101
|
de Oliveira RZ, de Oliveira Buono F, Cressoni ACL, Penariol LBC, Padovan CC, Tozetti PA, Poli-Neto OB, Ferriani RA, Orellana MD, Rosa-E-Silva JC, Meola J. Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women. Reprod Sci 2022; 29:734-742. [PMID: 35075610 DOI: 10.1007/s43032-022-00860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
The key relationship between Sampson's theory and the presence of mesenchymal stem cells in the menstrual flow (MenSCs), as well as the changes in post-transcriptional regulatory processes as actors in the etiopathogenesis of endometriosis, are poorly understood. No study to date has investigated the imbalance of miRNAs in MenSCs related to the disease. Thus, through literature and in silico analyses, we selected four predicted miRNAs as regulators of EGR1, SNAI1, NR4A1, NR4A2, ID1, LAMC3, and FOSB involved in pathways of apoptosis, angiogenesis, response to steroid hormones, migration, differentiation, and cell proliferation. These genes are frequently overexpressed in the endometriosis condition in our group studies. They were the trigger for the miRNAs search. Therefore, a case-control study was conducted with MenSCs of women with and without endometriosis (ten samples per group). Crossing information obtained from the STRING, PubMed, miRPathDB, miRWalk, and DIANA TOOLS databases, we chose to explore the expression of miR-21-5p, miR-100-5p, miR-143-3p, and miR-200b-3p by RT-qPCR. We found an upregulation of the miR-200b-3p in endometriosis MenSCs (P = 0.0207), with a 7.93-fold change (ratio of geometric means) compared to control. Overexpression of miR-200b has been associated with increased cell proliferation, stemness, and accentuated mesenchymal-epithelial transition process in eutopic endometrium of endometriosis. We believe that dysregulated miR-200b-3p may establish primary changes in the MenSCs, thus favoring tissue implantation at the ectopic site.
Collapse
Affiliation(s)
- Rafael Zucco de Oliveira
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fabiana de Oliveira Buono
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Clara Lagazzi Cressoni
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Letícia Bruna Corrêa Penariol
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Patricia Aparecida Tozetti
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Omero Benedito Poli-Neto
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Maristela Delgado Orellana
- Center for Cell Therapy and Reginal Blood Center, University of São Paulo, Ribeirão Preto, São Paulo, 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
| |
Collapse
|
102
|
Zhang S, Amahong K, Zhang C, Li F, Gao J, Qiu Y, Zhu F. RNA-RNA interactions between SARS-CoV-2 and host benefit viral development and evolution during COVID-19 infection. Brief Bioinform 2022; 23:bbab397. [PMID: 34585235 PMCID: PMC8500159 DOI: 10.1093/bib/bbab397] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Some studies reported that genomic RNA of SARS-CoV-2 can absorb a few host miRNAs that regulate immune-related genes and then deprive their function. In this perspective, we conjecture that the absorption of the SARS-CoV-2 genome to host miRNAs is not a coincidence, which may be an indispensable approach leading to viral survival and development in host. In our study, we collected five datasets of miRNAs that were predicted to interact with the genome of SARS-CoV-2. The targets of these miRNAs in the five groups were consistently enriched immune-related pathways and virus-infectious diseases. Interestingly, the five datasets shared no one miRNA but their targets shared 168 genes. The signaling pathway enrichment of 168 shared targets implied an unbalanced immune response that the most of interleukin signaling pathways and none of the interferon signaling pathways were significantly different. Protein-protein interaction (PPI) network using the shared targets showed that PPI pairs, including IL6-IL6R, were related to the process of SARS-CoV-2 infection and pathogenesis. In addition, we found that SARS-CoV-2 absorption to host miRNA could benefit two popular mutant strains for more infectivity and pathogenicity. Conclusively, our results suggest that genomic RNA absorption to host miRNAs may be a vital approach by which SARS-CoV-2 disturbs the host immune system and infects host cells.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences in Zhejiang University, and the First Affiliated Hospital of Zhejiang University School of Medicine, China
| | | | - Chenyang Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yunqing Qiu
- First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
103
|
Dorna MS, Barbosa EMS, Callegari MA, Tanni SE, Chiuso-Minicucci F, Felix TF, Seneda AL, Correa CR, Fernandes AAH, Azevedo PS, Polegato BF, Rogero MM, Paiva SAR, Zornoff LAM, Reis PP, Minicucci MF. Orange Juice Attenuates Circulating miR-150-5p, miR-25-3p, and miR-451a in Healthy Smokers: A Randomized Crossover Study. Front Nutr 2022; 8:775515. [PMID: 35004810 PMCID: PMC8740272 DOI: 10.3389/fnut.2021.775515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Tobacco smoke is associated with oxidative and inflammatory pathways, increasing the risk of chronic-degenerative diseases. Our goal was to evaluate the effects of acute “Pera” and “Moro” orange juice consumption on inflammatory processes and oxidative stress in microRNA (miRNA) expression in plasma from healthy smokers. Methods: This was a randomized crossover study that included healthy smokers over 18 years old. Blood samples were collected before and 11 h after beverage ingestion. Participants were instructed to drink 400 mL of Pera orange juice (Citrus sinensis), Moro orange juice (Citrus sinensis L. Osbeck), or water. Each subject drank the beverages in a 3-way crossover study design. Inflammatory and oxidative stress biomarkers and circulating miRNA expression profiles were determined. The subjects maintained their usual tobacco exposure during the experiment. Results: We included 18 individuals (12 men and 6 women), with 37.0 ± 12.0 years old. All subjects received the 3 interventions. Increased expression of circulating miRNAs (miR-150-5p, miR-25-3p, and miR-451a) was verified after cigarette smoking, which were attenuated after intake of both types of orange juice. There was no difference regarding serum levels of TNF-α, IL-6, MMP-9, and C-reactive protein. Despite the increased activity of serum superoxide dismutase and glutathione peroxidase after “Pera” or “Moro” orange juice intake, respectively, no changes in lipid hydroperoxide levels were detected. Conclusion: Tobaccos smokers showed increased expression of miR-150-5p, miR-25-3p, and miR-451a was noted, and attenuated by orange juice intake. miRNAs were predicted to regulate 244 target genes with roles in oxidative stress, PI3K-Akt, and MAPK signaling, which are pathways frequently involved in smoking-related cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Mariana S Dorna
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Elizabete M S Barbosa
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Matheus A Callegari
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Suzana E Tanni
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Fernanda Chiuso-Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Tainara F Felix
- Experimental Research Unit, São Paulo State University, UNESP, Botucatu, Brazil
| | - Ana L Seneda
- Experimental Research Unit, São Paulo State University, UNESP, Botucatu, Brazil
| | - Camila R Correa
- Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Ana A H Fernandes
- Chemistry and Biochemistry Department, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil
| | - Paula S Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Bertha F Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, USP - University of São Paulo, São Paulo, Brazil
| | - Sergio A R Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| | - Patricia P Reis
- Experimental Research Unit, São Paulo State University, UNESP, Botucatu, Brazil.,Department of Surgery and Orthopedics, São Paulo State University, UNESP, Botucatu, Brazil
| | - Marcos F Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|
104
|
Kieran NW, Suresh R, Dorion MF, MacDonald A, Blain M, Wen D, Fuh SC, Ryan F, Diaz RJ, Stratton JA, Ludwin SK, Sonnen JA, Antel J, Healy LM. MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. J Neuroinflammation 2022; 19:10. [PMID: 34991629 PMCID: PMC8740343 DOI: 10.1186/s12974-021-02373-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Astrocytes are the most numerous glial cell type with important roles in maintaining homeostasis and responding to diseases in the brain. Astrocyte function is subject to modulation by microRNAs (miRs), which are short nucleotide strands that regulate protein expression in a post-transcriptional manner. Understanding the miR expression profile of astrocytes in disease settings provides insight into the cellular stresses present in the microenvironment and may uncover pathways of therapeutic interest.
Methods Laser-capture microdissection was used to isolate human astrocytes surrounding stroke lesions and those from neurological control tissue. Astrocytic miR expression profiles were examined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Primary human fetal astrocytes were cultured under in vitro stress conditions and transfection of a miR mimic was used to better understand how altered levels of miR-210 affect astrocyte function. The astrocytic response to stress was studied using qPCR, enzyme-linked immunosorbent assays (ELISAs), measurement of released lactate, and Seahorse. Results Here, we measured miR expression levels in astrocytes around human ischemic stroke lesions and observed differential expression of miR-210 in chronic stroke astrocytes compared to astrocytes from neurological control tissue. We also identified increased expression of miR-210 in mouse white matter tissue around middle cerebral artery occlusion (MCAO) brain lesions. We aimed to understand the role of miR-210 in primary human fetal astrocytes by developing an in vitro assay of hypoxic, metabolic, and inflammatory stresses. A combination of hypoxic and inflammatory stresses was observed to upregulate miR-210 expression. Transfection with miR-210-mimic (210M) increased glycolysis, enhanced lactate export, and promoted an anti-inflammatory transcriptional and translational signature in astrocytes. Additionally, 210M transfection resulted in decreased expression of complement 3 (C3) and semaphorin 5b (Sema5b). Conclusions We conclude that miR-210 expression in human astrocytes is modulated in response to ischemic stroke disease and under in vitro stress conditions, supporting a role for miR-210 in the astrocytic response to disease conditions. Further, the anti-inflammatory and pro-glycolytic impact of miR-210 on astrocytes makes it a potential candidate for further research as a neuroprotective agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02373-y.
