of potato and eight diverse cultivated potato clones. DNA sequence alignment and phylogenetic trees based on genomic and protein sequences show that there are two highly conserved groups of Sli sequences. DNA sequences in one group contain the 533 bp insertion upstream of the start codon identified previously in self-compatible potato. The second group lacks the insertion. Three diploid and four polyploid individuals of wild species collected from geographically disjointed localities contained Sli with the 533 bp insertion. For most of the wild species clones examined, however, Sli did not have the insertion. Phylogenetic analysis indicated that Sli sequences with the insertion, in wild species and in cultivated clones, trace back to a single origin. Some diploid wild potatoes that have Sli with the insertion were self-incompatible and some wild potatoes that lack the insertion were self-compatible. Although there is evidence of positive selection for some codon positions in Sli, there is no evidence of diversifying selection at the gene level. In silico analysis of Sli protein structure did not support the hypothesis that amino acid changes from wild-type (no insertion) to insertion-type account for changes in protein function. Our study demonstrated that genetic factors besides the Sli gene must be important for conditioning a switch in the mating system from self-incompatible to self-compatible in wild potatoes.
Collapse
Affiliation(s)
- Mercedes Ames
- US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonWisconsinUSA
| | - Andy Hamernik
- US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonWisconsinUSA
| | - William Behling
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - David S. Douches
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Dennis A. Halterman
- US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonWisconsinUSA
| | - Paul C. Bethke
- US Department of Agriculture, Agricultural Research Service, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
112
|
Piñana M, González-Sánchez A, Andrés C, Vila J, Creus-Costa A, Prats-Méndez I, Arnedo-Muñoz M, Saubi N, Esperalba J, Rando A, Nadal-Baron P, Quer J, González-López JJ, Soler-Palacín P, Martínez-Urtaza J, Larrosa N, Pumarola T, Antón A. Genomic evolution of human respiratory syncytial virus during a decade (2013-2023): bridging the path to monoclonal antibody surveillance. J Infect 2024; 88:106153. [PMID: 38588960 DOI: 10.1016/j.jinf.2024.106153] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES This study investigated the prevalence, genetic diversity, and evolution of human respiratory syncytial virus (HRSV) in Barcelona from 2013 to 2023. METHODS Respiratory specimens from patients with RTI suspicion at Hospital Universitari Vall d'Hebron were collected from October 2013 to May 2023 for laboratory-confirmation of respiratory viruses. Next-generation sequencing was performed in randomly-selected samples with Illumina technology. Phylogenetic analyses of whole genome sequences were performed with BEAST v1.10.4. Signals of selection and evolutionary pressures were inferred by population dynamics and evolutionary analyses. Mutations in major surface proteins were genetic and structurally characterised, emphasizing those within antigenic epitopes. RESULTS Analyzing 139,625 samples, 5.3% were HRSV-positive (3008 HRSV-A, 3882 HRSV-B, 56 HRSV-A and -B, and 495 unsubtyped HRSV), with a higher prevalence observed in the paediatric population. Pandemic-related shifts in seasonal patterns returned to normal in 2022-2023. A total of 198 whole-genome sequences were obtained for HRSV-A (6.6% of the HRSV-A positive samples) belonging to GA2.3.5 lineage. For HRSV-B, 167 samples were sequenced (4.3% of the HRSV-B positive samples), belonging to GB5.0.2, GB5.0.4a and GB5.0.5a. HRSV-B exhibited a higher evolution rate. Post-SARS-CoV-2 pandemic, both subtypes showed increased evolutionary rates and decreased effective population size initially, followed by a sharp increase. Analyses indicated negative selective pressure on HRSV. Mutations in antigenic epitopes, including S276N and M274I in palivizumab-targeted site II, and I206M, Q209R, and S211N in nirsevimab-targeted site Ø, were identified. DISCUSSION Particularly in the context of the large-scale use in 2023-2024 season of nirsevimab, continuous epidemiological and genomic surveillance is crucial.
Collapse
Affiliation(s)
- Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorgina Vila
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain; Infection and Immunity Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Catalonia, Spain; Paediatric Hospitalization Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Anna Creus-Costa
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Ignasi Prats-Méndez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Arnedo-Muñoz
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana Esperalba
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Rando
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Nadal-Baron
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Juan José González-López
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Infection and Immunity Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Catalonia, Spain; Paediatric Hospitalization Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain; Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jaime Martínez-Urtaza
- Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Nieves Larrosa
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
113
|
Lo Presti A, Ambrosio L, Di Martino A, Knijn A, De Sabato L, Vaccari G, Di Bartolo I, Morabito S, Palamara AT, Stefanelli P, on behalf of the Italian Genomic Laboratory Network. Selective Pressure and Evolution of SARS-CoV-2 Lineages BF.7 and BQ.1.1 Circulating in Italy from July to December 2022. Microorganisms 2024; 12:908. [PMID: 38792736 PMCID: PMC11124320 DOI: 10.3390/microorganisms12050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
In this work, we studied the selective pressure and evolutionary analysis on the SARS-CoV-2 BF.7 and BQ.1.1 lineages circulating in Italy from July to December 2022. Two different datasets were constructed: the first comprised 694 SARS-CoV-2 BF.7 lineage sequences and the second comprised 734 BQ.1.1 sequences, available in the Italian COVID-19 Genomic (I-Co-Gen) platform and GISAID (last access date 15 December 2022). Alignments were performed with MAFFT v.7 under the Galaxy platform. The HYPHY software was used to study the selective pressure. Four positively selected sites (two in nsp3 and two in the spike) were identified in the BF.7 dataset, and two (one in ORF8 and one in the spike gene) were identified in the BQ.1.1 dataset. Mutation analysis revealed that R408S and N440K are very common in the spike of the BF.7 genomes, as well as L452R among BQ.1.1. N1329D and Q180H in nsp3 were found, respectively, at low and rare frequencies in BF.7, while I121L and I121T were found to be rare in ORF8 for BQ.1.1. The positively selected sites may have been driven by the selection for increased viral fitness, under circumstances of defined selective pressure, as well by host genetic factors.
Collapse
Affiliation(s)
- Alessandra Lo Presti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.A.); (A.D.M.); (A.T.P.); (P.S.)
| | - Luigina Ambrosio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.A.); (A.D.M.); (A.T.P.); (P.S.)
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.A.); (A.D.M.); (A.T.P.); (P.S.)
| | - Arnold Knijn
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.K.); (L.D.S.); (I.D.B.); (S.M.)
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.K.); (L.D.S.); (I.D.B.); (S.M.)
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.K.); (L.D.S.); (I.D.B.); (S.M.)
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.K.); (L.D.S.); (I.D.B.); (S.M.)
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.K.); (L.D.S.); (I.D.B.); (S.M.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.A.); (A.D.M.); (A.T.P.); (P.S.)
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (L.A.); (A.D.M.); (A.T.P.); (P.S.)
| | | |
Collapse
|
114
|
S. Celina S, Černý J. Genetic background of adaptation of Crimean-Congo haemorrhagic fever virus to the different tick hosts. PLoS One 2024; 19:e0302224. [PMID: 38662658 PMCID: PMC11045102 DOI: 10.1371/journal.pone.0302224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.
