101
|
Singh I, Smita S, Mishra DC, Kumar S, Singh BK, Rai A. Abiotic Stress Responsive miRNA-Target Network and Related Markers (SNP, SSR) in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2017; 8:1943. [PMID: 29209340 PMCID: PMC5702422 DOI: 10.3389/fpls.2017.01943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/30/2017] [Indexed: 05/30/2023]
Abstract
Abiotic stress is one of the major factors responsible for huge yield loss in crop plants. MicroRNAs play a key role in adaptive responses of plants under abiotic stress conditions through post-transcriptional gene regulations. In present study, 95 potential miRNAs were predicted in Brassica juncea using comparative genomics approach. It was noted that these miRNAs, target several transcription factors (TFs), transporter family proteins, signaling related genes, and protease encoding genes. Nineteen distinct miRNA-target regulatory networks were observed with significant involvement in regulation of transcription, response to stimulus, hormone and auxin mediated signaling pathway related gene ontology (GO) term. The sucrose-starch metabolism and pentose-gluconate interconversion pathways were found significantly enriched for these target genes. Molecular markers such as Simple Sequence Repeats (SSR) and Single Nucleotide Polymorphism (SNPs) were identified on miRNAs (miR-SSRs and miR-SNPs) and their target genes in B. juncea. Notably, one of the miR-SNP (C/T) was found at the 5th position on mature region of miR2926. This C/T transition led to the distorted and unstable hairpin structure of miR2926, consequently complete loss of target function. Hence, findings from this study will lay a foundation for marker assisted breeding for abiotic stress tolerant varieties of B. juncea.
Collapse
Affiliation(s)
- Indra Singh
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shuchi Smita
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh C. Mishra
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sanjeev Kumar
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Binay K. Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Anil Rai
- Centre for Agricultural Bio-Informatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
102
|
Wu Y, Lv W, Hu L, Rao W, Zeng Y, Zhu L, He Y, He G. Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants. Sci Rep 2017; 7:8712. [PMID: 28821824 PMCID: PMC5562839 DOI: 10.1038/s41598-017-09143-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
The brown planthopper (BPH) is the most devastating insect pest of rice. The rice gene BPH15 confers resistance to BPH. MicroRNAs (miRNAs) regulate a spectrum of development and defense response processes in plants. In this study, we analyzed six miRNA profiles of a BPH15 introgression line (P15) and a susceptible recipient line (PC) at three time points (0 h, 6 h and 48 h) after BPH attack, and identified 464 known miRNAs and 183 potential novel miRNAs. Before the BPH feeding, we identified 23 miRNAs differentially expressed in P15 and PC. We speculated that the resistant plant is in a priming state by the regulation of miRNAs. After the BPH feeding, 104 miRNAs were found to be expressed differentially in P15 (68 in P15-6/P15-0, 36 in P15-48/P15-0), and 80 miRNAs were found expressed differentially in PC (32 in PC-6/PC-0, 48 in PC-48/PC-0), which illustrated that miRNA expression is activated upon attack. These miRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. Our study provides additional data for scientists to further explore the mechanism of plant defense against insect attack and to find a way for efficient insect control.
Collapse
Affiliation(s)
- Yan Wu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wentang Lv
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Liang Hu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiwei Rao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Zeng
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
103
|
Sheng L, Hu X, Du Y, Zhang G, Huang H, Scheres B, Xu L. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 2017; 144:3126-3133. [PMID: 28743799 PMCID: PMC5611959 DOI: 10.1242/dev.152132] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022]
Abstract
Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis. However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16. LBD16 also functions in LR formation and is activated in that context by ARF7/19 and not by WOX11. This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11-mediated and non-WOX11-mediated roots. The discovery of WOX11-mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues. Summary: Root system development can respond flexibly to developmental and environmental cues by utilizing WOX11-mediated and non-WOX11-mediated pathways, which converge on a common mechanism for primordium development involving LBD16.
Collapse
Affiliation(s)
- Lihong Sheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaomei Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yujuan Du
- Plant Developmental Biology Group, Wageningen University Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guifang Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Ben Scheres
- Plant Developmental Biology Group, Wageningen University Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China .,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
104
|
Lin MC, Tsai HL, Lim SL, Jeng ST, Wu SH. Unraveling multifaceted contributions of small regulatory RNAs to photomorphogenic development in Arabidopsis. BMC Genomics 2017; 18:559. [PMID: 28738828 PMCID: PMC5525271 DOI: 10.1186/s12864-017-3937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/10/2017] [Indexed: 02/04/2023] Open
Abstract
Background Post-transcriptional control of gene expression mediated by small regulatory RNAs (sRNAs) is vital for growth and development of diverse organisms. The biogenesis of sRNAs is regulated by both positive and negative regulators known to regulate photomorphogenic development. Two microRNAs (miRNAs), miR157 and miR319, also regulate photomorphogenesis. However, genome-wide profiling of sRNAs and their regulation of target genes during photomorphogenesis has been missing. We provide a comprehensive view of sRNA-controlled gene expression in this developmental process. Results By profiling sRNAs and the 5′ ends of degraded mRNAs during the first 24 h of photomorphogenic development in Arabidopsis, we identified 335 sRNA-mediated mRNA cleavage events in de-etiolating seedlings. These cleavage events are primarily resulted from actions of highly expressed miRNAs and irrelevant to the abundance of target mRNAs. In the light, the expression of the slicer protein gene ARGONAUTE1 in the miRNA functioning pathway could be fine-tuned by miRNA168a/b. We also found that miR396a/b positively regulates de-etiolation by suppressing GROWTH REGULATING FACTORs. Our results suggest that the miRNAs are required to tune down the target mRNAs and regulate photomorphogenesis. Conclusion sRNAs may have a broad impact on gene expression regulation for optimized photomorphogenic development. With both positive and negative regulators under the control of sRNAs, young Arabidopsis seedlings can have a timely but not exaggerated developmental adaptation to light. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3937-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Huang-Lung Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Sim-Lin Lim
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
105
|
Deng K, Dong P, Wang W, Feng L, Xiong F, Wang K, Zhang S, Feng S, Wang B, Zhang J, Ren M. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato. FRONTIERS IN PLANT SCIENCE 2017; 8:784. [PMID: 28553309 PMCID: PMC5427086 DOI: 10.3389/fpls.2017.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 05/14/2023]
Abstract
In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis. The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 (ScFKBP12) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3, and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1. Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.
