101
|
The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development. PLoS One 2013; 8:e78859. [PMID: 24223858 PMCID: PMC3815225 DOI: 10.1371/journal.pone.0078859] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.
Collapse
|
102
|
Wang MY, Zhao PM, Cheng HQ, Han LB, Wu XM, Gao P, Wang HY, Yang CL, Zhong NQ, Zuo JR, Xia GX. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. PLANT PHYSIOLOGY 2013; 162:1669-80. [PMID: 23715527 PMCID: PMC3707559 DOI: 10.1104/pp.113.215673] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/22/2013] [Indexed: 05/17/2023]
Abstract
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.
Collapse
|
103
|
De Smet I, Lau S, Ehrismann JS, Axiotis I, Kolb M, Kientz M, Weijers D, Jürgens G. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3009-19. [PMID: 23682118 PMCID: PMC3697942 DOI: 10.1093/jxb/ert137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response.
Collapse
Affiliation(s)
- Ive De Smet
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- Present address: Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
- * These authors contributed equally to this work
| | - Steffen Lau
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- * These authors contributed equally to this work
| | - Jasmin S. Ehrismann
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- * These authors contributed equally to this work
| | - Ioannis Axiotis
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Martina Kolb
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Marika Kientz
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - Dolf Weijers
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- To whom correspondence should be addressed.
| |
Collapse
|
104
|
Song Y, Xu ZF. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to Auxin. Int J Mol Sci 2013; 14:13645-56. [PMID: 23812082 PMCID: PMC3742208 DOI: 10.3390/ijms140713645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
Auxin has pleiotropic effects on plant growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are short-lived transcriptional regulators that mediate auxin responses through interaction with an auxin receptor, the F-box protein transport inhibitor response 1 (TIR1). Most functions of Aux/IAA proteins have been identified in Arabidopsis by studying the gain-of-function mutants in domain II. In this study, we isolated and identified an Aux/IAA protein gene from rice, OsIAA4, whose protein contains a dominant mutation-type domain II. OsIAA4 has very low expression in the entire life cycle of rice. OsIAA4-overexpressing rice plants show dwarfism, increased tiller angles, reduced gravity response, and are less sensitive to synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D).
Collapse
Affiliation(s)
- Yaling Song
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | | |
Collapse
|
105
|
Peng Y, Chen L, Lu Y, Ma W, Tong Y, Li Y. DAR2 acts as an important node connecting cytokinin, auxin, SHY2 and PLT1/2 in root meristem size control. PLANT SIGNALING & BEHAVIOR 2013; 8:e24226. [PMID: 23518585 PMCID: PMC3907457 DOI: 10.4161/psb.24226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 05/20/2023]
Abstract
Cytokinin and auxin antagonistically affect cell proliferation and differentiation and thus regulate root meristem size by influencing the abundance of SHORT HYPOCOTYL2 (SHY2/IAA3). SHY2 affects auxin distribution in the root meristem by repressing the auxin-inducible expression of PIN-FORMED (PIN) auxin transport genes. The PLETHORA (PLT1/2) genes influence root meristem growth by promoting stem cells and transit-amplifying cells. However, the factors connecting cytokinin, auxin, SHY2 and PLT1/2 are largely unknown. In a recent study, we have shown that the DA1-related protein 2 (DAR2) acts downstream of cytokinin and SHY2 but upstream of PLT1/2 to affect root meristem size. Here, we discuss the possible molecular mechanisms by which Arabidopsis DAR2 controls root meristem size.
Collapse
|
106
|
Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chávez Montes RA, Colombo L, Marsch-Martínez N, de Folter S. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. PLANT PHYSIOLOGY 2013; 162:779-99. [PMID: 23610218 PMCID: PMC3668070 DOI: 10.1104/pp.113.218214] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 05/18/2023]
Abstract
Synchronized communication between gametophytic and sporophytic tissue is crucial for successful reproduction, and hormones seem to have a prominent role in it. Here, we studied the role of the Arabidopsis (Arabidopsis thaliana) cytochrome P450 CYP78A9 enzyme during reproductive development. First, controlled pollination experiments indicate that CYP78A9 responds to fertilization. Second, while CYP78A9 overexpression can uncouple fruit development from fertilization, the cyp78a8 cyp78a9 loss-of-function mutant has reduced seed set due to outer ovule integument development arrest, leading to female sterility. Moreover, CYP78A9 has a specific expression pattern in inner integuments in early steps of ovule development as well as in the funiculus, embryo, and integuments of developing seeds. CYP78A9 overexpression did not change the response to the known hormones involved in flower development and fruit set, and it did not seem to have much effect on the major known hormonal pathways. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9, and empty siliques (es1-D) mutants. However, it appeared that they do not cause the observed phenotypes. In summary, these results add new insights into the role of CYP78A9 in plant reproduction and present, to our knowledge, the first characterization of metabolite differences between mutants in this gene family.
Collapse
|
107
|
Proveniers MCG, van Zanten M. High temperature acclimation through PIF4 signaling. TRENDS IN PLANT SCIENCE 2013; 18:59-64. [PMID: 23040086 DOI: 10.1016/j.tplants.2012.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 09/05/2012] [Indexed: 05/03/2023]
Abstract
Ambient temperature has direct consequences for plant functioning. Many plant species are able to adjust reproductive timing and development to optimize fitness to changes in ambient temperatures. Understanding the molecular networks of how plants cope with high temperatures is essential to counteract the effects of global warming and to secure future crop productivity. Several recent papers reported that Arabidopsis thaliana responses to changing light conditions and high temperature, and their underlying signaling mechanisms are highly similar and involve the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4). In this opinion article we discuss the mechanisms of PIF4-mediated acclimation to increased ambient temperature with focus on timing of flowering and morphological acclimation.
Collapse
Affiliation(s)
- Marcel C G Proveniers
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
108
|
De Lucas M, Brady SM. Gene regulatory networks in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2013. [PMID: 23196272 DOI: 10.1016/j.pbi.2012.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Thanks to the increasing use of high-throughput tools in genetics, genomics, proteomics and metabolomics, a tremendous amount of information has been generated in the recent years. How these genes, transcripts, proteins and metabolites are inter-connected in a spatiotemporal context is one of the most ambitious goals that fundamental biology needs to answer. Owing to high quality data that are available, Arabidopsis thaliana has become an ideal organism for the application of bioinformatics and systems biology studies. The radially symmetrical structure of the Arabidopsis root and the ability to track developmental time in constrained cell files make this organ the perfect model to investigate different types of biological networks at a cell type-specific level. In this review we present the latest findings in this field as well as our perspective on the future of root biological networks.
Collapse
Affiliation(s)
- Miguel De Lucas
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
109
|
Golan G, Betzer R, Wolf S. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:329. [PMID: 23986770 PMCID: PMC3750518 DOI: 10.3389/fpls.2013.00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/04/2013] [Indexed: 05/05/2023]
Abstract
Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA). To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.