Collapse
Affiliation(s)
- Seyma S. Celina
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
115
|
Tissaoui G, Suchentrunk F, Awadi A, Smith S, Weber A, Ben Slimen H. Evolutionary characteristics of the mitochondrial NADH dehydrogenase subunit 6 gene in some populations of four sympatric Mustela species (Mustelidae, Mammalia) from central Europe. Mol Biol Rep 2024; 51:575. [PMID: 38664260 DOI: 10.1007/s11033-024-09505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND Selection on or reticulate evolution of mtDNA is documented in various mammalian taxa and could lead to misleading phylogenetic conclusions if not recognized. We sequenced the MT-ND6 gene of four sympatric Mustelid species of the genus Mustela from some central European populations. We hypothesised positive selection on MT-ND6, given its functional importance and the different body sizes and life histories of the species, even though climatic differences may be unimportant for adaptation in sympatry. METHODS AND RESULTS MT-ND6 genes were sequenced in 187 sympatric specimens of weasels, Mustela nivalis, stoats, M. erminea, polecats, M. putorius, and steppe polecats, M. eversmannii, from eastern Austria and of fourteen allopatric polecats from eastern-central Germany. Median joining networks, neighbour joining and maximum likelihood analyses as well as Bayesian inference grouped all species according to earlier published phylogenetic models. However, polecats and steppe polecats, two very closely related species, shared the same two haplotypes. We found only negative selection within the Mustela sequences, including 131 downloaded ones covering thirteen species. Positive selection was observed on three MT-ND6 codons of other mustelid genera retrieved from GenBank. CONCLUSIONS Negative selection for MT-ND6 within the genus Mustela suggests absence of both environmental and species-specific effects of cellular energy metabolism despite large species-specific differences in body size. The presently found shared polymorphism in European polecats and steppe polecats may result from ancestral polymorphism before speciation and historical or recent introgressive hybridization; it may indicate mtDNA capture of steppe polecats by M. putorius in Europe.
Collapse
Affiliation(s)
- Ghada Tissaoui
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, 1160, Austria
| | - Asma Awadi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, Vienna, 1160, Austria
| | - Antje Weber
- Landesamt für Umweltschutz Sachsen-Anhalt, Dez. 44 WZI, Lindenstraße 18, 39606, Iden, Germany
| | - Hichem Ben Slimen
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
116
|
Scarpa F, Sernicola L, Farcomeni S, Ciccozzi A, Sanna D, Casu M, Vitale M, Cicenia A, Giovanetti M, Romano C, Branda F, Ciccozzi M, Borsetti A. Phylodynamic and Evolution of the Hemagglutinin (HA) and Neuraminidase (NA) Genes of Influenza A(H1N1) pdm09 Viruses Circulating in the 2009 and 2023 Seasons in Italy. Pathogens 2024; 13:334. [PMID: 38668289 PMCID: PMC11054071 DOI: 10.3390/pathogens13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Marco Vitale
- Laboratorio di Biologia Molecolare—Fondazione Università Niccolò Cusano, 00166 Rome, Italy; (M.V.); (A.C.)
| | - Alessia Cicenia
- Laboratorio di Biologia Molecolare—Fondazione Università Niccolò Cusano, 00166 Rome, Italy; (M.V.); (A.C.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, DF, Brazil
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| |
Collapse
|
117
|
Ahator SD, Wenzl K, Hegstad K, Lentz CS, Johannessen M. Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems 2024; 9:e0013024. [PMID: 38470253 PMCID: PMC11019936 DOI: 10.1128/msystems.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predominant methicillin-resistant S. aureus strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, in vitro infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from Bacillus subtilis and the modeled structures of the four NarL TCSs in S. aureus, we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in S. aureus, shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Karoline Wenzl
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
118
|
Morel M, Zhukova A, Lemoine F, Gascuel O. Accurate Detection of Convergent Mutations in Large Protein Alignments With ConDor. Genome Biol Evol 2024; 16:evae040. [PMID: 38451738 PMCID: PMC10986858 DOI: 10.1093/gbe/evae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.
Collapse
Affiliation(s)
- Marie Morel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, 69100, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, CNR Virus Des Infections Respiratoires, Paris, France
| | - Olivier Gascuel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut de Systématique, Evolution, Biodiversité (UMR 7205—CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), Paris, France
| |
Collapse
|
119
|
Rudar J, Kruczkiewicz P, Vernygora O, Golding GB, Hajibabaei M, Lung O. Sequence signatures within the genome of SARS-CoV-2 can be used to predict host source. Microbiol Spectr 2024; 12:e0358423. [PMID: 38436242 PMCID: PMC10986507 DOI: 10.1128/spectrum.03584-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
We conducted an in silico analysis to better understand the potential factors impacting host adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in white-tailed deer, humans, and mink due to the strong evidence of sustained transmission within these hosts. Classification models trained on single nucleotide and amino acid differences between samples effectively identified white-tailed deer-, human-, and mink-derived SARS-CoV-2. For example, the balanced accuracy score of Extremely Randomized Trees classifiers was 0.984 ± 0.006. Eighty-eight commonly identified predictive mutations are found at sites under strong positive and negative selective pressure. A large fraction of sites under selection (86.9%) or identified by machine learning (87.1%) are found in genes other than the spike. Some locations encoded by these gene regions are predicted to be B- and T-cell epitopes or are implicated in modulating the immune response suggesting that host adaptation may involve the evasion of the host immune system, modulation of the class-I major-histocompatibility complex, and the diminished recognition of immune epitopes by CD8+ T cells. Our selection and machine learning analysis also identified that silent mutations, such as C7303T and C9430T, play an important role in discriminating deer-derived samples across multiple clades. Finally, our investigation into the origin of the B.1.641 lineage from white-tailed deer in Canada discovered an additional human sequence from Michigan related to the B.1.641 lineage sampled near the emergence of this lineage. These findings demonstrate that machine-learning approaches can be used in combination with evolutionary genomics to identify factors possibly involved in the cross-species transmission of viruses and the emergence of novel viral lineages.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus capable of infecting and establishing itself in human and wildlife populations, such as white-tailed deer. This fact highlights the importance of developing novel ways to identify genetic factors that contribute to its spread and adaptation to new host species. This is especially important since these populations can serve as reservoirs that potentially facilitate the re-introduction of new variants into human populations. In this study, we apply machine learning and phylogenetic methods to uncover biomarkers of SARS-CoV-2 adaptation in mink and white-tailed deer. We find evidence demonstrating that both non-synonymous and silent mutations can be used to differentiate animal-derived sequences from human-derived ones and each other. This evidence also suggests that host adaptation involves the evasion of the immune system and the suppression of antigen presentation. Finally, the methods developed here are general and can be used to investigate host adaptation in viruses other than SARS-CoV-2.
Collapse
Affiliation(s)
- Josip Rudar
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Mehrdad Hajibabaei
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
120
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
121
|
Chau KD, Hauser FE, Van Nynatten A, Daane JM, Harris MP, Chang BSW, Lovejoy NR. Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes. J Mol Evol 2024; 92:93-103. [PMID: 38416218 DOI: 10.1007/s00239-024-10156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.
