101
|
Brito IR, Silva GM, Sales AD, Lobo CH, Rodrigues GQ, Sousa RF, Moura A, Calderón C, Bertolini M, Campello CC, Smitz J, Figueiredo JR. Fibrin-alginate hydrogel supports steroidogenesis, in vitro maturation of oocytes and parthenotes production from caprine preantral follicles cultured in group. Reprod Domest Anim 2016; 51:997-1009. [PMID: 27650787 DOI: 10.1111/rda.12779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022]
Abstract
This study aimed to establish a culture system that improves the in vitro development of caprine preantral follicles. In a first experiment, follicles were encapsulated as a single unit per bead and cultured singly or in groups or with five follicles in the same alginate (ALG) bead for 18 days. In a subsequent experiment, the "five follicles per bead" design was chosen to culture in ALG, fibrin-alginate (FA) or hyaluronate (HA) for 18 days. In a third experiment, we chose the five follicles per bead in FA to culture for 30 days. The culture set-up of five follicles per ALG bead increased antrum formation and follicle diameter compared to the other culture designs (p < .05). Moreover, under this condition, 44.44% of the oocytes from in vitro cultured preantral follicles reached meiotic resumption. A significant increase of follicle diameter occurred in attachment system and FA (p < .05), but the ALG condition reached the highest among all groups on day 18 (p < .05). Follicles encapsulated in matrix produced more estradiol and progesterone than attachment system (p < .05). The expression of MMP-9 mRNA was higher in FA than in other groups (p < .05) and similar to antral follicles from in vivo control (p > .05). Only FA group resulted in oocytes matured. After 30 days, oocytes from preantral follicles in vitro grown in FA developed to eight-cell parthenotes. In conclusion, a culture system using FA supported the development of caprine preantral follicles cultured in group and included in the same bead of hydrogel, improving the oocyte maturation and producing parthenotes.
Collapse
Affiliation(s)
- I R Brito
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - G M Silva
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - A D Sales
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - C H Lobo
- Department of Animal Science, Laboratory of Animal Physiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - G Q Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - R F Sousa
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Aaa Moura
- Department of Animal Science, Laboratory of Animal Physiology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cem Calderón
- Biotechnology Laboratory, University of Fortaleza, Fortaleza, CE, Brazil
| | - M Bertolini
- Biotechnology Laboratory, University of Fortaleza, Fortaleza, CE, Brazil
| | - C C Campello
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - J Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - J R Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
102
|
Duncan FE, Pavone ME, Gunn AH, Badawy S, Gracia C, Ginsberg JP, Lockart B, Gosiengfiao Y, Woodruff TK. Pediatric and Teen Ovarian Tissue Removed for Cryopreservation Contains Follicles Irrespective of Age, Disease Diagnosis, Treatment History, and Specimen Processing Methods. J Adolesc Young Adult Oncol 2016; 4:174-83. [PMID: 26697267 DOI: 10.1089/jayao.2015.0032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Fertility preservation in a pediatric and teen female population is challenging because standard technologies of egg and embryo freezing may not be possible due to premenarcheal status. Ovarian tissue cryopreservation (OTC) with the intent of future ovarian tissue transplantation or in vitro follicle growth may be the only option to preserve fertility. The purpose of this study was to add to the general understanding of primordial follicle dynamics in young patients. METHODS First, the unique infrastructure of the Oncofertility Consortium National Physicians Cooperative (OC-NPC) is described, which simultaneously drives clinical fertility preservation and basic research to explore and expand the reproductive options for those in need. Then, the OC-NPC research resource is used to perform a histological evaluation of ovarian tissue from 24 participants younger than 18 years of age. RESULTS Primordial follicles, which comprise the ovarian reserve, were observed in all participant tissues, irrespective of variables, including age, diagnosis, previous treatment history, tissue size, and tissue processing methods. Primordial follicles were present in ovarian tissue, even in participants who had a previous history of exposure to chemotherapy and/or radiation treatment regimens, which placed them at risk for iatrogenic infertility or premature ovarian failure. CONCLUSION Primordial follicles were observed in ovarian tissue from all participants examined, despite population and tissue heterogeneity. These results increase the understanding of human follicle dynamics and support OTC as a promising fertility preservation modality in the young female population. Future studies to evaluate follicle quality within these tissues are warranted.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Alexander H Gunn
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Sherif Badawy
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University , Chicago, Illinois. ; Department of Pediatrics, Faculty of Medicine, Zagazig University , Zagazig, Egypt
| | - Clarisa Gracia
- Department of Obstetrics and Gynecology, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jill P Ginsberg
- Division of Pediatric Oncology, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Barbara Lockart
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Yasmin Gosiengfiao
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
103
|
Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus–oocyte complex. Theriogenology 2016; 86:994-1003. [DOI: 10.1016/j.theriogenology.2016.03.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
|
104
|
Abdi S, Salehnia M, Hosseinkhani S. Quality of Oocytes Derived from Vitrified Ovarian Follicles Cultured in Two- and Three-Dimensional Culture System in the Presence and Absence of Kit Ligand. Biopreserv Biobank 2016; 14:279-88. [DOI: 10.1089/bio.2015.0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Shabnam Abdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
105
|
Green LJ, Shikanov A. In vitro culture methods of preantral follicles. Theriogenology 2016; 86:229-38. [DOI: 10.1016/j.theriogenology.2016.04.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
|
106
|
Cook-Andersen H, Curnow KJ, Su HI, Chang RJ, Shimasaki S. Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture. J Assist Reprod Genet 2016; 33:1067-77. [PMID: 27155601 DOI: 10.1007/s10815-016-0719-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 04/25/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Factors that differentially regulate oocyte and granulosa cell growth within the early preantral follicle and how these factors differ at each stage of follicle growth remain poorly understood. The aim of this study was to isolate and evaluate the effect of recombinant growth and differentiation factor 9 (GDF9) on oocyte and granulosa cell growth at the primary and early secondary stages of preantral follicle growth during in vitro culture. METHODS Primary stage follicles (diameters of 50-89 μm) and early secondary stage follicles (diameters of 90-120 μm) were isolated from immature mice, and individual, intact follicles were cultured in vitro in the presence and absence of recombinant GDF9. The effects of GDF9 on follicle growth were determined by the assessment of changes in the follicle volume during culture. The growth of the granulosa cell and oocyte compartments of the follicles was evaluated separately at each stage. RESULTS GDF9 significantly increased the growth of isolated follicles at both the primary and early secondary follicle stages. Independent evaluation of the granulosa cell and oocyte compartments revealed that, while GDF9 promoted granulosa cell growth at both stages of folliculogenesis, oocyte growth was stage specific. GDF9 promoted growth of the oocyte at the primary, but not the early secondary, follicle stage. CONCLUSIONS These findings demonstrate a stage-specific role for GDF9 in the regulation of oocyte and granulosa cell growth at the primary and early secondary stages of preantral follicle development.
Collapse
Affiliation(s)
- Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA.
| | - Kirsten J Curnow
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - H Irene Su
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - R Jeffrey Chang
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093-0633, USA.
| |
Collapse
|
107
|
Female fertility preservation strategies: cryopreservation and ovarian tissue in vitro culture, current state of the art and future perspectives. ZYGOTE 2016; 24:635-53. [PMID: 27141985 DOI: 10.1017/s096719941600006x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present review, the main strategies of female fertility preservation are covered. Procedures of fertility preservation are necessary for women who suffer from diseases whose treatment requires the use of aggressive therapies, such as chemotherapy and radiotherapy. These kinds of therapy negatively influence the health of gametes and their progenitors. The most commonly used method of female fertility preservation is ovarian tissue cryopreservation, followed by the retransplantation of thawed tissue. Another approach to female fertility preservation that has been actively developed lately is the ovarian tissue in vitro culture. The principal methods, advantages and drawbacks of these two strategies are discussed in this article.