Collapse
Affiliation(s)
| | | | - Shmuel Wolf
- *Correspondence: Shmuel Wolf, The Robert H. Smith Faculty of Agriculture, Food and Environment, Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 761001, Israel e-mail:
| |
Collapse
|
110
|
da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. FRONTIERS IN PLANT SCIENCE 2013; 4:133. [PMID: 23717317 PMCID: PMC3653114 DOI: 10.3389/fpls.2013.00133] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/21/2013] [Indexed: 05/18/2023]
Abstract
Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation.
Collapse
Affiliation(s)
- Cibele T. da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Cibele T. da Costa and Márcia R. de Almeida have contributed equally to this work
| | - Márcia R. de Almeida
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Cibele T. da Costa and Márcia R. de Almeida have contributed equally to this work
| | - Carolina M. Ruedell
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joseli Schwambach
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Felipe S. Maraschin
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arthur G. Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Arthur G. Fett-Neto, Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, Porto Alegre 91501-970, Rio Grande do Sul, Brazil. e-mail:
| |
Collapse
|
111
|
The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. J Theor Biol 2012; 317:71-86. [PMID: 23026765 DOI: 10.1016/j.jtbi.2012.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/28/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022]
Abstract
Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling.
Collapse
|
112
|
Criscuolo G, Valkov VT, Parlati A, Alves LM, Chiurazzi M. Molecular characterization of the Lotus japonicus NRT1(PTR) and NRT2 families. PLANT, CELL & ENVIRONMENT 2012; 35:1567-81. [PMID: 22458810 DOI: 10.1111/j.1365-3040.2012.02510.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitrate is an essential element for plant growth, both as a primary nutrient in the nitrogen assimilation pathway and as an important signal for plant development. Low- and high-affinity transport systems are involved in the nitrate uptake from the soil and its distribution between different plant tissues. By an in silico search, we identified putative members of both systems in the model legume Lotus japonicus. We investigated, by a time course analysis, the transcripts abundance in root tissues of nine and four genes encoding putative low-affinity (NRT1) and high-affinity (NRT2) nitrate transporters, respectively. The genes were sub-classified as inducible, repressible and constitutive on the basis of their responses to provision of nitrate, auxin or cytokinin. Furthermore, the analysis of the pattern of expression in root and nodule tissues after Mesorhizobium loti inoculation permitted the identification of sequences significantly regulated during the symbiotic interaction. The interpretation of the global regulative networks obtained allowed to postulate roles for nitrate transporters as possible actors in the cross-talks between different signalling pathways triggered by biotic and abiotic factors.
Collapse
MESH Headings
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cytokinins/pharmacology
- Evolution, Molecular
- Gene Expression Regulation, Plant/drug effects
- Gene Regulatory Networks/genetics
- Genes, Plant/genetics
- Indoleacetic Acids/pharmacology
- Lotus/drug effects
- Lotus/genetics
- Lotus/microbiology
- Mesorhizobium/drug effects
- Mesorhizobium/physiology
- Multigene Family/genetics
- Nitrate Transporters
- Nitrates/pharmacology
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Root Nodules, Plant/cytology
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/microbiology
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Giuseppina Criscuolo
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 111, 80131, Napoli, Italy
| | | | | | | | | |
Collapse
|
113
|
Arase F, Nishitani H, Egusa M, Nishimoto N, Sakurai S, Sakamoto N, Kaminaka H. IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS One 2012; 7:e43414. [PMID: 22912871 PMCID: PMC3422273 DOI: 10.1371/journal.pone.0043414] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
The expression of auxin-responsive genes is regulated by the TIR1/AFB auxin receptor-dependent degradation of Aux/IAA transcriptional repressors, which interact with auxin-responsive factors (ARFs). Most of the 29 Aux/IAA genes present in Arabidopsis have not been functionally characterized to date. IAA8 appears to have a distinct function from the other Aux/IAA genes, due to its unique transcriptional response to auxin and the stability of its encoded protein. In this study, we characterized the function of Arabidopsis IAA8 in various developmental processes governed by auxin and in the transcriptional regulation of the auxin response. Transgenic plants expressing estrogen-inducible IAA8 (XVE::IAA8) exhibited significantly fewer lateral roots than the wild type, and an IAA8 loss-of-function mutant exhibited significantly more. Ectopic overexpression of IAA8 resulted in abnormal gravitropism. The strong induction of early auxin-responsive marker genes by auxin treatment was delayed by IAA8 overexpression. GFP-fusion analysis revealed that IAA8 localized not only to the nucleus, but, in contrast to other Aux/IAAs, also to the cytosol. Furthermore, we demonstrated that IAA8 interacts with TIR1, in an auxin-dependent fashion, and with ARF proteins, both in yeast and in planta. Taken together, our results show that IAA8 is involved in lateral root formation, and that this process is regulated through the interaction with the TIR1 auxin receptor and ARF transcription factors in the nucleus.
Collapse
Affiliation(s)
- Fumi Arase
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hiroko Nishitani
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Mayumi Egusa
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Nami Nishimoto
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Sumiko Sakurai
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naho Sakamoto
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Hironori Kaminaka
- Laboratory of Plant Molecular Biology, Faculty of Agriculture, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
114
|
Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:1461-8. [PMID: 22527388 PMCID: PMC3321683 DOI: 10.1098/rstb.2011.0232] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12-MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA-ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14-ARF7-ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14-ARF7-ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3-ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14-ARF7-ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA-ARF modules cooperatively regulate the developmental steps during LR formation.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
115
|
Hayashi KI. The interaction and integration of auxin signaling components. PLANT & CELL PHYSIOLOGY 2012; 53:965-75. [PMID: 22433459 DOI: 10.1093/pcp/pcs035] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan.
| |
Collapse
|
116
|
Tiryaki I, Keles H. Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 2012; 52:332-9. [PMID: 22225610 DOI: 10.1111/j.1600-079x.2011.00947.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Possible role of melatonin in the germination of negatively photoblastic and thermosensitive seeds of Phacelia tanacetifolia Benth was studied. Final germination percentage (FGP) was determined in the presence or absence of light at various temperatures, ranging from 0 to 40°C. The highest FGP was determined as 48.7% and 92% at temperature of 15°C in the presence and absence of light, respectively. Seeds were primed with 1% KNO(3) containing various concentrations (0.3, 1, 6, 12, 30, 60, or 90 μM) of melatonin for 2 days at 15°C in darkness. Primed seeds were germinated at an inhibitory temperature of 30°C, and results were compared to those occurring at the optimum temperature of 15°C under both light and no light conditions. Melatonin incorporated into priming medium significantly reversed the inhibitory effects of light and high temperature. Germination was elevated from 2.5% to 52% of FGP for seeds primed in the presence of 6 μM melatonin in darkness at 30°C, while 1 μM melatonin had the highest FGP (21.0%) in the presence of light at 30°C. The highest FGP (47.5%) was obtained from seeds primed in the presence of 0.3 μM melatonin under the light condition at 15°C, while untreated seeds had 1.5% of FGP. The fastest seed germination was determined from seeds primed in the presence of 0.3 μM melatonin (G(50) = 0.56 days) at 15°C in darkness. The possible roles of melatonin in promoting germination parameters of photo- and thermosensitive seed germination are discussed.
