101
|
Abstract
Peroxisomes are organelles bounded by a single membrane that can be found in all major groups of eukaryotes. A single evolutionary origin of this cellular compartment is supported by the presence, in diverse organisms, of a common set of proteins implicated in peroxisome biogenesis and maintenance. Their enzymatic content, however, can vary substantially across species, indicating a high level of evolutionary plasticity. Proteomic analyses have greatly expanded our knowledge on peroxisomes in some model organisms, including plants, mammals and yeasts. However, we still have a limited knowledge about the distribution and functionalities of peroxisomes in the vast majority of groups of microbial eukaryotes. Here, I review recent advances in our understanding of peroxisome diversity and evolution, with a special emphasis on peroxisomes in microbial eukaryotes.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), Dr Aiguader, 88 08003 Barcelona, Spain.
| |
Collapse
|
102
|
Lee K, Thorneycroft D, Achuthan P, Hermjakob H, Ideker T. Mapping plant interactomes using literature curated and predicted protein-protein interaction data sets. THE PLANT CELL 2010; 22:997-1005. [PMID: 20371643 PMCID: PMC2879763 DOI: 10.1105/tpc.109.072736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most cellular processes are enabled by cohorts of interacting proteins that form dynamic networks within the plant proteome. The study of these networks can provide insight into protein function and provide new avenues for research. This article informs the plant science community of the currently available sources of protein interaction data and discusses how they can be useful to researchers. Using our recently curated IntAct Arabidopsis thaliana protein-protein interaction data set as an example, we discuss potentials and limitations of the plant interactomes generated to date. In addition, we present our efforts to add value to the interaction data by using them to seed a proteome-wide map of predicted protein subcellular locations.
Collapse
Affiliation(s)
- KiYoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 443-749, Korea.
| | | | | | | | | |
Collapse
|
103
|
Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 2010; 396:870-82. [PMID: 20026072 DOI: 10.1016/j.jmb.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
104
|
Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S. The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1441-53. [PMID: 20150517 DOI: 10.1093/jxb/erq014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf peroxisomes are fragile, low-abundance plant cell organelles that are difficult to isolate from one of the few plant species whose nuclear genome has been sequenced. Leaf peroxisomes were enriched at high purity from spinach (Spinacia oleracea) and approximately 100 protein spots identified from 2-dimensional gels by a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and de novo sequencing. In addition to the predominant enzymes involved in photorespiration and detoxification, several minor enzymes were detected, underscoring the high sensitivity of the protein identification. The tryptic peptides of three unknown proteins shared high sequence similarity with Arabidopsis proteins that carry putative peroxisomal targeting signals type 1 or 2 (PTS1/2). The apparent Arabidopsis orthologues are a short-chain alcohol dehydrogenase (SDRa/IBR1, At4g05530, SRL>) and two enoyl-CoA hydratases/isomerases (ECHIa, At4g16210, SKL>; NS/ECHId, At1g60550, RLx(5)HL). The peroxisomal localization of the three proteins was confirmed in vivo by tagging with enhanced yellow fluorescent protein (EYFP), and the targeting signals were identified. The single Arabidopsis isoform of naphthoate synthase (NS) is orthologous to MenB from cyanobacteria, which catalyses an essential reaction in phylloquinone biosynthesis, a pathway previously assumed to be entirely compartmentalized in plastids in higher plants. In an extension of a previous study, the present in vivo targeting data furthermore demonstrate that the enzyme upstream of NS, chloroplastic acyl-CoA activating enzyme isoform 14 (AAE14, SSL>), is dually targeted to both plastids and peroxisomes. This proteomic study, extended by in vivo subcellular localization analyses, indicates a novel function for plant peroxisomes in phylloquinone biosynthesis.
Collapse
Affiliation(s)
- Lavanya Babujee
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
105
|
Ramón NM, Bartel B. Interdependence of the peroxisome-targeting receptors in Arabidopsis thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into peroxisomes. Mol Biol Cell 2010; 21:1263-71. [PMID: 20130089 PMCID: PMC2847529 DOI: 10.1091/mbc.e09-08-0672] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Peroxisomes compartmentalize certain metabolic reactions critical to plant and animal development. The import of proteins from the cytosol into the organelle matrix depends on more than a dozen peroxin (PEX) proteins, with PEX5 and PEX7 serving as receptors that shuttle proteins bearing one of two peroxisome-targeting signals (PTSs) into the organelle. PEX5 is the PTS1 receptor; PEX7 is the PTS2 receptor. In plants and mammals, PEX7 depends on PEX5 binding to deliver PTS2 cargo into the peroxisome. In this study, we characterized a pex7 missense mutation, pex7-2, that disrupts both PEX7 cargo binding and PEX7-PEX5 interactions in yeast, as well as PEX7 protein accumulation in plants. We examined localization of peroxisomally targeted green fluorescent protein derivatives in light-grown pex7 mutants and observed not only the expected defects in PTS2 protein import but also defects in PTS1 import. These PTS1 import defects were accompanied by reduced PEX5 accumulation in light-grown pex7 seedlings. Our data suggest that PEX5 and PTS1 import depend on the PTS2 receptor PEX7 in Arabidopsis and that the environment may influence this dependence. These data advance our understanding of the biogenesis of these essential organelles and provide a possible rationale for the retention of the PTS2 pathway in some organisms.
Collapse
|
106
|
de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:579-89. [PMID: 20044452 PMCID: PMC2815881 DOI: 10.1104/pp.109.148817] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 12/24/2009] [Indexed: 05/17/2023]
Abstract
Genome-scale metabolic network models have been successfully used to describe metabolism in a variety of microbial organisms as well as specific mammalian cell types and organelles. This systems-based framework enables the exploration of global phenotypic effects of gene knockouts, gene insertion, and up-regulation of gene expression. We have developed a genome-scale metabolic network model (AraGEM) covering primary metabolism for a compartmentalized plant cell based on the Arabidopsis (Arabidopsis thaliana) genome. AraGEM is a comprehensive literature-based, genome-scale metabolic reconstruction that accounts for the functions of 1,419 unique open reading frames, 1,748 metabolites, 5,253 gene-enzyme reaction-association entries, and 1,567 unique reactions compartmentalized into the cytoplasm, mitochondrion, plastid, peroxisome, and vacuole. The curation process identified 75 essential reactions with respective enzyme associations not assigned to any particular gene in the Kyoto Encyclopedia of Genes and Genomes or AraCyc. With the addition of these reactions, AraGEM describes a functional primary metabolism of Arabidopsis. The reconstructed network was transformed into an in silico metabolic flux model of plant metabolism and validated through the simulation of plant metabolic functions inferred from the literature. Using efficient resource utilization as the optimality criterion, AraGEM predicted the classical photorespiratory cycle as well as known key differences between redox metabolism in photosynthetic and nonphotosynthetic plant cells. AraGEM is a viable framework for in silico functional analysis and can be used to derive new, nontrivial hypotheses for exploring plant metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
107
|
Waller JC, Dhanoa PK, Schumann U, Mullen RT, Snedden WA. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. PLANTA 2010; 231:305-17. [PMID: 19921251 DOI: 10.1007/s00425-009-1047-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/21/2009] [Indexed: 05/18/2023]
Abstract
The de novo biosynthesis of the triphosphopyridine NADP is catalyzed solely by the ubiquitous NAD kinase family. The Arabidopsis (Arabidopsis thaliana) genome contains two genes encoding NAD+ kinases (NADKs), annotated as NADK1, NADK2, and one gene encoding a NADH kinase, NADK3, the latter isoform preferring NADH as a substrate. Here, we examined the tissue-specific and developmental expression patterns of the three NADKs using transgenic plants stably transformed with NADK promoter::glucuronidase (GUS) reporter gene constructs. We observed distinct spatial and temporal patterns of GUS activity among the NADK::GUS plants. All three NADK::GUS transgenes were expressed in reproductive tissue, whereas NADK1::GUS activity was found mainly in the roots, NADK2::GUS in leaves, and NADK3::GUS was restricted primarily to leaf vasculature and lateral root primordia. We also examined the subcellular distribution of the three NADK isoforms using NADK-green fluorescent protein (GFP) fusion proteins expressed transiently in Arabidopsis suspension-cultured cells. NADK1 and NADK2 were found to be localized to the cytosol and plastid stroma, respectively, consistent with previous work, whereas NADK3 localized to the peroxisomal matrix via a novel type 1 peroxisomal targeting signal. The specific subcellular and tissue distribution profiles among the three NADK isoforms and their possible non-overlapping roles in NADP(H) biosynthesis in plant cells are discussed.