Collapse
|
108
|
Yin H, Kristensen S, Jiang H, Rasmussen A, Andersen CY. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture. Hum Reprod 2016; 31:1531-9. [DOI: 10.1093/humrep/dew049] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/25/2016] [Indexed: 11/13/2022] Open
|
109
|
Zhang S, Zheng D, Wu Y, Lin W, Chen Z, Meng L, Liu J, Zhou Y. Simulated Microgravity Using a Rotary Culture System Compromises the In Vitro Development of Mouse Preantral Follicles. PLoS One 2016; 11:e0151062. [PMID: 26963099 PMCID: PMC4786255 DOI: 10.1371/journal.pone.0151062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Background Growing cells in simulated weightlessness condition might be a highly promising new technique to maintain or generate tissue constructs in a scaffold-free manner. There is limited evidence that microgravity condition may affect development of ovarian follicles. The objective of the present study was to investigate the effects of simulated microgravity on the in vitro development of mouse preantral follicles. Methods and Results Ovarian tissue from 14-day-old mice, or preantral follicles mechanically isolated from 14-day-old mouse ovaries were cultured at a simulated microgravity condition generated using a rotating wall vessel apparatus. Follicle survival was assessed quantitatively using H&E staining. Follicle diameter and oocyte diameter were measured under an inverted microscope. Ultrastructure of oocytes was evaluated using transmission electron microscopy. We observed that simulated microgravity compromised follicle survival in vitro, downregulated PCNA and GDF-9 expressions, and caused ultrastructural abnormalities in oocytes. Conclusion This study showed for the first time that three-dimensional culture condition generated by simulated microgravity is detrimental to the initial stage development of mouse preantral follicles in vitro. The experimental setup provides a model to further investigate the mechanisms involved in the in vitro developmental processes of oocytes/granulosa cells under the microgravity condition.
Collapse
Affiliation(s)
- Shen Zhang
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Dahan Zheng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yonggen Wu
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zaichong Chen
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Luhe Meng
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jun Liu
- Stem Cells and Genetic Engineering Group, Department of Materials Engineering, Monash University, Clayton, Victoria, Australia
- * E-mail: (JL); (YZ)
| | - Ying Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- * E-mail: (JL); (YZ)
| |
Collapse
|
110
|
Nath A, Hakim BA, Rajender S, Singh K, Sachdev M, Konwar R. Effect of insulin supplementation on in vitro maturation of pre-antral follicles from adult and pre-pubertal mice. In Vitro Cell Dev Biol Anim 2016; 52:512-21. [PMID: 26956357 DOI: 10.1007/s11626-016-0004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Amar Nath
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), 10/1, Jankipuram Extension, Lucknow, 226031, India
| | - Bilal Ahmad Hakim
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), 10/1, Jankipuram Extension, Lucknow, 226031, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), 10/1, Jankipuram Extension, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India
| | - Kavita Singh
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute (CDRI), 10/1, Jankipuram Extension, Lucknow, 226031, India
| | - Monika Sachdev
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), 10/1, Jankipuram Extension, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| | - Rituraj Konwar
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), 10/1, Jankipuram Extension, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110001, India.
| |
Collapse
|
111
|
Wang TR, Yan J, Lu CL, Xia X, Yin TL, Zhi X, Zhu XH, Ding T, Hu WH, Guo HY, Li R, Yan LY, Qiao J. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification. Hum Reprod 2016; 31:763-73. [PMID: 26851603 DOI: 10.1093/humrep/dew005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What is the effect of human ovarian tissue cryopreservation on single follicular development in vitro? SUMMARY ANSWER Vitrification had a greater negative effect on growth and gene expression of human ovarian follicles when compared with fresh follicles. WHAT IS KNOWN ALREADY For human ovarian cortex cryopreservation, the conventional option is slow freezing while more recently vitrification has been demonstrated to maintain good quality and function of ovarian tissues. STUDY DESIGN, SIZE, DURATION Ovarian tissues were collected from 11 patients. For every patient, the ovarian cortex was divided into three samples: Fresh, slow-rate freezing (Slow) and vitrification (Vit). Tissue histology was performed and follicles were isolated for single-cell mRNA analysis and in vitro culture (IVC) in 1% alginate for 8 days. PARTICIPANTS/MATERIALS, SETTING, METHODS Follicle morphology was assessed with hematoxylin-eosin analysis. Follicles were individually embedded in alginate (1% w/v) and cultured in vitro for 8 days. Follicle survival and growth were assessed by microscopy. Follicle viability was observed after Calcein-AM and ethidium homodimer-I (Ca-AM/EthD-I) staining. Expression of genes, including GDF9 (growth differentiation factor 9), BMP15 (bone morphogenetic protein 15) and ZP3 (zona pellucida glycoprotein 3) in oocytes and AMH (anti-Mullerian hormone), FSHR (FSH receptor), CYP11A (cholesterol side-chain cleavage cytochrome P450) and STAR (steroidogenic acute regulatory protein) in GCs, was evaluated by single-cell mRNA analysis. MAIN RESULTS AND THE ROLE OF CHANCE A total of 129 follicles were separated from ovarian cortex (Fresh n = 44; Slow n = 40; Vit n = 45). The percentage of damaged oocytes and granulosa cells was significantly higher in both the Slow and Vit groups, as compared with Fresh control (P< 0.05). The growth of follicles in vitro was significantly delayed in the Vit group compared with the Fresh group (P< 0.05). Both slow freezing (P< 0.05) and vitrification (P< 0.05) down-regulated the mRNA levels of ZP3 and CYP11A compared with Fresh group, while there was no significant difference between the Slow and Vit groups (P> 0.05). Vitrification also down-regulates AMH mRNA levels compared with Fresh group (P< 0.05). LIMITATIONS, REASONS FOR CAUTION Only short-term IVC studies (8 days) are reported. Further study should be performed to examine and improve follicular development in a long-term culture system after cryopreservation. WIDER IMPLICATIONS OF THE FINDINGS This is the first comparison of gene expression and growth of single human ovarian follicles in vitro after either slow freezing or vitrification. With the decreased gene expression and growth during IVC, damage by cryopreservation still exists and needs to be minimized during the long-term IVC of follicles in the future for eventual clinical application. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (31230047, 81571386, 81471508, 31429004 and 81501247), National Natural Science Foundation of Beijing (7142166) and Mega-projects of Science Research for the 12th five-year plan (2012ba132b05). There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Tian-ren Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 100004, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Cui-ling Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
| | - Xi Xia
- Center for Reproductive Medicine, Peking University Shenzhen Hospital, FuTian District, Shenzhen, Guangdong 518000, China
| | - Tai-lang Yin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Xiao-hui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
| | - Ting Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
| | - Wei-hong Hu
- Department of Obstetrics and Gynecology, General Hospital of Chinese People's Armed Police Forces, Beijing 100191, China
| | - Hong-yan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
| | - Li-ying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North HuaYuan Road, HaiDian District, Beijing 100191, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China
| |
Collapse
|
112
|
Dorati R, Genta I, Ferrari M, Vigone G, Merico V, Garagna S, Zuccotti M, Conti B. Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture. J Microencapsul 2016; 33:137-45. [DOI: 10.3109/02652048.2015.1134691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
113
|
In vitro follicle growth supports human oocyte meiotic maturation. Sci Rep 2015; 5:17323. [PMID: 26612176 PMCID: PMC4661442 DOI: 10.1038/srep17323] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023] Open
Abstract
In vitro follicle growth is a potential approach to preserve fertility for young women who are facing a risk of premature ovarian failure (POF) caused by radiation or chemotherapy. Our two-step follicle culture strategy recapitulated the dynamic human follicle growth environment in vitro. Follicles developed from the preantral to antral stage, and, for the first time, produced meiotically competent metaphase II (MII) oocytes after in vitro maturation (IVM).
Collapse
|
114
|
Higuchi CM, Maeda Y, Horiuchi T, Yamazaki Y. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice. PLoS One 2015; 10:e0143114. [PMID: 26571501 PMCID: PMC4646357 DOI: 10.1371/journal.pone.0143114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/01/2015] [Indexed: 12/23/2022] Open
Abstract
In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture system using a Matrigel drop and activin A supplementation (M+A) provides optimal and convenient conditions to support growth of developmentally competent oocytes in vitro.
Collapse
Affiliation(s)
- Carolyn M. Higuchi
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Yuuki Maeda
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Toshitaka Horiuchi
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yukiko Yamazaki
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
115
|
Xiao S, Duncan FE, Bai L, Nguyen CT, Shea LD, Woodruff TK. Size-specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction 2015; 150:183-92. [PMID: 26116002 DOI: 10.1530/rep-15-0175] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/18/2015] [Indexed: 12/14/2022]
Abstract
Encapsulated in vitro follicle growth (eIVFG) has great potential to provide an additional fertility preservation option for young women and girls with cancer or other reproductive health threatening diseases. Currently, follicles are cultured for a defined period of time and analyzed as a cohort. However, follicle growth is not synchronous, and culturing follicles for insufficient or excessive times can result in compromised gamete quality. Our objective is to determine whether the selection of follicles based on size, rather than absolute culture time, better predict follicle maturity and oocyte quality. Multilayer secondary mouse follicles were isolated and encapsulated in 0.25% alginate. Follicles were cultured individually either for defined time periods or up to specific follicle diameter ranges, at which point several reproductive endpoints were analyzed. The metaphase II (MII) percentage after oocyte maturation on day 6 was the highest (85%) when follicles were cultured for specific days. However, if follicles were cultured to a terminal diameter of 300-350 μm irrespective of absolute time in culture, 93% of the oocytes reached MII. More than 90% of MII oocytes matured from follicles with diameters of 300-350 μm showed normal spindle morphology and chromosome alignment, 85% of oocytes showed two pronuclei after IVF, 81% developed into the two-cell embryo stage and 38% developed to the blastocyst stage, all significantly higher than the percentages in the other follicle size groups. Our study demonstrates that size-specific follicle selection can be used as a non-invasive marker to identify high-quality oocytes and improve reproductive outcomes during eIVFG.