Collapse
Affiliation(s)
- Iskender Tiryaki
- Kahramanmaraş Sutcu Imam University, Faculty of Agriculture, Department of Field Crops, Kahramanmaraş, Turkey.
| | | |
Collapse
|
117
|
Sun J, Qi L, Li Y, Chu J, Li C. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 2012; 8:e1002594. [PMID: 22479194 PMCID: PMC3315464 DOI: 10.1371/journal.pgen.1002594] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/30/2012] [Indexed: 11/18/2022] Open
Abstract
Higher plants adapt their growth to high temperature by a dramatic change in plant architecture. It has been shown that the transcriptional regulator phytochrome-interacting factor 4 (PIF4) and the phytohormone auxin are involved in the regulation of high temperature-induced hypocotyl elongation in Arabidopsis. Here we report that PIF4 regulates high temperature-induced hypocotyl elongation through direct activation of the auxin biosynthetic gene YUCCA8 (YUC8). We show that high temperature co-upregulates the transcript abundance of PIF4 and YUC8. PIF4-dependency of high temperature-mediated induction of YUC8 expression as well as auxin biosynthesis, together with the finding that overexpression of PIF4 leads to increased expression of YUC8 and elevated free IAA levels in planta, suggests a possibility that PIF4 directly activates YUC8 expression. Indeed, gel shift and chromatin immunoprecipitation experiments demonstrate that PIF4 associates with the G-box-containing promoter region of YUC8. Transient expression assay in Nicotiana benthamiana leaves support that PIF4 directly activates YUC8 expression in vivo. Significantly, we show that the yuc8 mutation can largely suppress the long-hypocotyl phenotype of PIF4-overexpression plants and also can reduce high temperature-induced hypocotyl elongation. Genetic analyses reveal that the shy2-2 mutation, which harbors a stabilized mutant form of the IAA3 protein and therefore is defective in high temperature-induced hypocotyl elongation, largely suppresses the long-hypocotyl phenotype of PIF4-overexpression plants. Taken together, our results illuminate a molecular framework by which the PIF4 transcriptional regulator integrates its action into the auxin pathway through activating the expression of specific auxin biosynthetic gene. These studies advance our understanding on the molecular mechanism underlying high temperature-induced adaptation in plant architecture.
Collapse
Affiliation(s)
- Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linlin Qi
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
118
|
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet 2012; 8:e1002506. [PMID: 22346763 PMCID: PMC3276552 DOI: 10.1371/journal.pgen.1002506] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Collapse
Affiliation(s)
- Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christine M. Ellis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara E. Ploense
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Aurore Chételat
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ina Haupt
- Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Brian J. Kennerley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward E. Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
119
|
Perilli S, Di Mambro R, Sabatini S. Growth and development of the root apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:17-23. [PMID: 22079783 DOI: 10.1016/j.pbi.2011.10.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/30/2011] [Accepted: 10/19/2011] [Indexed: 05/20/2023]
Abstract
A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development.
Collapse
Affiliation(s)
- Serena Perilli
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Laboratory of Functional Genomics and Proteomics of Model Systems, Università Sapienza - via dei Sardi, 70-00185 Rome, Italy
| | | | | |
Collapse
|
120
|
Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:809-23. [PMID: 22016421 DOI: 10.1093/jxb/err305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The function of the class I TCP transcription factor TCP15 from Arabidopsis thaliana has been studied through the analysis of plants that express a fusion of this protein to the EAR repressor domain. Constitutive expression of TCP15-EAR produces growth arrest at the seedling stage, before leaf emergence. Expression of the repressor fusion from the AtTCP15 promoter produces small plants with leaves whose margins progressively curve upwards, starting from the basal part of the lamina. Leaves contain smaller and less differentiated cells, both on the adaxial and abaxial sides. The abaxial domain is relatively enlarged, with disorganized cells separated by empty spaces. TCP15-EAR also affects the growth of leaf petioles, flower pedicels, and anther filaments. Flowers show reduced elongation of the three outer whorls and altered gynoecia with irregular carpel surfaces and enlarged repla. Ectopic stigma-like structures develop from medial and basal parts of the replum. TCP15-EAR produces an increase in expression of the boundary-specific genes LOB, CUC1, and CUC2. Changes in CUC1 and CUC2 expression can be explained by the existence of lower levels of miR164 in leaves and the repression of IAA3/SHY2 and the SAUR-like gene At1g29460 in leaves and flowers. TCP15 binds to the promoter regions of IAA3/SHY2 and At1g29460, suggesting that these genes may be direct targets of the transcription factor. The results indicate that TCP15 regulates the expression of boundary-specific genes through a pathway that affects auxin homeostasis and partially overlaps with the one modulated by class II CIN-like TCP proteins.
Collapse
Affiliation(s)
- Nora G Uberti-Manassero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
121
|
Cela J, Chang C, Munné-Bosch S. Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2011; 52:1389-400. [PMID: 21719428 PMCID: PMC3153729 DOI: 10.1093/pcp/pcr085] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/22/2011] [Indexed: 05/18/2023]
Abstract
Tocopherols are antioxidants found in chloroplasts of leaves, and it is a matter of current debate whether or not they can affect signaling and gene expression in plant cells. For insight into the possible effects of altered tocopherol composition in chloroplasts on gene expression in the nucleus, the expression of ethylene biosynthesis, perception and signaling genes was investigated in vte1 and vte4 Arabidopsis thaliana mutants, which are impaired in tocopherol (vitamin E) biosynthesis. Changes in gene expression were measured in plants exposed to either salt or water stress, and in young and mature leaves of vte1 and vte4 mutants, which lack tocopherol cyclase and γ-tocopherol methyltransferase, respectively. While transcript levels of ethylene signaling genes in the vte1 mutant and the wild type were similar in all tested conditions, major changes in gene expression occurred in the vte4 mutant, particularly in mature leaves (compared with young leaves) and under salt stress. Accumulation of γ- instead of α-tocopherol in this mutant led to elevated transcript levels of ethylene signaling pathway genes (particularly CTR1, EIN2, EIN3 and ERF1) in mature leaves of control plants. However, with salt treatment, transcript levels of most of these genes remained constant or dropped in the vte4 mutant, while they were dramatically induced in the wild type and the vte1 mutant. Furthermore, under salt stress, leaf age-induced jasmonic acid accumulated in both the vte1 mutant and the wild type, but not in the vte4 mutant. It is concluded that jasmonic acid and ethylene signaling pathways are down-regulated in mature leaves of salt-stressed vte4 plants.