Collapse
Affiliation(s)
- Katherine D Chau
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, York University, Toronto, ON, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
122
|
Gozashti L, Hartl DL, Corbett-Detig R. Universal signatures of transposable element compartmentalization across eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562820. [PMID: 38585780 PMCID: PMC10996525 DOI: 10.1101/2023.10.17.562820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The evolutionary mechanisms that drive the emergence of genome architecture remain poorly understood but can now be assessed with unprecedented power due to the massive accumulation of genome assemblies spanning phylogenetic diversity1,2. Transposable elements (TEs) are a rich source of large-effect mutations since they directly and indirectly drive genomic structural variation and changes in gene expression3. Here, we demonstrate universal patterns of TE compartmentalization across eukaryotic genomes spanning ~1.7 billion years of evolution, in which TEs colocalize with gene families under strong predicted selective pressure for dynamic evolution and involved in specific functions. For non-pathogenic species these genes represent families involved in defense, sensory perception and environmental interaction, whereas for pathogenic species, TE-compartmentalized genes are highly enriched for pathogenic functions. Many TE-compartmentalized gene families display signatures of positive selection at the molecular level. Furthermore, TE-compartmentalized genes exhibit an excess of high-frequency alleles for polymorphic TE insertions in fruit fly populations. We postulate that these patterns reflect selection for adaptive TE insertions as well as TE-associated structural variants. This process may drive the emergence of a shared TE-compartmentalized genome architecture across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
123
|
Pappalardo AM, Calogero GS, Šanda R, Giuga M, Ferrito V. Evidence for Selection on Mitochondrial OXPHOS Genes in the Mediterranean Killifish Aphanius fasciatus Valenciennes, 1821. BIOLOGY 2024; 13:212. [PMID: 38666824 PMCID: PMC11048645 DOI: 10.3390/biology13040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) genes are a system subject to selection under determined environmental constraints despite a neutral evolution model that has long been hypothesized for the mitochondrial genome. In this study, the sequences of ND1, Cytb, and COI OXPHOS genes were analyzed in six populations of the eurythermal and euryhaline killifish A. fasciatus, to detect non-synonymous mutations leading to amino acid changes and to check whether selection acted on them using tests of recombination and selection. The results indicate a high COI and Cytb gene diversity and a high percentage of private haplotypes in all populations. In the Greek population, non-synonymous nucleotide substitutions were observed in the N-terminal region of COI and Cytb. Positively selected sites were also found. The information we obtained from the mitochondrial DNA sequences of A. fasciatus adds to the growing data on selective pressure acting on mitochondrial DNA in non-model species. These results should be explored from the perspective of the local adaptation of eurythermal and euryhaline species and supported using experimental evidence to better understand the interplay between historical climatic events and local adaptation and how each of them contributes to shaping the genetic structure of this species.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| | - Giada Santa Calogero
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| | - Radek Šanda
- National Museum of the Czech Republic, Václavské Náměstí 68, 115 79 Prague, Czech Republic;
| | - Marta Giuga
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
- Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (IAS-CNR), Via De Marini 6, 16149 Genova, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology “M. La Greca”, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.S.C.); (M.G.)
| |
Collapse
|
124
|
Franzo G, Faustini G, Tucciarone CM, Poletto F, Tonellato F, Cecchinato M, Legnardi M. The Effect of Global Spread, Epidemiology, and Control Strategies on the Evolution of the GI-19 Lineage of Infectious Bronchitis Virus. Viruses 2024; 16:481. [PMID: 38543846 PMCID: PMC10974917 DOI: 10.3390/v16030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
The GI-19 lineage of infectious bronchitis virus (IBV) has emerged as one of the most impactful, particularly in the "Old World". Originating in China several decades ago, it has consistently spread and evolved, often forming independent clades in various areas and countries, each with distinct production systems and control strategies. This study leverages this scenario to explore how different environments may influence virus evolution. Through the analysis of the complete S1 sequence, four datasets were identified, comprising strains of monophyletic clades circulating in different continents or countries (e.g., Asia vs. Europe and China vs. Thailand), indicative of single introduction events and independent evolution. The population dynamics and evolutionary rate variation over time, as well as the presence and intensity of selective pressures, were estimated and compared across these datasets. Since the lineage origin (approximately in the mid-20th century), a more persistent and stable viral population was estimated in Asia and China, while in Europe and Thailand, a sharp increase following the introduction (i.e., 2005 and 2007, respectively) of GI-19 was observed, succeeded by a rapid decline. Although a greater number of sites on the S1 subunit were under diversifying selection in the Asian and Chinese datasets, more focused and stronger pressures were evident in both the European (positions 2, 52, 54, 222, and 379 and Thai (i.e., positions 10, 12, 32, 56, 62, 64, 65, 78, 95, 96, 119, 128, 140, 182, 292, 304, 320, and 323) strains, likely reflecting a more intense and uniform application of vaccines in these regions. This evidence, along with the analysis of control strategies implemented in different areas, suggests a strong link between effective, systematic vaccine implementation and infection control. However, while the overall evolutionary rate was estimated at approximately 10-3 to 10-4, a significant inverse correlation was found between viral population size and the rate of viral evolution over time. Therefore, despite the stronger selective pressure imposed by vaccination, effectively constraining the former through adequate control strategies can efficiently prevent viral evolution and the emergence of vaccine-escaping variants.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (C.M.T.); (F.P.); (F.T.); (M.C.); (M.L.)
| | | | | | | | | | | | | |
Collapse
|
125
|
Xie O, Morris JM, Hayes AJ, Towers RJ, Jespersen MG, Lees JA, Ben Zakour NL, Berking O, Baines SL, Carter GP, Tonkin-Hill G, Schrieber L, McIntyre L, Lacey JA, James TB, Sriprakash KS, Beatson SA, Hasegawa T, Giffard P, Steer AC, Batzloff MR, Beall BW, Pinho MD, Ramirez M, Bessen DE, Dougan G, Bentley SD, Walker MJ, Currie BJ, Tong SYC, McMillan DJ, Davies MR. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat Commun 2024; 15:2286. [PMID: 38480728 PMCID: PMC10937727 DOI: 10.1038/s41467-024-46530-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rebecca J Towers
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Hinxton, Cambridgeshire, UK
| | - Nouri L Ben Zakour
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Olga Berking
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen P Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Layla Schrieber
- Faculty of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Taylah B James
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kadaba S Sriprakash
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Science & Technology, University of New England, Armidale, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Phil Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, Parkville, Australia
| | - Michael R Batzloff
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Bernard W Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marcos D Pinho
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mario Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Debra E Bessen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Gordon Dougan
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David J McMillan
- School of Science, Technology and Engineering, and Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
126
|
Courcelle M, Salami H, Tounkara K, Lo MM, Ba A, Diop M, Niang M, Sidibe CAK, Sery A, Dakouo M, Kaba L, Sidime Y, Keyra M, Diallo AOS, El Mamy AB, El Arbi AS, Barry Y, Isselmou E, Habiboullah H, Doumbia B, Gueya MB, Awuni J, Odoom T, Ababio PT, TawiahYingar DNY, Coste C, Guendouz S, Kwiatek O, Libeau G, Bataille A. Comparative evolutionary analyses of peste des petits ruminants virus genetic lineages. Virus Evol 2024; 10:veae012. [PMID: 38476867 PMCID: PMC10930206 DOI: 10.1093/ve/veae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.