Collapse
Affiliation(s)
- Kexuan Deng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Wanjing Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Fangjie Xiong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Kai Wang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Shumin Zhang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Shun Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Bangjun Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest UniversityChongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing UniversityChongqing, China
| |
Collapse
|
106
|
Li S, Castillo-González C, Yu B, Zhang X. The functions of plant small RNAs in development and in stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:654-670. [PMID: 27943457 DOI: 10.1111/tpj.13444] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 05/22/2023]
Abstract
Like metazoans, plants use small regulatory RNAs (sRNAs) to direct gene expression. Several classes of sRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) mainly inhibit gene expression at post-transcriptional levels. In the past decades, plant miRNAs and ta-siRNAs have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNAs and ta-siRNAs are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNAs and ta-siRNAs in plant physiology and development.
Collapse
Affiliation(s)
- Shengjun Li
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0660, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics & Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0660, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics & Institute of Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
107
|
Pacurar DI, Pacurar ML, Lakehal A, Pacurar AM, Ranjan A, Bellini C. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation. Sci Rep 2017; 7:628. [PMID: 28377589 PMCID: PMC5429640 DOI: 10.1038/s41598-017-00744-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.
Collapse
Affiliation(s)
- Daniel Ioan Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden. .,SweTree Technologies AB, P.O. Box 4095, SE-904 03, Umeå, Sweden.
| | - Monica Lacramioara Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden.,University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania.,SweTree Technologies AB, P.O. Box 4095, SE-904 03, Umeå, Sweden
| | - Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Andrea Mariana Pacurar
- University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj Napoca, Romania
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187, Umeå, Sweden. .,Institut National de la Research Agronomic, UMR1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Univ. Paris-Sud, F-78000, Versailles, France.
| |
Collapse
|
108
|
Zhang H, Lin C, Gu L. Light Regulation of Alternative Pre-mRNA Splicing in Plants. Photochem Photobiol 2017; 93:159-165. [PMID: 27925216 DOI: 10.1111/php.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/20/2016] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) is a major post-transcriptional mechanism to enhance the diversity of proteome in response to environmental signals. Among the numerous external signals perceived by plants, light is the most crucial one. Plants utilize complex photoreceptor signaling networks to sense different light conditions and adjust their growth and development accordingly. Although light-mediated gene expression has been widely investigated, little is known regarding the mechanism of light affecting AS to modulate mRNA at the post-transcriptional level. In this minireview, we summarize current progresses on how light affects AS, and how sensory photoreceptors and retrograde signaling pathways may coordinately regulate AS of pre-mRNAs. In addition, we also discuss the possibility that AS of the mRNAs encoding photoreceptors may be involved in feedback control of AS. We hypothesize that light regulation of the expression and activity of splicing factors would be a major mechanism of light-mediated AS. The combination of genetic study and high-throughput analyses of AS and splicing complexes in response to light is likely to further advance our understanding of the molecular mechanisms underlying light control of AS and plant development.
Collapse
Affiliation(s)
- Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
109
|
Liu XY, Li J, Liu MM, Yao Q, Chen JZ. Transcriptome Profiling to Understand the Effect of Citrus Rootstocks on the Growth of 'Shatangju' Mandarin. PLoS One 2017; 12:e0169897. [PMID: 28081213 PMCID: PMC5231354 DOI: 10.1371/journal.pone.0169897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/24/2016] [Indexed: 01/01/2023] Open
Abstract
To obtain insight into potential mechanisms underlying the influence of rootstock on scion growth, we performed a comparative analysis of 'Shatangju' mandarin grafted onto 5 rootstocks: Fragrant orange (Citrus junons Sieb. ex. Tanaka), Red tangerine (Citrus reticulata Blanco), 'Shatangju' mandarin (Citrus reticulata Blanco), Rough lemon (Citrus jambhiri Lush) and Canton lemon (Citrus limonia Osbeck). The tree size of 'Shatangju' mandarin grafted onto Canton lemon and Rough lemon were the largest, followed by self-rooted rootstock trees, and the lowest tree sizes correspond to ones grafted on Red tangerine and Fragrant orange rootstocks. The levels of indoleacetic acid (IAA) and gibberellin (GA) were significantly and positively related to growth vigor. The differences of gene expression in leaves of trees grafted onto Red tangerine, Canton lemon and 'Shatangju' mandarin were analyzed by RNA-Seq. Results showed that more differentially expressed genes involved in oxidoreductase function, hormonal signal transduction and the glycolytic pathway were enriched in 'Red tangerine vs Canton lemon'. qRT-PCR analysis showed that expression levels of ARF1, ARF8, GH3 and IAA4 were negatively correlated with the growth vigor and IAA content. The metabolism of GA was influenced by the differential expression of KO1 and GA2OX1 in grafted trees. In addition, most of antioxidant enzyme genes were up-regulated in leaves of trees grafted onto Red tangerine, resulting in a higher peroxidase activity. We concluded that different rootstocks significantly affected the expression of genes involved in auxin signal transduction pathway and GA biosynthesis pathway in the grafted plants, and then regulated the hormone levels and their signal pathways.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Li
- Department of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Meng-Meng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie-Zhong Chen
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
110
|
Xu X, Li X, Hu X, Wu T, Wang Y, Xu X, Zhang X, Han Z. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1059. [PMID: 28674551 PMCID: PMC5474533 DOI: 10.3389/fpls.2017.01059] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/31/2017] [Indexed: 05/02/2023]
Abstract
Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.
Collapse
|
111
|
Deepthi S, Satheeshkumar K. Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
112
|
Ge Y, Yan F, Zourelidou M, Wang M, Ljung K, Fastner A, Hammes UZ, Di Donato M, Geisler M, Schwechheimer C, Tao Y. SHADE AVOIDANCE 4 Is Required for Proper Auxin Distribution in the Hypocotyl. PLANT PHYSIOLOGY 2017; 173:788-800. [PMID: 27872246 PMCID: PMC5210748 DOI: 10.1104/pp.16.01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/17/2016] [Indexed: 05/25/2023]
Abstract
The phytohormone auxin is involved in virtually every aspect of plant growth and development. Through polar auxin transport, auxin gradients can be established, which then direct plant differentiation and growth. Shade avoidance responses are well-known processes that require polar auxin transport. In this study, we have identified a mutant, shade avoidance 4 (sav4), defective in shade-induced hypocotyl elongation and basipetal auxin transport. SAV4 encodes an unknown protein with armadillo repeat- and tetratricopeptide repeat-like domains known to provide protein-protein interaction surfaces. C terminally yellow fluorescent protein-tagged SAV4 localizes to both the plasma membrane and the nucleus. Membrane-localized SAV4 displays a polar association with the shootward plasma membrane domain in hypocotyl and root cells, which appears to be necessary for its function in hypocotyl elongation. Cotransfection of SAV4 and ATP-binding cassette B1 (ABCB1) auxin transporter in tobacco (Nicotiana benthamiana) revealed that SAV4 blocks ABCB1-mediated auxin efflux. We thus propose that polarly localized SAV4 acts to inhibit ABCB-mediated auxin efflux toward shoots and facilitates the establishment of proper auxin gradients.