Collapse
Affiliation(s)
- Jana Cela
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
122
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
123
|
Marquès-Bueno MM, Moreno-Romero J, Abas L, De Michele R, Martínez MC. A dominant negative mutant of protein kinase CK2 exhibits altered auxin responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:169-80. [PMID: 21435053 DOI: 10.1111/j.1365-313x.2011.04585.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein kinase CK2 is a pleiotropic Ser/Thr kinase, evolutionary conserved in eukaryotes. Studies performed in different organisms, from yeast to humans, have highlighted the importance of CK2 in cell growth and cell-cycle control. However, the signalling pathways in which CK2 is involved have not been fully identified. In plants, the phytohormone auxin is a major regulator of cell growth. Recent discoveries have demonstrated that differential distribution of within auxin plant tissues is essential for developmental processes, and that this distribution is dependent on polar auxin transport. We report here that a dominant-negative mutant of CK2 (CK2mut) in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. However, CK2mut plants exhibit normal responses to exogenous indole-3-acetic acid (IAA) indicating that they are not affected in the perception of the hormone but upstream in the pathway. We demonstrate that mutant plants are not deficient in IAA but are impaired in its transport. Using genetic and pharmacological tools we show that CK2 activity depletion hinders correct formation of auxin gradients and leads to widespread changes in the expression of auxin-related genes. In particular, members of the auxin efflux carrier family (PINs), and the protein kinase PINOID, both key regulators of auxin fluxes, were misexpressed. PIN4 and PIN7 were also found mislocalized, with accumulation in endosomal bodies. We propose that CK2 functions in the regulation of auxin-signalling pathways, particularly in auxin transport.
Collapse
Affiliation(s)
- Maria Mar Marquès-Bueno
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | | | | | |
Collapse
|
124
|
Zhou ZY, Zhang CG, Wu L, Zhang CG, Chai J, Wang M, Jha A, Jia PF, Cui SJ, Yang M, Chen R, Guo GQ. Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:516-27. [PMID: 21255165 DOI: 10.1111/j.1365-313x.2011.04509.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cytokinin (CK) influences many aspects of plant growth and development, and its function often involves intricate interactions with other phytohormones such as auxin and ethylene. However, the molecular mechanisms underlying the role of CK and its interactions with other growth regulators are still poorly understood. Here we describe the isolation and characterization of the Arabidopsis CK-induced root curling 1 (ckrc1) mutant. CKRC1 encodes a previously identified tryptophan aminotransferase (TAA1) involved in the indole-3-pyruvic acid (IPA) pathway of indole-3-acetic acid (IAA) biosynthesis. The ckrc1 mutant exhibits a defective root gravitropic response (GR) and an increased resistance to CK in primary root growth. These defects can be rescued by exogenous auxin or IPA. Furthermore, we show that CK up-regulates CKRC1/TAA1 expression but inhibits polar auxin transport in roots in an AHK3/ARR1/12-dependent and ethylene-independent manner. Our results suggest that CK regulates root growth and development not only by down-regulating polar auxin transport, but also by stimulating local auxin biosynthesis.
Collapse
Affiliation(s)
- Zhao-Yang Zhou
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 73000, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Auxin triggers a genetic switch. Nat Cell Biol 2011; 13:611-5. [DOI: 10.1038/ncb2212] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 01/20/2011] [Indexed: 12/27/2022]
|
126
|
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. THE PLANT CELL 2010; 22:3574-88. [PMID: 21119060 PMCID: PMC3015130 DOI: 10.1105/tpc.110.075598] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/14/2010] [Accepted: 11/09/2010] [Indexed: 05/18/2023]
Abstract
Coordination of the maintenance of the undifferentiated fate of cells in the shoot meristem and the promotion of cellular differentiation in plant organs is essential for the development of plant shoots. CINCINNATA-like (CIN-like) TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors are involved in this coordination via the negative regulation of CUP-SHAPED COTYLEDON (CUC) genes, which regulate the formation of shoot meristems and the specification of organ boundaries. However, the molecular mechanism of the action of CIN-like TCPs is poorly understood. We show here that TCP3, a model of CIN-like TCPs of Arabidopsis thaliana, directly activates the expression of genes for miR164, ASYMMETRIC LEAVES1 (AS1), INDOLE-3-ACETIC ACID3/SHORT HYPOCOTYL2 (IAA3/SHY2), and SMALL AUXIN UP RNA (SAUR) proteins. Gain of function of these genes suppressed the formation of shoot meristems and resulted in the fusion of cotyledons, whereas their loss of function induced ectopic expression of CUC genes in leaves. Our results indicate that miR164, AS1, IAA3/SHY2, and SAUR partially but cooperatively suppress the expression of CUC genes. Since CIN-like TCP genes were revealed to act dose dependently in the differentiation of leaves, we propose that evolutionarily diverse CIN-like TCPs have important roles in the signaling pathways that generate different leaf forms, without having any lethal effects on shoots.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
127
|
Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 2010; 143:111-21. [PMID: 20887896 DOI: 10.1016/j.cell.2010.09.027] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 05/10/2010] [Accepted: 09/14/2010] [Indexed: 01/25/2023]
Abstract
Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.
Collapse
|
128
|
Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. PLANT PHYSIOLOGY 2010; 153:1608-18. [PMID: 20538889 PMCID: PMC2923899 DOI: 10.1104/pp.110.156802] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/04/2010] [Indexed: 05/18/2023]
Abstract
Plants grown under a canopy recognize changes in light quality and modify their growth patterns; this modification is known as shade avoidance syndrome. In leaves, leaf blade expansion is suppressed, whereas petiole elongation is promoted under the shade. However, the mechanisms that control these responses are largely unclear. Here, we demonstrate that both auxin and brassinosteroid (BR) are required for the normal leaf responses to shade in Arabidopsis (Arabidopsis thaliana). The microarray analysis of leaf blades and petioles treated with end-of-day far-red light (EODFR) revealed that almost half of the genes induced by the treatment in both parts were previously identified as auxin-responsive genes. Likewise, BR-responsive genes were overrepresented in the EODFR-induced genes. Hence, the auxin and BR responses were elevated by EODFR treatment in both leaf blades and petioles, although opposing growth responses were observed in these two parts. The analysis of the auxin-deficient doc1/big mutant and the BR-deficient rot3/cyp90c1 mutant further indicates that auxin and BR were equally required for the normal petiole elongation response to the shade stimulus. In addition, the spotlight irradiation experiment revealed that phytochrome in leaf blades but not that in petioles regulated petiole elongation, which was probably mediated through regulation of the auxin/BR responses in petioles. On the basis of these findings, we conclude that auxin and BR cooperatively promote petiole elongation in response to the shade stimulus under the control of phytochrome in the leaf blade.
Collapse
Affiliation(s)
- Toshiaki Kozuka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
129
|
Liu DJ, Chen JY, Lu WJ. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 2010; 38:1187-93. [PMID: 20563652 DOI: 10.1007/s11033-010-0216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/11/2010] [Indexed: 01/29/2023]
Abstract
The plant hormone auxin transcriptionally activates Aux/IAA genes. Auxin plays an important role in regulating fruit growth and ripening of strawberry and Aux/IAA genes have been extensively studied in Arabidopsis, rice and tomato, but little information is available on strawberry fruit. In the present work, two full-length of early auxin-responsive Aux/IAA genes, termed FaAux/IAA1 and FaAux/IAA2 respectively, were isolated and characterized from strawberry fruit. Moreover, the expression profiles of two FaAux/IAA genes during fruit development, and the effect of naphthalene acetic acid (NAA) on their expressions of fruits at two different developmental stages were also investigated. The results showed that the levels of FaAux/IAA1 and FaAux/IAA2 transcripts were very high at early stage of fruit development, and decreased sharply at ripening stage (after white stage). In addition, NAA applied at the stage of large green and white fruit obviously increased the accumulations of FaAux/IAA1 and FaAux/IAA2 transcripts. These data suggested that the expressions of both FaAux/IAA1 and FaAux/IAA2 genes were likely to be involved in early fruit development, and the enhancement of FaAux/IAAs transcripts might be attributed at least or partially to auxin-induced fruit growth and delayed fruit ripening of strawberry.