Collapse
Affiliation(s)
- Jeffrey C Waller
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
108
|
Bauwe H. Chapter 6 Photorespiration: The Bridge to C4 Photosynthesis. C4 PHOTOSYNTHESIS AND RELATED CO2 CONCENTRATING MECHANISMS 2010. [DOI: 10.1007/978-90-481-9407-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
109
|
Binder S. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2010; 8:e0137. [PMID: 22303262 PMCID: PMC3244963 DOI: 10.1199/tab.0137] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Valine, leucine and isoleucine form the small group of branched-chain amino acids (BCAAs) classified by their small branched hydrocarbon residues. Unlike animals, plants are able to de novo synthesize these amino acids from pyruvate, 2-oxobutanoate and acetyl-CoA. In plants, biosynthesis follows the typical reaction pathways established for the formation of these amino acids in microorganisms. Val and Ile are synthesized in two parallel pathways using a single set of enzymes. The pathway to Leu branches of from the final intermediate of Val biosynthesis. The formation of this amino acid requires a three-step pathway generating a 2-oxoacid elongated by a methylene group. In Arabidopsis thaliana and other Brassicaceae, a homologous three-step pathway is also involved in Met chain elongation required for the biosynthesis of aliphatic glucosinolates, an important class of specialized metabolites in Brassicaceae. This is a prime example for the evolutionary relationship of pathways from primary and specialized metabolism. Similar to animals, plants also have the ability to degrade BCAAs. The importance of BCAA turnover has long been unclear, but now it seems apparent that the breakdown process might by relevant under certain environmental conditions. In this review, I summarize the current knowledge about BCAA metabolism, its regulation and its particular features in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Stefan Binder
- Institute Molecular Botany, Ulm University, Albert-Einstein-Allee 11, 89060 Ulm, Germany Address correspondence to
| |
Collapse
|
110
|
Abstract
Ca2+ ions play a vital role as second messengers in plant cells during various developmental processes and in response to environmental stimuli. Plants have evolved a diversity of unique proteins that bind Ca2+ using the evolutionarily conserved EF-hand motif. The currently held hypothesis is that these proteins function as Ca2+ sensors by undergoing conformational changes in response to Ca2+-binding that facilitate their regulation of target proteins and thereby co-ordinate various signalling pathways. The three main classes of these EF-hand Ca2+sensors in plants are CaMs [calmodulins; including CMLs (CaM-like proteins)], CDPKs (calcium-dependent protein kinases) and CBLs (calcineurin B-like proteins). In the plant species examined to date, each of these classes is represented by a large family of proteins, most of which have not been characterized biochemically and whose physiological roles remain unclear. In the present review, we discuss recent advances in research on CaMs and CMLs, CDPKs and CBLs, and we attempt to integrate the current knowledge on the different sensor classes into common physiological themes.
Collapse
|
111
|
Rodríguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Río LA, Sandalio LM. Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 2009; 47:1632-9. [PMID: 19765646 DOI: 10.1016/j.freeradbiomed.2009.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 11/26/2022]
Abstract
Peroxisomes are organelles with an essentially oxidative metabolism that are involved in various metabolic pathways such as fatty acid beta-oxidation, photorespiration, and metabolism of reactive oxygen species (ROS) and reactive nitrogen species. These organelles are highly dynamic but there is little information about the regulation of, and the effects of environment on, peroxisome movement. In this work a stable Arabidopsis line expressing the GFP-SKL peptide targeted to peroxisomes was characterized. Peroxisome-associated fluorescence was observed in all tissues, including leaves (mesophyll and epidermal cells, trichomes, and stomata) and roots. The dynamics of peroxisomes in epidermal cells was examined by confocal laser microscope, and various types of movement were observed. The speed of movement differed depending on the plant age. Treatment of plants with CdCl(2) (100 microM) produced a significant increase in speed, which was dependent on endogenous ROS and Ca(2+), but was not related to actin cytoskeleton modifications. In light of the results obtained, it is proposed that the increase in peroxisomal motility observed in Arabidopsis plants could be a cellular mechanism of protection against the Cd-imposed oxidative stress. Other possible roles for the enhanced peroxisome movement in plant cell physiology are discussed.