Collapse
Affiliation(s)
- Yanhua Ge
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Fenglian Yan
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Melina Zourelidou
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Meiling Wang
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Karin Ljung
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Astrid Fastner
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Ulrich Z Hammes
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Martin Di Donato
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Markus Geisler
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Claus Schwechheimer
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.)
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| | - Yi Tao
- School of Life Sciences, Xiamen Plant Genetics Key Laboratory (Y.G., F.Y., M.W., Y.T.), and State Key Laboratory of Cellular Stress Biology (Y.G., Y.T.), Xiamen University, Xiamen 361102, China;
- Department of Plant Systems Biology, Technische Universität München, Freising 85354, Germany (M.Z., C.S.);
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L.);
- Department of Cell Biology and Plant Biochemistry, Universität Regensburg, Regensburg 93047, Germany (A.F., U.Z.H.); and
- Department of Biology-Plant Biology, University of Fribourg, CH-1700 Fribourg, Switzerland (M.D.D., M.G.)
| |
Collapse
|
113
|
Iki T. Messages on small RNA duplexes in plants. JOURNAL OF PLANT RESEARCH 2017; 130:7-16. [PMID: 27878651 DOI: 10.1007/s10265-016-0876-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Small RNA-mediated gene silencing encompasses diverse developmental events, stress responses, defense against pathogens, and maintenance of genome integrity. Extensive studies in model organisms have unveiled the molecular mechanisms underpinning the RNA silencing phenomena, and the accumulating knowledge have characterized the intricate pathways and the repertoire of proteins responsible for the actions of small RNAs characterized as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Although the single-stranded, matured guide small RNAs direct the effector ribonucleoprotein complexes to induce gene silencing in sequence-specific manner, the double-stranded intermediate, the small RNA duplexes, which are processed as nascent products of the RNase III enzyme activities, act as key to determine the downstream molecular pathways and the fate of small RNAs. Based at the small RNA duplex-centered view, this review describes the recent advances in understanding the small RNA pathways in plants.
Collapse
Affiliation(s)
- Taichiro Iki
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
114
|
Libao C, Runzhi J, Mengli Y, Liangjun L, Shuyan L. A comparative proteomic analysis for adventitious root formation in lotus root (Nelumbo nucifera Gaertn). Z NATURFORSCH C 2016; 72:181-196. [DOI: 10.1515/znc-2016-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Abstract
Adventitious roots (ARs) directly affect lotus seedling growth and product quality because principal root is not well developed. However, the details of AR formation at the molecular level have not been determined in lotus. Therefore, three stages were chosen to identify the change of proteins abundant during rhizome formation, using isobaric tags for relative and absolute quantization coupled with liquid chromatography–tandem mass spectrometry to gain insight into the molecular mechanisms involved in AR formation. We totally obtained 323,375 spectra during AR formation. After filtering to eliminate low-scoring spectra, 66,943 spectra, including 53,106 unique spectra, were identified. These unique spectra matched 28,905 peptides, including 24,992 unique peptides, which were assembled into 6686 proteins. In the C0/C1 and C1/C2 stages, 66 and 32 proteins showed enhanced abundance, and 173 and 73 proteins showed decreased abundance, respectively. Seventeen important AR formation-related proteins from the three stages were identified, and the expressions of nine genes from the above-identified proteins were assessed by qRT-PCR. This article provides a comprehensive understanding of the changes in metabolism during AR formation, and is helpful to accelerate the progress of breeding in fulture in lotus root.
Collapse
Affiliation(s)
- Cheng Libao
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Jiang Runzhi
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Yang Mengli
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Li Liangjun
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University , Jiangsu , P. R. China
| |
Collapse
|
115
|
Lup SD, Tian X, Xu J, Pérez-Pérez JM. Wound signaling of regenerative cell reprogramming. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:178-187. [PMID: 27457994 DOI: 10.1016/j.plantsci.2016.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 05/08/2023]
Abstract
Plants are sessile organisms that must deal with various threats resulting in tissue damage, such as herbivore feeding, and physical wounding by wind, snow or crushing by animals. During wound healing, phytohormone crosstalk orchestrates cellular regeneration through the establishment of tissue-specific asymmetries. In turn, hormone-regulated transcription factors and their downstream targets coordinate cellular responses, including dedifferentiation, cell cycle reactivation and vascular regeneration. By comparing different examples of wound-induced tissue regeneration in the model plant Arabidopsis thaliana, a number of key regulators of developmental plasticity of plant cells have been identified. We present the relevance of these findings and of the dynamic establishment of differential auxin gradients for cell reprogramming after wounding.
Collapse
Affiliation(s)
- Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202, Alicante, Spain
| | - Xin Tian
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Xu
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | |
Collapse
|
116
|
Della Rovere F, Fattorini L, Ronzan M, Falasca G, Altamura MM. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2016; 11:e1176660. [PMID: 27089118 PMCID: PMC4973785 DOI: 10.1080/15592324.2016.1176660] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.