Collapse
Affiliation(s)
- Du-juan Liu
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | | | | |
Collapse
|
130
|
The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 2010; 20:1138-43. [PMID: 20605455 DOI: 10.1016/j.cub.2010.05.035] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/29/2010] [Accepted: 05/12/2010] [Indexed: 11/24/2022]
Abstract
Upon seed germination, apical meristems grow as cell division prevails over differentiation and reach their final size when division and differentiation reach a balance. In the Arabidopsis root meristem, this balance results from the interaction between cytokinin (promoting differentiation) and auxin (promoting division) through a regulatory circuit whereby the ARR1 cytokinin-responsive transcription factor activates the gene SHY2, which negatively regulates the PIN genes encoding auxin transport facilitators. However, it remains unknown how the final meristem size is set, i.e., how a change in the relative rates of cell division and differentiation is brought about to cause meristem growth to stop. Here, we show that during meristem growth, expression of SHY2 is driven by another cytokinin-response factor, ARR12, and that completion of growth is brought about by the upregulation of SHY2 caused by both ARR12 and ARR1: this leads to an increase in cell differentiation rate that balances it with division, thus setting root meristem size. We also show that gibberellins selectively repress expression of ARR1 at early stages of meristem development, and that the DELLA protein REPRESSOR OF GA 1-3 (RGA) mediates this negative control.
Collapse
|
131
|
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 2010; 464:913-6. [DOI: 10.1038/nature08836] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/20/2010] [Indexed: 12/30/2022]
|
132
|
Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:261-73. [PMID: 19854800 PMCID: PMC2791123 DOI: 10.1093/jxb/erp300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a programmed developmental process governed by various endogenous and exogenous factors, such as the plant developmental stage, leaf age, phytohormone levels, darkness, and exposure to stresses. It was found that, in addition to its well-documented role in the enhancement of plant frost tolerance, overexpression of the C-repeat/dehydration responsive element binding factor 2 (CBF2) gene in Arabidopsis delayed the onset of leaf senescence and extended the life span of the plants by approximately 2 weeks. This phenomenon was exhibited both during developmental leaf senescence and during senescence of detached leaves artificially induced by either darkness or phytohormones. Transcriptome analysis using the Affymetrix ATH1 genome array revealed that overexpression of CBF2 significantly influenced the expression of 286 genes in mature leaf tissue. In addition to 30 stress-related genes, overexpression of CBF2 also affected the expression of 24 transcription factor (TF) genes, and 20 genes involved in protein metabolism, degradation, and post-translational modification. These results indicate that overexpression of CBF2 not only increases frost tolerance, but also affects other developmental processes, most likely through interactions with additional TFs and protein modification genes. The present findings shed new light on the crucial relationship between plant stress tolerance and longevity, as reported for other eukaryotic organisms.
Collapse
Affiliation(s)
- Michal Sharabi-Schwager
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Alon Samach
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, the Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Charles L. Guy
- Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Ron Porat
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- To whom correspondence should addressed: E-mail:
| |
Collapse
|
133
|
Abstract
Light is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality. Environmental light signals can drive developmental transitions such as germination and flowering, but they also continuously shape development to allow adaptation to the local habitat and microclimate. The ability to respond to a changing and sometimes unfavorable environment underlies the huge success of plants. Much of this growth and developmental plasticity is achieved by light modulation of auxin signaling systems. In this article, we examine the connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root.
Collapse
Affiliation(s)
- Karen J Halliday
- Institute of Molecular Plant Sciences, Edinburgh University, Edinburgh, UK.
| | | | | |
Collapse
|
134
|
Lokerse AS, Weijers D. Auxin enters the matrix--assembly of response machineries for specific outputs. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:520-6. [PMID: 19695945 DOI: 10.1016/j.pbi.2009.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/26/2009] [Accepted: 07/20/2009] [Indexed: 05/24/2023]
Abstract
The basic mechanism of auxin as a modulator of gene expression is now well understood. Interactions among three components are required for this process. Auxin is first perceived by its receptor, which then promotes degradation of inhibitors of auxin response transcription factors. These in turn are released from inhibition and modify expression of target genes. How this simple signaling pathway is able to regulate a diverse range of auxin responses is not as well understood, however a clue lies in the existence of large gene families for all components. Recent data indicates that diversification of gene expression patterns, protein activity, and protein-protein interactions among components establishes a matrix of response machineries that generates specific outputs from the generic auxin signal.
Collapse
Affiliation(s)
- Annemarie S Lokerse
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
135
|
Hormonal input in plant meristems: A balancing act. Semin Cell Dev Biol 2009; 20:1149-56. [PMID: 19765666 DOI: 10.1016/j.semcdb.2009.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/25/2009] [Accepted: 09/08/2009] [Indexed: 11/23/2022]
Abstract
Plant hormones are a group of chemically diverse molecules that control virtually all aspects of plant development. Classical plant hormones were identified many decades ago in physiology studies that addressed plant growth regulation. In recent years, biochemical and genetic approaches led to the identification of many molecular components that mediate hormone activity, such as hormone receptors and hormone-regulated genes. This has greatly contributed to the understanding of the mechanisms underlying hormone activity and highlighted the intricate crosstalk and integration of hormone signalling and developmental pathways. Here we review and discuss recent findings on how hormones regulate the activity of shoot and root apical meristems.