Collapse
Affiliation(s)
- Shuo Xiao
- Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francesca E Duncan
- Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lu Bai
- Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Catherine T Nguyen
- Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lonnie D Shea
- Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Teresa K Woodruff
- Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Obstetrics and GynecologyFeinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USACenter for Reproductive ScienceNorthwestern University, Evanston, Illinois 60208, USADepartment of Anatomy and Cell BiologyUniversity of Kansas Medical Center, Kansas City, Kansas 66160, USAMaster of Biotechnology ProgramNorthwestern University, Evanston, Illinois 60628, USADepartment of Biomedical EngineeringCollege of Engineering and Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
116
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Sargus-Patino CN, Wright EC, Plautz SA, Miles JR, Vallet JL, Pannier AK. In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix. Reprod Fertil Dev 2015; 26:943-53. [PMID: 23916395 DOI: 10.1071/rd13008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022] Open
Abstract
Between Days 10 and 12 of gestation, porcine embryos undergo a dramatic morphological change, known as elongation, with a corresponding increase in oestrogen production that triggers maternal recognition of pregnancy. Elongation deficiencies contribute to embryonic loss, but exact mechanisms of elongation are poorly understood due to the lack of an effective in vitro culture system. Our objective was to use alginate hydrogels as three-dimensional scaffolds that can mechanically support the in vitro development of preimplantation porcine embryos. White cross-bred gilts were bred at oestrus (Day 0) to Duroc boars and embryos were recovered on Days 9, 10 or 11 of gestation. Spherical embryos were randomly assigned to be encapsulated within double-layered 0.7% alginate beads or remain as non-encapsulated controls (ENC and CONT treatment groups, respectively) and were cultured for 96h. Every 24h, half the medium was replaced with fresh medium and an image of each embryo was recorded. At the termination of culture, embryo images were used to assess morphological changes and cell survival. 17β-Oestradiol levels were measured in the removed media by radioimmunoassay. Real-time polymerase chain reaction was used to analyse steroidogenic transcript expression at 96h in ENC and CONT embryos, as well as in vivo-developed control embryos (i.e. spherical, ovoid and tubular). Although no differences in cell survival were observed, 32% (P<0.001) of the surviving ENC embryos underwent morphological changes characterised by tubal formation with subsequent flattening, whereas none of the CONT embryos exhibited morphological changes. Expression of steroidogenic transcripts STAR, CYP11A1 and CYP19A1 was greater (P<0.07) in ENC embryos with morphological changes (ENC+) compared with CONT embryos and ENC embryos with no morphological changes (ENC-), and was more similar to expression of later-stage in vivo-developed controls. Furthermore, a time-dependent increase (P<0.001) in 17β-oestradiol was observed in culture media from ENC+ compared with ENC- and CONT embryos. These results illustrate that preimplantation pig embryos encapsulated in alginate hydrogels can undergo morphological changes with increased expression of steroidogenic transcripts and oestrogen production, consistent with in vivo-developed embryos. This alginate culture system can serve as a tool for evaluating specific mechanisms of embryo elongation that could be targeted to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Catherine N Sargus-Patino
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, PO Box 830726, Lincoln, NE 68583, USA
| | - Elane C Wright
- USDA-ARS US Meat Animal Research Center (USMARC), PO Box 166, Clay Center, NE 68933, USA
| | - Sarah A Plautz
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, PO Box 830726, Lincoln, NE 68583, USA
| | - Jeremy R Miles
- USDA-ARS US Meat Animal Research Center (USMARC), PO Box 166, Clay Center, NE 68933, USA
| | - Jeff L Vallet
- USDA-ARS US Meat Animal Research Center (USMARC), PO Box 166, Clay Center, NE 68933, USA
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, PO Box 830726, Lincoln, NE 68583, USA
| |
Collapse
|
118
|
Christensen AP, Patel SH, Grasa P, Christian HC, Williams SA. Oocyte glycoproteins regulate the form and function of the follicle basal lamina and theca cells. Dev Biol 2015; 401:287-98. [DOI: 10.1016/j.ydbio.2014.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/28/2014] [Accepted: 12/20/2014] [Indexed: 11/25/2022]
|
119
|
Kim SY, Ebbert K, Cordeiro MH, Romero M, Zhu J, Serna VA, Whelan KA, Woodruff TK, Kurita T. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology 2015; 156:1464-76. [PMID: 25594701 PMCID: PMC4399322 DOI: 10.1210/en.2014-1926] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we explored the effects of oocytic phosphoinositide 3-kinase (PI3K) activation on folliculogensis by generating transgenic mice, in which the oocyte-specific Cre-recombinase induces the expression of constitutively active mutant PI3K during the formation of primordial follicles. The ovaries of neonatal transgenic (Cre+) mice showed significantly reduced apoptosis in follicles, which resulted in an excess number of follicles per ovary. Thus, the elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within oocytes promotes the survival of follicles during neonatal development. Despite the increase in AKT phosphorylation, primordial follicles in neonatal Cre+ mice remained dormant demonstrating a nuclear accumulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). These primordial follicles containing a high level of nuclear PTEN persisted in postpubertal females, suggesting that PTEN is the dominant factor in the maintenance of female reproductive lifespan through the regulation of primordial follicle recruitment. Although the oocytic PI3K activity and PTEN levels were elevated, the activation of primordial follicles and the subsequent accumulation of antral follicles with developmentally competent oocytes progressed normally in prepubertal Cre+ mice. However, mature Cre+ female mice were anovulatory. Because postnatal day 50 Cre+ mice released cumulus-oocyte complexes with developmentally competent oocytes in response to super-ovulation treatment, the anovulatory phenotype was not due to follicular defects but rather endocrine abnormalities, which were likely caused by the excess number of overgrown follicles. Our current study has elucidated the critical role of oocytic PI3K activity in follicular function, as well as the presence of a PTEN-mediated mechanism in the prevention of immature follicle activation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine (S.K., K.E., M.H.C., M.R., J.Z., K.A.W., T.K.W.), Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; and Department of Molecular and Cellular Biochemistry (V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Skory RM, Xu Y, Shea LD, Woodruff TK. Engineering the ovarian cycle using in vitro follicle culture. Hum Reprod 2015; 30:1386-95. [PMID: 25784584 DOI: 10.1093/humrep/dev052] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/13/2015] [Indexed: 12/29/2022] Open
Abstract
STUDY QUESTION Can cultured follicles model the ovarian cycle, including follicular- and luteal-phase hormone synthesis patterns and ovulation? SUMMARY ANSWER Under gonadotrophin stimulation, murine follicles grown in an encapsulated three-dimensional system ovulate in vitro and murine and human follicle hormone synthesis mimics follicular and luteal phases expected in vivo. WHAT IS KNOWN ALREADY Studies of the human ovary and follicle function are limited by the availability of human tissue and lack of in vitro models. We developed an encapsulated in vitro follicle growth (eIVFG) culture system, which preserves 3D follicular structure. Thus far, the alginate system has supported the culture of follicles from mice, dog, rhesus macaque, baboon and human. These studies have shown that cultured follicles synthesize steroid hormones similar to those observed during the follicular phase in vivo. STUDY DESIGN, SIZE, DURATION Cultured murine follicles were treated with human chorionic gonadotrophin (hCG) and epidermal growth factor (EGF) and either assayed for luteinization or removed from alginate beads and assayed for ovulation. Human follicles were also cultured, treated with follicle-stimulating hormone (FSH), hCG and EGF to mimic gonadotrophin changes throughout the ovarian cycle, and culture medium was assayed for hormone production. PARTICIPANTS/MATERIALS, SETTING, METHODS Murine and human follicles were cultured in alginate hydrogel and hormone production [17β-estradiol, progesterone, inhibin A, inhibin B, activin A and anti-Müllerian hormone (AMH)] was quantified in medium by enzyme-linked immuno assay (ELISA). Human ovarian tissue was acquired from females between 6 and 34 years of age with a cancer diagnosis. These participants were undergoing ovarian tissue cryopreservation at National Physicians Cooperative sites as part of the Oncofertility Consortium. MAIN RESULTS AND THE ROLE OF CHANCE When grown in this system, 96% of mouse follicles ovulated in response to hCG and released meiotically competent eggs. Ovulated follicles recapitulated transcriptional, morphologic and hormone synthesis patterns post-luteinizing hormone (LH/hCG). In addition to rodent follicles, individual human follicles secreted steroid and peptide hormones that mimicked the patterns of serum hormones observed during the menstrual cycle. LIMITATIONS, REASONS FOR CAUTION This was a descriptive study of an in vitro model of ovulation and the ovarian hormone cycle. The ovulation studies were limited to murine tissue and further studies are needed to optimize conditions using other species. WIDER IMPLICATIONS OF THE FINDINGS The eIVFG system reliably phenocopies the in vivo ovarian cycle and provides a new tool to study human follicle biology and the influence of cycling female hormones on other tissue systems in vitro. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH U54 HD041857, NIH U54 HD076188, NIH UH2 E5022920, NIH UH3 TR001207 and F30 AG040916 (R.M.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Collapse