Collapse
Affiliation(s)
- Maxime Courcelle
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Habib Salami
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Kadidia Tounkara
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | - Modou Moustapha Lo
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Aminata Ba
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Mariame Diop
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Mamadou Niang
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | | | - Amadou Sery
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | - Marthin Dakouo
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | - Lanceï Kaba
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba BP 2201, Guinea
| | - Youssouf Sidime
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba BP 2201, Guinea
| | - Mohamed Keyra
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba BP 2201, Guinea
| | | | - Ahmed Bezeid El Mamy
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Ahmed Salem El Arbi
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Yahya Barry
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Ekaterina Isselmou
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Habiboullah Habiboullah
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Baba Doumbia
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Mohamed Baba Gueya
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Joseph Awuni
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra M161, Ghana
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra M161, Ghana
| | | | | | - Caroline Coste
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Samia Guendouz
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Olivier Kwiatek
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Geneviève Libeau
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Arnaud Bataille
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| |
Collapse
|
127
|
Fu M. Evolutionary analysis of major histocompatibility complex variants in chytrid-resistant and susceptible amphibians. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105544. [PMID: 38216106 DOI: 10.1016/j.meegid.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
An amphibian emerging infectious disease (EID), chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), originated in Asia but primarily led to declines and extinctions in amphibian populations outside of Asia. Host major histocompatibility complex (MHC) molecules exhibit high polymorphism, and the evolution of MHC can be influenced by recombination and pathogens. Previous studies have indicated that host MHC class II is associated with Bd resistance. In this study, I conducted recombination and selection tests on functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) and an Australasian Bd-susceptible species (Litoria caerulea). Recombination at the same site was identified in both species, supporting the hypothesis that recombination contributes to MHC IIß1 diversity in amphibians. Positive selection was observed in MHC IIß1 alleles in both species. In L. caerulea, at least four amino acid sites were identified under significant positive selection in the MHC IIß1, whereas these sites were either negatively selected or conserved in B. gargarizans. This suggests these sites might be selected for Bd resistance. Hydrophobicity was detected in certain amino acid sites relating to Bd resistance, suggesting this physicochemical property may be a factor selected to counteract Bd infection. These findings of this study provide an evolutionary basis for understanding how amphibian MHC IIß1 may undergo selection in response to chytrid infection.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
128
|
Plata-Pineda SE, Cárdenas-Munévar LX, Castro-Cavadía CJ, Buitrago SP, Garzón-Ospina D. Evaluating the genetic diversity of the Plasmodium vivax siap2 locus: A promising candidate for an effective malaria vaccine? Acta Trop 2024; 251:107111. [PMID: 38151069 DOI: 10.1016/j.actatropica.2023.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Malaria is the deadliest parasitic disease in the world. Traditional control measures have become less effective; hence, there is a need to explore alternative strategies, such as antimalarial vaccines. However, designing an anti-Plasmodium vivax vaccine is considered a challenge due to the complex parasite biology and the antigens' high genetic diversity. Recently, the sporozoite invasion-associated protein 2 (SIAP2) has been suggested as a potential antigen to be considered in vaccine design due to its significance during hepatocyte invasion. However, its use may be limited by the incomplete understanding of gene/protein diversity. Here, the genetic diversity of pvsiap2 using P. vivax DNA samples from Colombia was assessed. Through PCR amplification and sequencing, we compared the Colombian sequences with available worldwide sequences, revealing that pvsiap2 displays low genetic diversity. Molecular evolutionary analyses showed that pvsiap2 appears to be influenced by directional selection. Moreover, the haplotypes found differ by a few mutational steps and several of them were shared between different geographical areas. On the other hand, several conserved regions within PvSIAP2 were predicted as potential B-cell or T-cell epitopes. Considering these characteristics and its role in hepatocyte invasion, the PvSIAP2 protein emerges as a promising antigen to be considered in a multi-antigen-multi-stage (multivalent) fully effective vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Sergio E Plata-Pineda
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Laura X Cárdenas-Munévar
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia
| | - Carlos J Castro-Cavadía
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), School of Health Sciences, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Sindy P Buitrago
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Diego Garzón-Ospina
- School of Biological Sciences, Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia.
| |
Collapse
|
129
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558511. [PMID: 37790530 PMCID: PMC10543004 DOI: 10.1101/2023.09.21.558511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis CA 95616, USA
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR, USA
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Adam Steinbrenner
- University of Washington, Department of Biology, Box 351800, Seattle, WA, 98195, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
130
|
Hold K, Lord E, Brealey JC, Le Moullec M, Bieker VC, Ellegaard MR, Rasmussen JA, Kellner FL, Guschanski K, Yannic G, Røed KH, Hansen BB, Dalén L, Martin MD, Dussex N. Ancient reindeer mitogenomes reveal island-hopping colonisation of the Arctic archipelagos. Sci Rep 2024; 14:4143. [PMID: 38374421 PMCID: PMC10876933 DOI: 10.1038/s41598-024-54296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024] Open
Abstract
Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat.
Collapse
Affiliation(s)
- Katharina Hold
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405, Stockholm, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute of Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Mathilde Le Moullec
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Mammals and Birds, Greenland, Institute of Natural Resources, Kivioq 2, 3900, Nuuk, Greenland
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Martin R Ellegaard
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Jacob A Rasmussen
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Fabian L Kellner
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Glenn Yannic
- Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Knut H Røed
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Brage B Hansen
- Gjærevoll Centre for Biodiversity Foresight Analyses, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute of Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 10405, Stockholm, Sweden
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| | - Nicolas Dussex
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes Gate 47B, 7012, Trondheim, Norway.