Collapse
Affiliation(s)
- María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, 18080 Granada, Spain
| | | | | | | | | | | |
Collapse
|
112
|
Mano S, Miwa T, Nishikawa SI, Mimura T, Nishimura M. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics. PLANT & CELL PHYSIOLOGY 2009; 50:2000-2014. [PMID: 19755394 DOI: 10.1093/pcp/pcp128] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
113
|
Hayashi M, Nishimura M. Frontiers of research on organelle differentiation. PLANT & CELL PHYSIOLOGY 2009; 50:1995-1999. [PMID: 20008479 DOI: 10.1093/pcp/pcp161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
114
|
Schlüter A, Real-Chicharro A, Gabaldón T, Sánchez-Jiménez F, Pujol A. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res 2009; 38:D800-5. [PMID: 19892824 PMCID: PMC2808949 DOI: 10.1093/nar/gkp935] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peroxisomes are essential organelles that play a key role in redox signalling and lipid homeostasis. They contain a highly diverse enzymatic network among different species, mirroring the varied metabolic needs of the organisms. The previous PeroxisomeDB version organized the peroxisomal proteome of humans and Saccharomyces cerevisiae based on genetic and functional information into metabolic categories with a special focus on peroxisomal disease. The new release (http://www.peroxisomeDB.org) adds peroxisomal proteins from 35 newly sequenced eukaryotic genomes including fungi, yeasts, plants and lower eukaryotes. We searched these genomes for a core ensemble of 139 peroxisomal protein families and identified 2706 putative peroxisomal protein homologs. Approximately 37% of the identified homologs contained putative peroxisome targeting signals (PTS). To help develop understanding of the evolutionary relationships among peroxisomal proteins, the new database includes phylogenetic trees for 2386 of the peroxisomal proteins. Additional new features are provided, such as a tool to capture kinetic information from Brenda, CheBI and Sabio-RK databases and more than 1400 selected bibliographic references. PeroxisomeDB 2.0 is a freely available, highly interactive functional genomics platform that offers an extensive view on the peroxisomal metabolome across lineages, thus facilitating comparative genomics and systems analysis of the organelle.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Disease Lab, Institut de Neuropatologia de Bellvitge, Gran Via n 199, 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
115
|
Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. PLANT PHYSIOLOGY 2009; 151:1354-65. [PMID: 19748917 PMCID: PMC2773057 DOI: 10.1104/pp.109.142505] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/07/2009] [Indexed: 05/19/2023]
Abstract
Relatively little is known about the small subset of peroxisomal proteins with predicted protease activity. Here, we report that the peroxisomal LON2 (At5g47040) protease facilitates matrix protein import into Arabidopsis (Arabidopsis thaliana) peroxisomes. We identified T-DNA insertion alleles disrupted in five of the nine confirmed or predicted peroxisomal proteases and found only two-lon2 and deg15, a mutant defective in the previously described PTS2-processing protease (DEG15/At1g28320)-with phenotypes suggestive of peroxisome metabolism defects. Both lon2 and deg15 mutants were mildly resistant to the inhibitory effects of indole-3-butyric acid (IBA) on root elongation, but only lon2 mutants were resistant to the stimulatory effects of IBA on lateral root production or displayed Suc dependence during seedling growth. lon2 mutants displayed defects in removing the type 2 peroxisome targeting signal (PTS2) from peroxisomal malate dehydrogenase and reduced accumulation of 3-ketoacyl-CoA thiolase, another PTS2-containing protein; both defects were not apparent upon germination but appeared in 5- to 8-d-old seedlings. In lon2 cotyledon cells, matrix proteins were localized to peroxisomes in 4-d-old seedlings but mislocalized to the cytosol in 8-d-old seedlings. Moreover, a PTS2-GFP reporter sorted to peroxisomes in lon2 root tip cells but was largely cytosolic in more mature root cells. Our results indicate that LON2 is needed for sustained matrix protein import into peroxisomes. The delayed onset of matrix protein sorting defects may account for the relatively weak Suc dependence following germination, moderate IBA-resistant primary root elongation, and severe defects in IBA-induced lateral root formation observed in lon2 mutants.
Collapse
|
116
|
Singh T, Hayashi M, Mano S, Arai Y, Goto S, Nishimura M. Molecular components required for the targeting of PEX7 to peroxisomes in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:488-98. [PMID: 19594707 DOI: 10.1111/j.1365-313x.2009.03970.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PEX7 is a soluble import receptor that recognizes peroxisomal targeting signal type 2 (PTS2)-containing proteins. In the present study, using a green fluorescent protein (GFP) fusion protein of PEX7 (GFP-PEX7), we analyzed the molecular function and subcellular localization of PEX7 in Arabidopsis thaliana. The overexpression of GFP-PEX7 resulted in defective glyoxysomal fatty acid beta-oxidation, but had no significant effect on leaf peroxisomal function. Analysis of the subcellular localization of GFP-PEX7 in transgenic Arabidopsis showed that GFP-PEX7 localizes primarily to the peroxisome. Transient expression of a C- or N-terminal fusion protein of PEX7 and yellow fluorescent protein (YFP) (PEX7-YFP and YFP-PEX7, respectively) in leek epidermal cells, using the particle bombardment technique, confirmed that fluorescent protein-tagged PEX7 localizes to peroxisomes in Arabidopsis. Immunoblot analysis revealed that GFP-PEX7 accumulates primarily in peroxisomal membrane fractions, whereas endogenous PEX7 was distributed evenly in cytosolic and peroxisomal membrane fractions, which indicated that both endogenous PEX7 and GFP-PEX7 are properly targeted to peroxisomal membranes. The results of bimolecular fluorescence complementation (BiFC) and yeast two-hybrid analyses showed that PEX7 binds directly to PTS2-containing proteins and PEX12 in the peroxisomal membrane. We used red fluorescent protein (tdTomato) fusion protein of PEX7 (tdTomato-PEX7) in several Arabidopsis pex mutants to identify proteins required for the targeting of PEX7 to peroxisomes in planta. The results demonstrated that pex14, pex13 and pex12 mutations disrupt the proper targeting of PEX7 to peroxisomes. Overall, our results suggest that the targeting of PEX7 to peroxisomes requires four proteins: a PTS2-containing protein, PEX14, PEX13 and PEX12.
Collapse
Affiliation(s)
- Tanuja Singh
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
117
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
118
|
Palma JM, Corpas FJ, del Río LA. Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 2009; 9:2301-12. [PMID: 19343723 DOI: 10.1002/pmic.200700732] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisomes are cell organelles bounded by a single membrane with a basically oxidative metabolism. Peroxisomes house catalase and H(2)O(2)-producing flavin-oxidases as the main protein constituents. However, since their discovery in early fifties, a number of new enzymes and metabolic pathways have been reported to be also confined to these organelles. Thus, the presence of exo- and endo-peptidases, superoxide dismutases, the enzymes of the plant ascorbate-glutathione cycle plus ascorbate and glutathione, several NADP-dehydrogenases, and also L-arginine-dependent nitric oxide synthase activity has evidenced the relevant role of these organelles in cell physiology. In recent years, the study of new functions of peroxisomes has become a field of intensive research in cell biology, and these organelles have been proposed to be a source of important signal molecules for different transduction pathways. In plants, peroxisomes participate in seed germination, leaf senescence, fruit maturation, response to abiotic and biotic stress, photomorphogenesis, biosynthesis of the plant hormones jasmonic acid and auxin, and in cell signaling by reactive oxygen and nitrogen species (ROS and RNS, respectively). In order to decipher the nature and specific role of the peroxisomal proteins in these processes, several approaches including in vivo and in vitro import assays and generation of mutants have been used. In the last decade, the development of genomics and the report of the first plant genomes provided plant biologists a powerful tool to assign to peroxisomes those proteins which harbored any of the two peroxisomal targeting signals (PTS, either PTS1 or PTS2) described so far. Unfortunately, those molecular approaches could not give any response to those proteins previously localized in plant peroxisomes by classical biochemical and cell biology methods that did not contain any PTS. However, more recently, proteomic studies of highly purified organelles have provided evidence of the presence in peroxisomes of new proteins not previously reported. Thus, the contribution of proteomic approaches to the biology of peroxisomes is essential, not only for elucidation of the mechanisms involved in the import of the PTS1- and PTS2-independent proteins, but also to the understanding of the role of these organelles in the cell physiology of plant growth and development.