Affiliation(s)
- Robin M Skory
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Center for Reproductive Science, Northwestern University, Evanston, IL 60208, USA
| | - Yuanming Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Center for Reproductive Science, Northwestern University, Evanston, IL 60208, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Center for Reproductive Science, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
121
|
Xu Y, Duncan FE, Xu M, Woodruff TK. Use of an organotypic mammalian in vitro follicle growth assay to facilitate female reproductive toxicity screening. Reprod Fertil Dev 2015; 28:RD14375. [PMID: 25689754 PMCID: PMC4540697 DOI: 10.1071/rd14375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022] Open
Abstract
Screening of pharmaceutical, chemical and environmental compounds for their effects on reproductive health relies on in vivo studies. More robust and efficient methods to assess these effects are needed. Herein we adapted and validated an organotypic in vitro follicle growth (IVFG) assay to determine the impact of compounds on markers of ovarian function. We isolated mammalian follicles and cultured them in the presence of compounds with: (1) known fertotoxicity (i.e. toxicity to the reproductive system; cyclophosphamide and cisplatin); (2) no known fertotoxicity (nalbuphine); and (3) unknown fertotoxicity (Corexit EC 9500 A; CE, Nalco, Chicago, IL, USA). For each compound, we assayed follicle growth, hormone production and the ability of follicle-enclosed oocytes to resume meiosis and produce a mature egg. Cyclophosphamide and cisplatin caused dose-dependent disruption of follicle dynamics, whereas nalbuphine did not. The reproductive toxicity of CE, an oil dispersant used heavily during the 2010 Deepwater Horizon oil spill, has never been examined in a mammalian system. In the present study, CE compromised follicle morphology and functional parameters. Our findings demonstrate that this IVFG assay system can be used to distinguish fertotoxic from non-toxic compounds, providing an in vitro tool to assess the effects of chemical compounds on reproductive function and health.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Reproductive Science, Northwestern University, Evanston, IL USA
| | - Min Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Reproductive Science, Northwestern University, Evanston, IL USA
| |
Collapse
|
122
|
Murine ovarian follicle culture in PEG-hydrogel: Effects of mechanical properties and the hormones FSH and LH on development. Macromol Res 2015. [DOI: 10.1007/s13233-015-3045-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
123
|
Wood CD, Vijayvergia M, Miller FH, Carroll T, Fasanati C, Shea LD, Brinson LC, Woodruff TK. Multi-modal magnetic resonance elastography for noninvasive assessment of ovarian tissue rigidity in vivo. Acta Biomater 2015; 13:295-300. [PMID: 25463483 PMCID: PMC4295766 DOI: 10.1016/j.actbio.2014.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022]
Abstract
For centuries, physicians have relied on touch to palpate tissue and detect abnormalities throughout the body. While this time-tested method has provided a simple diagnostic examination for large, superficial abnormalities, it does not permit quantifiable measurements of stiffness in deeper, small organs. Advances in noninvasive imaging to measure tissue rigidity represent important extensions of manual palpation techniques. Tissue fibrosis occurs with age in many organs; in the ovary, it is thought to be a marker of polycystic ovary syndrome and age-related idiopathic infertility, although quantitative assessment of fibrosis in this deep, abdominal tissue has not been possible. We used noninvasive methods to quantify ovarian tissue rigidity and clarify the role of tissue stiffness in reproductive health. With proper validation against accepted standards, noninvasive imaging techniques may become the quantitative counterpart to interior probing palpation methods and invasive (surgical) diagnoses, with applications across many clinical settings, including evaluation of adolescent and young adult ovarian function.
Collapse
Affiliation(s)
- Charles D Wood
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60201, USA
| | - Mayank Vijayvergia
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60201, USA
| | - Frank H Miller
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St, Clair Suite 800, Chicago, IL 60611, USA
| | - Timothy Carroll
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60201, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St, Clair Suite 800, Chicago, IL 60611, USA
| | - Charles Fasanati
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N St, Clair Suite 800, Chicago, IL 60611, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60201, USA
| | - L Catherine Brinson
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60201, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60201, USA.
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 303 E. Superior St, Chicago, IL 60611, USA
| |
Collapse
|
124
|
Vanacker J, Dolmans MM, Luyckx V, Donnez J, Amorim CA. First transplantation of isolated murine follicles in alginate. Regen Med 2014; 9:609-19. [DOI: 10.2217/rme.14.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Our aim is to develop an artificial ovary allowing survival and growth of isolated follicles and ovarian cells, to restore fertility in women diagnosed with pathologies at high risk of ovarian involvement. Materials & methods: For this, alginate beads containing isolated preantral follicles and ovarian cells were autografted to immunocompetent mice. One week after grafting, the beads were invaded by proliferating murine cells (12.1%) and capillaries. Results: The recovery rate of follicles per graft ranged from 0% to 35.5%. Of the analyzed follicles, 77% were Ki67-positive and 81%, TUNEL-negative. Three antral follicles were also identified, evidencing their ability to grow in the matrix. Conclusion: Our results suggest that an artificial ovary is now conceivable, opening new perspectives to restore fertility in women.
Collapse
Affiliation(s)
- Julie Vanacker
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Gynecology Department, 1200 Brussels, Belgium
| | - Valérie Luyckx
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jacques Donnez
- SRI (Society for Research into Infertility), Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
125
|
Brito IR, Lima IMT, Xu M, Shea LD, Woodruff TK, Figueiredo JR. Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reprod Fertil Dev 2014; 26:915-30. [PMID: 23866836 PMCID: PMC11287383 DOI: 10.1071/rd12401] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/12/2013] [Indexed: 08/01/2024] Open
Abstract
The in vitro culture of ovarian follicles has provided critical insight into the biology of the follicle and its enclosed oocyte and the physical interaction and communication between the theca and granulosa cells and the oocyte that is necessary to produce meiotically competent oocytes. Various two-dimensional (2D) and three-dimensional (3D) culture systems have been developed to evaluate the effect of growth factors, hormones, extracellular matrix components and culture conditions on follicle development and oocyte growth and maturation. Among these culture systems, 3D systems make it possible to maintain follicle structure and support communication between the various cell compartments within the follicle. In this review article, we will discuss the three main approaches to ovarian follicle culture: 2D attachment systems, 3D floating systems and 3D encapsulated systems. We will specifically emphasise the development of and advances in alginate-based encapsulated systems for in vitro follicle culture.
Collapse
Affiliation(s)
- Ivina R. Brito
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil
| | | | - Min Xu
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Lonnie D. Shea
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Teresa K. Woodruff
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - José R. Figueiredo
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil
| |
Collapse
|
126
|
Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, Shea LD, Woodruff TK. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 2014; 31:1013-28. [PMID: 24845158 PMCID: PMC4130945 DOI: 10.1007/s10815-014-0252-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023] Open
Abstract
PURPOSE In vitro follicle growth (IVFG) is an investigational fertility preservation technique in which immature follicles are grown in culture to produce mature eggs that can ultimately be fertilized. Although progress has been made in growing primate primary and secondary follicles in vitro, it has been a relatively greater challenge to isolate and culture primordial follicles. The purpose of this study was to develop methods to grow human primordial follicles in vitro using alginate hydrogels. METHODS We obtained human ovarian tissue for research purposes through the National Physicians Cooperative from nationwide sites and used it to test two methods for culturing primordial follicles. First, primordial follicles were isolated from the ovarian cortex and encapsulated in alginate hydrogels. Second, 1 mm × 1 mm pieces of 500 μm-thick human ovarian cortex containing primordial follicles were encapsulated in alginate hydrogels, and survival and follicle development within the tissue was assessed for up to 6 weeks. RESULTS We found that human ovarian tissue could be kept at 4 °C for up to 24 h while still maintaining follicle viability. Primordial follicles isolated from ovarian tissue did not survive culture. However, encapsulation and culture of ovarian cortical pieces supported the survival, differentiation, and growth of primordial and primary follicles. Within several weeks of culture, many of the ovarian tissue pieces had formed a defined surface epithelium and contained growing preantral and antral follicles. CONCLUSIONS The early stages of in vitro human follicle development require the support of the native ovarian cortex.