Collapse
Affiliation(s)
- Nicholas W Kieran
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Marie-France Dorion
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adam MacDonald
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Dingke Wen
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Shih-Chieh Fuh
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Roberto J Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Samuel K Ludwin
- Department of Pathology, Queen's University, Kingston, ON, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
105
|
Turning Data to Knowledge: Online Tools, Databases, and Resources in microRNA Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:133-160. [DOI: 10.1007/978-3-031-08356-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
106
|
Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. J Clin Med 2021; 11:jcm11010005. [PMID: 35011745 PMCID: PMC8745173 DOI: 10.3390/jcm11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The current gold standard biomarker for myocardial infarction (MI), cardiac troponin (cTn), is recognized for its high sensitivity and organ specificity; however, it lacks diagnostic specificity. Numerous studies have introduced circulating microRNAs as potential biomarkers for MI. This study investigates the MI-specificity of these serum microRNAs by investigating myocardial stress/injury due to strenuous exercise. Methods: MicroRNA biomarkers were retrieved by comprehensive review of 109 publications on diagnostic serum microRNAs for MI. MicroRNA levels were first measured by next-generation sequencing in pooled sera from runners (n = 46) before and after conducting a full competitive marathon. Hereafter, reverse transcription quantitative real-time PCR (qPCR) of 10 selected serum microRNAs in 210 marathon runners was performed (>10,000 qPCR measurements). Results: 27 potential diagnostic microRNA for MI were retrieved by the literature review. Eight microRNAs (miR-1-3p, miR-21-5p, miR-26a-5p, miR-122-5p, miR-133a-3p, miR-142-5p, miR-191-5p, miR-486-3p) showed positive correlations with cTnT in marathon runners, whereas two miRNAs (miR-134-5p and miR-499a-5p) showed no correlations. Upregulation of miR-133a-3p (p = 0.03) and miR-142-5p (p = 0.01) went along with elevated cTnT after marathon. Conclusion: Some MI-associated microRNAs (e.g., miR-133a-3p and miR-142-5p) have similar kinetics under strenuous exercise and MI as compared to cTnT, which suggests that their diagnostic specificity could be limited. In contrast, several MI-associated microRNAs (miR-26a-5p, miR-134-5p, miR-191-5p) showed different release behavior; hence, combining cTnT with these microRNAs within a multi-marker strategy may add diagnostic accuracy in MI.
Collapse
|
107
|
Huang Z, Han Y, Liu L, Cui Q, Zhou Y. LE-MDCAP: A Computational Model to Prioritize Causal miRNA-Disease Associations. Int J Mol Sci 2021; 22:ijms222413607. [PMID: 34948403 PMCID: PMC8706837 DOI: 10.3390/ijms222413607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are associated with various complex human diseases and some miRNAs can be directly involved in the mechanisms of disease. Identifying disease-causative miRNAs can provide novel insight in disease pathogenesis from a miRNA perspective and facilitate disease treatment. To date, various computational models have been developed to predict general miRNA-disease associations, but few models are available to further prioritize causal miRNA-disease associations from non-causal associations. Therefore, in this study, we constructed a Levenshtein-Distance-Enhanced miRNA-disease Causal Association Predictor (LE-MDCAP), to predict potential causal miRNA-disease associations. Specifically, Levenshtein distance matrixes covering the sequence, expression and functional miRNA similarities were introduced to enhance the previous Gaussian interaction profile kernel-based similarity matrix. LE-MDCAP integrated miRNA similarity matrices, disease semantic similarity matrix and known causal miRNA-disease associations to make predictions. For regular causal vs. non-disease association discrimination task, LF-MDCAP achieved area under the receiver operating characteristic curve (AUROC) of 0.911 and 0.906 in 10-fold cross-validation and independent test, respectively. More importantly, LE-MDCAP prominently outperformed the previous MDCAP model in distinguishing causal versus non-causal miRNA-disease associations (AUROC 0.820 vs. 0.695). Case studies performed on diabetic retinopathy and hsa-mir-361 also validated the accuracy of our model. In summary, LE-MDCAP could be useful for screening causal miRNA-disease associations from general miRNA-disease associations.
Collapse
|
108
|
Transient Hyperglycemia and Hypoxia Induce Memory Effects in AngiomiR Expression Profiles of Feto-Placental Endothelial Cells. Int J Mol Sci 2021; 22:ijms222413378. [PMID: 34948175 PMCID: PMC8705946 DOI: 10.3390/ijms222413378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Gestational diabetes (GDM) and preeclampsia (PE) are associated with fetal hyperglycemia, fetal hypoxia, or both. These adverse conditions may compromise fetal and placental endothelial cells. In fact, GDM and PE affect feto-placental endothelial function and also program endothelial function and cardiovascular disease risk of the offspring in the long-term. MicroRNAs are short, non-coding RNAs that regulate protein translation and fine tune biological processes. A group of microRNAs termed angiomiRs is particularly involved in the regulation of endothelial function. We hypothesized that transient hyperglycemia and hypoxia may alter angiomiR expression in feto-placental endothelial cells (fpEC). Thus, we isolated primary fpEC after normal, uncomplicated pregnancy, and induced hyperglycemia (25 mM) and hypoxia (6.5%) for 72 h, followed by reversal to normal conditions for another 72 h. Current vs. transient effects on angiomiR profiles were analyzed by RT-qPCR and subjected to miRNA pathway analyses using DIANA miRPath, MIENTURNET and miRPathDB. Both current and transient hypoxia affected angiomiR profile stronger than current and transient hyperglycemia. Both stimuli altered more angiomiRs transiently, i.e., followed by 72 h culture at control conditions. Pathway analysis revealed that hypoxia significantly altered the pathway ‘Proteoglycans in cancer’. Transient hypoxia specifically affected miRNAs related to ‘adherens junction’. Our data reveal that hyperglycemia and hypoxia induce memory effects on angiomiR expression in fpEC. Such memory effects may contribute to long-term adaption and maladaption to hyperglycemia and hypoxia.
Collapse
|
109
|
Wu J, Liu X, Shao J, Zhang Y, Lu R, Xue H, Xu Y, Wang L, Zhou H, Yu L, Yue M, Dong C. Expression of plasma IFN signaling-related miRNAs during acute SARS-CoV-2 infection and its association with RBD-IgG antibody response. Virol J 2021; 18:244. [PMID: 34876159 PMCID: PMC8649682 DOI: 10.1186/s12985-021-01717-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a huge challenge worldwide. Although previous studies have suggested that type I interferon (IFN-I) could inhibit the virus replication, the expression characteristics of IFN-I signaling-related miRNAs (ISR-miRNAs) during acute severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and its relationship with receptor-binding domain (RBD) IgG antibody response at the recovery phase remain unclear. METHODS Expression profiles of 12 plasma ISR-miRNAs in COVID-19 patients and healthy controls were analyzed using RT-qPCR. The level of RBD-IgG antibody was determined using the competitive ELISA. Spearman correlation was done to measure the associations of plasma ISR-miRNAs with clinical characteristics during acute SARS-CoV-2 infection and RBD-IgG antibody response at the recovery phase. RESULTS Compared with the healthy controls, COVID-19 patients exhibited higher levels of miR-29b-3p (Z = 3.15, P = 0.002) and miR-1246 (Z = 4.98, P < 0.001). However, the expression of miR-186-5p and miR-15a-5p were significantly decreased. As the results shown, miR-30b-5p was negatively correlated with CD4 + T cell counts (r = - 0.41, P = 0.027) and marginally positively correlated with fasting plasma glucose in COVID-19 patients (r = 0.37, P = 0.052). The competitive ELISA analysis showed the plasma level of miR-497-5p at the acute phase was positively correlated with RBD-IgG antibody response (r = 0.48, P = 0.038). CONCLUSIONS Our present results suggested that the expression level of ISR-miRNAs was not only associated with acute SARS-CoV-2 infection but also with RBD-IgG antibody response at the recovery phase of COVID-19. Future studies should be performed to explore the biological significance of ISR-miRNAs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jing Wu
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, China
| | - Xingxiang Liu
- Department of Clinical Laboratory, Huai'an Fourth People's Hospital, Huai'an, China
| | | | - Yuanyuan Zhang
- Department of Clinical Laboratory, Huai'an Fourth People's Hospital, Huai'an, China
| | - Renfei Lu
- Nantong Third People's Hospital, Nantong, China
| | - Hong Xue
- Nantong Third People's Hospital, Nantong, China
| | - Yunfang Xu
- Department of Clinical Laboratory, Huai'an Fourth People's Hospital, Huai'an, China
| | - Lijuan Wang
- Department of Clinical Laboratory, Huai'an Fourth People's Hospital, Huai'an, China
| | - Hui Zhou
- Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
| | - Lugang Yu
- Suzhou Industrial Park Centers for Disease Control and Prevention, Soochow, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chen Dong
- Department of Epidemiology and Statistics, School of Public Health, Medical College of Soochow University, Soochow, China.
| |
Collapse
|
110
|
Human microRNA similarity in breast cancer. Biosci Rep 2021; 41:229885. [PMID: 34612484 PMCID: PMC8529337 DOI: 10.1042/bsr20211123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in a variety of human diseases, including breast cancer. A number of miRNAs are up- and down-regulated in breast cancer. However, little is known about miRNA similarity and similarity network in breast cancer. Here, a collection of 272 breast cancer-associated miRNA precursors (pre-miRNAs) were utilized to calculate similarities of sequences, target genes, pathways and functions and construct a combined similarity network. Well-characterized miRNAs and their similarity network were highlighted. Interestingly, miRNA sequence-dependent similarity networks were not identified in spite of sequence–target gene association. Similarity networks with minimum and maximum number of miRNAs originate from pathway and mature sequence, respectively. The breast cancer-associated miRNAs were divided into seven functional classes (classes I–VII) followed by disease enrichment analysis and novel miRNA-based disease similarities were found. The finding would provide insight into miRNA similarity, similarity network and disease heterogeneity in breast cancer.