Collapse
Affiliation(s)
- José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | | | | |
Collapse
|
119
|
Ma C, Schumann U, Rayapuram N, Subramani S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 2009; 20:3680-9. [PMID: 19570913 DOI: 10.1091/mbc.e09-01-0037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pichia pastoris (Pp) Pex8p, the only known intraperoxisomal peroxin at steady state, is targeted to peroxisomes by either the peroxisomal targeting signal (PTS) type 1 or PTS2 pathway. Until recently, all cargoes entering the peroxisome matrix were believed to require the docking and really interesting new gene (RING) subcomplexes, proteins that bridge these two subcomplexes and the PTS receptor-recycling machinery. However, we reported recently that the import of PpPex8p into peroxisomes via the PTS2 pathway is Pex14p dependent but independent of the RING subcomplex (Zhang et al., 2006). In further characterizing the peroxisome membrane-associated translocon, we show that two other components of the docking subcomplex, Pex13p and Pex17p, are dispensable for the import of Pex8p. Moreover, we demonstrate that the import of Pex8p via the PTS1 pathway also does not require the RING subcomplex or intraperoxisomal Pex8p. In receptor-recycling mutants (Deltapex1, Deltapex6, and Deltapex4), Pex8p is largely cytosolic because Pex5p and Pex20p are unstable. However, upon overexpression of the degradation-resistant Pex20p mutant, hemagglutinin (HA)-Pex20p(K19R), in Deltapex4 and Deltapex6 cells, Pex8p enters peroxisome remnants. Our data support the idea that PpPex8p is a special cargo whose translocation into peroxisomes depends only on the PTS receptors and Pex14p and not on intraperoxisomal Pex8p, the RING subcomplex, or the receptor-recycling machinery.
Collapse
Affiliation(s)
- Changle Ma
- University of California, San Diego, La Jolla, 92093-0322, USA
| | | | | | | |
Collapse
|
120
|
Millar AH, Carrie C, Pogson B, Whelan J. Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins. THE PLANT CELL 2009; 21:1625-31. [PMID: 19561168 PMCID: PMC2714922 DOI: 10.1105/tpc.109.066019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Defining the function of all proteins in an organism is one of the major objectives for biology in the coming decades. Here, we assess approaches used to determine subcellular protein location and discuss the relationship between protein location and function. It is important to recognize that targeting, accumulation, and the site of function are not necessarily interchangeable terms with respect to defining the location of a protein. Some proteins have tightly defined locations, whereas others have low specificity targeting and complex accumulation patterns. Location may be essential for function in some cases, but it may be much less important for other proteins. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining approaches that assess targeting and accumulation of proteins, more confidence can be gained about localization. The strengths and weaknesses of different localization technologies are summarized, and some guidelines for performing combined targeting and accumulation assays are outlined.
Collapse
Affiliation(s)
- A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
121
|
Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber APM, Olsen LJ, Hu J. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. PLANT PHYSIOLOGY 2009; 150:125-43. [PMID: 19329564 PMCID: PMC2675712 DOI: 10.1104/pp.109.137703] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/23/2009] [Indexed: 05/18/2023]
Abstract
Peroxisomes are metabolically diverse organelles with essential roles in plant development. The major protein constituents of plant peroxisomes are well characterized, whereas only a few low-abundance and regulatory proteins have been reported to date. We performed an in-depth proteome analysis of Arabidopsis (Arabidopsis thaliana) leaf peroxisomes using one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry. We detected 65 established plant peroxisomal proteins, 30 proteins whose association with Arabidopsis peroxisomes had been previously demonstrated only by proteomic data, and 55 putative novel proteins of peroxisomes. We subsequently tested the subcellular targeting of yellow fluorescent protein fusions for selected proteins and confirmed the peroxisomal localization for 12 proteins containing predicted peroxisome targeting signals type 1 or 2 (PTS1/2), three proteins carrying PTS-related peptides, and four proteins that lack conventional targeting signals. We thereby established the tripeptides SLM> and SKV> (where > indicates the stop codon) as new PTS1s and the nonapeptide RVx(5)HF as a putative new PTS2. The 19 peroxisomal proteins conclusively identified from this study potentially carry out novel metabolic and regulatory functions of peroxisomes. Thus, this study represents an important step toward defining the complete plant peroxisomal proteome.
Collapse
Affiliation(s)
- Sigrun Reumann
- Michigan State University-Department of Energy Plant Research Laboratory , Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Li L, Foster CM, Gan Q, Nettleton D, James MG, Myers AM, Wurtele ES. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:485-98. [PMID: 19154206 DOI: 10.1111/j.1365-313x.2009.03793.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Little is known about the role of proteins that lack primary sequence homology with any known motifs (proteins with unknown functions, PUFs); these comprise more than 10% of all proteins. This paper offers a generalized experimental strategy for identifying the functions of such proteins, particularly in relation to metabolism. Using this strategy, we have identified a novel regulatory function for Arabidopsis locus At3g30720 (which we term QQS for qua-quine starch). QQS expression, revealed through global mRNA profiling, is up-regulated in an Arabidopsis Atss3 mutant that lacks starch synthase III and has increased leaf starch content. Analysis of public microarray data using MetaOmGraph (metnetdb.org), in combination with transgenic Arabidopsis lines containing QQS promoter-GUS transgenes, indicated that QQS expression responds to a variety of developmental/genetic/environmental perturbations. In addition to the increase in the Atss3 mutant, QQS is up-regulated in the carbohydrate mutants mex1 and sis8. A 586 nt sequence for the QQS mRNA was identified by 5' and 3' RACE experiments. The QQS transcript is predicted to encode a protein of 59 amino acids, whose expression was confirmed by immunological Western blot analysis. The QQS gene is recognizable in sequenced Arabidopsis ecotypes, but is not identifiable in any other sequenced species, including the closely related Brassica napus. Transgenic RNA interference lines in which QQS expression is reduced show excess leaf starch content at the end of the illumination phase of a diurnal cycle. Taken together, the data identify QQS as a potential novel regulator of starch biosynthesis.
Collapse
Affiliation(s)
- Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics 2009; 72:367-78. [DOI: 10.1016/j.jprot.2008.11.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/25/2008] [Accepted: 11/10/2008] [Indexed: 12/23/2022]
|
124
|
Wiszniewski AAG, Zhou W, Smith SM, Bussell JD. Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. PLANT MOLECULAR BIOLOGY 2009; 69:503-15. [PMID: 19043666 DOI: 10.1007/s11103-008-9431-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 11/08/2008] [Indexed: 05/09/2023]
Abstract
Indole-3-butyric acid (IBA) and 2,4-dichlorophenoxybutyric acid (2,4-DB) are metabolised by peroxisomal beta-oxidation to active auxins that inhibit root growth. We screened Arabidopsis mutants for resistance to IBA and 2,4-DB and identified two new 2,4-DB resistant mutants. The mutant genes encode a putative oxidoreductase (SDRa) and a putative acyl-activating enzyme (AAE18). Both proteins are localised to peroxisomes. SDRa is coexpressed with core beta-oxidation genes, but germination, seedling growth and the fatty acid profile of sdra seedlings are indistinguishable from wild type. The sdra mutant is also resistant to IBA, but aae18 is not. AAE18 is the first example of a gene required for response to 2,4-DB but not IBA. The closest relative of AAE18 is AAE17. AAE17 is predicted to be peroxisomal, but an aae17 aae18 double mutant responded similarly to aae18 for all assays. We propose that AAE18 is capable of activating 2,4-DB but IBA activating enzymes remain to be discovered. We present an updated model for peroxisomal pro-auxin metabolism in Arabidopsis that includes SDRa and AAE18.