Collapse
Affiliation(s)
- Monica M. Laronda
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Francesca E. Duncan
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Jessica E. Hornick
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Min Xu
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Jennifer E. Pahnke
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Kelly A. Whelan
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| | - Lonnie D. Shea
- />Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- />Institute of Bio-Nanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611 USA
| | - Teresa K. Woodruff
- />Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-121, Chicago, IL 60611 USA
| |
Collapse
|
127
|
Jorge S, Chang S, Barzilai JJ, Leppert P, Segars JH. Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod Sci 2014; 21:1093-107. [PMID: 25001021 DOI: 10.1177/1933719114542023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction-how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling.
Collapse
Affiliation(s)
- Soledad Jorge
- CRTP Scholars, NIH, Bethesda, MD, USA Yale University School of Medicine, New Haven, CT, USA
| | - Sydney Chang
- CRTP Scholars, NIH, Bethesda, MD, USA Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
128
|
Abstract
Chemo- and radiation therapies used to treat cancer can have the unintended effect of making patients infertile. Clinically established fertility preservation methods, such as egg and embryo cryopreservation, are not applicable to all patients, which has motivated the development of strategies that involve ovarian tissue removal and cryopreservation before the first sterilizing treatment. To restore fertility at a later date, the early-stage follicles present in the tissue must be matured to produce functional oocytes, a process that is not possible using existing cell culture technologies. This review describes the application of tissue engineering principles to promote ovarian follicle maturation and produce mature oocytes through either in vitro culture or transplantation. The design principles for these engineered systems are presented, along with identification of emerging opportunities in reproductive biology.
Collapse
|
129
|
Brito IR, Silva CMG, Duarte ABG, Lima IMT, Rodrigues GQ, Rossetto R, Sales AD, Lobo CH, Bernuci MP, Rosa-E-Silva ACJS, Campello CC, Xu M, Figueiredo JR. Alginate hydrogel matrix stiffness influences the in vitro development of caprine preantral follicles. Mol Reprod Dev 2014; 81:636-45. [PMID: 24700587 DOI: 10.1002/mrd.22330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/27/2014] [Indexed: 11/08/2022]
Abstract
This study examined caprine follicular development in different concentrations of alginate matrix to determine the optimal conditions for culture. Caprine preantral follicles were cultured in a two-dimensional system (control) or a three-dimensional encapsulated system in 0.25%, 0.5%, or 1% alginate (ALG 0.25, ALG 0.5, and ALG 1, respectively). A higher percentage of morphologically normal follicles developed in ALG 0.5 and ALG 1 than in ALG 0.25 or the control (P < 0.05). The rate of antrum formation, however, was higher in ALG 0.25 than in ALG 0.5 and ALG 1 conditions (P < 0.05), but similar to the control. Follicles cultured in ALG 0.25 had higher growth rates and meiotic resumption than those cultured in ALG 0.5, ALG 1, or the control (P < 0.05). Moreover, follicles cultured in ALG 0.25 had higher levels of estradiol and progesterone than those cultured in ALG 0.5, ALG 1, or the control, as well as higher levels of CYP19A1 and HSD3B mRNA. In conclusion, a three-dimensional system that uses ALG 0.25 fosters the in vitro development of caprine preantral follicles and increases the rate of meiotic resumption.
Collapse
Affiliation(s)
- I R Brito
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. ZYGOTE 2014; 23:475-84. [PMID: 24666604 DOI: 10.1017/s0967199414000070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to evaluate the influence of two-dimensional (2D) and three-dimensional (3D) alginate culture systems on in vitro development of pre-antral caprine follicles. In addition, the influence of the reproductive age of the ovary donor on the in vitro culture success was investigated. Pre-antral follicles from pre-pubertal or adult goats were isolated and cultured directly on a plastic surface (2D) or encapsulated in an alginate-based matrix (3D). After 18 days, the oocytes underwent in vitro maturation (IVM) and in vitro fertilization (IVF) to produce embryos. The 3D system showed higher rates of follicle survival, lower rates of oocyte extrusion, and a greater number of recovered oocytes for IVM and IVF (P < 0.05). Only pre-antral follicles from adult animals produced MII oocytes and embryos. The estradiol concentrations increased from day 2 to day 12 of culture in all groups tested (P < 0.05). Conversely, progesterone concentrations were lower in 3D-cultured follicles than in 2D-cultured follicles, with differences on days 2 and 6 of culture (P < 0.05). We provide compelling evidence that a 2D or 3D alginate in vitro culture system offers a promising approach to achieving full in vitro development of caprine pre-antral follicles to produce mature oocytes that are capable of fertilization and viable embryos.
Collapse
|
131
|
Ahn JI, Kim GA, Kwon HS, Ahn JY, Hubbell JA, Song YS, Lee ST, Lim JM. Culture of preantral follicles in poly(ethylene) glycol-based, three-dimensional hydrogel: a relationship between swelling ratio and follicular developments. J Tissue Eng Regen Med 2014; 9:319-23. [PMID: 24493269 PMCID: PMC4409103 DOI: 10.1002/term.1824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 11/06/2022]
Abstract
This study was undertaken to examine how the softness of poly(ethylene) glycol (PEG)-based hydrogels, creating a three-dimensional (3D) microenvironment, influences the in vitro growth of mouse ovarian follicles. Early secondary, preantral follicles of 2 week-old mice were cultured in a crosslinked four-arm PEG hydrogel. The hydrogel swelling ratio, which relates to softness, was modified within the range 25.7-15.5 by increasing the reactive PEG concentration in the precursor solution from 5% to 15% w/v, but it did not influence follicular growth to form the pseudoantrum (60-80%; p = 0.76). Significant (p < 0.04) model effects, however, were detected in the maturation and developmental competence of the follicle-derived oocytes. A swelling ratio of > 21.4 yielded better oocyte maturation than other levels, while the highest competence to develop pronuclear and blastocyst formation was detected at 20.6. In conclusion, gel softness, as reflected in swelling ratio, was one of the essential factors for supporting folliculogenesis in vivo within a hydrogel-based, 3D microenvironment.
Collapse
Affiliation(s)
- Jong Il Ahn
- Laboratoryof Stem Cell and Bioevaluation, Major in Biomodulation, Seoul National University, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Tagler D, Makanji Y, Tu T, Bernabé BP, Lee R, Zhu J, Kniazeva E, Hornick JE, Woodruff TK, Shea LD. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng 2014; 111:1417-29. [PMID: 24375265 DOI: 10.1002/bit.25181] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023]
Abstract
The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (<70 µm) rapidly lost structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (<80 µm) cultured in alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Technological Institute E-136, 2145 Sheridan Road, Evanston, Illinois, 60208; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, 303 E. Superior Street, Suite 11-131, Chicago, Illinois, 60611
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Wang TR, Yan LY, Yan J, Lu CL, Xia X, Yin TL, Zhu XH, Gao JM, Ding T, Hu WH, Guo HY, Li R, Qiao J. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro. Hum Reprod 2014; 29:568-76. [PMID: 24408318 DOI: 10.1093/humrep/det465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? SUMMARY ANSWER The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. WHAT IS KNOWN ALREADY It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. STUDY DESIGN, SIZE, DURATION The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. PARTICIPANTS/MATERIALS, SETTING, METHODS Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. MAIN RESULTS AND THE ROLE OF CHANCE After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). LIMITATIONS, REASONS FOR CAUTION The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings highlight the need to improve the acquisition and isolation of human ovarian follicles. WIDER IMPLICATIONS OF THE FINDINGS The in vitro 3D culture of human follicles with appropriate dosage of bFGF offers an effective method to investigate their development. Moreover, it allows early follicles to be cultured to an advanced stage and therefore has the potential to become an important source of mature oocytes for assisted reproductive technology; particularly as an option for fertility preservation in women, including patients with cancer. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Basic Research Program of China (2011|CB944504, 2011CB944503) and the National Natural Science Foundation of China (81200470, 81000275, 31230047, 8110197). There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Tian-ren Wang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Lebbe M, Woodruff T. Involvement of androgens in ovarian health and disease. Mol Hum Reprod 2013; 19:828-37. [PMID: 24026057 PMCID: PMC3843026 DOI: 10.1093/molehr/gat065] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/13/2022] Open
Abstract
In women, ovary and adrenal gland produce androgens. Androgens are essential drivers of the primordial to antral follicle development, prior to serving as substrate for estrogen production in the later stages of folliculogenesis. Androgens play a crucial role in the follicular-stromal intertalk by fine tuning the extracellular matrix and vessel content of the ovarian stroma. Local auto-and paracrine factors regulate androgen synthesis in the pre-antral follicle. Androgen excess is a hallmark of polycystic ovary syndrome and is a key contributor in the exaggerated antral follicle formation, stromal hyperplasia and hypervascularity. Hyperandrogenaemia overrides the follicular-stromal dialog, resulting in follicular arrest and disturbed ovulation. On the other hand, androgen deficiency is likely to have a negative impact on fertility as well, and further research is needed to examine the benefits of androgen-replacement therapy in subfertility.