Collapse
|
111
|
Rincón-Riveros A, Morales D, Rodríguez JA, Villegas VE, López-Kleine L. Bioinformatic Tools for the Analysis and Prediction of ncRNA Interactions. Int J Mol Sci 2021; 22:11397. [PMID: 34768830 PMCID: PMC8583695 DOI: 10.3390/ijms222111397] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play prominent roles in the regulation of gene expression via their interactions with other biological molecules such as proteins and nucleic acids. Although much of our knowledge about how these ncRNAs operate in different biological processes has been obtained from experimental findings, computational biology can also clearly substantially boost this knowledge by suggesting possible novel interactions of these ncRNAs with other molecules. Computational predictions are thus used as an alternative source of new insights through a process of mutual enrichment because the information obtained through experiments continuously feeds through into computational methods. The results of these predictions in turn shed light on possible interactions that are subsequently validated experimentally. This review describes the latest advances in databases, bioinformatic tools, and new in silico strategies that allow the establishment or prediction of biological interactions of ncRNAs, particularly miRNAs and lncRNAs. The ncRNA species described in this work have a special emphasis on those found in humans, but information on ncRNA of other species is also included.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia;
| | - Duvan Morales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá 111221, Colombia;
| | - Victoria E. Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| |
Collapse
|
112
|
Prompsy PB, Toubia J, Gearing LJ, Knight RL, Forster SC, Bracken CP, Gantier MP. Making use of transcription factor enrichment to identify functional microRNA-regulons. Comput Struct Biotechnol J 2021; 19:4896-4903. [PMID: 34522293 PMCID: PMC8426468 DOI: 10.1016/j.csbj.2021.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
microRNAs (miRNAs) are important modulators of messenger RNA stability and translation, controlling wide gene networks. Albeit generally modest on individual targets, the regulatory effect of miRNAs translates into meaningful pathway modulation through concurrent targeting of regulons with functional convergence. Identification of miRNA-regulons is therefore essential to understand the function of miRNAs and to help realise their therapeutic potential, but it remains challenging due to the large number of false positive target sites predicted per miRNA. In the current work, we investigated whether genes regulated by a given miRNA were under the transcriptional control of a predominant transcription factor (TF). Strikingly we found that for ~50% of the miRNAs analysed, their targets were significantly enriched in at least one common TF. We leveraged such miRNA-TF co-regulatory networks to identify pathways under miRNA control, and demonstrated that filtering predicted miRNA-target interactions (MTIs) relying on such pathways significantly enriched the proportion of predicted true MTIs. To our knowledge, this is the first description of an in- silico pipeline facilitating the identification of miRNA-regulons, to help understand miRNA function.
Collapse
Affiliation(s)
- Pacôme B Prompsy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.,CNRS UMR3244, Institut Curie, PSL Research University, Paris 75005, France.,Translational Research Department, Institut Curie, PSL Research University, Paris 75005, France
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, South Australia 5000, Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Randle L Knight
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia.,School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
113
|
Tutino V, De Nunzio V, Milella RA, Gasparro M, Cisternino AM, Gigante I, Lanzilotta E, Iacovazzi PA, Lippolis A, Lippolis T, Caruso MG, Notarnicola M. Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer-Related Pathways. Mol Nutr Food Res 2021; 65:e2100428. [PMID: 34495579 DOI: 10.1002/mnfr.202100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Indexed: 12/11/2022]
Abstract
SCOPE The study aims to investigate the effects of fresh table grape consumption in healthy subjects on circulating levels of the most common human microRNAs (miRNAs). The regulatory network governed by these modulated miRNAs is also investigated. METHODS AND RESULTS Autumn Royal table grape, used in this study, is chosen for its high polyphenolic content and antioxidant properties. The study is a randomized controlled trial, in which 40 consecutive subjects are recruited on a voluntary basis and randomly assigned to two groups of the study, the control group, receiving only dietary recommendations and a grape group receiving a daily dose of 5 g of fresh table grape per kg of body weight for 21 days. All analyses are performed at baseline and after 21 days of dietary treatment. Circulating miRNAs levels are detected by Real-Time quantitative PCR (RT-qPCR) followed by bioinformatic functional analysis. The study identifies 20 circulating miRNAs differentially expressed in healthy subjects after grape intake, and in particular, 18 of 20 are down-regulated and 2 are up-regulated. CONCLUSION The dietary intake of table grape affects circulating miRNAs levels in healthy subjects, particularly the miRNAs related to pathways involved in counteracting cancer development, including gastrointestinal cancers.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, Bari, 70010, Italy
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, Bari, 70010, Italy
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Elsa Lanzilotta
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Palma Aurelia Iacovazzi
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Antonio Lippolis
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| |
Collapse
|
114
|
Almutairy BK, Alshetaili A, Anwer MK, Ali N. In silico identification of MicroRNAs targeting the key nucleator of stress granules, G3BP: Promising therapeutics for SARS-CoV-2 infection. Saudi J Biol Sci 2021; 28:7499-7504. [PMID: 34456603 PMCID: PMC8381622 DOI: 10.1016/j.sjbs.2021.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/05/2022] Open
Abstract
Stress granules (SGs) are non-membrane ribonucleoprotein condensates formed in response to environmental stress conditions via liquid–liquid phase separation (LLPS). SGs are involved in the pathogenesis of aging and aging-associated diseases, cancers, viral infection, and several other diseases. GTPase-activating protein (SH3 domain)-binding protein 1 and 2 (G3BP1/2) is a key component and commonly used marker of SGs. Recent studies have shown that SARS-CoV-2 nucleocapsid protein via sequestration of G3BPs inhibits SGs formation in the host cells. In this study, we have identified putative miRNAs targeting G3BP in search of modulators of the G3BP expression. These miRNAs could be considered as new therapeutic targets against COVID-19 infection via the regulation of SG assembly and dynamics.
Collapse
Affiliation(s)
- Bjad K Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
115
|
Jeffrey DA, Pires Da Silva J, Garcia AM, Jiang X, Karimpour-Fard A, Toni LS, Lanzicher T, Peña B, Miyano CA, Nunley K, Korst A, Sbaizero O, Taylor MR, Miyamoto SD, Stauffer BL, Sucharov CC. Serum circulating proteins from pediatric dilated cardiomyopathy patients cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight 2021; 6:e148637. [PMID: 34383712 PMCID: PMC8525651 DOI: 10.1172/jci.insight.148637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum–treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum–treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.
Collapse
Affiliation(s)
- Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Julie Pires Da Silva
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anastacia M Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Xuan Jiang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anis Karimpour-Fard
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Lee S Toni
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Brisa Peña
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carissa A Miyano
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Karin Nunley
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Armin Korst
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Matthew Rg Taylor
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| |
Collapse
|
116
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
117
|
Turkistani S, Sugita BM, Fadda P, Marchi R, Afsari A, Naab T, Apprey V, Copeland RL, Campbell MC, Cavalli LR, Kanaan Y. A panel of miRNAs as prognostic markers for African-American patients with triple negative breast cancer. BMC Cancer 2021; 21:861. [PMID: 34315420 PMCID: PMC8317413 DOI: 10.1186/s12885-021-08573-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the global expression profile of miRNAs, their impact on cellular signaling pathways, and their association with poor prognostic parameters in African-American (AA) patients with triple negative breast cancer (TNBC). METHODS Twenty-five samples of AA TNBC patients were profiled for global miRNA expression and stratified considering three clinical-pathological parameters: tumor size, lymph node (LN), and recurrence (REC) status. Differential miRNA expression analysis was performed for each parameter, and their discriminatory power was determined by Receiver Operating Characteristic (ROC) curve analysis. KMplotter was assessed to determine the association of the miRNAs with survival, and functional enrichment analysis to determine the main affected pathways and miRNA/mRNA target interactions. RESULTS A panel of eight, 23 and 27 miRNAs were associated with tumor size, LN, and REC status, respectively. Combined ROC analysis of two (miR-2117, and miR-378c), seven (let-7f-5p, miR-1255b-5p, miR-1268b, miR-200c-3p, miR-520d, miR-527, and miR-518a-5p), and three (miR-1200, miR-1249-3p, and miR-1271-3p) miRNAs showed a robust discriminatory power based on tumor size (AUC = 0.917), LN (AUC = 0.945) and REC (AUC = 0.981) status, respectively. Enrichment pathway analysis revealed their involvement in proteoglycans and glycan and cancer-associated pathways. Eight miRNAs with deregulated expressions in patients with large tumor size, positive LN metastasis, and recurrence were significantly associated with lower survival rates. Finally, the construction of miRNA/mRNA networks based in experimentally validated mRNA targets, revealed nodes of critical cancer genes, such as AKT1, BCL2, CDKN1A, EZR and PTEN. CONCLUSIONS Altogether, our data indicate that miRNA deregulated expression is a relevant biological factor that can be associated with the poor prognosis in TNBC of AA patients, by conferring to their TNBC cells aggressive phenotypes that are reflected in the clinical characteristics evaluated in this study.