Collapse
Affiliation(s)
- Federica Della Rovere
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, Rome, Italy
| | - Marilena Ronzan
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, Rome, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, Rome, Italy
| | - Maria Maddalena Altamura
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, Rome, Italy
- Maria Maddalena Altamura
| |
Collapse
|
117
|
Kisiel A, Kępczyńska E. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. PLANTA 2016; 243:1169-89. [PMID: 26861677 PMCID: PMC4837224 DOI: 10.1007/s00425-016-2469-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/14/2016] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION The present study showed all the 16 strains isolated and identified from the alfalfa rhizosphere and nodules, and registered in GenBank, to be good candidates for targeted use in studies addressing the rather weak known mechanism of plant growth promotion, including that of Medicago truncatula, a molecular crop model. Based on physiological, biochemical and molecular analysis, the 16 isolates obtained were ascribed to the following five families: Bacillaceae, Rhizobiaceae, Xantomonadaceae, Enterobacteriaceae and Pseudomonadaceae, within which 9 genera and 16 species were identified. All these bacteria were found to significantly enhance fresh and dry weight of root, shoots and whole 5-week-old seedlings. The bacteria were capable of the in vitro use of tryptophan to produce indolic compounds at various concentrations. The ability of almost all the strains to enhance growth of seedlings and individual roots was positively correlated with the production of the indolic compounds (r = 0.69; P = 0.0001), but not with the 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity (no correlation). For some strains, it was difficult to conclude whether the growth promotion was related to the production of indolic compounds or to the ACCD activity. It is likely that promotion of M. truncatula root development involves also root interaction with pseudomonads, known to produce 2,4-diacetylphloroglucinol (DAPG), a secondary metabolite reported to alter the root architecture by interacting with an auxin-dependent signaling pathway. Inoculation of seedlings with Pseudomonas brassicacearum KK 5, a bacterium known for its lowest ability to produce indolic compounds, the highest ACCD activity and the presence of the phlD gene responsible for DAPG precursor synthesis, resulted in a substantial promotion of root development. Inoculation with the strain increased the endogenous IAA level in M. truncatula leaves after inoculation of 5-week-old seedlings. Three other strains examined in this study also increased the IAA level in the leaves upon inoculation. Moreover, several other factors such as mobilization of phosphorus and zinc to make them available to plants, iron sequestration by siderophore production and the ability to ammonia production also contributed substantially to the phytostimulatory biofertilizing potential of isolated strains. There is, thus, evidence that Medicago truncatula growth promotion by rhizobacteria involves more than one mechanism.
Collapse
Affiliation(s)
- Anna Kisiel
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Ewa Kępczyńska
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
118
|
Zhu L, Zheng C, Liu R, Song A, Zhang Z, Xin J, Jiang J, Chen S, Zhang F, Fang W, Chen F. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana. Sci Rep 2016; 6:20009. [PMID: 26819087 PMCID: PMC4730235 DOI: 10.1038/srep20009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022] Open
Abstract
The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation.
Collapse
Affiliation(s)
- Lu Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruixia Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaohe Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
119
|
Xu X, Ji J, Ma X, Xu Q, Qi X, Chen X. Comparative Proteomic Analysis Provides Insight into the Key Proteins Involved in Cucumber ( Cucumis sativus L.) Adventitious Root Emergence under Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1515. [PMID: 27790230 PMCID: PMC5062059 DOI: 10.3389/fpls.2016.01515] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 05/20/2023]
Abstract
Waterlogging is a common abiotic stress in both natural and agricultural systems, and it primarily affects plant growth by the slow oxygen diffusion in water. To sustain root function in the hypoxic environment, a key adaptation for waterlogging tolerant plants is the formation of adventitious roots (ARs). We found that cucumber waterlogging tolerant line Zaoer-N seedlings adapt to waterlogging stress by developing a larger number of ARs in hypocotyls, while almost no AR is generated in sensitive line Pepino. To understand the molecular mechanisms underlying AR emergence, the iTRAQ-based quantitative proteomics approach was employed to map the proteomes of hypocotyls cells of the Zaoer-N and Pepino under control and waterlogging conditions. A total of 5508 proteins were identified and 146 were differentially regulated proteins (DRPs), of which 47 and 56 DRPs were specific to tolerant and sensitive line, respectively. In the waterlogged Zaoer-N hypocotyls, DRPs related to alcohol dehydrogenases (ADH), 1-aminocyclopropane-1-carboxylicacid oxidases, peroxidases, 60S ribosomal proteins, GSDL esterases/lipases, histone deacetylases, and histone H5 and were strongly overrepresented to manage the energy crisis, promote ethylene release, minimize oxidative damage, mobilize storage lipids, and stimulate cell division, differentiation and growth. The evaluations of ethylene production, ADH activity, pyruvate decarboxylase (PDC) activity and ethanol production were in good agreement with the proteomic results. qRT-PCR analysis of the corresponding 146 genes further confirmed the accuracy of the observed protein abundance. These findings shed light on the mechanisms underlying waterlogging triggered cucumber ARs emergence, and provided valuable information for the breeding of cucumber with enhanced tolerance to waterlogging.
Collapse
|
120
|
Tahiri A, Delporte F, Muhovski Y, Ongena M, Thonart P, Druart P. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:25-38. [PMID: 26595095 DOI: 10.1016/j.plaphy.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.
Collapse
Affiliation(s)
- Abdelghani Tahiri
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium; University of Liège, Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology (CWBI), Passage des Déportés 2, B-5030 Gembloux, Belgium.
| | - Fabienne Delporte
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium
| | - Yordan Muhovski
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium
| | - Marc Ongena
- University of Liège, Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology (CWBI), Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Philippe Thonart
- University of Liège, Gembloux Agro-Bio Tech, Walloon Center for Industrial Biology (CWBI), Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Philippe Druart
- Walloon Agricultural Research Centre (CRA-W), Dept. of Life Sciences, Chaussée de Charleroi, 234, B-5030 Gembloux, Belgium
| |
Collapse
|
121
|
Liu K, Wang J, Li H, Zhong J, Feng S, Pan Y, Yuan C. Identification, Expression and IAA-Amide Synthetase Activity Analysis of Gretchen Hagen 3 in Papaya Fruit ( Carica papaya L.) during Postharvest Process. FRONTIERS IN PLANT SCIENCE 2016; 7:1555. [PMID: 27812360 PMCID: PMC5071377 DOI: 10.3389/fpls.2016.01555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
- *Correspondence: Kaidong Liu
| | - Jinxiang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agriculture UniversityGuangzhou, China
- College of Agriculture and Root Biology Center, South China Agricultural UniversityGuangzhou, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Jundi Zhong
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Shaoxian Feng
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Yaoliang Pan
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal UniversityZhanjiang, China
- Changchun Yuan
| |
Collapse
|
122
|
Ruedell CM, de Almeida MR, Fett-Neto AG. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:11-9. [PMID: 26397200 DOI: 10.1016/j.plaphy.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 05/13/2023]
Abstract
Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus.