| |
Collapse
|
131
|
Ferreira P, Soares R, López-Fernández H, Vazquez N, Reboiro-Jato M, Vieira CP, Vieira J. Multiple Lines of Evidence Support 199 SARS-CoV-2 Positively Selected Amino Acid Sites. Int J Mol Sci 2024; 25:2428. [PMID: 38397104 PMCID: PMC10889775 DOI: 10.3390/ijms25042428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to host immune system escape are likely to increase in frequency due to positive selection and may be identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when using different methods, the results do not always agree. The sampling scheme used in different studies may partially explain the differences that are found, but there is also the possibility that some of the identified positively selected amino acid sites are false positives. This is especially important in the context of very large-scale projects where hundreds of analyses have been performed for the same protein-coding gene. To account for these issues, in this work, we have identified positively selected amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR, and compared the location of such sites in the different species. Moreover, we also compared our results to those that are available in the COV2Var database and the frequency of the 10 most frequent variants and predicted protein location to identify those sites that are supported by multiple lines of evidence. Amino acid changes observed at these sites should always be of concern. The information reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Noé Vazquez
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
132
|
Chouaia B, Dittmer J. A 2000-Year-Old Bacillus stercoris Strain Sheds Light on the Evolution of Cyclic Antimicrobial Lipopeptide Synthesis. Microorganisms 2024; 12:338. [PMID: 38399742 PMCID: PMC10893106 DOI: 10.3390/microorganisms12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Some bacteria (notably the genera Bacillus and Clostridium) have the capacity to form endospores that can survive for millions of years in isolated habitats. The genomes of such ancient bacteria provide unique opportunities to understand bacterial evolution and metabolic capabilities over longer time scales. Herein, we sequenced the genome of a 2000-year-old bacterial strain (Mal05) isolated from intact apple seeds recovered during archaeological excavations of a Roman villa in Italy. Phylogenomic analyses revealed that this strain belongs to the species Bacillus stercoris and that it is placed in an early-branching position compared to most other strains of this species. Similar to other Bacillus species, B. stercoris Mal05 had been previously shown to possess antifungal activity. Its genome encodes all the genes necessary for the biosynthesis of fengycin and surfactin, two cyclic lipopeptides known to play a role in the competition of Bacilli with other microorganisms due to their antimicrobial activity. Comparative genomics and analyses of selective pressure demonstrate that these genes are present in all sequenced B. stercoris strains, despite the fact that they are not under strong purifying selection. Hence, these genes may not be essential for the fitness of these bacteria, but they can still provide a competitive advantage against other microorganisms present in the same environment.
Collapse
Affiliation(s)
- Bessem Chouaia
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30172 Venice, Italy
| | - Jessica Dittmer
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d’Angers, 49070 Beaucouzé, France
| |
Collapse
|
133
|
Hawadak J, Kojom Foko LP, Dongang Nana RR, Yadav K, Pande V, Das A, Singh V. Genetic diversity and natural selection of apical membrane antigen-1 (ama-1) in Cameroonian Plasmodium falciparum isolates. Gene 2024; 894:147956. [PMID: 37925116 DOI: 10.1016/j.gene.2023.147956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (π = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rodrigue Roman Dongang Nana
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Institut de Recherches Médicales et D'Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon
| | - Karmveer Yadav
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Aparup Das
- ICMR-National Institute for Research in Tribal Health (NIRTH), Jabalpur, India.
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India.
| |
Collapse
|
134
|
Barroso RA, Ramos L, Moreno H, Antunes A. Evolutionary Analysis of Cnidaria Small Cysteine-Rich Proteins (SCRiPs), an Enigmatic Neurotoxin Family from Stony Corals and Sea Anemones (Anthozoa: Hexacorallia). Toxins (Basel) 2024; 16:75. [PMID: 38393153 PMCID: PMC10892658 DOI: 10.3390/toxins16020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Cnidarians (corals, sea anemones, and jellyfish) produce toxins that play central roles in key ecological processes, including predation, defense, and competition, being the oldest extant venomous animal lineage. Cnidaria small cysteine-rich proteins (SCRiPs) were the first family of neurotoxins detected in stony corals, one of the ocean's most crucial foundation species. Yet, their molecular evolution remains poorly understood. Moreover, the lack of a clear classification system has hindered the establishment of an accurate and phylogenetically informed nomenclature. In this study, we extensively surveyed 117 genomes and 103 transcriptomes of cnidarians to identify orthologous SCRiP gene sequences. We annotated a total of 168 novel putative SCRiPs from over 36 species of stony corals and 12 species of sea anemones. Phylogenetic reconstruction identified four distinct SCRiP subfamilies, according to strict discrimination criteria based on well-supported monophyly with a high percentage of nucleotide and amino acids' identity. Although there is a high prevalence of purifying selection for most SCRiP subfamilies, with few positively selected sites detected, a subset of Acroporidae sequences is influenced by diversifying positive selection, suggesting potential neofunctionalizations related to the fine-tuning of toxin potency. We propose a new nomenclature classification system relying on the phylogenetic distribution and evolution of SCRiPs across Anthozoa, which will further assist future proteomic and functional research efforts.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Hugo Moreno
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
135
|
Cuy-Chaparro L, Barney-Borrero D, Arévalo-Pinzón G, Reyes C, Moreno-Pérez DA, Patarroyo MA. Babesia bovis RON2 binds to bovine erythrocytes through a highly conserved epitope. Vet Parasitol 2024; 326:110081. [PMID: 38113611 DOI: 10.1016/j.vetpar.2023.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
B. bovis invasion of bovine erythrocytes requires tight junction formation involving AMA-1/RON2 complex interaction. RON2 has been considered a vaccine candidate since antibodies targeting the protein can inhibit parasite invasion of target cells; however, the mechanism controlling B. bovis RON2 interaction with red blood cells is not yet fully understood. This study was thus aimed at identifying B. bovis RON2 protein regions associated with interaction with bovine erythrocytes. Natural selection analysis of the ron2 gene identified predominantly negative selection signals in the C-terminal region. Interestingly, protein-cell and competition assays highlighted the RON2-C region's role in peptide 42918-mediated erythrocyte binding, probably to a sialoglycoprotein receptor. This peptide (1218SFIMVKPPALHCVLKPVETL1237) lies within an intrinsically disordered region of the RON2 secondary structure flanked by two helical residues. The study provides, for the first time, valuable insights into RON2's role in interaction with its target cells. Future studies are required for studying the peptide's potential as an anti-B. bovis vaccine component.
Collapse
Affiliation(s)
- Laura Cuy-Chaparro
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia; PhD Programme in Biotechnology, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| | - Danny Barney-Borrero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia.
| | - Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia.
| | - César Reyes
- Structure Analysis Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia.
| | - Darwin Andrés Moreno-Pérez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales [U.D.C.A.], Calle 222#55-37, Bogotá DC 111166, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia [FIDIC], Carrera 50#26-20, Bogotá DC 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| |
Collapse
|
136
|
Wang Y, Yue Y, Li C, Chen Z, Cai Y, Hu C, Qu Y, Li H, Zhou K, Yan J, Li P. Insights into the adaptive evolution of chromosome and essential traits through chromosome-level genome assembly of Gekko japonicus. iScience 2024; 27:108445. [PMID: 38205241 PMCID: PMC10776941 DOI: 10.1016/j.isci.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Gekko japonicus possesses flexible climbing and detoxification abilities under insectivorous habits. Still, the evolutionary mechanisms behind these traits remain unclarified. This study presents a chromosome-level G. japonicus genome, revealing that its evolutionary breakpoint regions were enriched with specific repetitive elements and defense response genes. Gene families unique to G. japonicus and positively selected genes are mainly enriched in immune, sensory, and nervous pathways. Expansion of bitter taste receptor type 2 primarily in insectivorous species could be associated with toxin clearance. Detox cytochrome P450 in G. japonicus has undergone more birth and death processes than biosynthesis-type P450 genes. Proline, cysteine, glycine, and serine in corneous beta proteins of G. japonicus might influence flexibility and setae adhesiveness. Certain thermosensitive transient receptor potential channels under relaxed purifying selection or positive selection in G. japonicus might enhance adaptation to climate change. This genome assembly offers insights into the adaptive evolution of gekkotans.