Collapse
Affiliation(s)
- Safaa Turkistani
- Department of Microbiology, Howard University Cancer Center, Howard University, Washington DC, USA
| | - Bruna M Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Ali Afsari
- Department of Pathology, Howard University Hospital, Washington DC, USA
| | - Tammey Naab
- Department of Pathology, Howard University Hospital, Washington DC, USA
| | - Victor Apprey
- Department of Community and Family Medicine, Howard University, Washington DC, USA
| | - Robert L Copeland
- Department of Pharmacology, College of Medicine and Cancer Center, Howard University, Washington DC, USA
| | | | - Luciane R Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA.
| | - Yasmine Kanaan
- Department of Microbiology, Howard University Cancer Center, Howard University, Washington DC, USA
| |
Collapse
|
118
|
Chen D, Wu W, Yi L, Feng Y, Chang C, Chen S, Gao J, Chen G, Zhen G. A Potential circRNA-miRNA-mRNA Regulatory Network in Asthmatic Airway Epithelial Cells Identified by Integrated Analysis of Microarray Datasets. Front Mol Biosci 2021; 8:703307. [PMID: 34336929 PMCID: PMC8322703 DOI: 10.3389/fmolb.2021.703307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Asthma is one of the most prevalent chronic respiratory diseases worldwide. Bronchial epithelial cells play a critical role in the pathogenesis of asthma. Circular RNAs (circRNAs) act as microRNA (miRNA) sponges to regulate downstream gene expression. However, the role of epithelial circRNAs in asthma remains to be investigated. This study aims to explore the potential circRNA-miRNA-messenger RNA (mRNA) regulatory network in asthma by integrated analysis of publicly available microarray datasets. Methods: Five mRNA microarray datasets derived from bronchial brushing samples from asthma patients and control subjects were downloaded from the Gene Expression Omnibus (GEO) database. The robust rank aggregation (RRA) method was used to identify robust differentially expressed genes (DEGs) in bronchial epithelial cells between asthma patients and controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to annotate the functions of the DEGs. Protein-protein interaction (PPI) analysis was performed to identify hub genes. Three miRNA databases (Targetscan, miRDB, and miRWalk) were used to predict the miRNAs which potentially target the hub genes. A miRNA microarray dataset derived from bronchial brushings was used to validate the miRNA-mRNA relationships. Finally, a circRNA-miRNA-mRNA network was constructed via the ENCORI database. Results: A total of 127 robust DEGs in bronchial epithelial cells between steroid-naïve asthma patients (n = 272) and healthy controls (n = 165) were identified from five mRNA microarray datasets. Enrichment analyses showed that DEGs were mainly enriched in several biological processes related to asthma, including humoral immune response, salivary secretion, and IL-17 signaling pathway. Nineteen hub genes were identified and were used to construct a potential epithelial circRNA-miRNA-mRNA network. The top 10 competing endogenous RNAs were hsa_circ_0001585, hsa_circ_0078031, hsa_circ_0000552, hsa-miR-30a-3p, hsa-miR-30d-3p, KIT, CD69, ADRA2A, BPIFA1, and GGH. Conclusion: Our study reveals a potential role for epithelial circRNA-miRNA-mRNA network in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Lingling Yi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| |
Collapse
|
119
|
Kern F, Aparicio-Puerta E, Li Y, Fehlmann T, Kehl T, Wagner V, Ray K, Ludwig N, Lenhof HP, Meese E, Keller A. miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res 2021; 49:W409-W416. [PMID: 34009375 PMCID: PMC8262750 DOI: 10.1093/nar/gkab297] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Which genes, gene sets or pathways are regulated by certain miRNAs? Which miRNAs regulate a particular target gene or target pathway in a certain physiological context? Answering such common research questions can be time consuming and labor intensive. Especially for researchers without computational experience, the integration of different data sources, selection of the right parameters and concise visualization can be demanding. A comprehensive analysis should be central to present adequate answers to complex biological questions. With miRTargetLink 2.0, we develop an all-in-one solution for human, mouse and rat miRNA networks. Users input in the unidirectional search mode either a single gene, gene set or gene pathway, alternatively a single miRNA, a set of miRNAs or an miRNA pathway. Moreover, genes and miRNAs can jointly be provided to the tool in the bidirectional search mode. For the selected entities, interaction graphs are generated from different data sources and dynamically presented. Connected application programming interfaces (APIs) to the tailored enrichment tools miEAA and GeneTrail facilitate downstream analysis of pathways and context-annotated categories of network nodes. MiRTargetLink 2.0 is freely accessible at https://www.ccb.uni-saarland.de/mirtargetlink2.
Collapse
Affiliation(s)
- Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Yongping Li
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Viktoria Wagner
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Kamalika Ray
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Nicole Ludwig
- Center for Human and Molecular Biology, Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Center for Human and Molecular Biology, Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford 94304, CA, USA
| |
Collapse
|
120
|
Kottorou A, Dimitrakopoulos FI, Tsezou A. Non-coding RNAs in cancer-associated cachexia: clinical implications and future perspectives. Transl Oncol 2021; 14:101101. [PMID: 33915516 PMCID: PMC8100623 DOI: 10.1016/j.tranon.2021.101101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Cachexia is a multifactorial syndrome characterized by skeletal muscle loss, with or without adipose atrophy, irreversible through nutritional support, in the context of systemic inflammation and metabolic disorders. It is mediated by inflammatory reaction and affects almost 50% of all cancer patients, due to prominent systemic inflammation associated with the disease. The comprehension of the molecular mechanisms that are implicated in cancer cachexia sheds light on its pathogenesis and lays the foundations for the discovery of new therapeutic targets and biomarkers. Recently, ncRNAs, like microRNAs as well as lncRNAs and circRNAs seem to regulate pathways that are implicated in cancer cachexia pathogenesis, as it has been observed in animal models and in cancer cachexia patients, highlighting their therapeutic potential. Moreover, increasing evidence highlights the involvement of circulating and exosomal ncRNAs in the activation and maintenance of systemic inflammation in cancer and cancer-associated cachexia. In that context, the present review focuses on the clinical significance of ncRNAs in cancer-associated cachexia.
Collapse
Affiliation(s)
- Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | | | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
121
|
Mortazavi SS, Bahmanpour Z, Daneshmandpour Y, Roudbari F, Sheervalilou R, Kazeminasab S, Emamalizadeh B. An updated overview and classification of bioinformatics tools for MicroRNA analysis, which one to choose? Comput Biol Med 2021; 134:104544. [PMID: 34119921 DOI: 10.1016/j.compbiomed.2021.104544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022]
Abstract
The term 'MicroRNA' (miRNA) refers to a class of small endogenous non-coding RNAs (ncRNAs) regenerated from hairpin transcripts. Recent studies reveal miRNAs' regulatory involvement in essential biological processes through translational repression or mRNA degradation. Recently, there is a growing body of literature focusing on the importance of miRNAs and their functions. In this respect, several databases have been developed to manage the dispersed data produced. Therefore, it is necessary to know the parameters and characteristics of each database to benefit their data. Besides, selecting the correct database is of great importance to scientists who do not have enough experience in this field. A comprehensive classification along with an explanation of the information contained in each database leads to facilitating access to these resources. In this regard, we have classified relevant databases into several categories, including miRNA sequencing and annotation, validated/predicted miRNA targets, disease-related miRNA, SNP in miRNA sequence or target site, miRNA-related pathways, or gene ontology, and mRNA-miRNA interactions. Hence, this review introduces available miRNA databases and presents a convenient overview to inform researchers of different backgrounds to find suitable miRNA-related bioinformatics web tools and relevant information rapidly.