Collapse
|
125
|
Carrie C, Kühn K, Murcha MW, Duncan O, Small ID, O'Toole N, Whelan J. Approaches to defining dual-targeted proteins in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:1128-39. [PMID: 19036033 DOI: 10.1111/j.1365-313x.2008.03745.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A variety of approaches were used to predict dual-targeted proteins in Arabidopsis thaliana. These predictions were experimentally tested using GFP fusions. Twelve new dual-targeted proteins were identified: five that were dual-targeted to mitochondria and plastids, six that were dual-targeted to mitochondria and peroxisomes, and one that was dual-targeted to mitochondria and the nucleus. Two methods to predict dual-targeted proteins had a high success rate: (1) combining the AraPerox database with a variety of subcellular prediction programs to identify mitochondrial- and peroxisomal-targeted proteins, and (2) using a variety of prediction programs on a biochemical pathway or process known to contain at least one dual-targeted protein. Several technical parameters need to be taken into account before assigning subcellular localization using GFP fusion proteins. The position of GFP with respect to the tagged polypeptide, the tissue or cells used to detect subcellular localization, and the portion of a candidate protein fused to GFP are all relevant to the expression and targeting of a fusion protein. Testing all gene models for a chromosomal locus is required if more than one model exists.
Collapse
Affiliation(s)
- Chris Carrie
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
126
|
del Río LA, Sandalio LM, Corpas FJ, Romero-Puertas MC, Palma JM. Peroxisomes as a Cellular Source of ROS Signal Molecules. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
127
|
A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 2008; 181:783-95. [PMID: 19087955 DOI: 10.1534/genetics.108.098996] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The content and composition of the plant cell wall polymer lignin affect plant fitness, carbon sequestration potential, and agro-industrial processing. These characteristics, are heavily influenced by the supply of hydroxycinnamyl alcohol precursors synthesized by the enzyme cinnamyl alcohol dehydrogenase (CAD). In angiosperms, CAD is encoded by a multigene family consisting of members thought to have distinct roles in different stages of plant development. Due to the high sequence similarity among CAD genes, it has been challenging to identify and study the role of the individual genes without a genome sequence. Analysis of the recently released sorghum genome revealed the existence of 14 CAD-like genes at seven genomic locations. Comparisons with maize and rice revealed subtle differences in gene number, arrangement, and expression patterns. Sorghum CAD2 is the predominant CAD involved in lignification based on the phylogenetic relationship with CADs from other species and genetic evidence showing that a set of three allelic brown midrib (bmr) lignin mutants contained mutations in this gene. The impact of the mutations on the structure of the protein was assessed using molecular modeling based on X-ray crystallography data of the closely related Arabidopsis CAD5. The modeling revealed unique changes in structure consistent with the observed phenotypes of the mutants.
Collapse
|
128
|
Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. PLANT PHYSIOLOGY 2008; 148:1809-29. [PMID: 18931141 PMCID: PMC2593673 DOI: 10.1104/pp.108.129999] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/10/2008] [Indexed: 05/17/2023]
Abstract
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.
Collapse
Affiliation(s)
- Holger Eubel
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316 , University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber APM. Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. THE PLANT CELL 2008; 20:3241-57. [PMID: 19073763 PMCID: PMC2630453 DOI: 10.1105/tpc.108.062042] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several recent proteomic studies of plant peroxisomes indicate that the peroxisomal matrix harbors multiple ATP-dependent enzymes and chaperones. However, it is unknown whether plant peroxisomes are able to produce ATP by substrate-level phosphorylation or whether external ATP fuels the energy-dependent reactions within peroxisomes. The existence of transport proteins that supply plant peroxisomes with energy for fatty acid oxidation and other ATP-dependent processes has not previously been demonstrated. Here, we describe two Arabidopsis thaliana genes that encode peroxisomal adenine nucleotide carriers, PNC1 and PNC2. Both proteins, when fused to enhanced yellow fluorescent protein, are targeted to peroxisomes. Complementation of a yeast mutant deficient in peroxisomal ATP import and in vitro transport assays using recombinant transporter proteins revealed that PNC1 and PNC2 catalyze the counterexchange of ATP with ADP or AMP. Transgenic Arabidopsis lines repressing both PNC genes were generated using ethanol-inducible RNA interference. A detailed analysis of these plants showed that an impaired peroxisomal ATP import inhibits fatty acid breakdown during early seedling growth and other beta-oxidation reactions, such as auxin biosynthesis. We show conclusively that PNC1 and PNC2 are essential for supplying peroxisomes with ATP, indicating that no other ATP generating systems exist inside plant peroxisomes.
Collapse
Affiliation(s)
- Nicole Linka
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
130
|
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. THE PLANT CELL 2008; 20:3227-40. [PMID: 19073762 PMCID: PMC2630451 DOI: 10.1105/tpc.108.062877] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/05/2008] [Accepted: 11/18/2008] [Indexed: 05/17/2023]
Abstract
We have identified the novel protein Glycine max PEROXISOMAL ADENINE NUCLEOTIDE CARRIER (Gm PNC1) by proteomic analyses of peroxisomal membrane proteins using a blue native/SDS-PAGE technique combined with peptide mass fingerprinting. Gm PNC1, and the Arabidopsis thaliana orthologs At PNC1 and At PNC2, were targeted to peroxisomes. Functional integration of Gm PNC1 and At PNC2 into the cytoplasmic membranes of intact Escherichia coli cells revealed ATP and ADP import activities. The amount of Gm PNC1 in cotyledons increased until 5 d after germination under constant darkness and then decreased very rapidly in response to illumination. We investigated the physiological functions of PNC1 in peroxisomal metabolism by analyzing a transgenic Arabidopsis plant in which At PNC1 and At PNC2 expression was suppressed using RNA interference. The pnc1/2i mutant required sucrose for germination and suppressed the degradation of storage lipids during postgerminative growth. These results suggest that PNC1 contributes to the transport of adenine nucleotides that are consumed by reactions that generate acyl-CoA for peroxisomal fatty acid beta-oxidation during postgerminative growth.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
131
|
Brown LA, Baker A. Shuttles and cycles: transport of proteins into the peroxisome matrix (review). Mol Membr Biol 2008; 25:363-75. [PMID: 18651315 DOI: 10.1080/09687680802130583] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peroxisomes are organelles that carry out diverse biochemical processes in eukaryotic cells, including the core pathways of beta-oxidation of lipid molecules and detoxification of reactive oxygen species. In multicellular organisms defects in peroxisome assembly result in multiple biochemical and developmental abnormalities. As peroxisomes do not contain genetic material, their protein content, and therefore function, is determined by the import of nuclearly encoded proteins from the cytosol and, presumably, removal of damaged or obsolete proteins. Import of matrix proteins can be broken down into four steps: targeting signal recognition by the cycling import receptors; receptor-cargo docking at the peroxisome membrane; translocation and cargo unloading; and receptor recycling. Import is mediated by a set of evolutionarily conserved proteins called peroxins that have been identified primarily via genetic screens, but knowledge of their biochemical activities remains largely unresolved. Recent studies have filled in some of the blanks regarding receptor recycling and the role of ubiquitination but outstanding questions remain concerning the nature of the translocon and its ability to accommodate folded, even oligomeric proteins, and the mechanism of cargo unloading and turnover of peroxisomal proteins. This review seeks to integrate recent findings from yeast, mammalian and plant systems to present an up to date account of how proteins enter the peroxisome matrix.