Collapse
|
136
|
Belin C, Megies C, Hauserová E, Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. THE PLANT CELL 2009; 21:2253-68. [PMID: 19666738 PMCID: PMC2751952 DOI: 10.1105/tpc.109.067702] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/14/2009] [Accepted: 07/25/2009] [Indexed: 05/18/2023]
Abstract
Under unfavorable environmental conditions, the stress phytohormone ABA inhibits the developmental transition from an embryo in a dry seed into a young seedling. We developed a genetic screen to isolate Arabidopsis thaliana mutants whose early seedling development is resistant to ABA. Here, we report the identification of a recessive mutation in AUXIN RESISTANT1 (AUX1), encoding a cellular auxin influx carrier. Although auxin is a major morphogenesis hormone in plants, little is known about ABA-auxin interactions during early seedling growth. We show that aux1 and pin2 mutants are insensitive to ABA-dependent repression of embryonic axis (hypocotyl and radicle) elongation. Genetic and physiological experiments show that this involves auxin transport to the embryonic axis elongation zone, where ABA enhances the activity of an auxin-responsive promoter. We propose that ABA represses embryonic axis elongation by potentiating auxin signaling in its elongation zone. This involves repression of the AUXIN INDUCIBLE (Aux/IAA) gene AXR2/IAA7, encoding a key component of ABA- and auxin-dependent responses during postgerminative growth.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Arabidopsis/drug effects
- Arabidopsis/embryology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Arabidopsis Proteins/physiology
- Blotting, Northern
- Blotting, Western
- Chromatography, High Pressure Liquid
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Germination/drug effects
- Germination/genetics
- Germination/physiology
- Indoleacetic Acids/metabolism
- Microscopy, Fluorescence
- Plant Growth Regulators/metabolism
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/embryology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Seedlings/drug effects
- Seedlings/embryology
- Seedlings/genetics
- Seedlings/metabolism
- Seeds/drug effects
- Seeds/embryology
- Seeds/genetics
- Seeds/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Christophe Belin
- Département de Biologie Végétale, Université de Genève, 1211 Genève 4, Switzerland
| | | | | | | |
Collapse
|
137
|
Zhang J, Chen R, Xiao J, Zou L, Li H, Ouyang B, Ye Z. Isolation and characterization ofSlIAA3, anAux/IAAgene from tomato. ACTA ACUST UNITED AC 2009; 18:407-14. [PMID: 17676470 DOI: 10.1080/10425170701517820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aux/IAA genes are a large gene family in plant, many of which are rapidly and specifically induced by auxin. Previous data have illustrated that Aux/IAA genes participated in both auxin signaling and plant development. In order to discover the biofunction of SlIAA3 gene, an Aux/IAA gene from tomato, we isolated the full-length cDNA and the corresponding genomic DNA of this gene. Sequence analysis results showed that there were two introns and three extrons in SlIAA3 gene. DNA gel-blot analysis revealed that SlIAA3 was a single copy in tomato and SlIAA3 was bin-mapped in chromosome 9-G region using 75 tomato introgression lines. Expression analysis showed that SlIAA3 was expressed in all tissues tested, whereas the levels of transcript abundance were different. The expression patterns indicating that SlIAA3 gene should be involved in the root development and auxin signaling.
Collapse
Affiliation(s)
- Junhong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
138
|
Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R. Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2009; 2:504-22. [PMID: 25567895 PMCID: PMC3352449 DOI: 10.1111/j.1752-4571.2009.00082.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/24/2009] [Indexed: 01/07/2023] Open
Abstract
Together with the knowledge of the population structure, a critical aspect for the planning of association and/or population genomics studies is the level of linkage disequilibrium (LD) that characterizes the species and the population used for such an analysis. We have analyzed the population structure and LD in wild and domesticated populations of Phaseolus vulgaris L. using amplified fragment length polymorphism markers, most of which were genetically mapped in two recombinant inbred populations. Our results reflect the previous knowledge of the occurrence of two major wild gene pools of P. vulgaris, from which two independent domestication events originated, one in the Andes and one in Mesoamerica. The high level of LD in the whole sample was mostly due to the gene pool structure, with a much higher LD in domesticated compared to wild populations. In relation to association studies, our results also suggest that whole-genome-scan approaches are feasible in the common bean. Interestingly, an excess of inter-chromosomal LD was found in the domesticated populations, which suggests an important role for epistatic selection during domestication. Moreover, our results indicate the occurrence of a strong bottleneck in the Andean wild population before domestication, suggesting a Mesoamerican origin of P. vulgaris. Finally, our data support the occurrence of a single domestication event in Mesoamerica, and the same scenario in the Andes.
Collapse
Affiliation(s)
- Monica Rossi
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Elena Bitocchi
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Elisa Bellucci
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Laura Nanni
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| | - Domenico Rau
- Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari Sassari, Italy
| | - Giovanna Attene
- Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari Sassari, Italy
| | - Roberto Papa
- Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
139
|
Song LI, Zhou XY, Li LI, Xue LJ, Yang XI, Xue HW. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. MOLECULAR PLANT 2009; 2:755-772. [PMID: 19825654 DOI: 10.1093/mp/ssp039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development; however, the mechanism of how they synergistically function is still largely unknown. To explore the underlying mechanisms in photomorphogenesis, genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in the presence of light stimuli or exogenous Brassinolide (BL). Results showed that BR deficiency stimulates, while BL treatment suppresses, the expressions of light-responsive genes and photomorphogenesis, confirming the negative effects of BR in photomorphogenesis. This is consistent with the specific effects of BR on the expression of genes involved in cell wall modification, cellular metabolism and energy utilization during dark-light transition. Further analysis revealed that hormone biosynthesis and signaling-related genes, especially those of auxin, were altered under BL treatment or light stimuli, indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones. Additionally, suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light, hormone, and protein degradation. The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway, which will help to elucidate the molecular mechanism of plant photomorphogenesis.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Brassinosteroids
- Cholestanols/metabolism
- Cholestanols/pharmacology
- Chromatin Immunoprecipitation
- Cluster Analysis
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Genome, Plant/genetics
- Genome-Wide Association Study
- Light
- Morphogenesis/drug effects
- Morphogenesis/radiation effects
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/radiation effects
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Steroids, Heterocyclic/metabolism
- Steroids, Heterocyclic/pharmacology
Collapse
Affiliation(s)
- L I Song
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - Xiao-Yi Zhou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - L I Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - Liang-Jiao Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - X I Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032 Shanghai, China.
| |
Collapse
|
140
|
Maraschin FDS, Memelink J, Offringa R. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:100-9. [PMID: 19309453 DOI: 10.1111/j.1365-313x.2009.03854.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant hormone auxin (indole-3-acetic acid or IAA) regulates plant development by inducing rapid cellular responses and changes in gene expression. Auxin promotes the degradation of Aux/IAA transcriptional repressors, thereby allowing auxin response factors (ARFs) to activate the transcription of auxin-responsive genes. Auxin enhances the binding of Aux/IAA proteins to the receptor TIR1, which is an F-box protein that is part of the E3 ubiquitin ligase complex SCF(TIR1). Binding of Aux/IAA proteins leads to degradation via the 26S proteasome, but evidence for SCF(TIR1)-mediated poly-ubiquitination of Aux/IAA proteins is lacking. Here we used an Arabidopsis cell suspension-based protoplast system to find evidence for SCF(TIR1)-mediated ubiquitination of the Aux/IAA proteins SHY2/IAA3 and BDL/IAA12. Each of these proteins showed a distinct abundance and repressor activity when expressed in this cell system. Moreover, the amount of endogenous TIR1 protein appeared to be rate-limiting for a proper auxin response measured by the co-transfected DR5::GUS reporter construct. Co-transfection with 35S::TIR1 led to auxin-dependent degradation, and excess of 35S::TIR1 even led to degradation of Aux/IAAs in the absence of auxin treatment. Expression of the mutant tir1-1 protein or the related F-box protein COI1, which is involved in jasmonate signaling, had no effect on Aux/IAA degradation. Our results show that SHY2/IAA3 and BDL/IAA12 are poly-ubiquitinated and degraded in response to increased auxin or TIR1 levels. In conclusion, our data provide experimental support for the model that SCF(TIR1)-dependent poly-ubiquitination of Aux/IAA proteins marks these proteins for degradation by the 26S proteasome, leading to activation of auxin-responsive gene expression.