Collapse
Affiliation(s)
- M. Lebbe
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), School of Clinical & Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - T.K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Lurie 10-121, Chicago, IL 60610, USA
| |
Collapse
|
135
|
Tagler D, Makanji Y, Anderson NR, Woodruff TK, Shea LD. Supplemented αMEM/F12-based medium enables the survival and growth of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng 2013; 110:3258-68. [PMID: 23801027 DOI: 10.1002/bit.24986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 01/18/2023]
Abstract
Hydrogel-encapsulating culture systems for ovarian follicles support the in vitro growth of secondary follicles from various species including mouse, non-primate human, and human; however, the growth of early stage follicles (primary and primordial) has been limited. While encapsulation maintains the structure of early stage follicles, feeder cell populations, such as mouse embryonic fibroblasts (MEFs), are required to stimulate growth and development. Hence, in this report, we investigated feeder-free culture environments for early stage follicle development. Mouse ovarian follicles were encapsulated within alginate hydrogels and cultured in various growth medium formulations. Initial studies employed embryonic stem cell medium formulations as a tool to identify factors that influence the survival, growth, and meiotic competence of early stage follicles. The medium formulation that maximized survival and growth was identified as αMEM/F12 supplemented with fetuin, insulin, transferrin, selenium, and follicle stimulating hormone (FSH). This medium stimulated the growth of late primary (average initial diameter of 80 µm) and early secondary (average initial diameter of 90 µm) follicles, which developed antral cavities and increased to terminal diameters exceeding 300 µm in 14 days. Survival ranged from 18% for 80 µm follicles to 36% for 90 µm follicles. Furthermore, 80% of the oocytes from surviving follicles with an initial diameter of 90-100 µm underwent germinal vesicle breakdown (GVBD), and the percentage of metaphase II (MII) eggs was 50%. Follicle/oocyte growth and GVBD/MII rates were not significantly different from MEF co-culture. Survival was reduced relative to MEF co-culture, yet substantially increased relative to the control medium that had been previously used for secondary follicles. Continued development of culture medium could enable mechanistic studies of early stage folliculogenesis and emerging strategies for fertility preservation.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Technological Institute E-136, 2145 Sheridan Road, Evanston, Illinois, 60208; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois
| | | | | | | | | |
Collapse
|
136
|
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic oligoanovulation and hyperandrogenism and associated with insulin resistance, type 2 diabetes, and cardiovascular risk. In recent years, genetic studies have linked PCOS to a dinucleotide marker D19S884 in the fibrillin 3 gene. Fibrillins make up the major component of microfibrils in the extracellular matrix (ECM) and interact with molecules in the ECM to regulate transforming growth factor β (TGF-β) signaling. Therefore, variations in fibrillin 3 and subsequent dysregulation of TGF-β may contribute to the pathogenesis of PCOS. Here, we review the evidence from genetic studies supporting the role of TGF-β in PCOS and describe how TGF-β dysregulation may contribute to (1) the fetal origins of PCOS, (2) reproductive abnormalities in PCOS, and (3) cardiovascular and metabolic abnormalities in PCOS.
Collapse
Affiliation(s)
- Nazia Raja-Khan
- 1Division of Endocrinology, Diabetes, and Metabolism, Pennsylvania State University College of Medicine, M.S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
137
|
Tasaki H, Iwata H, Sato D, Monji Y, Kuwayama T. Estradiol has a major role in antrum formation of porcine preantral follicles cultured in vitro. Theriogenology 2013; 79:809-14. [DOI: 10.1016/j.theriogenology.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 11/26/2022]
|
138
|
Pravdyuk AI, Petrenko YA, Fuller BJ, Petrenko AY. Cryopreservation of alginate encapsulated mesenchymal stromal cells. Cryobiology 2013; 66:215-22. [PMID: 23419981 DOI: 10.1016/j.cryobiol.2013.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/21/2012] [Accepted: 02/06/2013] [Indexed: 01/28/2023]
Abstract
Human mesenchymal stromal cells (MSCs) can differentiate into various cell types, which makes them attractive for regenerative medicine and tissue engineering. Encapsulation of MSCs in alginate microspheres (AMS) is a novel and promising approach of tissue engineering. Application and research of such cell-hydrogel systems require selection of adequate cryopreservation protocols. In this study we investigated the response of MSCs encapsulated in AMS to different cryopreservation protocols. Bone marrow MSCs either encapsulated in AMS and or as cells in suspension, were cryopreserved with 5% and 10% of dimethyl sulfoxide (ME₂SO) using conventional 2-step slow cooling (protocol 1). The viability and metabolism of MSCs in AMS following cryopreservation with 5% Me₂SO were lower than in the group cryopreserved with 10% Me₂SO. MSCs in suspension were more resistant to cryopreservation than cells in AMS when cryopreserved with 5% Me₂SO, although when using a concentration of 10% Me₂SO, no differences were detected. Comparisons of the viability and metabolic activity of MSC cryopreserved either in AMS or as cell suspensions with 10% ME₂SO using protocol 1 (2-step cooling), protocol 2 (3-step slow cooling with induced ice nucleation) or protocol 3 (rapid 1-step freezing), showed that the highest viabilities and metabolic rates were obtained following cryopreservation of MSCs in AMS by protocol 2 (with controlled ice nucleation). Cryopreservation with protocol 3 resulted in critical damage of the encapsulated MSCs. After cryopreservation by protocol 2, AMS encapsulated MSCs were capable of achieving multilineage differentiation directed towards osteogenic, adipogenic and chondrogenic lineages. The data obtained indicate that cryo-banking of AMS encapsulated MSCs is feasible for future regenerative medicine projects.
Collapse
Affiliation(s)
- Alexey I Pravdyuk
- Institute for Problems of Cryobiology and Cryomedicine of NASU, Kharkov, Ukraine
| | | | | | | |
Collapse
|
139
|
Skory RM, Bernabé BP, Galdones E, Broadbelt LJ, Shea LD, Woodruff TK. Microarray analysis identifies COMP as the most differentially regulated transcript throughout in vitro follicle growth. Mol Reprod Dev 2013; 80:132-44. [PMID: 23242557 DOI: 10.1002/mrd.22144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/09/2012] [Indexed: 12/15/2022]
Abstract
In vitro follicle growth has emerged as a technology that can provide new information about folliculogenesis and serve as part of a suite of methods currently under development to assist women whose fertility is threatened by cancer treatments. Though it has been shown that in vitro-grown follicles secrete peptide and steroid hormones, much of the follicular transcriptome remains unknown. Thus, microarray analysis was performed to characterize the transcriptome and secretome of in vitro-grown follicles. One prominently regulated gene product was cartilage oligomeric matrix protein (Comp): its mRNA was upregulated during the final 4 days of culture (P < 0.05) and COMP protein could be detected in medium from individual follicles. COMP expression localized to mural granulosa cells of large antral follicles both in vitro and in vivo, with maximal expression immediately preceding ovulation in cycling and chorionic gonadotropin-primed female mice. COMP was co-expressed with two known markers of follicle maturation, inhibin β(A) and gremlin, and was expressed only in TUNEL-negative follicles. In addition to other gene products identified in the microarray, COMP has potential utility as a marker of follicle maturation.