Collapse
Affiliation(s)
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Vice-Chancellor, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
122
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
123
|
Strafella C, Caputo V, Termine A, Fabrizio C, Ruffo P, Potenza S, Cusumano A, Ricci F, Caltagirone C, Giardina E, Cascella R. Genetic Determinants Highlight the Existence of Shared Etiopathogenetic Mechanisms Characterizing Age-Related Macular Degeneration and Neurodegenerative Disorders. Front Neurol 2021; 12:626066. [PMID: 34135841 PMCID: PMC8200556 DOI: 10.3389/fneur.2021.626066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) showed several processes and risk factors in common with neurodegenerative disorders (NDDs). The present work explored the existence of genetic determinants associated with AMD, which may provide insightful clues concerning its relationship with NDDs and their possible application into the clinical practice. In this study, 400 AMD patients were subjected to the genotyping analysis of 120 genetic variants by OpenArray technology. As the reference group, 503 samples representative of the European general population were utilized. Statistical analysis revealed the association of 23 single-nucleotide polymorphisms (SNPs) with AMD risk. The analysis of epistatic effects revealed that ARMS2, IL6, APOE, and IL2RA could contribute to AMD and neurodegenerative processes by synergistic modulation of the expression of disease-relevant genes. In addition, the bioinformatic analysis of the associated miRNA variants highlighted miR-196a, miR-6796, miR-6499, miR-6810, miR-499, and miR-7854 as potential candidates for counteracting AMD and neurodegenerative processes. Finally, this work highlighted the existence of shared disease mechanisms (oxidative stress, immune-inflammatory response, mitochondrial dysfunction, axonal guidance pathway, and synaptogenesis) between AMD and NDDs and described the associated SNPs as candidate biomarkers for developing novel strategies for early diagnosis, monitoring, and treatment of such disorders in a progressive aging population.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Ruffo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Saverio Potenza
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Cusumano
- UOSD of Ophthalmology PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Federico Ricci
- UNIT Retinal Diseases PTV Foundation "Policlinico Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy.,Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
124
|
Salmonella enterica Serovar Typhimurium SPI-1 and SPI-2 Shape the Global Transcriptional Landscape in a Human Intestinal Organoid Model System. mBio 2021; 12:mBio.00399-21. [PMID: 34006652 PMCID: PMC8262845 DOI: 10.1128/mbio.00399-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intestinal epithelium is a primary interface for engagement of the host response by foodborne pathogens, like Salmonella enterica Typhimurium. While the interaction of S Typhimurium with the mammalian host has been well studied in transformed epithelial cell lines or in the complex intestinal environment in vivo, few tractable models recapitulate key features of the intestine. Human intestinal organoids (HIOs) contain a polarized epithelium with functionally differentiated cell subtypes, including enterocytes and goblet cells and a supporting mesenchymal cell layer. HIOs contain luminal space that supports bacterial replication, are more amenable to experimental manipulation than animals and are more reflective of physiological host responses. Here, we use the HIO model to define host transcriptional responses to S Typhimurium infection, also determining host pathways dependent on Salmonella pathogenicity island-1 (SPI-1)- and -2 (SPI-2)-encoded type 3 secretion systems (T3SS). Consistent with prior findings, we find that S Typhimurium strongly stimulates proinflammatory gene expression. Infection-induced cytokine gene expression was rapid, transient, and largely independent of SPI-1 T3SS-mediated invasion, likely due to continued luminal stimulation. Notably, S Typhimurium infection led to significant downregulation of host genes associated with cell cycle and DNA repair, leading to a reduction in cellular proliferation, dependent on SPI-1 and SPI-2 T3SS. The transcriptional profile of cell cycle-associated target genes implicates multiple miRNAs as mediators of S Typhimurium-dependent cell cycle suppression. These findings from Salmonella-infected HIOs delineate common and distinct contributions of SPI-1 and SPI-2 T3SSs in inducing early host responses during enteric infection and reinforce host cell proliferation as a process targeted by Salmonella IMPORTANCE Salmonella enterica serovar Typhimurium (S Typhimurium) causes a significant health burden worldwide, yet host responses to initial stages of intestinal infection remain poorly understood. Due to differences in infection outcome between mice and humans, physiological human host responses driven by major virulence determinants of Salmonella have been more challenging to evaluate. Here, we use the three-dimensional human intestinal organoid model to define early responses to infection with wild-type S Typhimurium and mutants defective in the SPI-1 or SPI-2 type-3 secretion systems. While both secretion system mutants show defects in mouse models of oral Salmonella infection, the specific contributions of each secretion system are less well understood. We show that S Typhimurium upregulates proinflammatory pathways independently of either secretion system, while the downregulation of the host cell cycle pathways relies on both SPI-1 and SPI-2. These findings lay the groundwork for future studies investigating how SPI-1- and SPI-2-driven host responses affect infection outcome and show the potential of this model to study host-pathogen interactions with other serovars to understand how initial interactions with the intestinal epithelium may affect pathogenesis.
Collapse
|
125
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
126
|
Surmiak M, Kosałka‐Węgiel J, Polański S, Sanak M. Endothelial cells response to neutrophil-derived extracellular vesicles miRNAs in anti-PR3 positive vasculitis. Clin Exp Immunol 2021; 204:267-282. [PMID: 33527387 PMCID: PMC8062988 DOI: 10.1111/cei.13581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
In vasculitis disorders, inflammation affects blood vessels. Granulomatosis with polyangiitis (GPA) is a chronic systemic vasculitis distinguished by the presence of anti-proteinase-3 autoantibodies (anti-PR3). In this study we analyzed the molecular signature of human umbilical endothelial cells (HUVECs) in response to neutrophil-derived extracellular vesicles (EVs). EVs were obtained from anti-PR3-activated neutrophils, purified and characterized by flow cytometry, nanoparticle tracking and miRNA screening. HUVECs were stimulated with EVs and miRNA/mRNA expression was measured. Cell culture media proteins were identified by antibody microarrays and selected cytokines were measured. Comparison of differentially expressed miRNAs/mRNAs between non-stimulated and EV-stimulated HUVECs revealed two regulatory patterns. Significant up-regulation of 14 mRNA transcripts (including CXCL8, DKK1, IL1RL1, ANGPT-2, THBS1 and VCAM-1) was accompanied by 11 miRNAs silencing (including miR-661, miR-664a-3p, miR-377-3p, miR-30d-5p). Significant down-regulation was observed for nine mRNA transcripts (including FASLG, CASP8, STAT3, GATA3, IRAK1 and IL6) and accompanied by up-regulation of 10 miRNAs (including miR-223-3p, miR-142-3p, miR-211-5p). Stimulated HUVECs released IL-8, Dickkopf-related protein 1 (DKK-1), soluble interleukin (IL)-1 like receptor-1 (ST2), growth differentiation factor 15 (GDF-15), angiopoietin-2, endoglin, thrombospondin-1 and vascular adhesion molecule-1 (VCAM-1). Moreover, transfection of HUVECs with mimics of highly expressed in EVs miR-223-3p or miR-142-3p, stimulated production of IL-8, ST2 and endoglin. Cytokines released by HUVECs were also elevated in blood of patients with GPA. The most increased were IL-8, DKK-1, ST2, angiopoietin-2 and IL-33. In-vitro stimulation of HUVECs by neutrophil-derived EVs recapitulates contribution of endothelium in autoimmune vasculitis. Proinflammatory phenotype of released cytokines corresponds with the regulatory network of miRNAs/mRNAs comprising both EVs miRNA and endothelial cell transcripts.
Collapse
Affiliation(s)
- M. Surmiak
- Department of Internal MedicineJagiellonian University Medical CollegeKrakówPoland
| | - J. Kosałka‐Węgiel
- Department of Internal MedicineJagiellonian University Medical CollegeKrakówPoland
| | - S. Polański
- Department of Biochemical and Molecular DiagnosticsUniversity HospitalKrakówPoland
| | - M. Sanak
- Department of Internal MedicineJagiellonian University Medical CollegeKrakówPoland
| |
Collapse
|
127
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
128
|
miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int J Mol Sci 2021; 22:ijms22063080. [PMID: 33802936 PMCID: PMC8002598 DOI: 10.3390/ijms22063080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3′ untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.
Collapse
|
129
|
Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, Alizadeh N, Derakhshani A, Baghbanzadeh A, Dolatkhah K, Silvestris N, Baradaran B. The Regulatory Cross-Talk between microRNAs and Novel Members of the B7 Family in Human Diseases: A Scoping Review. Int J Mol Sci 2021; 22:2652. [PMID: 33800752 PMCID: PMC7962059 DOI: 10.3390/ijms22052652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The members of the B7 family, as immune checkpoint molecules, can substantially regulate immune responses. Since microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules, i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing receptor 2 (ILDR2). The current study was performed using a six-stage methodology structure and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, Scopus, Cochrane, ProQuest, and Google Scholar were systematically searched to obtain the relevant records to 5 November 2020. Two authors independently reviewed the obtained records and extracted the desired data. After quantitative and qualitative analyses, we used bioinformatics approaches to extend our knowledge about the regulatory cross-talk between miRs and the abovementioned B7 family members. Twenty-seven articles were identified that fulfilled the inclusion criteria. Studies with different designs reported gene-miR regulatory axes in various cancer and non-cancer diseases. The regulatory cross-talk between the aforementioned B7 family molecules and miRs might provide valuable insights into the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Noora Karim Ahangar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Katayoun Dolatkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nicola Silvestris
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| |
Collapse
|
130
|
Fang J, Ji WH, Wang FZ, Xie TM, Wang L, Fu ZF, Wang Z, Yan FQ, Shen QL, Ye ZM. Circular RNA hsa_circ_0000700 promotes cell proliferation and migration in Esophageal Squamous Cell Carcinoma by sponging miR-1229. J Cancer 2021; 12:2610-2623. [PMID: 33854621 PMCID: PMC8040728 DOI: 10.7150/jca.47112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has demonstrated that circular RNAs (circRNAs) are involved in the pathogenesis of cancer, including that of esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the role of hsa_circ_0000700 in ESCC. hsa_circ_0000700, miR-1229, and related functional gene expression was measured by RT-qPCR. To characterize the functions of hsa_circ_0000700 and miR-1229, ESCC cells were infected with hsa_circ_0000700-specific siRNA, miR-1229 mimics, and an inhibitor alone or in combination. Cell Counting Kit-8 (CCK8), colony formation, EdU, flow cytometry, and Transwell assays were employed to evaluate cell proliferation, apoptosis, and migration. Luciferase reporter and RNA immunoprecipitation assays were used to confirm the targeting relationship between hsa_circ_0000700 and miR-1229. Finally, a competing endogenous RNAs (ceRNA) network was built for hsa_circ_0000700, and miR-1229 targets were analyzed by bioinformatics. circ_0000700 expression was significantly upregulated in ESCC cell lines. Actinomycin D and RNase R treatment confirmed that circ_0000700 was more stable than its linear CDH9 mRNA form. Moreover, a cytoplasmic and nuclear fractionation assay suggested that circ_0000700 was mainly distributed in the cytoplasm of ECA-109 and TE-1 cells. In vitro, the proliferative and migratory capacities of ECA-109 and TE-1 cells were inhibited by knocking down circ_0000700 expression. Additionally, miR-1229 silencing reversed the circ_0000700-specific siRNA-induced attenuation of malignant phenotypes. Mechanistically, circ_0000700 was identified as a sponge of miR-1229 and could activate PRRG4, REEP5, and PSMB5 indirectly to promote ESCC progression. In summary, our results suggest that hsa_circ_0000700 functions as an oncogenic factor by sponging miR-1229 in ESCC.