Collapse
Affiliation(s)
- Felipe dos Santos Maraschin
- Institute of Biology, Leiden University, Clusius Laboratorium, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
141
|
Ploense SE, Wu MF, Nagpal P, Reed JW. A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning. Development 2009; 136:1509-17. [PMID: 19363152 DOI: 10.1242/dev.025932] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lateral organ emergence in plant embryos and meristems depends on spatially coordinated auxin transport and auxin response. Here, we report the gain-of-function iaa18-1 mutation in Arabidopsis, which stabilizes the Aux/IAA protein IAA18 and causes aberrant cotyledon placement in embryos. IAA18 was expressed in the apical domain of globular stage embryos, and in the shoot apical meristem and adaxial domain of cotyledons of heart stage embryos. Mutant globular embryos had asymmetric PIN1:GFP expression in the apical domain, indicating that IAA18-1 disrupts auxin transport. Genetic interactions among iaa18-1, loss-of-function mutations in ARF (Auxin response factor) genes and ARF-overexpressing constructs suggest that IAA18-1 inhibits activity of MP/ARF5 and other ARF proteins in the apical domain. The iaa18-1 mutation also increased the frequency of rootless seedlings in mutant backgrounds in which auxin regulation of basal pole development was affected. These results indicate that apical patterning requires Aux/IAA protein turnover, and that apical domain auxin response also influences root formation.
Collapse
Affiliation(s)
- Sara E Ploense
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
142
|
Yang H, Liu H, Li G, Feng J, Qin H, Liu X, Xue H, Wang D. Reduction of root flavonoid level and its potential involvement in lateral root emergence in Arabidopsis thaliana grown under low phosphate supply. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:564-573. [PMID: 32688670 DOI: 10.1071/fp08283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 03/25/2009] [Indexed: 06/11/2023]
Abstract
Although it is well known that phosphate (Pi) deficiency affects flavonoid accumulation in higher plants, knowledge on the regulation and potential function of flavonoids in the plants grown with low Pi supply is lacking. In this work, we found that low Pi treatment caused significant reduction of root flavonoid (e.g. quercetin, kaempferol and their derivatives) levels in both Columbia (Col-0) and Landsberg erecta (Ler) ecotypes of Arabidopsis thaliana (L.) Heynh. Further investigations revealed that the dysfunction of PHR1, PHO1, PHO2 and NPC4 did not affect the decrease of root flavonoid level by low Pi treatment. In contrast, pldζ2, a knockout mutant of the Arabidopsis phospholipase Dζ2, exhibited defects in the reduction of root flavonoid level and lateral root (LR) emergence under low Pi conditions. When grown under low Pi supply, the transport of auxin from the shoot apex into the root, expression of the auxin responsive DR5::GUS marker and induction of the auxin responsive genes were all significantly less efficient in pldζ2 than in wild-type (WT) control. This is the first report on the reduction of root flavonoid level and its likely contribution to increased LR emergence in Arabidopsis under Pi deficiency conditions, which may facilitate the adaptation of plants to the growth environments with poor Pi availability.
Collapse
Affiliation(s)
- Huixia Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Hong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Gang Li
- The State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Juanjuan Feng
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Xin Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Hongwei Xue
- The State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| |
Collapse
|
143
|
Song Y, You J, Xiong L. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. PLANT MOLECULAR BIOLOGY 2009; 70:297-309. [PMID: 19266169 DOI: 10.1007/s11103-009-9474-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 02/18/2009] [Indexed: 05/23/2023]
Abstract
Aux/IAA and auxin response factor (ARF) are two important families that have been well recognized for their roles in auxin-mediated responses. Aux/IAA proteins are short-lived transcriptional regulators that mediate the auxin responses through interaction with ARF transcription factors. Although quite a few members of the Aux/IAA family have been functionally characterized in dicotyledonous plants such as Arabidopsis, but relatively limited information is available in important crops such as rice. This work focused on isolation and characterization of a member of Aux/IAA family in rice named OsIAA1. The results indicated that OsIAA1 was constitutively expressed in all the tissues and organs investigated. The expression of this gene was induced by various phytohormones including IAA, 2,4-D, kinetin, 24-epibrassinolide, and jasmonic acid. Over-expression of OsIAA1 in rice resulted in reduced inhibition of root elongation to auxin treatment, but increased sensitivity to 24-epiBL treatment. In addition, the OsIAA1-overexpression transgenic plants showed distinctive morphological changes such as decreased plant height and loose plant architecture. Protein interaction analysis suggested that OsIAA1 may act through interaction with OsARF1. T-DNA insertion mutant of OsARF1 showed reduced sensitivity to BR treatment, resembling the phenotype of OsIAA1-overexpression plants. In addition, expression patterns of some genes responsive to brassinosteroid and auxin were changed in the OsIAA1-overexpression plants. These data suggested that OsIAA1 may play important roles in the cross-talk of auxin and brassinosteroid signaling pathways and plant morphogenesis.
Collapse
Affiliation(s)
- Yaling Song
- National Center of Plant Gene Research (Wuhan), National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | | |
Collapse
|
144
|
Frankowski K, Kesy J, Wojciechowski W, Kopcewicz J. Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:192-202. [PMID: 18541335 DOI: 10.1016/j.jplph.2008.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/12/2008] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
The light- and indole-3-acetic acid (IAA)-regulated 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene (PnACS) from Pharbitis nil was isolated. Here, it was shown that the gene was expressed in cotyledons, petioles, hypocotyls, root and shoot apexes both in light- and dark-grown seedlings. The highest expression level of PnACS was found in the roots. IAA applied to the cotyledons of P. nil seedlings caused a clear increase of PnACS messenger accumulation in all the organs examined. In this case, the most IAA-responsive were the hypocotyls. Our studies revealed that the PnACS transcript level in the cotyledons exhibited diurnal oscillations under both long-day (LD) and short-day (SD) conditions. IAA applied at the beginning of inductive darkness caused a dramatic increase in the expression of PnACS, suggesting that the inhibitory effect of IAA on P. nil flowering may result from its stimulatory effect on ethylene production.
Collapse
Affiliation(s)
- Kamil Frankowski
- Department of Physiology and Molecular Biology of Plants, Institute of General and Molecular Biology, Nicolaus Copernicus University, 9 Gagarina Street, 87-100 Torun, Poland
| | | | | | | |
Collapse
|
145
|
Lee DJ, Park JW, Lee HW, Kim J. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3935-57. [PMID: 19654206 PMCID: PMC2736900 DOI: 10.1093/jxb/erp230] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/08/2009] [Accepted: 06/30/2009] [Indexed: 05/19/2023]
Abstract
The AUXIN RESPONSE FACTORs (ARFs) and the Aux/IAA proteins regulate various auxin responses through auxin perception mediated by the F-box proteins TIR1/AFBs. ARFs are transcription factors that modulate expression of auxin response genes and are negatively regulated by the Aux/IAA proteins. To gain insight into the regulatory mechanisms of Aux/IAA-ARF action at the genome level, the transcriptome regulated downstream of iaa1, a stabilized IAA1 mutant protein, was identified using dexamethasone (DEX)-controlled nuclear translocation of iaa1 during the auxin response. The expression of the iaa1-regulated auxin-responsive genes selected from microarray data was analysed with RNA-gel blot analysis and it was shown that auxin-regulated expression of these genes was significantly inhibited by DEX treatment. While cycloheximide-inducible expression of a majority of these genes was also DEX-suppressible, expression of some genes could not be suppressed by treatment with DEX. Expression analysis in a variety of arf mutant backgrounds suggested that all iaa1-regulated auxin-response genes examined are controlled by ARFs to different extents and that the same ARF protein can regulate the expression of these genes in response to auxin in a positive or a negative manner. However, arf mutations did not affect auxin-mediated down-regulation, indicating that ARFs might not play a critical role in down-regulation. The decrease in auxin-responsive gene expression in arf7 arf19 mutants was more severe than that of tir1/afb quadruple mutants. These results show the diversity and complexity of mechanisms of Aux/IAA-ARF- and auxin-regulated gene expression. These data also provide the opportunity for functional analysis of genes mediating the auxin-response downstream of Aux/IAA-ARFs.