Collapse
Affiliation(s)
- Yinwei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Youxia Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhiyi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P.R. China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
137
|
Ge F, Arif M, Yan Z, Alahmadi H, Worachartcheewan A, Shoombuatong W. Review of Computational Methods and Database Sources for Predicting the Effects of Coding Frameshift Small Insertion and Deletion Variations. ACS OMEGA 2024; 9:2032-2047. [PMID: 38250421 PMCID: PMC10795160 DOI: 10.1021/acsomega.3c07662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
Genetic variations (including substitutions, insertions, and deletions) exert a profound influence on DNA sequences. These variations are systematically classified as synonymous, nonsynonymous, and nonsense, each manifesting distinct effects on proteins. The implementation of high-throughput sequencing has significantly augmented our comprehension of the intricate interplay between gene variations and protein structure and function, as well as their ramifications in the context of diseases. Frameshift variations, particularly small insertions and deletions (indels), disrupt protein coding and are instrumental in disease pathogenesis. This review presents a succinct review of computational methods, databases, current challenges, and future directions in predicting the consequences of coding frameshift small indels variations. We analyzed the predictive efficacy, reliability, and utilization of computational methods and variant account, reliability, and utilization of database. Besides, we also compared the prediction methodologies on GOF/LOF pathogenic variation data. Addressing the challenges pertaining to prediction accuracy and cross-species generalizability, nascent technologies such as AI and deep learning harbor immense potential to enhance predictive capabilities. The importance of interdisciplinary research and collaboration cannot be overstated for devising effective diagnosis, treatment, and prevention strategies concerning diseases associated with coding frameshift indels variations.
Collapse
Affiliation(s)
- Fang Ge
- State
Key Laboratory of Organic Electronics and lnformation Displays &
lnstitute of Advanced Materials (IAM), Nanjing University of Posts
& Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Muhammad Arif
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Zihao Yan
- School
of Computer Science and Engineering, Nanjing
University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Hanin Alahmadi
- College
of Computer Science and Engineering, Taibah
University, Madinah 344, Saudi Arabia
| | - Apilak Worachartcheewan
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Watshara Shoombuatong
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
138
|
Hopkins BR, Angus-Henry A, Kim BY, Carlisle JA, Thompson A, Kopp A. Decoupled evolution of the Sex Peptide gene family and Sex Peptide Receptor in Drosophilidae. Proc Natl Acad Sci U S A 2024; 121:e2312380120. [PMID: 38215185 PMCID: PMC10801855 DOI: 10.1073/pnas.2312380120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Across internally fertilising species, males transfer ejaculate proteins that trigger wide-ranging changes in female behaviour and physiology. Much theory has been developed to explore the drivers of ejaculate protein evolution. The accelerating availability of high-quality genomes now allows us to test how these proteins are evolving at fine taxonomic scales. Here, we use genomes from 264 species to chart the evolutionary history of Sex Peptide (SP), a potent regulator of female post-mating responses in Drosophila melanogaster. We infer that SP first evolved in the Drosophilinae subfamily and has since followed markedly different evolutionary trajectories in different lineages. Outside of the Sophophora-Lordiphosa, SP exists largely as a single-copy gene with independent losses in several lineages. Within the Sophophora-Lordiphosa, the SP gene family has repeatedly and independently expanded. Up to seven copies, collectively displaying extensive sequence variation, are present in some species. Despite these changes, SP expression remains restricted to the male reproductive tract. Alongside, we document considerable interspecific variation in the presence and morphology of seminal microcarriers that, despite the critical role SP plays in microcarrier assembly in D. melanogaster, appears to be independent of changes in the presence/absence or sequence of SP. We end by providing evidence that SP's evolution is decoupled from that of its receptor, Sex Peptide Receptor, in which we detect no evidence of correlated diversifying selection. Collectively, our work describes the divergent evolutionary trajectories that a novel gene has taken following its origin and finds a surprisingly weak coevolutionary signal between a supposedly sexually antagonistic protein and its receptor.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Aidan Angus-Henry
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA94305
| | - Jolie A. Carlisle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Ammon Thompson
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
139
|
Guo Z, Lu Q, Jin Q, Li P, Xing G, Zhang G. Phylogenetically evolutionary analysis provides insights into the genetic diversity and adaptive evolution of porcine deltacoronavirus. BMC Vet Res 2024; 20:22. [PMID: 38200538 PMCID: PMC10782762 DOI: 10.1186/s12917-023-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Porcine deltacoronavirus (PDCoV) is one of the emerging swine enteric coronaviruses (SECoVs), which has been widely prevalent in the North America and Asia. In addition to causing severe diarrhea in piglets, PDCoV also shows the potential to infect diverse host species, including calves, chickens, turkey poults, and humans. However, the clinical pathogenicity and genetic evolution of PDCoV is still not fully understood. RESULTS Here, we recorded an outbreak of a novel recombinant PDCoV strain (CHN-HeN06-2022) in a large nursery fattening pig farm. Genomic analysis showed that the CHN-HeN06-2022 strain shared 98.3-98.7% sequence identities with the Chinese and American reference strains. To clarify the evolutionary relationships, phylogenetic analysis was performed using the PDCoV genome sequences available in the GenBank database. Based on genetic distance and geographical distribution, the phylogenetic tree clearly showed that all the PDCoV sequences could be divided into lineage 1 and lineage 2, which were further classified into sublineage 1.1 (Chinese strains), 1.2 (the North American strains), 2.1 (the Southeast Asian strains), and 2.2 (Chinese strains). Corresponding to the evolutionary tree, we found that, compared to lineage 1, lineage 2 strains usually contain a continuous 6-nt deletion in Nsp2 and a 9-nt deletion in Nsp3, respectively. Furthermore, recombination analysis suggested that the CHN-HeN06-2022 occurred segments exchange crossed Nsp2 and Nsp3 region between sublineage 1.1 and sublineage 2.1. Combined with previously reported recombinant strains, the highest recombination frequency occurred in Nsp2, Nsp3, and S gene. Additionally, we identified a total of 14 amino acid sites under positive selection in spike protein, most of which are located in the regions related with the viral attachment, receptor binding, and membrane fusion. CONCLUSIONS Taken together, our studies provide novel insights into the genetic diversity and adaptive evolution of PDCoV. It would be helpful to the development of vaccine and potential antiviral agent.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Peng Li
- Vet Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
140
|
Zheng Y, Tian X, Wang R, Yao X, Zhang W, Yin Q, Li F, Nie K, Cui Q, Xu S, Fu S, Li H, Cheng J, Wang H. Genetic Characteristics of Wuxiang Virus in Shanxi Province, China. Viruses 2024; 16:103. [PMID: 38257803 PMCID: PMC10818450 DOI: 10.3390/v16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Wuxiang virus (WUXV) is the first sandfly-borne Phlebovirus isolated from Phlebotomus chinensis collected in China and has been established as a consistent viral presence in the local sandfly populations of both Wuxiang County and Yangquan City. However, its distribution in the Shanxi Province remains unclear. In this study, three novel WUXV strains were isolated from sandflies collected from Jiexiu City, Shanxi Province, China, in 2022. Subsequently, whole-genome sequences of these novel strains were generated using next-generation sequencing. The open reading frame (ORF) sequences of the WUXV strains from the three locations were subjected to gene analysis. Phylogenetic analysis revealed that WUXV belongs to two distinct clades with geographical differences. Strains from Wuxiang County and Yangquan City belonged to clade 1, whereas strains from Jiexiu City belonged to clade 2. Reassortment and recombination analyses indicated no gene reassortment or recombination between the two clades. However, four reassortments or recombination events could be detected in clade 1 strains. By aligning the amino acid sequences, eighty-seven mutation sites were identified between the two clades, with seventeen, sixty, nine, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Additionally, selection pressure analysis identified 17 positively selected sites across the entire genome of WUXV, with two, thirteen, one, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Notably, sites M-312 and M-340 in the M segment not only represented mutation sites but also showed positive selective pressure effects. These findings highlight the need for continuous nationwide surveillance of WUXV.