Collapse
Affiliation(s)
- Jun Fang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Wen Hao Ji
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fang Zheng Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Tie Ming Xie
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Lei Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zhen Fu Fu
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zhun Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Feng Qin Yan
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Qi Liang Shen
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhi Min Ye
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
131
|
Ghebes CA, Morhayim J, Kleijer M, Koroglu M, Erkeland SJ, Hoogenboezem R, Bindels E, van Alphen FPJ, van den Biggelaar M, Nolte MA, van der Eerden BCJ, Braakman E, Voermans C, van de Peppel J. Extracellular Vesicles Derived From Adult and Fetal Bone Marrow Mesenchymal Stromal Cells Differentially Promote ex vivo Expansion of Hematopoietic Stem and Progenitor Cells. Front Bioeng Biotechnol 2021; 9:640419. [PMID: 33718342 PMCID: PMC7947881 DOI: 10.3389/fbioe.2021.640419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Recently, we and others have illustrated that extracellular vesicles (EVs) have the potential to support hematopoietic stem and progenitor cell (HSPC) expansion; however, the mechanism and processes responsible for the intercellular communication by EVs are still unknown. In the current study, we investigate whether primary human bone marrow derived mesenchymal stromal cells (BMSC) EVs isolated from two different origins, fetal (fEV) and adult (aEV) tissue, can increase the relative low number of HSPCs found in umbilical cord blood (UCB) and which EV-derived components are responsible for ex vivo HSPC expansion. Interestingly, aEVs and to a lesser extent fEVs, showed supportive ex vivo expansion capacity of UCB-HSPCs. Taking advantage of the two BMSC sources with different supportive effects, we analyzed the EV cargo and investigated how gene expression is modulated in HSPCs after incubation with aEVs and fEVs. Proteomics analyses of the protein cargo composition of the supportive aEV vs. the less-supportive fEV identified 90% of the Top100 exosome proteins present in the ExoCarta database. Gene Ontology (GO) analyses illustrated that the proteins overrepresented in aEVs were annotated to oxidation-reduction process, mitochondrial ATP synthesis coupled proton transport, or protein folding. In contrast, the proteins overrepresented in fEVs were annotated to extracellular matrix organization positive regulation of cell migration or transforming growth factor beta receptor (TGFBR) signaling pathway. Small RNA sequencing identified different molecular signatures between aEVs and fEVs. Interestingly, the microRNA cluster miR-99b/let-7e/miR-125a, previously identified to increase the number of HSPCs by targeting multiple pro-apoptotic genes, was highly and significantly enriched in aEVs. Although we identified significant differences in the supportive effects of aEVs and fEVs, RNAseq analyses of the 24 h treated HSPCs indicated that a limited set of genes was differentially regulated when compared to cells that were treated with cytokines only. Together, our study provides novel insights into the complex biological role of EVs and illustrates that aEVs and fEVs differentially support ex vivo expansion capacity of UCB-HSPCs. Together opening new means for the application of EVs in the discovery of therapeutics for more efficient ex vivo HSPC expansion.
Collapse
Affiliation(s)
- Corina A Ghebes
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Jess Morhayim
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Marion Kleijer
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Merve Koroglu
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | | | - Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
132
|
Nazarov PV, Kreis S. Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput Struct Biotechnol J 2021; 19:1154-1162. [PMID: 33680358 PMCID: PMC7895676 DOI: 10.1016/j.csbj.2021.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Review on tools and databases linking miRNA and its mRNA targetome. Databases show little overlap in miRNA targetome predictions suggesting strong contextual effects. Deconvolution and deep learning approaches are promising new approaches to improve miRNA targetome predictions.
Advanced sequencing technologies such as RNASeq provide the means for production of massive amounts of data, including transcriptome-wide expression levels of coding RNAs (mRNAs) and non-coding RNAs such as miRNAs, lncRNAs, piRNAs and many other RNA species. In silico analysis of datasets, representing only one RNA species is well established and a variety of tools and pipelines are available. However, attaining a more systematic view of how different players come together to regulate the expression of a gene or a group of genes requires a more intricate approach to data analysis. To fully understand complex transcriptional networks, datasets representing different RNA species need to be integrated. In this review, we will focus on miRNAs as key post-transcriptional regulators summarizing current computational approaches for miRNA:target gene prediction as well as new data-driven methods to tackle the problem of comprehensively and accurately dissecting miRNome-targetome interactions.
Collapse
Key Words
- CCA, canonical correlation analysis
- CDS, coding sequence
- CLASH, cross-linking, ligation and sequencing of hybrids
- CLIP, cross-linking immunoprecipitation
- CNN, convolutional neural network
- Data integration
- GO, gene ontology
- ICA, independent component analysis
- Matrix factorization
- NGS, next-generation sequencing
- NMF, non-negative matrix factorization
- PCA, principal component analysis
- RNASeq, high-throughput RNA sequencing
- TDMD, target RNA-directed miRNA degradation
- TF, transcription factors
- Target prediction
- Transcriptomics
- circRNA, circular RNA
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- microRNA
Collapse
Affiliation(s)
- Petr V Nazarov
- Multiomics Data Science Research Group, Department of Oncology & Quantitative Biology Unit, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
| | - Stephanie Kreis
- Signal Transduction Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| |
Collapse
|
133
|
Kern F, Krammes L, Danz K, Diener C, Kehl T, Küchler O, Fehlmann T, Kahraman M, Rheinheimer S, Aparicio-Puerta E, Wagner S, Ludwig N, Backes C, Lenhof HP, von Briesen H, Hart M, Keller A, Meese E. Validation of human microRNA target pathways enables evaluation of target prediction tools. Nucleic Acids Res 2021; 49:127-144. [PMID: 33305319 PMCID: PMC7797041 DOI: 10.1093/nar/gkaa1161] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways. First, targets and target pathways are predicted and prioritized by computational means to increase the specificity and positive predictive value. Second, the novel webtool miRTaH facilitates guided designs of reporter assay constructs at scale. Third, automated and standardized reporter assays are performed. We evaluated HiTmIR using miR-34a-5p, for which TNF- and TGFB-signaling, and Parkinson's Disease (PD)-related categories were identified and repeated the pipeline for miR-7-5p. HiTmIR validated 58.9% of the target genes for miR-34a-5p and 46.7% for miR-7-5p. We confirmed the targeting by measuring the endogenous protein levels of targets in a neuronal cell model. The standardized positive and negative targets are collected in the new miRATBase database, representing a resource for training, or benchmarking new target predictors. Applied to 88 target predictors with different confidence scores, TargetScan 7.2 and miRanda outperformed other tools. Our experiments demonstrate the efficiency of HiTmIR and provide evidence for an orchestrated miRNA-gene targeting.
Collapse
Affiliation(s)
- Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Karin Danz
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, 66280 Sulzbach, Germany
| | - Caroline Diener
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Oliver Küchler
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Mustafa Kahraman
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain.,Instituto de Investigación Biosanitaria ibs. Granada, University of Granada, 18071 Granada, Spain
| | - Sylvia Wagner
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, 66280 Sulzbach, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany.,Center of Human and Molecular Biology, Saarland University, 66123 Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Hagen von Briesen
- Department of Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering, 66280 Sulzbach, Germany
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
134
|
Zarubin A, Stepanov V, Markov A, Kolesnikov N, Marusin A, Khitrinskaya I, Swarovskaya M, Litvinov S, Ekomasova N, Dzhaubermezov M, Maksimova N, Sukhomyasova A, Shtygasheva O, Khusnutdinova E, Radzhabov M, Kharkov V. Structural Variability, Expression Profile, and Pharmacogenetic Properties of TMPRSS2 Gene as a Potential Target for COVID-19 Therapy. Genes (Basel) 2020; 12:E19. [PMID: 33375616 PMCID: PMC7823984 DOI: 10.3390/genes12010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The human serine protease serine 2 TMPRSS2 is involved in the priming of proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and represents a possible target for COVID-19 therapy. The TMPRSS2 gene may be co-expressed with SARS-CoV-2 cell receptor genes angiotensin-converting enzyme 2 (ACE2) and Basigin (BSG), but only TMPRSS2 demonstrates tissue-specific expression in alveolar cells according to single-cell RNA sequencing data. Our analysis of the structural variability of the TMPRSS2 gene based on genome-wide data from 76 human populations demonstrates that a functionally significant missense mutation in exon 6/7 in the TMPRSS2 gene is found in many human populations at relatively high frequencies, with region-specific distribution patterns. The frequency of the missense mutation encoded by rs12329760, which has previously been found to be associated with prostate cancer, ranged between 10% and 63% and was significantly higher in populations of Asian origin compared with European populations. In addition to single-nucleotide polymorphisms, two copy number variants were detected in the TMPRSS2 gene. A number of microRNAs have been predicted to regulate TMPRSS2 and BSG expression levels, but none of them is enriched in lung or respiratory tract cells. Several well-studied drugs can downregulate the expression of TMPRSS2 in human cells, including acetaminophen (paracetamol) and curcumin. Thus, the interactions of TMPRSS2 with SARS-CoV-2, together with its structural variability, gene-gene interactions, expression regulation profiles, and pharmacogenomic properties, characterize this gene as a potential target for COVID-19 therapy.