Collapse
Affiliation(s)
- Robin M Skory
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
140
|
Hornick JE, Duncan FE, Shea LD, Woodruff TK. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 2013; 145:19-32. [PMID: 23108112 DOI: 10.1530/rep-12-0233] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In vitro follicle growth in alginate hydrogels is a unique and versatile method for studying ovarian and follicle biology that may also have implications for fertility preservation. Current culture systems support the development of isolated mouse follicles from the secondary stage onward. However, it has been a challenge to grow smaller follicles in vitro due to the dissociation of the oocyte from companion somatic cells. Recent work has demonstrated that coculturing primary follicles with mouse embryonic fibroblasts or ovarian stromal cells supports follicle survival and growth. In this study, we demonstrate that follicles themselves can exert a beneficial coculture effect. When primary follicles were cultured in groups of five or ten (multiple follicle culture), there was increased growth and survival. The multiple follicle culture approach maintained follicle integrity and resulted in the formation of antral stage follicles containing meiotically competent gametes. The growth and survival of primary follicles were highly number dependent, with the most significant enhancement observed when the largest number of follicles was grown together. Our data suggest that the follicle unit is necessary to produce the secreted factors responsible for the supportive effects of multiple follicle culture, as neither denuded oocytes, oocyte-secreted factors, nor granulosa cells alone were sufficient to support early follicle growth in vitro. Therefore, there may be signaling from both the oocyte and the follicle that enhances growth but requires both components in a feedback mechanism. This work is consistent with current in vivo models for follicle growth and thus advances the movement to recapitulate the ovarian environment in vitro.
Collapse
Affiliation(s)
- J E Hornick
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Lurie 10-250, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
141
|
Jiao ZX, Woodruff TK. Follicle microenvironment-associated alterations in gene expression in the mouse oocyte and its polar body. Fertil Steril 2013; 99:1453-1459.e1. [PMID: 23312223 DOI: 10.1016/j.fertnstert.2012.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/02/2012] [Accepted: 12/05/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine whether the follicle environment modulates oocyte-specific gene transcript levels in cultured oocytes and polar bodies (PBs). DESIGN Animal study. SETTING Large academic research center. ANIMAL(S) CD1 mice. INTERVENTION(S) In vitro growth of secondary mouse follicles in 0.25% or 1.5% alginate (ALG) in a three-dimensional culture system. MAIN OUTCOME MEASURE(S) Relative transcript levels of Gdf9, Bmp15, Nlrp5, Tcl1, and Zp3 were measured by real-time quantitative reverse transcriptase-polymerase chain reaction in oocytes during in vitro follicle development and oocyte maturation and in their first PBs after removal from metaphase II (MII) eggs. RESULT(S) All transcripts decreased earlier in oocytes cultured in 1.5% ALG compared with 0.25% ALG. Transcript levels were lower in MII eggs cultured in 1.5% ALG compared with in 0.25% ALG. All genes were expressed in PBs, and transcript levels were lower in PBs cultured in 1.5% ALG compared with in 0.25% ALG. Abundance of all transcripts was lower in PBs than in their sibling oocytes. CONCLUSION(S) Local follicle environment modulates oocyte-specific gene expression in the oocyte and first PB. There is a significant difference in the transcript levels of oocyte-specific genes in PBs of 1.5% versus 0.25% ALG that correlates with ovarian environment-related decreases in oocyte competence.
Collapse
Affiliation(s)
- Ze-Xu Jiao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
142
|
Xu J, Xu M, Bernuci MP, Fisher TE, Shea LD, Woodruff TK, Zelinski MB, Stouffer RL. Primate follicular development and oocyte maturation in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 761:43-67. [PMID: 24097381 PMCID: PMC4007769 DOI: 10.1007/978-1-4614-8214-7_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The factors and processes involved in primate follicular development are complex and not fully understood. An encapsulated three-dimensional (3D) follicle culture system could be a valuable in vitro model to study the dynamics and regulation of folliculogenesis in intact individual follicles in primates. Besides the research relevance, in vitro follicle maturation (IFM) is emerging as a promising approach to offer options for fertility preservation in female patients with cancer. This review summarizes the current published data on in vitro follicular development from the preantral to small antral stage in nonhuman primates, including follicle survival and growth, endocrine (ovarian steroid hormone) and paracrine/autocrine (local factor) function, as well as oocyte maturation and fertilization. Future directions include major challenges and strategies to further improve follicular growth and differentiation with oocytes competent for in vitro fertilization and subsequent embryonic development, as well as opportunities to investigate primate folliculogenesis by utilizing this 3D culture system. The information may be valuable in identifying optimal conditions for human follicle culture, with the ultimate goal of translating the experimental results and products to patients, thereby facilitating diagnostic and therapeutic approaches for female fertility.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Min Xu
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Marcelo P Bernuci
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Thomas E Fisher
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Lonnie D Shea
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Teresa K Woodruff
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
143
|
Endo M, Kawahara-Miki R, Cao F, Kimura K, Kuwayama T, Monji Y, Iwata H. Estradiol supports in vitro development of bovine early antral follicles. Reproduction 2013; 145:85-96. [DOI: 10.1530/rep-12-0319] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antrum formation and estradiol (E2) secretion are specific features of oocyte and granulosa cell complexes (OGCs). This study investigates the effect of E2 on the in vitro development of bovine OGCs derived from early antral follicles as well as on the expression of genes in granulosa cells (GCs). The supplementation of culture medium with either E2 or androstenedione (A4) improved the in vitro development of OGCs and the nuclear maturation of enclosed oocytes. When OGCs were cultured in medium containing A4, developmentally competent OGCs secreted more E2 than OGCs that were not competent. In addition, fulvestrant inhibited the effect of both E2 and A4 on OGCs development. Comprehensive gene expression analysis using next-generation sequence technology was conducted for the following three types of GCs: i) GCs of OGCs cultured for 4 days with E2 (1 μg/ml; E2(+)), ii) GCs of OGCs cultured for 4 days without E2 (E2(−)) or iii) OGCs that formed clear antrum after 8 days of in vitro culture in medium containing E2 (1 μg/ml; AF group). GCs of the E2(+) group had a similar gene expression profile to the profile reported previously for the in vivo development of large follicles. This genetic profile included factors implicated in the up-regulation of E2 biosynthesis and down-regulation of cytoskeleton and extracellular matrices. In addition, a novel gene expression profile was found in the AF group. In conclusion, E2 impacts the gene expression profile of GCs to support the in vitro development of OGCs.
Collapse
|
144
|
Effect of estradiol during culture of bovine oocyte–granulosa cell complexes on the mitochondrial DNA copies of oocytes and telomere length of granulosa cells. ZYGOTE 2012; 22:431-9. [DOI: 10.1017/s0967199412000603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryDuring the development of oocytes from early antral follicles (EAFs) to antral follicles (AFs), the mitochondrial DNA copy number (Mt DNA number) increases, and granulosa cells markedly proliferate. This study examined the effect of supplementation of culture medium with estradiol-17β (E2) on the in vitro growth of oocytes, and increases in the Mt DNA number, and telomere length during the in vitro culture of oocytes derived from EAFs (0.4–0.7 mm in diameter). The E2 supplementation improved antrum formation and the ratio of oocytes reaching the metaphase II (MII) stage, and there was a significant difference in these values between addition E2 concentrations of 10 μg/ml and 0.1 μg/ml. When the oocytes were cultured in the medium containing 10 μg/ml E2, the Mt DNA number determined by real-time polymerase chain reaction (PCR) significantly increased, and the ratio of the Mt DNA number at the end of culture to the Mt DNA number at the beginning of the culture was greatly different among cows, and could be predicted by the degree of the difference between the Mt DNA number of oocytes derived from EAFs and that of oocytes derived from AFs (3–6 mm in diameter). When oocytes were cultured for 16 days in a medium containing 10 μg/ml E2 or 0.1 μg/ml E2, the Mt DNA number of oocytes grown in vitro did not differ, but the telomere length of the granulosa cells was significantly greater in the 10 μg/ml E2 group than in the 0.1 μg/ml group. In conclusion, E2 supplementation in culture medium improved the growth of oocytes derived from EAFs, and a high E2 concentration increased the telomere length of the granulosa cells.
Collapse
|
145
|
Hirao Y. Isolation of ovarian components essential for growth and development of mammalian oocytes in vitro. J Reprod Dev 2012; 58:167-74. [PMID: 22738899 DOI: 10.1262/jrd.2011-052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian ovaries contain a large number of oocytes, most of which degenerate either before or at various stages of growth. Dynamic and precise regulation in the ovary involves many factors, each with a unique role. Identifying the single most important factor is impossible; however, it may be possible to identify factors essential for oocyte growth. It is evident that oocytes can grow into competent ova in vitro; however, how faithfully the follicle should mimic the in vivo conditions remains unclear. In the culture system discussed in this review, bovine and mouse oocyte-granulosa cell complexes, at approximately the late mid-growth stage, spread on a substratum without the involvement of theca cells. The structural simplicity of this system is advantageous because it reduces the basic conditions essential for regulation of oocyte growth. Apart from biological factors, high concentrations of polyvinylpyrrolidone (molecular weight: 360000) improved oocyte growth. Among ovarian factors, androstenedione was used to compensate for the absence of theca cells, and it promoted both follicular growth and acquisition of oocyte meiotic competence. Most oocytes cultured in a group were viable after long-term culture, suggesting that unlike ovarian events, there was no exhaustive follicle selection. Collectively, oocytes and their associated granulosa cells can establish independent units capable of supporting oocyte growth in appropriately modified culture media.