Collapse
|
132
|
Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ. PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 2008; 37:D969-74. [PMID: 18832363 PMCID: PMC2686560 DOI: 10.1093/nar/gkn654] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Plant Proteomics Database (PPDB; http://ppdb.tc.cornell.edu), launched in 2004, provides an integrated resource for experimentally identified proteins in Arabidopsis and maize (Zea mays). Internal BLAST alignments link maize and Arabidopsis information. Experimental identification is based on in-house mass spectrometry (MS) of cell type-specific proteomes (maize), or specific subcellular proteomes (e.g. chloroplasts, thylakoids, nucleoids) and total leaf proteome samples (maize and Arabidopsis). So far more than 5000 accessions both in maize and Arabidopsis have been identified. In addition, more than 80 published Arabidopsis proteome datasets from subcellular compartments or organs are stored in PPDB and linked to each locus. Using MS-derived information and literature, more than 1500 Arabidopsis proteins have a manually assigned subcellular location, with a strong emphasis on plastid proteins. Additional new features of PPDB include searchable posttranslational modifications and searchable experimental proteotypic peptides and spectral count information for each identified accession based on in-house experiments. Various search methods are provided to extract more than 40 data types for each accession and to extract accessions for different functional categories or curated subcellular localizations. Protein report pages for each accession provide comprehensive overviews, including predicted protein properties, with hyperlinks to the most relevant databases.
Collapse
Affiliation(s)
- Qi Sun
- Computation Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
133
|
Sadowski PG, Groen AJ, Dupree P, Lilley KS. Sub-cellular localization of membrane proteins. Proteomics 2008; 8:3991-4011. [DOI: 10.1002/pmic.200800217] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
134
|
Pracharoenwattana I, Smith SM. When is a peroxisome not a peroxisome? TRENDS IN PLANT SCIENCE 2008; 13:522-5. [PMID: 18768343 DOI: 10.1016/j.tplants.2008.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 05/23/2023]
Abstract
It is time to drop the glyoxysome name. Recent functional genomics analysis together with cell biology studies emphasize the unifying features of peroxisomes rather than their differences. Plant peroxisomes contain 300 or more proteins, the functions of which are dominated by activities related to fatty acid oxidation (>70 enzymes). By comparison, relatively few proteins are committed to metabolism of reactive oxygen species ( approximately 20) and to photorespiration ( approximately 10). Analysis of triglyceride metabolism in Arabidopsis seedlings now indicates that only two enzymes (isocitrate lyase and malate synthase) potentially distinguish glyoxysomes from other peroxisomes. Future research is best served by focusing on the common features of peroxisomes to establish how these dynamic organelles contribute to energy metabolism, development and responses to environmental challenges.
Collapse
Affiliation(s)
- Itsara Pracharoenwattana
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre of Excellence for Plant Metabolomics, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
135
|
Zolman BK, Martinez N, Millius A, Adham AR, Bartel B. Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 2008; 180:237-51. [PMID: 18725356 PMCID: PMC2535678 DOI: 10.1534/genetics.108.090399] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/08/2008] [Indexed: 01/04/2023] Open
Abstract
Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid beta-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal acyl-CoA oxidase/dehydrogenase, ibr1 and ibr10 display normal IAA responses and defective IBA responses. These defects include reduced root elongation inhibition, decreased lateral root initiation, and reduced IBA-responsive gene expression. However, peroxisomal energy-generating pathways necessary during early seedling development are unaffected in the mutants. Positional cloning of the genes responsible for the mutant defects reveals that IBR1 encodes a member of the short-chain dehydrogenase/reductase family and that IBR10 resembles enoyl-CoA hydratases/isomerases. Both enzymes contain C-terminal peroxisomal-targeting signals, consistent with IBA metabolism occurring in peroxisomes. We present a model in which IBR3, IBR10, and IBR1 may act sequentially in peroxisomal IBA beta-oxidation to IAA.
Collapse
Affiliation(s)
- Bethany K Zolman
- Department of Biology, University of Missouri, St. Louis, Missouri 63121, USA.
| | | | | | | | | |
Collapse
|
136
|
Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes inArabidopsis thaliana. FEBS Lett 2008; 582:3073-9. [DOI: 10.1016/j.febslet.2008.07.061] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 11/19/2022]
|
137
|
Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1845-57. [PMID: 18583528 PMCID: PMC2492618 DOI: 10.1104/pp.108.123802] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/18/2008] [Indexed: 05/18/2023]
Abstract
In contrast to animals, where polyamine (PA) catabolism efficiently converts spermine (Spm) to putrescine (Put), plants have been considered to possess a PA catabolic pathway producing 1,3-diaminopropane, Delta(1)-pyrroline, the corresponding aldehyde, and hydrogen peroxide but unable to back-convert Spm to Put. Arabidopsis (Arabidopsis thaliana) genome contains at least five putative PA oxidase (PAO) members with yet-unknown localization and physiological role(s). AtPAO1 was recently identified as an enzyme similar to the mammalian Spm oxidase, which converts Spm to spermidine (Spd). In this work, we have performed in silico analysis of the five Arabidopsis genes and have identified PAO3 (AtPAO3) as a nontypical PAO, in terms of homology, compared to other known PAOs. We have expressed the gene AtPAO3 and have purified a protein corresponding to it using the inducible heterologous expression system of Escherichia coli. AtPAO3 catalyzed the sequential conversion/oxidation of Spm to Spd, and of Spd to Put, thus exhibiting functional homology to the mammalian PAOs. The best substrate for this pathway was Spd, whereas the N(1)-acetyl-derivatives of Spm and Spd were oxidized less efficiently. On the other hand, no activity was detected when diamines (agmatine, cadaverine, and Put) were used as substrates. Moreover, although AtPAO3 does not exhibit significant similarity to the other known PAOs, it is efficiently inhibited by guazatine, a potent PAO inhibitor. AtPAO3 contains a peroxisomal targeting motif at the C terminus, and it targets green fluorescence protein to peroxisomes when fused at the N terminus but not at the C terminus. These results reveal that AtPAO3 is a peroxisomal protein and that the C terminus of the protein contains the sorting information. The overall data reinforce the view that plants and mammals possess a similar PA oxidation system, concerning both the subcellular localization and the mode of its action.
Collapse
|
138
|
Lee CP, Eubel H, O'Toole N, Millar AH. Heterogeneity of the Mitochondrial Proteome for Photosynthetic and Non-photosynthetic Arabidopsis Metabolism. Mol Cell Proteomics 2008; 7:1297-316. [DOI: 10.1074/mcp.m700535-mcp200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
139
|
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008; 3:e1994. [PMID: 18431481 PMCID: PMC2291561 DOI: 10.1371/journal.pone.0001994] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/06/2008] [Indexed: 01/24/2023] Open
Abstract
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.
Collapse
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Andrea Rudella
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Olof Emanuelsson
- Stockholm Bioinformatics Center, AlbaNova, Stockholm University, Stockholm, Sweden
| | - Qi Sun
- Computation Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, New York, United States of America
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
140
|
Abstract
More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed.