Collapse
Affiliation(s)
| | | | | | - Jungmook Kim
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
146
|
Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latché A, Pech JC, Bouzayen M. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. JOURNAL OF EXPERIMENTAL BOTANY 2009; 4:559-60. [PMID: 19213814 PMCID: PMC2657550 DOI: 10.1093/jxb/erp009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/05/2009] [Accepted: 01/08/2009] [Indexed: 05/18/2023]
Abstract
Whereas the interplay of multiple hormones is essential for most plant developmental processes, the key integrating molecular players remain largely undiscovered or uncharacterized. It is shown here that a member of the tomato auxin/indole-3-acetic acid (Aux/IAA) gene family, Sl-IAA3, intersects the auxin and ethylene signal transduction pathways. Aux/IAA genes encode short-lived transcriptional regulators central to the control of auxin responses. Their functions have been defined primarily by dominant, gain-of-function mutant alleles in Arabidopsis. The Sl-IAA3 gene encodes a nuclear-targeted protein that can repress transcription from auxin-responsive promoters. Sl-IAA3 expression is auxin and ethylene dependent, is regulated on a tight tissue-specific basis, and is associated with tissues undergoing differential growth such as in epinastic petioles and apical hook. Antisense down-regulation of Sl-IAA3 results in auxin and ethylene-related phenotypes, including altered apical dominance, lower auxin sensitivity, exaggerated apical hook curvature in the dark and reduced petiole epinasty in the light. The results provide novel insights into the roles of Aux/IAAs and position the Sl-IAA3 protein at the crossroads of auxin and ethylene signalling in tomato.
Collapse
Affiliation(s)
- Salma Chaabouni
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Brian Jones
- Faculty of Agriculture, Food & Natural Resources (FAFNR), University of Sydney, NSW 2006, Australia
| | - Corinne Delalande
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Hua Wang
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Zhengguo Li
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Isabelle Mila
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Pierre Frasse
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Alain Latché
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Jean-Claude Pech
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
- INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
147
|
Hayashi KI, Kamio S, Oono Y, Townsend LB, Nozaki H. Toyocamycin specifically inhibits auxin signaling mediated by SCFTIR1 pathway. PHYTOCHEMISTRY 2009; 70:190-197. [PMID: 19171357 DOI: 10.1016/j.phytochem.2008.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/25/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
The auxins, plant hormones, play a crucial role in many aspects of plant development by regulating cell division, elongation and differentiation. Toyocamycin, a nucleoside-type antibiotic, was identified as auxin signaling inhibitor in a screen of microbial extracts for inhibition of the auxin-inducible reporter gene assay. Toyocamycin specifically inhibited auxin-responsive gene expression, but did not affect other hormone-inducible gene expression. Toyocamycin also blocked auxin-enhanced degradation of the Aux/IAA repressor modulated by the SCF(TIR1) ubiquitin-proteasome pathway without inhibiting proteolytic activity of proteasome. Furthermore, toyocamycin inhibited auxin-induced lateral root formation and epinastic growth of cotyledon in the Arabidopsis thaliana plant. This evidence suggested that toyocamycin would act on the ubiquitination process regulated by SCF(TIR1) machineries. To address the structural requirements for the specific activity of toyocamycin on auxin signaling, the structure-activity relationships of nine toyocamycin-related compounds, including sangivamycin and tubercidin, were investigated.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama City 700-0005, Japan.
| | | | | | | | | |
Collapse
|
148
|
Isolation and characterization of cul1-7, a recessive allele of CULLIN1 that disrupts SCF function at the C terminus of CUL1 in Arabidopsis thaliana. Genetics 2008; 181:945-63. [PMID: 19114460 DOI: 10.1534/genetics.108.097675] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many aspects of plant biology depend on the ubiquitin proteasome system for degradation of regulatory proteins. Ubiquitin E3 ligases confer substrate specificity in this pathway, and SCF-type ligases comprise a major class of E3s. SCF ligases have four subunits: SKP1, CUL1, RBX1, and an F-box protein for substrate recognition. The Aux/IAAs are a well-characterized family of SCF substrates in plants. Here, we report characterization of a mutant isolated from a genetic screen in Arabidopsis thaliana designed to identify plants defective in degradation of an Aux/IAA fusion protein, Aux/IAA1-luciferase (IAA1-LUC). This mutant exhibited fourfold slower IAA1-LUC degradation compared with the progenitor line, and seedlings displayed altered auxin responses. Experiments identified the mutant as an allele of CUL1, named cul1-7. The cul1-7 mutation affects the C terminus of the protein, results in reduced cul1-7 levels, and interferes with RBX1 interaction. cul1-7 seedlings are defective in degradation of an endogenous SCF substrate, Repressor of ga1-3 (RGA), and have altered responses to gibberellins. cul1-7 seedlings exhibit slower degradation of the light-labile red/far-red photoreceptor phytochrome A and are photomorphogenic in the dark. This mutation represents the first reported allele of CUL1 to directly affect subunit interactions at the CUL1 C terminus.
Collapse
|
149
|
Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S. A genetic framework for the control of cell division and differentiation in the root meristem. Science 2008; 322:1380-4. [PMID: 19039136 DOI: 10.1126/science.1164147] [Citation(s) in RCA: 617] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plant growth and development are sustained by meristems. Meristem activity is controlled by auxin and cytokinin, two hormones whose interactions in determining a specific developmental output are still poorly understood. By means of a comprehensive genetic and molecular analysis in Arabidopsis, we show that a primary cytokinin-response transcription factor, ARR1, activates the gene SHY2/IAA3 (SHY2), a repressor of auxin signaling that negatively regulates the PIN auxin transport facilitator genes: thereby, cytokinin causes auxin redistribution, prompting cell differentiation. Conversely, auxin mediates degradation of the SHY2 protein, sustaining PIN activities and cell division. Thus, the cell differentiation and division balance necessary for controlling root meristem size and root growth is the result of the interaction between cytokinin and auxin through a simple regulatory circuit converging on the SHY2 gene.
Collapse
Affiliation(s)
- Raffaele Dello Ioio
- Dipartimento di Genetica e Biologia Molecolare, Laboratorio di Genomica e Proteomica Funzionale dei Sistemi Modello (FGPL), Università La Sapienza - Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Affiliation(s)
| | - Mark Estelle
- Department of Biology, Indiana University, Bloomington, Indiana 47405; ,
| |
Collapse
|