Collapse
Affiliation(s)
- Yuji Hirao
- Livestock and Forage Research Division, Tohoku Agricultural Research Center (TARC), National Agriculture and Food Research Organization (NARO), Morioka 020-0198, Japan.
| |
Collapse
|
146
|
Jee BC, Kim JH, Park DH, Youm H, Suh CS, Kim SH. In vitro growth of mouse preantral follicles: effect of animal age and stem cell factor/insulin-like growth factor supplementation. Clin Exp Reprod Med 2012; 39:107-13. [PMID: 23106041 PMCID: PMC3479233 DOI: 10.5653/cerm.2012.39.3.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/02/2012] [Accepted: 08/03/2012] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To determine whether animal age impacts in vitro preantral follicle growth. Effects of hCG, stem cell factor (SCF), and/or insulin-like growth factor (IGF) supplementation in growth medium were also investigated. METHODS Intact preantral follicles were mechanically isolated from fresh ovaries of BDF1 mice and cultured in growth medium for 9 to 11 days. Surviving follicles with antrum formation were transferred to maturation medium for 14 to 18 hours. Follicle survival, antrum formation, and retrieval of metaphase II (MII) oocytes were compared among three age categories (4-5, 7-8, and 10-11 week-old). By using 7- to 8-week-old mice, preantral follicles were cultured in growth medium supplemented with hCG (0, 5, or 10 mIU/mL), SCF (50 ng/mL), IGF-1 (50 ng/mL), and SCF+IGF-1. RESULTS Seven- to eight-week-old mice showed a higher follicle survival and antrum formation and produced more MII oocytes compared to other groups. In the 7- to 8-week-old mice, supplementation of 5 mIU/mL hCG significantly enhanced the antrum formation but the percentage of MII oocytes was similar to that of the control. Supplementation of SCF+IGF-1 did not enhance follicle survival or antrum formation but the percentage of MII oocytes increased modestly (39.1%) than in the control (28.6%, statistically not significant). CONCLUSION Seven- to eight-week-old mice showed better outcomes in growth of preantral follicles in vitro than 4- to 5- or 10- to 11-week-old mice. Supplementation of hCG enhanced antrum formation and supplementation of SCF+IGF-1 yielded more mature oocytes; hence, these should be considered in the growth of preantral follicles in vitro.
Collapse
Affiliation(s)
- Byung Chul Jee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea. ; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
147
|
Desai N, Abdelhafez F, Calabro A, Falcone T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod Biol Endocrinol 2012; 10:29. [PMID: 22513305 PMCID: PMC3474165 DOI: 10.1186/1477-7827-10-29] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/18/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D) architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3-D culture of follicles may ultimately lead to a culture model that can support the longer in vitro culture intervals needed for in vitro maturation of human oocytes from ovarian tissue biopsies. METHODS A novel tyramine-based hyaluronan (HA) hydrogel was tested for its biocompatibility with ovarian follicles. The HA was prepared at concentrations from 2 to 5 mg/ml. HA hydrogel was also formulated and tested with matrix proteins (ECM). Enzymatically isolated pre-antral follicles from the ovaries of 10-12 day SJL pups were divided amongst control (CT) and HA treatments. The growth of both fresh and vitrified follicles was assessed after encapsulation in the hydrogel. The basal culture medium was MEM alpha supplemented with FSH, LH, ITS and 5% FBS. Maturation was triggered by addition of hCG and EGF after in vitro culture (IVC). Outcome parameters monitored were follicle morphology, survival after IVC, antrum formation, GVBD and MII formation. Differences between treatments were analyzed. RESULTS HA and ECM-HA encapsulated follicles looked healthy and maintained their 3-D architecture during IVC. In control cultures, the follicles flattened and granulosa:oocyte connections appeared fragile. Estradiol secretion per follicle was significantly higher by Day 12 in ECM-HA compared to HA or CT (4119, 703 and 1080 pg/ml, respectively). HA and ECM-HA cultured follicles had similar survival rates (62% and 54%, respectively), percent GV breakdown (96-97%), MII formation (47-48%) and oocyte diameters at the end of IVC. Control cultures differed significantly in percent GVBD (85%) and MII formation (67%) . Vitrified-warmed follicles encapsulated in HA had an oocyte maturation rate to MII of 54% as compared to 57% in non-embedded follicles. CONCLUSIONS Initial testing of this new and unique HA-based hydrogel was quite promising. The ease of follicle encapsulation in HA, its optical transparency and ability to be molded combined with its support of follicle growth, estradiol secretion and resumption of meiosis make this HA-hydrogel particularly attractive as model for 3-D ovarian follicle culture.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| | - Faten Abdelhafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| |
Collapse
|
148
|
Park KE, Kim YY, Ku SY, Baek SM, Huh Y, Kim YJ, Kim SH, Choi YM, Moon SY. Effects of alginate hydrogels on in vitro maturation outcome of mouse preantral follicles. Tissue Eng Regen Med 2012; 9:170-174. [DOI: 10.1007/s13770-012-0170-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
149
|
Jiao ZX, Xu M, Woodruff TK. Age-associated alteration of oocyte-specific gene expression in polar bodies: potential markers of oocyte competence. Fertil Steril 2012; 98:480-6. [PMID: 22633262 DOI: 10.1016/j.fertnstert.2012.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/22/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To confirm that oocyte-specific messenger RNAs are detectable in the polar body (PB) of metaphase II (MII) oocytes and determine the effect of age on oocyte-specific transcript levels. DESIGN Prospective study. SETTING Hospital-based academic research laboratory. ANIMAL(S) CD1 female mice. INTERVENTION(S) Aged (40-50 weeks) and young (7-9 weeks) mice were administered pregnant mare serum gonadotropin (PMSG) and hCG. Oocytes were fertilized in vitro to assess fertilization and developmental competence. The MII oocytes were obtained and first PBs were removed. Messenger RNAs from each PB and its sibling oocyte were reverse transcribed and analyzed by real-time quantitative polymerase chain reaction (PCR). MAIN OUTCOME MEASURE(S) Fertilization and developmental rates and expression of six oocyte-specific genes (Bmp15, Gdf9, H1foo, Nlrp5, Tcl1, and Zp3) in PBs and sibling oocytes from young versus aged mice. RESULT(S) Oocytes from aged mice had lower developmental competence. Four genes (H1foo, Nlrp5, Tcl1, and Zp3) were differentially expressed in aged versus young oocytes. All six transcripts were present in PBs from aged and young mice at lower levels than in the sibling oocytes; transcript levels were lower in aged PBs compared with young PBs. CONCLUSION(S) There is a significant difference in the transcript levels of oocyte-specific genes in aged versus young PB that correlates with age-related decreases in oocyte competence. Differences in gene expression in PB may be potential biomarkers of MII oocyte competence.
Collapse
Affiliation(s)
- Ze-Xu Jiao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
150
|
Tagler D, Tu T, Smith RM, Anderson NR, Tingen CM, Woodruff TK, Shea LD. Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng Part A 2012; 18:1229-38. [PMID: 22296562 DOI: 10.1089/ten.tea.2011.0418] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogel-encapsulating culture systems support the consistent growth of ovarian follicles from various species, such as mouse, non-human primate, and human; however, further innovations are required for the efficient production of quality oocytes from early-stage follicles. In this report, we investigated the coculture of mouse ovarian follicles with mouse embryonic fibroblasts (MEFs), commonly used as feeder cells to promote the undifferentiated growth of embryonic stem (ES) cells, as a means to provide the critical paracrine factors necessary for follicle survival and growth. Follicles were encapsulated within alginate hydrogels and cocultured with MEFs for 14 days. Coculture enabled the survival and growth of early secondary (average diameter of 90-100 μm) and primary (average diameter of 70-80 μm) follicles, which developed antral cavities and increased in diameter to 251-347 μm. After 14 days, follicle survival ranged from 70% for 100-μm follicles to 23% for 70-μm follicles. Without MEF coculture, all follicles degenerated within 6-10 days. Furthermore, 72%-80% of the oocytes from surviving follicles underwent germinal vesicle breakdown (GVBD), and the percentage of metaphase II (MII) eggs was 41%-69%. Medium conditioned by MEFs had similar effects on survival, growth, and meiotic competence, suggesting a unidirectional paracrine signaling mechanism. This advancement may facilitate the identification of critical factors responsible for promoting the growth of early-stage follicles and lead to novel strategies for fertility preservation.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|