Collapse
Affiliation(s)
- Yuke Zheng
- Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Xiaodong Tian
- Shanxi Province Center for Disease Control and Prevention, Taiyuan 030012, China;
| | - Ruichen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Xiaohui Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weijia Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Qikai Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Kai Nie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Qianqian Cui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Songtao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| | - Hao Li
- Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Jingxia Cheng
- Shanxi Province Center for Disease Control and Prevention, Taiyuan 030012, China;
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (X.Y.); (W.Z.); (Q.Y.); (F.L.); (K.N.); (Q.C.); (S.X.); (S.F.)
| |
Collapse
|
141
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid Emergence and Evolution of SARS-CoV-2 Variants in Advanced HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574420. [PMID: 38313289 PMCID: PMC10836083 DOI: 10.1101/2024.01.05.574420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/μL. In PWOH and PWH with CD4 counts ≥200 cells/μL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD 21218, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
142
|
Labutin A, Heckel G. Genome-wide support for incipient Tula hantavirus species within a single rodent host lineage. Virus Evol 2024; 10:veae002. [PMID: 38361825 PMCID: PMC10868551 DOI: 10.1093/ve/veae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Evolutionary divergence of viruses is most commonly driven by co-divergence with their hosts or through isolation of transmission after host shifts. It remains mostly unknown, however, whether divergent phylogenetic clades within named virus species represent functionally equivalent byproducts of high evolutionary rates or rather incipient virus species. Here, we test these alternatives with genomic data from two widespread phylogenetic clades in Tula orthohantavirus (TULV) within a single evolutionary lineage of their natural rodent host, the common vole Microtus arvalis. We examined voles from forty-two locations in the contact region between clades for TULV infection by reverse transcription (RT)-PCR. Sequencing yielded twenty-three TULV Central North and twenty-one TULV Central South genomes, which differed by 14.9-18.5 per cent at the nucleotide and 2.2-3.7 per cent at the amino acid (AA) level without evidence of recombination or reassortment between clades. Geographic cline analyses demonstrated an abrupt (<1 km wide) transition between the parapatric TULV clades in continuous landscape. This transition was located within the Central mitochondrial lineage of M. arvalis, and genomic single nucleotide polymorphisms showed gradual mixing of host populations across it. Genomic differentiation of hosts was much weaker across the TULV Central North to South transition than across the nearby hybrid zone between two evolutionary lineages in the host. We suggest that these parapatric TULV clades represent functionally distinct, incipient species, which are likely differently affected by genetic polymorphisms in the host. This highlights the potential of natural viral contact zones as systems for investigating the genetic and evolutionary factors enabling or restricting the transmission of RNA viruses.
Collapse
Affiliation(s)
- Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| |
Collapse
|
143
|
Feng Y, Yi J, Yang L, Wang Y, Wen J, Zhao W, Kim P, Zhou X. COV2Var, a function annotation database of SARS-CoV-2 genetic variation. Nucleic Acids Res 2024; 52:D701-D713. [PMID: 37897356 PMCID: PMC10767816 DOI: 10.1093/nar/gkad958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has resulted in the loss of millions of lives and severe global economic consequences. Every time SARS-CoV-2 replicates, the viruses acquire new mutations in their genomes. Mutations in SARS-CoV-2 genomes led to increased transmissibility, severe disease outcomes, evasion of the immune response, changes in clinical manifestations and reducing the efficacy of vaccines or treatments. To date, the multiple resources provide lists of detected mutations without key functional annotations. There is a lack of research examining the relationship between mutations and various factors such as disease severity, pathogenicity, patient age, patient gender, cross-species transmission, viral immune escape, immune response level, viral transmission capability, viral evolution, host adaptability, viral protein structure, viral protein function, viral protein stability and concurrent mutations. Deep understanding the relationship between mutation sites and these factors is crucial for advancing our knowledge of SARS-CoV-2 and for developing effective responses. To fill this gap, we built COV2Var, a function annotation database of SARS-CoV-2 genetic variation, available at http://biomedbdc.wchscu.cn/COV2Var/. COV2Var aims to identify common mutations in SARS-CoV-2 variants and assess their effects, providing a valuable resource for intensive functional annotations of common mutations among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yuzhou Feng
- Department of Laboratory Medicine and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Jiahao Yi
- School of Big Health, Guizhou Medical University, Guiyang 550025, China
| | - Lin Yang
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanfei Wang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
144
|
Russo CAM, Eyre-Walker A, Katz LA, Gaut BS. Forty Years of Inferential Methods in the Journals of the Society for Molecular Biology and Evolution. Mol Biol Evol 2024; 41:msad264. [PMID: 38197288 PMCID: PMC10763999 DOI: 10.1093/molbev/msad264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
We are launching a series to celebrate the 40th anniversary of the first issue of Molecular Biology and Evolution. In 2024, we will publish virtual issues containing selected papers published in the Society for Molecular Biology and Evolution journals, Molecular Biology and Evolution and Genome Biology and Evolution. Each virtual issue will be accompanied by a perspective that highlights the historic and contemporary contributions of our journals to a specific topic in molecular evolution. This perspective, the first in the series, presents an account of the broad array of methods that have been published in the Society for Molecular Biology and Evolution journals, including methods to infer phylogenies, to test hypotheses in a phylogenetic framework, and to infer population genetic processes. We also mention many of the software implementations that make methods tractable for empiricists. In short, the Society for Molecular Biology and Evolution community has much to celebrate after four decades of publishing high-quality science including numerous important inferential methods.
Collapse
Affiliation(s)
- Claudia A M Russo
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Brandon S Gaut
- School of Biological Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
145
|
Graham AM, Lavretsky P, Wilson RE, McCracken KG. High-altitude adaptation is accompanied by strong signatures of purifying selection in the mitochondrial genomes of three Andean waterfowl. PLoS One 2024; 19:e0294842. [PMID: 38170710 PMCID: PMC10763953 DOI: 10.1371/journal.pone.0294842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Evidence from a variety of organisms points to convergent evolution on the mitochondria associated with a physiological response to oxygen deprivation or temperature stress, including mechanisms for high-altitude adaptation. Here, we examine whether demography and/or selection explains standing mitogenome nucleotide diversity in high-altitude adapted populations of three Andean waterfowl species: yellow-billed pintail (Anas georgica), speckled teal (Anas flavirostris), and cinnamon teal (Spatula cyanoptera). We compared a total of 60 mitogenomes from each of these three duck species (n = 20 per species) across low and high altitudes and tested whether part(s) or all of the mitogenome exhibited expected signatures of purifying selection within the high-altitude populations of these species. Historical effective population sizes (Ne) were inferred to be similar between high- and low-altitude populations of each species, suggesting that selection rather than genetic drift best explains the reduced genetic variation found in mitochondrial genes of high-altitude populations compared to low-altitude populations of the same species. Specifically, we provide evidence that establishment of these three Andean waterfowl species in the high-altitude environment, coincided at least in part with a persistent pattern of negative purifying selection acting on oxidative phosphorylation (OXPHOS) function of the mitochondria. Our results further reveal that the extent of gene-specific purifying selection has been greatest in the speckled teal, the species with the longest history of high-altitude occupancy.