Collapse
Affiliation(s)
- Carolina Michels Ruedell
- Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | - Márcia Rodrigues de Almeida
- Center for Biotechnology, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | - Arthur Germano Fett-Neto
- Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil; Center for Biotechnology, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
123
|
Villacorta-Martín C, Sánchez-García AB, Villanova J, Cano A, van de Rhee M, de Haan J, Acosta M, Passarinho P, Pérez-Pérez JM. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics 2015; 16:789. [PMID: 26467528 PMCID: PMC4606512 DOI: 10.1186/s12864-015-2003-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022] Open
Abstract
Background Adventitious root (AR) formation is a critical step in vegetative propagation of most ornamental plants, such as carnation. AR formation from stem cuttings is usually divided into several stages according to physiological and metabolic markers. Auxin is often applied exogenously to promote the development of ARs on stem cuttings of difficult-to-root genotypes. Results By whole transcriptome sequencing, we identified the genes involved in AR formation in carnation cuttings and in response to exogenous auxin. Their expression profiles have been analysed through RNA-Seq during a time-course experiment in the stem cutting base of two cultivars with contrasting efficiencies of AR formation. We explored the kinetics of root primordia formation in these two cultivars and in response to exogenously-applied auxin through detailed histological and physiological analyses. Conclusions Our results provide, for the first time, a number of molecular, histological and physiological markers that characterize the different stages of AR formation in this species and that could be used to monitor adventitious rooting on a wide collection of carnation germplasm with the aim to identify the best-rooting cultivars for breeding purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2003-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain.
| | - Miranda van de Rhee
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Jorn de Haan
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Manuel Acosta
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain.
| | - Paul Passarinho
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | | |
Collapse
|
124
|
de Almeida MR, de Bastiani D, Gaeta ML, de Araújo Mariath JE, de Costa F, Retallick J, Nolan L, Tai HH, Strömvik MV, Fett-Neto AG. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:155-65. [PMID: 26398800 DOI: 10.1016/j.plantsci.2015.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 05/21/2023]
Abstract
Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus.
Collapse
Affiliation(s)
- Márcia Rodrigues de Almeida
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil; Plant Gene Regulation and Bioinformatics Laboratory, Department of Plant Science, McGill University, Ste. Anne de Bellevue, QC H9X3V9, Canada
| | - Daniela de Bastiani
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | - Marcos Letaif Gaeta
- Plant Anatomy Laboratory, Department of Botany, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | | | - Fernanda de Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | - Jeffrey Retallick
- Potato Research Centre, Agriculture and Agri-Food Canada, PO Box 20280, Fredericton, NB E3B 4Z7, Canada
| | - Lana Nolan
- Potato Research Centre, Agriculture and Agri-Food Canada, PO Box 20280, Fredericton, NB E3B 4Z7, Canada
| | - Helen H Tai
- Potato Research Centre, Agriculture and Agri-Food Canada, PO Box 20280, Fredericton, NB E3B 4Z7, Canada
| | - Martina V Strömvik
- Plant Gene Regulation and Bioinformatics Laboratory, Department of Plant Science, McGill University, Ste. Anne de Bellevue, QC H9X3V9, Canada
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
125
|
Yusuf NHM, Ong WD, Redwan RM, Latip MA, Kumar SV. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Gene 2015; 571:71-80. [DOI: 10.1016/j.gene.2015.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/05/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
|
126
|
Lischweski S, Muchow A, Guthörl D, Hause B. Jasmonates act positively in adventitious root formation in petunia cuttings. BMC PLANT BIOLOGY 2015; 15:229. [PMID: 26394764 PMCID: PMC4579608 DOI: 10.1186/s12870-015-0615-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/12/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. RESULTS To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. CONCLUSIONS Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.
Collapse
Affiliation(s)
- Sandra Lischweski
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle/Salle, Germany.
- Present address: Interdisziplinäres Stoffwechsel-Centrum, Charité, Augustenburger Platz 1, D13353, Berlin, Germany.
| | - Anne Muchow
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle/Salle, Germany.
- Present address: IDT Biologika GmbH, Am Pharmapark, D06861, Dessau-Roßlau, Germany.
| | - Daniela Guthörl
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle/Salle, Germany.
- Present address: Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland.
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle/Salle, Germany.
| |
Collapse
|
127
|
Hrtyan M, Šliková E, Hejátko J, Růžička K. RNA processing in auxin and cytokinin pathways. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4897-912. [PMID: 25922481 DOI: 10.1093/jxb/erv189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin and cytokinin belong to the 'magnificent seven' plant hormones, having tightly interconnected pathways leading to common as well as opposing effects on plant morphogenesis. Tremendous progress in the past years has yielded a broad understanding of their signalling, metabolism, regulatory pathways, transcriptional networks, and signalling cross-talk. One of the rapidly expanding areas of auxin and cytokinin research concerns their RNA regulatory networks. This review summarizes current knowledge about post-transcriptional gene silencing, the role of non-coding RNAs, the regulation of translation, and alternative splicing of auxin- and cytokinin-related genes. In addition, the role of tRNA-bound cytokinins is also discussed. We highlight the most recent publications dealing with this topic and underline the role of RNA processing in auxin- and cytokinin-mediated growth and development.
Collapse
Affiliation(s)
- Mónika Hrtyan
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Eva Šliková
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Kamil Růžička
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
128
|
Gursinsky T, Pirovano W, Gambino G, Friedrich S, Behrens SE, Pantaleo V. Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control. PLANT PHYSIOLOGY 2015; 168:938-52. [PMID: 26015446 PMCID: PMC4741319 DOI: 10.1104/pp.15.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/20/2015] [Indexed: 05/21/2023]
Abstract
The plant ARGONAUTE1 protein (AGO1) is a central functional component of the posttranscriptional regulation of gene expression and the RNA silencing-based antiviral defense. By genomic and molecular approaches, we here reveal the presence of two homeologs of the AGO1-like gene in Nicotiana benthamiana, NbAGO1-1H and NbAGO1-1L. Both homeologs retain the capacity to transcribe messenger RNAs (mRNAs), which mainly differ in one 18-nucleotide insertion/deletion (indel). The indel does not modify the frame of the open reading frame, and it is located eight nucleotides upstream of the target site of a microRNA, miR168, which is an important modulator of AGO1 expression. We demonstrate that there is a differential accumulation of the two NbAGO1-1 homeolog mRNAs at conditions where miR168 is up-regulated, such as during a tombusvirus infection. The data reported suggest that the indel affects the miR168-guided regulation of NbAGO1 mRNA. The two AGO1 homeologs show full functionality in reconstituted, catalytically active RNA-induced silencing complexes following the incorporation of small interfering RNAs. Virus-induced gene silencing experiments suggest a specific involvement of the NbAGO1 homeologs in symptom development. The results provide an example of the diversity of microRNA target regions in NbAGO1 homeolog genes, which has important implications for improving resilience measures of the plant during viral infections.