Collapse
Affiliation(s)
- Aleksei Zarubin
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Vadim Stepanov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Anton Markov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Nikita Kolesnikov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Andrey Marusin
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Irina Khitrinskaya
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Maria Swarovskaya
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Sergey Litvinov
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Natalia Ekomasova
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Murat Dzhaubermezov
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Nadezhda Maksimova
- Medical Institute, North-Eastern Federal University, 677000 Yakutsk, Russia; (N.M.); (A.S.)
| | - Aitalina Sukhomyasova
- Medical Institute, North-Eastern Federal University, 677000 Yakutsk, Russia; (N.M.); (A.S.)
| | - Olga Shtygasheva
- Medical-Psychological-Social Institute, Katanov State University of Khakassia, 655017 Abakan, Russia;
| | - Elza Khusnutdinova
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Magomed Radzhabov
- Laboratory of Genomic Medicine, Dagestan State Medical University, 367000 Makhachkala, Russia;
| | - Vladimir Kharkov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| |
Collapse
|
135
|
Cellular, Extracellular and Extracellular Vesicular miRNA Profiles of Pre-Ovulatory Follicles Indicate Signaling Disturbances in Polycystic Ovaries. Int J Mol Sci 2020; 21:ijms21249550. [PMID: 33333986 PMCID: PMC7765449 DOI: 10.3390/ijms21249550] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free RNAs have the potential to act as a means of gene expression regulation between cells and are therefore used as diagnostic markers describing the state of tissue environment. The origin and functions of such RNAs in human ovarian follicle, the environment of oocyte maturation, are unclear. The current study investigates the difference in the microRNA profiles of fertile women and polycystic ovary syndrome (PCOS) patients in three compartments from the same preovulatory follicle: mural granulosa cells (MGC), cell-free follicular fluid (FF), and extracellular vesicles (EV) of the FF by small RNA sequencing. In silico analysis was used for the prediction and over-representation of targeted pathways for the detected microRNAs. PCOS follicles were distinguished from normal tissue by the differential expression of 30 microRNAs in MGC and 10 microRNAs in FF (FDR < 0.1) that commonly regulate cytokine signaling pathways. The concentration of EV-s was higher in the FF of PCOS patients (p = 0.04) containing eight differentially expressed microRNAs (p < 0.05). In addition, we present the microRNA profiles of MGC, FF, and EV in the fertile follicle and demonstrate that microRNAs loaded into EVs target mRNAs of distinct signaling pathways in comparison to microRNAs in FF. To conclude, the three follicular compartments play distinct roles in the signaling disturbances associated with PCOS.
Collapse
|
136
|
Schmartz GP, Kern F, Fehlmann T, Wagner V, Fromm B, Keller A. Encyclopedia of tools for the analysis of miRNA isoforms. Brief Bioinform 2020; 22:6032629. [PMID: 33313643 DOI: 10.1093/bib/bbaa346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
RNA sequencing data sets rapidly increase in quantity. For microRNAs (miRNAs), frequently dozens to hundreds of billion reads are generated per study. The quantification of annotated miRNAs and the prediction of new miRNAs are leading computational tasks. Now, the increased depth of coverage allows to gain deeper insights into the variability of miRNAs. The analysis of isoforms of miRNAs (isomiRs) is a trending topic, and a range of computational tools for the analysis of isomiRs has been developed. We provide an overview on 27 available computational solutions for the analysis of isomiRs. These include both stand-alone programs (17 tools) and web-based solutions (10 tools) and span a publication time range from 2010 to 2020. Seven of the tools were published in 2019 and 2020, confirming the rising importance of the topic. While most of the analyzed tools work for a broad range of organisms or are completely independent of a reference organism, several tools have been tailored for the analysis of human miRNA data or for plants. While 14 of the tools are general analysis tools of miRNAs, and isomiR analysis is one of their features, the remaining 13 tools have specifically been developed for isomiR analysis. A direct comparison on 20 deep sequencing data sets for selected tools provides insights into the heterogeneity of results. With our work, we provide users a comprehensive overview on the landscape of isomiR analysis tools and in that support the selection of the most appropriate tool for their respective research task.
Collapse
Affiliation(s)
| | | | | | | | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Keller
- Saarland Center for Bioinformatics and Chair for Clinical Bioinformatics, Saarland University Building E2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
137
|
Kern F, Fehlmann T, Solomon J, Schwed L, Grammes N, Backes C, Van Keuren-Jensen K, Craig DW, Meese E, Keller A. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res 2020; 48:W521-W528. [PMID: 32374865 PMCID: PMC7319446 DOI: 10.1093/nar/gkaa309] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Gene set enrichment analysis has become one of the most frequently used applications in molecular biology research. Originally developed for gene sets, the same statistical principles are now available for all omics types. In 2016, we published the miRNA enrichment analysis and annotation tool (miEAA) for human precursor and mature miRNAs. Here, we present miEAA 2.0, supporting miRNA input from ten frequently investigated organisms. To facilitate inclusion of miEAA in workflow systems, we implemented an Application Programming Interface (API). Users can perform miRNA set enrichment analysis using either the web-interface, a dedicated Python package, or custom remote clients. Moreover, the number of category sets was raised by an order of magnitude. We implemented novel categories like annotation confidence level or localisation in biological compartments. In combination with the miRBase miRNA-version and miRNA-to-precursor converters, miEAA supports research settings where older releases of miRBase are in use. The web server also offers novel comprehensive visualizations such as heatmaps and running sum curves with background distributions. We demonstrate the new features with case studies for human kidney cancer, a biomarker study on Parkinson’s disease from the PPMI cohort, and a mouse model for breast cancer. The tool is freely accessible at: https://www.ccb.uni-saarland.de/mieaa2.
Collapse
Affiliation(s)
- Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jeffrey Solomon
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Louisa Schwed
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Nadja Grammes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - David Wesley Craig
- Institute of Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,School of Medicine Office, Stanford University, Stanford, CA 94305, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
138
|
Fehlmann T, Lehallier B, Schaum N, Hahn O, Kahraman M, Li Y, Grammes N, Geffers L, Backes C, Balling R, Kern F, Krüger R, Lammert F, Ludwig N, Meder B, Fromm B, Maetzler W, Berg D, Brockmann K, Deuschle C, von Thaler AK, Eschweiler GW, Milman S, Barziliai N, Reichert M, Wyss-Coray T, Meese E, Keller A. Common diseases alter the physiological age-related blood microRNA profile. Nat Commun 2020; 11:5958. [PMID: 33235214 PMCID: PMC7686493 DOI: 10.1038/s41467-020-19665-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-transcriptional gene silencing through base-pair binding on their target mRNAs. We identified nonlinear changes in age-related microRNAs by analyzing whole blood from 1334 healthy individuals. We observed a larger influence of the age as compared to the sex and provide evidence for a shift to the 5' mature form of miRNAs in healthy aging. The addition of 3059 diseased patients uncovered pan-disease and disease-specific alterations in aging profiles. Disease biomarker sets for all diseases were different between young and old patients. Computational deconvolution of whole-blood miRNAs into blood cell types suggests that cell intrinsic gene expression changes may impart greater significance than cell abundance changes to the whole blood miRNA profile. Altogether, these data provide a foundation for understanding the relationship between healthy aging and disease, and for the development of age-specific disease biomarkers.
Collapse
Affiliation(s)
- Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Mustafa Kahraman
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Yongping Li
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Nadja Grammes
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Lars Geffers
- Luxembourg Center for Systems Biomedicine, 4362, Esch-sur-Alzette, Luxemburg
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Rudi Balling
- Luxembourg Center for Systems Biomedicine, 4362, Esch-sur-Alzette, Luxemburg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445, Strassen, Luxemburg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxemburg
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Rejko Krüger
- Luxembourg Center for Systems Biomedicine, 4362, Esch-sur-Alzette, Luxemburg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445, Strassen, Luxemburg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, 1210, Luxembourg, Luxemburg
| | - Frank Lammert
- Internal Medicine, Saarland University, 66421, Homburg, Germany
| | - Nicole Ludwig
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Benjamin Meder
- Internal Medicine, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Bastian Fromm
- Department of Molecular Biosciences, Stockholm University, 11418, Stockholm, Sweden
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | | | | | | | - Gerhard W Eschweiler
- Geriatric Center and the Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Sofiya Milman
- The Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Nir Barziliai
- The Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eckart Meese
- Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
139
|
Solomon J, Kern F, Fehlmann T, Meese E, Keller A. HumiR: Web Services, Tools and Databases for Exploring Human microRNA Data. Biomolecules 2020; 10:biom10111576. [PMID: 33233537 PMCID: PMC7699549 DOI: 10.3390/biom10111576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
For many research aspects on small non-coding RNAs, especially microRNAs, computational tools and databases are developed. This includes quantification of miRNAs, piRNAs, tRNAs and tRNA fragments, circRNAs and others. Furthermore, the prediction of new miRNAs, isomiRs, arm switch events, target and target pathway prediction and miRNA pathway enrichment are common tasks. Additionally, databases and resources containing expression profiles, e.g., from different tissues, organs or cell types, are generated. This information in turn leads to improved miRNA repositories. While most of the respective tools are implemented in a species-independent manner, we focused on tools for human small non-coding RNAs. This includes four aspects: (1) miRNA analysis tools (2) databases on miRNAs and variations thereof (3) databases on expression profiles (4) miRNA helper tools facilitating frequent tasks such as naming conversion or reporter assay design. Although dependencies between the tools exist and several tools are jointly used in studies, the interoperability is limited. We present HumiR, a joint web presence for our tools. HumiR facilitates an entry in the world of miRNA research, supports the selection of the right tool for a research task and represents the very first step towards a fully integrated knowledge-base for human small non-coding RNA research. We demonstrate the utility of HumiR by performing a very comprehensive analysis of Alzheimer's miRNAs.