Collapse
Affiliation(s)
- Allie M. Graham
- Eccles Institute for Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States of America
| | - Robert E. Wilson
- School of Natural Resources and Nebraska State Museum, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Kevin G. McCracken
- Department of Biology, University of Miami, Coral Gables, FL, United States of America
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States of America
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, United States of America
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| |
Collapse
|
146
|
Kjellin J, Lee D, Steinsland H, Dwane R, Barth Vedoy O, Hanevik K, Koskiniemi S. Colicins and T6SS-based competition systems enhance enterotoxigenic E. coli (ETEC) competitiveness. Gut Microbes 2024; 16:2295891. [PMID: 38149626 PMCID: PMC10761095 DOI: 10.1080/19490976.2023.2295891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023] Open
Abstract
Diarrheal diseases are still a significant problem for humankind, causing approximately half a million deaths annually. To cause diarrhea, enteric bacterial pathogens must first colonize the gut, which is a niche occupied by the normal bacterial microbiota. Therefore, the ability of pathogenic bacteria to inhibit the growth of other bacteria can facilitate the colonization process. Although enterotoxigenic Escherichia coli (ETEC) is one of the major causative agents of diarrheal diseases, little is known about the competition systems found in and used by ETEC and how they contribute to the ability of ETEC to colonize a host. Here, we collected a set of 94 fully assembled ETEC genomes by performing whole-genome sequencing and mining the NCBI RefSeq database. Using this set, we performed a comprehensive search for delivered bacterial toxins and investigated how these toxins contribute to ETEC competitiveness in vitro. We found that type VI secretion systems (T6SS) were widespread among ETEC (n = 47). In addition, several closely related ETEC strains were found to encode Colicin Ia and T6SS (n = 8). These toxins provide ETEC competitive advantages during in vitro competition against other E. coli, suggesting that the role of T6SS as well as colicins in ETEC biology has until now been underappreciated.
Collapse
Affiliation(s)
- Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Danna Lee
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Hans Steinsland
- CISMAC, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rachel Dwane
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Oda Barth Vedoy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National centre for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
147
|
Ferrareze PAG, Cybis GB, de Oliveira LFV, Zimerman RA, Schiavon DEB, Peter C, Thompson CE. Intense P.1 (Gamma) diversification followed by rapid Delta substitution in Southern Brazil: a SARS-CoV-2 genomic epidemiology study. Microbes Infect 2024; 26:105216. [PMID: 37827275 DOI: 10.1016/j.micinf.2023.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023]
Abstract
The analyses of genetic traits, dispersion patterns and phylogenomics are essential for understanding the evolutionary forces driving SARS-CoV-2 viruses in these three years of COVID-19 pandemics. Brazil is one of the most affected countries in the world and not sufficient genomic studies have been performed. The emergence of P.1 lineage led to one of the most serious public health crises on record. Our study presents the genomic sequencing and characterization of 412 samples from Rio Grande do Sul state, in the Brazilian Southern region, during Gamma and Delta epidemic waves, in 2021. Additionally, molecular evolution tests were performed to identify positively selected sites in Brazil between 2020 and 2022, as well as offer some evolutionary perspective about the maintenance of multiple spike mutations in Omicron lineages. Genomic epidemiology analysis has indicated an intense P.1 (Gamma) diversification followed by rapid Delta substitution in Southern Brazil.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gabriela Betella Cybis
- Department of Statistics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Dieine Estela Bernieri Schiavon
- Undergraduate Program in Biomedical Informatics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
148
|
Arbanasić H, Medrano-González L, Hrenar T, Mikelić A, Gomerčić T, Svetličić I, Pavlinec Ž, Đuras M, Galov A. Recent selection created distinctive variability patterns on MHC class II loci in three dolphin species from the Mediterranean Sea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105079. [PMID: 37832898 DOI: 10.1016/j.dci.2023.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic genes involved in antigen presentation, which is crucial for adaptive immune response. They represent fitness related genetic markers particularly informative for populations exposed to environmental challenges. Here we analyse the diversity and evolutionary traits of MHC class II DQA and DQB genes in the dolphins Stenella coeruleoalba and Grampus griseus from the Mediterranean Sea. We found substantial nucleotide and functional diversity, as well as strong evidence of balancing selection indicated by allele and supertype frequencies, Tajima's D statistics and dN/dS tests. The Risso's dolphin, considered the least abundant in the region, showed the effect of divergent allele advantage at the nucleotide and functional-peptide levels. An outstanding polymorphism was found in the striped dolphin, particularly intriguing in the DQA gene where the Ewens-Watterson test detected a selection sweep that occurred in recent history. We hypothesize that morbillivirus, which has recurrently invaded Mediterranean populations over the last decades, exerted the detected selective pressure.
Collapse
Affiliation(s)
- Haidi Arbanasić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Luis Medrano-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tomica Hrenar
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Ana Mikelić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ida Svetličić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Željko Pavlinec
- Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000, Zagreb, Croatia.
| | - Martina Đuras
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ana Galov
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
149
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
150
|
Franzo G, Faustini G, Tucciarone CM, Pasotto D, Legnardi M, Cecchinato M. Conflicting Evidence between Clinical Perception and Molecular Epidemiology: The Case of Fowl Adenovirus D. Animals (Basel) 2023; 13:3851. [PMID: 38136888 PMCID: PMC10741239 DOI: 10.3390/ani13243851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The obtained results demonstrated the long-term circulation of this species, at least several decades before the first identification of the disease. After a period of progressive increase, the viral population showed a high-level circulation from approximately the 1960s to the beginning of the new millennium, mirroring the expansion of intensive poultry production and animal trade. At the same time, strain migration occurred mainly from Europe to other continents, although other among-continent connections were estimated. Thereafter, the viral population declined progressively, likely due to the improved control measures, potentially including the development and application of FAdV vaccines. An increase in the viral evolutionary rate featured this phase. A role of vaccine-induced immunity in shaping viral evolution could thus be hypothesized. Accordingly, several sites of the Hexon, especially those targeted by the host response were proven under a significant pervasive or episodic diversifying selection. The present study results demonstrate the role of intensive poultry production and market globalization in the rise of FAdV. The applied control strategies, on the other hand, were effective in limiting viral circulation and shaping its evolution.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy; (G.F.); (C.M.T.); (D.P.); (M.L.); (M.C.)
| | | | | | | | | | | |
Collapse
|