Collapse
Affiliation(s)
- Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Walter Pirovano
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Giorgio Gambino
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Vitantonio Pantaleo
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| |
Collapse
|
129
|
Urquhart S, Foo E, Reid JB. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting. PHYSIOLOGIA PLANTARUM 2015; 153:392-402. [PMID: 24962787 DOI: 10.1111/ppl.12246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 05/07/2023]
Abstract
The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency.
Collapse
Affiliation(s)
- Shelley Urquhart
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | | | |
Collapse
|
130
|
Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. Biometals 2015; 28:353-65. [DOI: 10.1007/s10534-015-9838-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
131
|
Han H, Sun X, Xie Y, Feng J, Zhang S. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis). BMC PLANT BIOLOGY 2014; 14:305. [PMID: 25425065 PMCID: PMC4253636 DOI: 10.1186/s12870-014-0305-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/27/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. RESULTS We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. CONCLUSIONS These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined use of two important technologies as a powerful approach to advance research on non-model, but otherwise important, larch species.
Collapse
Affiliation(s)
- Hua Han
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Xiaomei Sun
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Yunhui Xie
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| | - Jian Feng
- />Forestry Biotechnology and Analysis Test Center, Liaoning Academy of Forestry Sciences, Chongshan Rd, Liaoning, 110032 P. R. China
| | - Shougong Zhang
- />State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
- />Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Rd, Beijing, 100091 P. R. China
| |
Collapse
|
132
|
Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ. Branching out in roots: uncovering form, function, and regulation. PLANT PHYSIOLOGY 2014; 166:538-50. [PMID: 25136060 PMCID: PMC4213086 DOI: 10.1104/pp.114.245423] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.
Collapse
Affiliation(s)
- Jonathan A Atkinson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Amanda Rasmussen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Richard Traini
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Craig Sturrock
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| |
Collapse
|
133
|
Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. FRONTIERS IN PLANT SCIENCE 2014; 5:495. [PMID: 25324849 PMCID: PMC4179338 DOI: 10.3389/fpls.2014.00495] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/06/2014] [Indexed: 05/02/2023]
Abstract
Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
134
|
Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS One 2014; 9:e107201. [PMID: 25216187 PMCID: PMC4162609 DOI: 10.1371/journal.pone.0107201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Tea (Camellia sinensis L.) is a popular world beverage, and propagation of tea plants chiefly depends on the formation of adventitious roots in cuttings. To better understand potential mechanisms involved in adventitious root formation, we performed transcriptome analysis of single nodal cuttings of C. sinensis treated with or without indole-3-butyric acid (IBA) using the Illumina sequencing method. Totally 42.5 million RNA-Seq reads were obtained and these were assembled into 59,931 unigenes, with an average length of 732 bp and an N50 of 1292 bp. In addition, 1091 differentially expressed unigenes were identified in the tea cuttings treated with IBA compared to controls, including 656 up- and 435 down-regulated genes. Further real time RT-PCR analysis confirmed RNA-Seq data. Functional annotation analysis showed that many genes were involved in plant hormone signal transduction, secondary metabolism, cell wall organization and glutathione metabolism, indicating potential contributions to adventitious rooting. Our study presents a global view of transcriptome profiles of tea cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting. Our data will be a valuable resource for genomic research about adventitious root formation in tea cuttings, which can be used to improve rooting for difficult-to-root varieties.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Li-Yuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Li-Yun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Cheng-Cai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Hai-Lin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
| | - Li-Qiang Tan
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Hong-Li Cao
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Hangzhou, PR China
- National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, PR China
- * E-mail:
| |
Collapse
|
135
|
Tian N, Liu S, Li J, Xu W, Yuan L, Huang J, Liu Z. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation. PHYSIOLOGIA PLANTARUM 2014; 151:522-532. [PMID: 24329606 DOI: 10.1111/ppl.12139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation.
Collapse
Affiliation(s)
- Na Tian
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
136
|
Tsai HL, Li YH, Hsieh WP, Lin MC, Ahn JH, Wu SH. HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. THE PLANT CELL 2014; 26:2858-72. [PMID: 25052717 PMCID: PMC4145119 DOI: 10.1105/tpc.114.126722] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/17/2014] [Accepted: 07/01/2014] [Indexed: 05/21/2023]
Abstract
Light regulates growth and developmental processes in plants via global transcriptome adjustment, translational control, and multilayered posttranslational modification of proteins. The transcriptional activation and repression of light-responsive genes has been well documented; however, the impact of posttranscriptional regulation on conveying light signals has been less addressed. Here, we examined whether optimal photomorphogenesis in Arabidopsis thaliana requires the proper biogenesis of small regulatory RNAs that play pivotal roles in the posttranscriptional regulation of gene expression. Arabidopsis carrying a mutation in HUA ENHANCER1 (HEN1), required for stabilization of small regulatory RNAs, showed defects in multiple aspects of photomorphogenic and skotomorphogenic development. HEN1 negatively regulated Arabidopsis photomorphogenesis. Light-activated HEN1 expression depended on the photoreceptors phytochrome A (phyA), phyB, cryptochrome 1 (cry1), and cry2 and key transcriptional regulators ELONGATED HYPOCOTYL5 (HY5) and HY5-HOMOLOG. We also demonstrate the involvement of the small regulatory RNAs miR157d and miR319 in modulating the expression of a positive regulator, HY5, and negative regulators TEOSINTE BRANCHED1, CYCLOIDEA AND PCF family proteins, respectively, for optimal photomorphogenic development in Arabidopsis.
Collapse
Affiliation(s)
- Huang-Lung Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hang Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Ping Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ji Hoon Ahn
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seongbuk-Gu, Seoul 136-701, Korea
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
137
|
Ahkami A, Scholz U, Steuernagel B, Strickert M, Haensch KT, Druege U, Reinhardt D, Nouri E, von Wirén N, Franken P, Hajirezaei MR. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida. PLoS One 2014; 9:e100997. [PMID: 24978694 PMCID: PMC4076263 DOI: 10.1371/journal.pone.0100997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 11/18/2022] Open
Abstract
To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.