Collapse
Affiliation(s)
- Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
141
|
Tylichová M, Briozzo P, Kopečný D, Ferrero J, Moréra S, Joly N, Snégaroff J, Šebela M. Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:88-90. [PMID: 18259056 PMCID: PMC2374172 DOI: 10.1107/s1744309107068522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/27/2007] [Indexed: 11/11/2022]
Abstract
Aminoaldehydes are products of polyamine degradation and are known to be reactive metabolites that are toxic to living cells at high concentrations. These compounds are catabolized by aminoaldehyde dehydrogenases, which are enzymes that contain a nicotinamide adenine dinucleotide coenzyme. Aminoaldehyde dehydrogenase from Pisum sativum was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop method. A complete data set was collected to 2.8 A resolution at 100 K. Crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 86.4, b = 216.6, c = 205.4 A, beta = 98.1 degrees. Molecular replacement was performed and led to the identification of six dimers per asymmetric unit.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Pierre Briozzo
- UMR 206 AgroParisTech-INRA de Chimie Biologique, F-78850 Thiverval-Grignon, France
| | - David Kopečný
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Julien Ferrero
- Laboratoire d’Enzymologie et de Biochimie Structurales, CNRS, F-91198 Gif-sur-Yvette CEDEX, France.
| | - Solange Moréra
- Laboratoire d’Enzymologie et de Biochimie Structurales, CNRS, F-91198 Gif-sur-Yvette CEDEX, France.
| | - Nathalie Joly
- UMR 206 AgroParisTech-INRA de Chimie Biologique, F-78850 Thiverval-Grignon, France
| | - Jacques Snégaroff
- UMR 206 AgroParisTech-INRA de Chimie Biologique, F-78850 Thiverval-Grignon, France
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
142
|
Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. PLANTA 2008; 227:539-58. [PMID: 17929052 DOI: 10.1007/s00425-007-0637-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/23/2007] [Indexed: 05/18/2023]
Abstract
GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Mano S, Miwa T, Nishikawa SI, Mimura T, Nishimura M. The plant organelles database (PODB): a collection of visualized plant organelles and protocols for plant organelle research. Nucleic Acids Res 2008; 36:D929-37. [PMID: 17932059 PMCID: PMC2238956 DOI: 10.1093/nar/gkm789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/12/2022] Open
Abstract
The plant organelles database (PODB; http://podb.nibb.ac.jp/Organellome) was built to promote a comprehensive understanding of organelle dynamics, including organelle function, biogenesis, differentiation, movement and interactions with other organelles. This database consists of three individual parts, the organellome database, the functional analysis database and external links to other databases and homepages. The organellome database provides images of various plant organelles that were visualized with fluorescent and nonfluorescent probes in various tissues of several plant species at different developmental stages. The functional analysis database is a collection of protocols for plant organelle research. External links give access primarily to other databases and Web pages with information on transcriptomes and proteomes. All the data and protocols in the organellome database and the functional analysis database are populated by direct submission of experimentally determined data from plant researchers and can be freely downloaded. Our database promotes the exchange of information between plant organelle researchers for the comprehensive study of the organelle dynamics that support integrated functions in higher plants. We would also appreciate contributions of data and protocols from all plant researchers to maximize the usefulness of the database.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Computer Laboratory, National Institute for Basic Biology, Okazaki 444-8585, Graduate School of Science, Nagoya University, Nagoya 464-8602 and Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | - Tomoki Miwa
- Department of Cell Biology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Computer Laboratory, National Institute for Basic Biology, Okazaki 444-8585, Graduate School of Science, Nagoya University, Nagoya 464-8602 and Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | - Shuh-ichi Nishikawa
- Department of Cell Biology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Computer Laboratory, National Institute for Basic Biology, Okazaki 444-8585, Graduate School of Science, Nagoya University, Nagoya 464-8602 and Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | - Tetsuro Mimura
- Department of Cell Biology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Computer Laboratory, National Institute for Basic Biology, Okazaki 444-8585, Graduate School of Science, Nagoya University, Nagoya 464-8602 and Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Computer Laboratory, National Institute for Basic Biology, Okazaki 444-8585, Graduate School of Science, Nagoya University, Nagoya 464-8602 and Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
144
|
De Azevedo Souza C, Barbazuk B, Ralph SG, Bohlmann J, Hamberger B, Douglas CJ. Genome-wide analysis of a land plant-specific acyl:coenzyme A synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella. THE NEW PHYTOLOGIST 2008; 179:987-1003. [PMID: 18627494 DOI: 10.1111/j.1469-8137.2008.02534.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant enzyme 4-coumarate:coenzyme A ligase (4CL) is part of a family of adenylate-forming enzymes present in all organisms. Analysis of genome sequences shows the presence of '4CL-like' enzymes in plants and other organisms, but their evolutionary relationships and functions remain largely unknown. 4CL and 4CL-like genes were identified by BLAST searches in Arabidopsis, Populus, rice, Physcomitrella, Chlamydomonas and microbial genomes. Evolutionary relationships were inferred by phylogenetic analysis of aligned amino acid sequences. Expression patterns of a conserved set of Arabidopsis and poplar 4CL-like acyl-CoA synthetase (ACS) genes were assayed. The conserved ACS genes form a land plant-specific class. Angiosperm ACS genes grouped into five clades, each of which contained representatives in three fully sequenced genomes. Expression analysis revealed conserved developmental and stress-induced expression patterns of Arabidopsis and poplar genes in some clades. Evolution of plant ACS enzymes occurred early in land plants. Differential gene expansion of angiosperm ACS clades has occurred in some lineages. Evolutionary and gene expression data, combined with in vitro and limited in vivo protein function data, suggest that angiosperm ACS enzymes play conserved roles in octadecanoid and fatty acid metabolism, and play roles in organ development, for example in anthers.
Collapse
Affiliation(s)
| | - Brad Barbazuk
- Donald Danforth Plant Science Center, St Louis MO 63132, USA
| | - Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bjoern Hamberger
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
145
|
Ma C, Reumann S. Improved prediction of peroxisomal PTS1 proteins from genome sequences based on experimental subcellular targeting analyses as exemplified for protein kinases from Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3767-79. [PMID: 18836189 DOI: 10.1093/jxb/ern221] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Due to current experimental limitations in peroxisome proteome research, the identification of low-abundance regulatory proteins such as protein kinases largely relies on computational protein prediction. To test and improve the identification of regulatory proteins by such a prediction-based approach, the Arabidopsis genome was screened for genes that encode protein kinases with predicted type 1 or type 2 peroxisome targeting signals (PTS1 or PTS2). Upon transient expression in onion epidermal cells, the predicted PTS1 domains of four of the seven protein kinases re-directed the reporter protein, enhanced yellow green fluorescent (EYFP), to peroxisomes and were thus verified as functional PTS1 domains. The full-length fusions, however, remained cytosolic, suggesting that PTS1 exposure is induced by specific signals. To investigate why peroxisome targeting of three other kinases was incorrectly predicted and ultimately to improve the prediction algorithms, selected amino acid residues located upstream of PTS1 tripeptides were mutated and the effect on subcellular targeting of the reporter protein was analysed. Acidic residues in close proximity to major PTS1 tripeptides were demonstrated to inhibit protein targeting to plant peroxisomes even in the case of the prototypical PTS1 tripeptide SKL>, whereas basic residues function as essential auxiliary targeting elements in front of weak PTS1 tripeptides such as SHL>. The functional characterization of these inhibitory and essential enhancer-targeting elements allows their consideration in predictive algorithms to improve the prediction accuracy of PTS1 proteins from genome sequences.