Collapse
Affiliation(s)
- Jeffrey Solomon
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; (J.S.); (F.K.); (T.F.)
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; (J.S.); (F.K.); (T.F.)
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; (J.S.); (F.K.); (T.F.)
| | - Eckart Meese
- Institute for Human Genetics, Saarland University, 66421 Homburg, Germany;
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; (J.S.); (F.K.); (T.F.)
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Department of Neurobiology, Stanford University, Palo Alto, CA 94305, USA
- Correspondence: ; Tel.: +49-681-30268611
| |
Collapse
|
140
|
The Physiological MicroRNA Landscape in Nipple Aspirate Fluid: Differences and Similarities with Breast Tissue, Breast Milk, Plasma and Serum. Int J Mol Sci 2020; 21:ijms21228466. [PMID: 33187146 PMCID: PMC7696615 DOI: 10.3390/ijms21228466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) target 60% of human messenger RNAs and can be detected in tissues and biofluids without loss of stability during sample processing, making them highly appraised upcoming biomarkers for evaluation of disease. However, reporting of the abundantly expressed miRNAs in healthy samples is often surpassed. Here, we characterized for the first time the physiological miRNA landscape in a biofluid of the healthy breast: nipple aspirate fluid (NAF), and compared NAF miRNA expression patterns with publically available miRNA expression profiles of healthy breast tissue, breast milk, plasma and serum. Methods: MiRNA RT-qPCR profiling of NAF (n = 41) and serum (n = 23) samples from two healthy female cohorts was performed using the TaqMan OpenArray Human Advanced MicroRNA 754-Panel. MiRNA quantification data based on non-targeted or multi-targeted profiling techniques for breast tissue, breast milk, plasma and serum were retrieved from the literature by means of a systematic search. MiRNAs from each individual study were orderly ranked between 1 and 50, combined into an overall ranking per sample type and compared. Results: NAF expressed 11 unique miRNAs and shared 21/50 miRNAs with breast tissue. Seven miRNAs were shared between the five sample types. Overlap between sample types varied between 42% and 62%. Highly ranked NAF miRNAs have established roles in breast carcinogenesis. Conclusion: This is the first study to characterize and compare the unique physiological NAF-derived miRNA landscape with the physiological expression pattern in breast tissue, breast milk, plasma and serum. Breast-specific sources did not mutually overlap more than with systemic sources. Given their established role in carcinogenesis, NAF miRNA assessment could be a valuable tool in breast tumor diagnostics.
Collapse
|
141
|
Wang Y, Petrikova E, Gross W, Sticht C, Gretz N, Herr I, Karakhanova S. Sulforaphane Promotes Dendritic Cell Stimulatory Capacity Through Modulation of Regulatory Molecules, JAK/STAT3- and MicroRNA-Signaling. Front Immunol 2020; 11:589818. [PMID: 33193420 PMCID: PMC7661638 DOI: 10.3389/fimmu.2020.589818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction The broccoli isothiocyanate sulforaphane was shown to inhibit inflammation and tumor progression, also in pancreatic cancer, while its effect on tumor immunity is poorly understood. We investigated the immunoregulatory effect of sulforaphane on human dendritic cells alone and in presence of pancreatic tumor antigens, as well as underlying molecular mechanisms. Methods Sulforaphane-treated human dendritic cells were matured in vitro with a cytokine cocktail, and the expression of regulatory molecules was examined by flow cytometry. The subsequent T-cell response was analyzed by T-cell proliferation assay and CD25 expression. To confirm the findings, dendritic cells pulsed with pancreatic cancer-derived tumor antigens were used. To identify the involved pathway- and microRNA-signaling in sulforaphane-treated dendritic cells, inhibitors of various signaling pathways, western blot analysis, microRNA array, and bioinformatic analysis were applied. Results Sulforaphane modulated the expression of the costimulatory CD80, CD83 and the suppressive B7-H1 molecules on dendritic cells and thereby promoted activation of T cells. The effect was verified in presence of pancreatic tumor antigens. Phosphorylation of STAT3 in dendritic cells was diminished by sulforaphane, and the inhibition of JAK/STAT3 led to downregulation of B7-H1 expression. Among the identified top 100 significant microRNA candidates, the inhibition of miR-155-5p, important for the expression of costimulatory molecules, and the induction of miR-194-5p, targeting the B7-H1 gene, were induced by sulforaphane. Conclusion Our findings demonstrate that sulforaphane promotes T-cell activation by dendritic cells through the modulation of regulatory molecules, JAK/STAT3- and microRNA-signaling in healthy conditions and in context of pancreatic cancer-derived antigens. They explore the immunoregulatory properties of sulforaphane and justify further research on nutritional strategies in the co-treatment of cancer.
Collapse
Affiliation(s)
- Yangyi Wang
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Emilia Petrikova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ingrid Herr
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Section Surgical Research, Molecular OncoSurgery Group, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
142
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
143
|
Garcia-Moreno A, Carmona-Saez P. Computational Methods and Software Tools for Functional Analysis of miRNA Data. Biomolecules 2020; 10:biom10091252. [PMID: 32872205 PMCID: PMC7563698 DOI: 10.3390/biom10091252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs are important regulators of gene expression that play a key role in many biological processes. High-throughput techniques allow researchers to discover and characterize large sets of miRNAs, and enrichment analysis tools are becoming increasingly important in decoding which miRNAs are implicated in biological processes. Enrichment analysis of miRNA targets is the standard technique for functional analysis, but this approach carries limitations and bias; alternatives are currently being proposed, based on direct and curated annotations. In this review, we describe the two workflows of miRNAs enrichment analysis, based on target gene or miRNA annotations, highlighting statistical tests, software tools, up-to-date databases, and functional annotations resources in the study of metazoan miRNAs.
Collapse
Affiliation(s)
- Adrian Garcia-Moreno
- Bioinformatics Unit, Centre for Genomics and Oncological Research (GENyO)—Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
| | - Pedro Carmona-Saez
- Bioinformatics Unit, Centre for Genomics and Oncological Research (GENyO)—Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Department of Statistics, University of Granada, 18071 Granada, Spain
- Correspondence:
| |
Collapse
|
144
|
Kakan SS, Janga SR, Cooperman B, Craig DW, Edman MC, Okamoto CT, Hamm-Alvarez SF. Small RNA Deep Sequencing Identifies a Unique miRNA Signature Released in Serum Exosomes in a Mouse Model of Sjögren's Syndrome. Front Immunol 2020; 11:1475. [PMID: 32849505 PMCID: PMC7396589 DOI: 10.3389/fimmu.2020.01475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4–5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05—miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth R Janga
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Cooperman
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - David W Craig
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C Edman
- Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Ophthalmology, Keck School of Medicine, Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
145
|
Cheng L, Vella LJ, Barnham KJ, McLean C, Masters CL, Hill AF. Small RNA fingerprinting of Alzheimer's disease frontal cortex extracellular vesicles and their comparison with peripheral extracellular vesicles. J Extracell Vesicles 2020; 9:1766822. [PMID: 32922692 PMCID: PMC7448944 DOI: 10.1080/20013078.2020.1766822] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder, with the strongest disease-associated changes observed at clinical or end-stage disease. Transcriptomic deregulation of miRNA expression can spread via “horizontal” RNA transfer through extracellular vesicles (EVs) to act in conjunction with proteins, leading to changes in mRNA, which can provide early signals to indicate forthcoming neuropathological changes in the brain. Here, we analysed the small RNA content, in particular, miRNA, contained in brain-derived EVs isolated from the frontal cortex of Alzheimer’s subjects (n = 8) and neurological control subjects (n = 9). Brain-derived EVs were found to contain an upregulation of disease-associated miRNA. RNA species from brain-derived EVs were correlated with miRNA profiles obtained from matching total brain homogenate. These results provide a blueprint into the biological pathways potentially effected during disease that may be assisted by brain-derived EV RNA horizontal transfer.We also correlated the miRNA changes in the brain with those detected in peripheral EVs collected from serum of Alzheimer’s disease patients (n = 23, and healthy controls, n = 23) and revealed a panel of miRNA that could be used as a liquid brain biopsy. Overall, our study provides the first interrogation of the small RNA contents in brain-derived EVs and how they could be used to understand the early pathological changes in Alzheimer’s disease which will benefit the development of an early diagnostic blood test.
Collapse
Affiliation(s)
- Lesley Cheng
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Laura J Vella
- Florey Institute of Neuroscience, The University of Melbourne, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience, The University of Melbourne, Victoria, Australia
| | - Catriona McLean
- Florey Institute of Neuroscience, The University of Melbourne, Victoria, Australia.,Victorian Brain Bank, Florey Institute of Neurosciences, Victoria, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience, The University of Melbourne, Victoria, Australia
| | - Andrew F Hill
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| |
Collapse
|