Collapse
Affiliation(s)
- Amirhossein Ahkami
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | | - Klaus-Thomas Haensch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren & Erfurt, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren & Erfurt, Germany
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Eva Nouri
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren & Erfurt, Germany
| | | |
Collapse
|
138
|
Pacurar DI, Pacurar ML, Pacurar AM, Gutierrez L, Bellini C. A novel viable allele of Arabidopsis CULLIN1 identified in a screen for superroot2 suppressors by next generation sequencing-assisted mapping. PLoS One 2014; 9:e100846. [PMID: 24955772 PMCID: PMC4067405 DOI: 10.1371/journal.pone.0100846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
Map-based cloning (MBC) is the conventional approach for linking phenotypes to genotypes, and has been successfully used to identify causal mutations in diverse organisms. Next-generation sequencing (NGS) technologies offer unprecedented possibilities to sequence the entire genomes of organisms, thereby in principle enabling direct identification of causal mutations without mapping. However, although mapping-by-sequencing has proven to be a cost effective alternative to classical MBC in particular situations, methods based solely on NGS still have limitations and need to be refined. Aiming to identify the causal mutations in suppressors of Arabidopsis thaliana superroot2 phenotype, generated by ethyl methane sulfonate (EMS) treatment, we combined NGS and classical mapping, to rapidly identify the point mutations and restrict the number of testable candidates by defining the chromosomal intervals containing the causal mutations, respectively. The NGS-assisted mapping approach we describe here facilitates unbiased identification of virtually any causal EMS-generated mutation by overlapping the identification (deep sequencing) and validation (mapping) steps. To exemplify the useful marriage of the two approaches we discuss the strategy used to identify a new viable recessive allele of the Arabidopsis CULLIN1 gene in the non-reference Wassilewskija (Ws-4) accession.
Collapse
Affiliation(s)
- Daniel I. Pacurar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- * E-mail:
| | - Monica L. Pacurar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania
- Present address: SweTree Technologies AB, Umeå, Sweden
| | - Andrea M. Pacurar
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania
| | - Laurent Gutierrez
- Molecular biology platform (CRRBM), Université de Picardie Jules Verne, Amiens, France
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Institut Jean-Pierre Bourgin, French National Institute for Agricultural Research (UMR1318 INRA-AgroParisTech), Versailles, France
| |
Collapse
|
139
|
Bou-Torrent J, Galstyan A, Gallemí M, Cifuentes-Esquivel N, Molina-Contreras MJ, Salla-Martret M, Jikumaru Y, Yamaguchi S, Kamiya Y, Martínez-García JF. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2937-47. [PMID: 24609653 PMCID: PMC4056540 DOI: 10.1093/jxb/eru083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation. Here, we describe how plant proximity perception rapidly and temporally alters the levels of not only auxins but also active brassinosteroids and gibberellins. At the same time, shade alters the seedling sensitivity to hormones. Plant proximity perception also involves dramatic changes in gene expression that rapidly result in a new balance between positive and negative factors in a network of interacting basic helix-loop-helix proteins, such as HFR1, PAR1, and BIM and BEE factors. Here, it was shown that several of these factors act as auxin- and BR-responsiveness modulators, which ultimately control the intensity or degree of hypocotyl elongation. It was deduced that, as a consequence of the plant proximity-dependent new, dynamic, and local balance between hormone synthesis and sensitivity (mechanistically resulting from a restructured network of SAS regulators), SAS responses are unleashed and hypocotyls elongate.
Collapse
Affiliation(s)
- Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Anahit Galstyan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Marçal Gallemí
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Nicolás Cifuentes-Esquivel
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | | | - Mercè Salla-Martret
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010-Barcelona, Spain
| |
Collapse
|
140
|
Stauffer E, Maizel A. Post-transcriptional regulation in root development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:679-96. [PMID: 24827552 DOI: 10.1002/wrna.1239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 11/08/2022]
Abstract
Plants constantly adapt their root system to the changing environmental conditions. This developmental plasticity is underpinned by changes in the profile of the mRNA expressed. Here we review how post-transcriptional modulation of gene expression control root development and growth. In particular we focus on the role of small RNA-mediated post-transcriptional regulation processes. Small RNAs play an important role in fine tuning gene expression during root formation and patterning, development of lateral organs and symbiosis, nutrient homeostasis, and other stress-related responses. We also highlight the impact of alternative splicing on root development and the establishment of symbiotic structures as well as the emerging role of long noncoding RNAs in root physiology.
Collapse
Affiliation(s)
- Eva Stauffer
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
141
|
Mauriat M, Petterle A, Bellini C, Moritz T. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:372-84. [PMID: 24547703 DOI: 10.1111/tpj.12478] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 05/18/2023]
Abstract
Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.
Collapse
Affiliation(s)
- Mélanie Mauriat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87, Umeå, Sweden; Institut National de la Recherche Agronomique, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612, Cestas Cedex, France
| | | | | | | |
Collapse
|
142
|
Yang C, Xu M, Xuan L, Jiang X, Huang M. Identification and expression analysis of twenty ARF genes in Populus. Gene 2014; 544:134-44. [PMID: 24786213 DOI: 10.1016/j.gene.2014.04.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The auxin response factor (ARF) family of transcription factors is a crucial component of auxin signaling and plays important roles regulating numerous growth and developmental processes in plants. We isolated and characterized 20 ARF genes involved in adventitious root development of Populus. Multiple protein sequence alignments revealed that the PeARF proteins contained a highly conserved region in their N-terminal portion corresponding to the DNA-binding domain of the Arabidopsis ARF family. Except for PeARF3.1, PeARF3.2, PeARF17.1 and PeARF17.2, the PeARF proteins contained a carboxyl-terminal domain related to the Arabidopsis domains III and IV, which are involved in homo- and heterodimerization. The exon-intron structures of the PeARF genes were determined by aligning cDNA and genomic sequences. As expected, most PeARF genes had a similar distribution of exon-intron structures. Temporal expression patterns of these genes were profiled during adventitious root development. All 20 PeARF genes were expressed in root, stem and leaf in a dynamic manner. Transient expression assays with Populus protoplasts demonstrated that these PeARFs were localized to the nucleus. These results suggest that PeARFs may play diverse regulatory roles in adventitious root development of Populus and contribute to improving our understanding of conserved and divergent aspects of auxin signaling in various species.