Collapse
Affiliation(s)
- Changle Ma
- Department of Plant Biochemistry, Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | | |
Collapse
|
146
|
|
147
|
Hawkins J, Mahony D, Maetschke S, Wakabayashi M, Teasdale RD, Bodén M. Identifying novel peroxisomal proteins. Proteins 2007; 69:606-16. [PMID: 17636571 DOI: 10.1002/prot.21420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peroxisomes are small subcellular compartments responsible for a range of essential metabolic processes. Efforts in predicting peroxisomal protein import are challenged by species variation and sparse sequence data sets with experimentally confirmed localization. We present a predictor of peroxisomal import based on the presence of the dominant peroxisomal targeting signal one (PTS1), a seemingly wellconserved but highly unspecific motif. The signal appears to rely on subtle dependencies with the preceding residues. We evaluate prediction accuracies against two alternative predictor services, PEROXIP and the PTS1 PREDICTOR. We test the integrity of prediction on a range of prokaryotic and eukaryotic proteomes lacking peroxisomes. Similarly we test the accuracy on peroxisomal proteins known to not overlap with training data. The model identified a number of proteins within the RIKEN IPS7 mouse protein dataset as potentially novel peroxisomal proteins. Three were confirmed in vitro using immunofluorescent detection of myc-epitope-tagged proteins in transiently transfected BHK-21 cells (Dhrs2, Serhl, and Ehhadh). The final model has a superior specificity to both alternatives, and an accuracy better than PEROXIP and on par with PTS1 PREDICTOR. Thus, the model we present should prove invaluable for labeling PTS1 targeted proteins with high confidence. We use the predictor to screen several additional eukaryotic genomes to revise previously estimated numbers of peroxisomal proteins. Available at http://pprowler.itee.uq.edu.au.
Collapse
Affiliation(s)
- John Hawkins
- ARC Centre for Complex Systems, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
148
|
He X, Chen GQ, Kang ST, McKeon TA. Ricinus communis contains an acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester. Lipids 2007; 42:931-8. [PMID: 17680295 DOI: 10.1007/s11745-007-3090-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain complete coding regions corresponding to 694 and 690 amino acids, respectively. The third cDNA, RcACS 1, encodes a truncated gene sequence. The RcACS 2 and RcACS 4 share 77% identity at the amino acid sequence level. Complementation tests showed that both RcACS 2 and RcACS 4 successfully restored growth of a yeast mutant strain (YB525) deficient in ACS. Lysates from yeast cells expressing RcACS 2 and 4 were enzymatically active when using 14C-labeled oleic acid as a substrate. A cell fractionation study indicates that RcACS 2 and 4 are mainly associated with membranes. Substrate specificity assays indicate that the RcACS 2 preferentially activates ricinoleate, while the RcACS 4 has a preference for nonhydroxy fatty acids.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, USDA, 800 Buchanan St, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
149
|
Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. THE PLANT CELL 2007; 19:3170-93. [PMID: 17951448 PMCID: PMC2174697 DOI: 10.1105/tpc.107.050989] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 09/12/2007] [Accepted: 09/24/2007] [Indexed: 05/18/2023]
Abstract
We have established a protocol for the isolation of highly purified peroxisomes from mature Arabidopsis thaliana leaves and analyzed the proteome by complementary gel-based and gel-free approaches. Seventy-eight nonredundant proteins were identified, of which 42 novel proteins had previously not been associated with plant peroxisomes. Seventeen novel proteins carried predicted peroxisomal targeting signals (PTS) type 1 or type 2; 11 proteins contained PTS-related peptides. Peroxisome targeting was supported for many novel proteins by in silico analyses and confirmed for 11 representative full-length fusion proteins by fluorescence microscopy. The targeting function of predicted and unpredicted signals was investigated and SSL>, SSI>, and ASL> were established as novel functional PTS1 peptides. In contrast with the generally accepted confinement of PTS2 peptides to the N-terminal domain, the bifunctional transthyretin-like protein was demonstrated to carry internally a functional PTS2. The novel enzymes include numerous enoyl-CoA hydratases, short-chain dehydrogenases, and several enzymes involved in NADP and glutathione metabolism. Seven proteins, including beta-glucosidases and myrosinases, support the currently emerging evidence for an important role of leaf peroxisomes in defense against pathogens and herbivores. The data provide new insights into the biology of plant peroxisomes and improve the prediction accuracy of peroxisome-targeted proteins from genome sequences.
Collapse
Affiliation(s)
- Sigrun Reumann
- Department of Plant Biochemistry, Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, D-37077 Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Helm M, Lück C, Prestele J, Hierl G, Huesgen PF, Fröhlich T, Arnold GJ, Adamska I, Görg A, Lottspeich F, Gietl C. Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants. Proc Natl Acad Sci U S A 2007; 104:11501-6. [PMID: 17592111 PMCID: PMC2040927 DOI: 10.1073/pnas.0704733104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glyoxysomes are a subclass of peroxisomes involved in lipid mobilization. Two distinct peroxisomal targeting signals (PTSs), the C-terminal PTS1 and the N-terminal PTS2, are defined. Processing of the PTS2 on protein import is conserved in higher eukaryotes. The cleavage site typically contains a Cys at P1 or P2. We purified the glyoxysomal processing protease (GPP) from the fat-storing cotyledons of watermelon (Citrullus vulgaris) by column chromatography, preparative native isoelectric focusing, and 2D PAGE. The GPP appears in two forms, a 72-kDa monomer and a 144-kDa dimer, which are in equilibrium with one another. The equilibrium is shifted on Ca(2+) removal toward the monomer and on Ca(2+) addition toward the dimer. The monomer is a general degrading protease and is activated by denatured proteins. The dimer constitutes the processing protease because the substrate specificity proven for the monomer (Phi-Arg/Lys downward arrow) is different from the processing substrate specificity (Cys-Xxx downward arrow/Xxx-Cys downward arrow) found with the mixture of monomer and dimer. The Arabidopsis genome analysis disclosed three proteases predicted to be in peroxisomes, a Deg-protease, a pitrilysin-like metallopeptidase, and a Lon-protease. Specific antibodies against the peroxisomal Deg-protease from Arabidopsis (Deg15) identify the watermelon GPP as a Deg15. A knockout mutation in the DEG15 gene of Arabidopsis (At1g28320) prevents processing of the glyoxysomal malate dehydrogenase precursor to the mature form. Thus, the GPP/Deg15 belongs to a group of trypsin-like serine proteases with Escherichia coli DegP as a prototype. Nevertheless, the GPP/Deg15 possesses specific characteristics and is therefore a new subgroup within the Deg proteases.
Collapse
Affiliation(s)
- Michael Helm
- Lehrstuhl für Botanik, Technische Universität München, Wissenschaftszentrum Weihenstephan, D-85350 Freising, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|