Collapse
Affiliation(s)
- Chunxia Yang
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Meng Xu
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Lei Xuan
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | | | - Minren Huang
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
143
|
Kong X, Ma L, Yang L, Chen Q, Xiang N, Yang Y, Hu X. Quantitative proteomics analysis reveals that the nuclear cap-binding complex proteins arabidopsis CBP20 and CBP80 modulate the salt stress response. J Proteome Res 2014; 13:2495-510. [PMID: 24689873 DOI: 10.1021/pr4012624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cap-binding proteins CBP20 and CBP80 have well-established roles in RNA metabolism and plant growth and development. Although these proteins are thought to be involved in the plant's response to environmental stress, their functions in this process are unclear. Here we demonstrated that Arabidopsis cbp20 and cbp80 null mutants had abnormal leaves and flowers and exhibited increased sensitivity to salt stress. The aberrant phenotypes were more pronounced in the cbp20/80 double mutant. Quantification by iTRAQ (isobaric tags for relative and absolute quantification) identified 77 differentially expressed proteins in the cbp20 and cbp80 lines compared with the wild-type Col-0 under salt stress conditions. Most of these differentially expressed proteins were synergistically expressed in cbp20 and cbp80, suggesting that CBP20 and CBP80 have synergistic roles during the salt stress response. Biochemical analysis demonstrated that CBP20 and CBP80 physically interacted with each other. Further analysis revealed that CBP20/80 regulated the splicing of genes involved in proline and sugar metabolism and that the epigenetic and post-translational modifications of these genes were involved in salt stress tolerance. Our data suggest a link between CBP20/80-dependent protein ubiquitination/sumoylation and the salt stress response.
Collapse
Affiliation(s)
- Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, ‡Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, and §Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Science , No. 132 Lanhei Road, Heilongtan, Kunming 650204, China
| | | | | | | | | | | | | |
Collapse
|
144
|
Pacurar DI, Pacurar ML, Bussell JD, Schwambach J, Pop TI, Kowalczyk M, Gutierrez L, Cavel E, Chaabouni S, Ljung K, Fett-Neto AG, Pamfil D, Bellini C. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1605-18. [PMID: 24596172 PMCID: PMC3967091 DOI: 10.1093/jxb/eru026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.
Collapse
Affiliation(s)
- Daniel Ioan Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
- * These authors contributed equally to this manuscript
| | - Monica Lacramioara Pacurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- * These authors contributed equally to this manuscript
| | - John Desmond Bussell
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Joseli Schwambach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Centro de Biotecnologia, Laboratório de Fisiologia Vegetal, Universidade Federal do Rio Grande do Sul, 9500, CP15005, CEP 91501–970, Porto Alegre, RS, Brazil
- Present address: Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, CEP 95070–560, Caxias do Sul, RS, Brazil
| | - Tiberia Ioana Pop
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Université de Picardie Jules Verne, CRRBM & BIOPI EA3900, 80039 Amiens, France
| | - Emilie Cavel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Arthur Germano Fett-Neto
- Centro de Biotecnologia, Laboratório de Fisiologia Vegetal, Universidade Federal do Rio Grande do Sul, 9500, CP15005, CEP 91501–970, Porto Alegre, RS, Brazil
| | - Doru Pamfil
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech 78026 Versailles Cedex, France
- To whom correspondence should be addressed. E-mail: and
| |
Collapse
|
145
|
Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, Pérez-Alfocea F, Sánchez-Bravo J, Pérez-Pérez JM, Acosta M. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. PHYSIOLOGIA PLANTARUM 2014; 150:446-62. [PMID: 24117983 DOI: 10.1111/ppl.12114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/06/2013] [Accepted: 09/26/2013] [Indexed: 05/21/2023]
Abstract
The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting.
Collapse
|
146
|
Welander M, Geier T, Smolka A, Ahlman A, Fan J, Zhu LH. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems. AMERICAN JOURNAL OF BOTANY 2014; 101:255-66. [PMID: 24500805 DOI: 10.3732/ajb.1300258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. METHODS In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. KEY RESULTS We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. CONCLUSIONS We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.
Collapse
Affiliation(s)
- Margareta Welander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden
| | | | | | | | | | | |
Collapse
|
147
|
Verma SS, Rahman MH, Deyholos MK, Basu U, Kav NNV. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS One 2014; 9:e86648. [PMID: 24497962 PMCID: PMC3909011 DOI: 10.1371/journal.pone.0086648] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022] Open
Abstract
Canola (oilseed rape, Brassica napus L.) is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs) during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations). P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5' RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs), hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen.
Collapse
Affiliation(s)
- Shiv S. Verma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad H. Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
148
|
Wu SH. Gene expression regulation in photomorphogenesis from the perspective of the central dogma. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:311-33. [PMID: 24779996 DOI: 10.1146/annurev-arplant-050213-040337] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Depending on the environment a young seedling encounters, the developmental program following seed germination could be skotomorphogenesis in the dark or photomorphogenesis in the light. Light signals are interpreted by a repertoire of photoreceptors followed by sophisticated gene expression networks, eventually resulting in developmental changes. The expression and functions of photoreceptors and key signaling molecules are highly coordinated and regulated at multiple levels of the central dogma in molecular biology. Light activates gene expression through the actions of positive transcriptional regulators and the relaxation of chromatin by histone acetylation. Small regulatory RNAs help attenuate the expression of light-responsive genes. Alternative splicing, protein phosphorylation/dephosphorylation, the formation of diverse transcriptional complexes, and selective protein degradation all contribute to proteome diversity and change the functions of individual proteins.
Collapse
Affiliation(s)
- Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
149
|
Li SW, Leng Y, Feng L, Zeng XY. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:525-37. [PMID: 23812737 DOI: 10.1007/s11356-013-1942-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/14/2013] [Indexed: 05/05/2023]
Abstract
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, People's Republic of China,
| | | | | | | |
Collapse
|
150
|
Cai S, Xiong Z, Li L, Li M, Zhang L, Liu C, Xu Z. Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:76-91. [PMID: 24233160 DOI: 10.1007/s10646-013-1153-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
The present study aimed to test a hypothesis that acid invertases in root of metallophytes might play important roles in root growth under heavy metal stress. Plants of two contrasting populations, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), of metallophyte Elsholtzia haichowensis were treated with Cu in controlled experiments. The results showed that MP was Cu tolerant under 10 μM Cu2+ treatment. Cu treatment resulted in a higher root/shoot biomass ratio in MP compared to NMP. Scaling exponent in root/shoot allometric function in MP was lower than NMP. More complicated root architecture was observed in MP under Cu stress. Four full-length cDNAs (EhNcwINV, EhCcwINV, EhNvINV and EhCvINV) encoding cell wall and vacuolar invertases were cloned. Both of the transcript level and activity of the acid invertase in MP elevated under Cu treatment. There were positive correlations between root acid invertase transcript level, activity and root/shoot biomass ratio. The results indicated important roles of acid invertase in governing root growth under Cu stress. It also suggested that there was a possible interrelation between acid invertases and Cu tolerance mechanisms in MP of E. haichowensis.
Collapse
|