101
|
The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat Commun 2015; 6:7641. [PMID: 26144255 DOI: 10.1038/ncomms8641] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023] Open
Abstract
The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence.
Collapse
|
102
|
Lavenus J, Goh T, Guyomarc'h S, Hill K, Lucas M, Voß U, Kenobi K, Wilson MH, Farcot E, Hagen G, Guilfoyle TJ, Fukaki H, Laplaze L, Bennett MJ. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. THE PLANT CELL 2015; 27:1368-88. [PMID: 25944102 PMCID: PMC4456640 DOI: 10.1105/tpc.114.132993] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 05/18/2023]
Abstract
A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network largely remains to be elucidated. In this study, we developed a time-delay correlation algorithm (TDCor) to infer the gene regulatory network (GRN) controlling LR primordium initiation and patterning in Arabidopsis from a time-series transcriptomic data set. The predicted network topology links the very early-activated genes involved in LR initiation to later expressed cell identity markers through a multistep genetic cascade exhibiting both positive and negative feedback loops. The predictions were tested for the key transcriptional regulator AUXIN RESPONSE FACTOR7 node, and over 70% of its targets were validated experimentally. Intriguingly, the predicted GRN revealed a mutual inhibition between the ARF7 and ARF5 modules that would control an early bifurcation between two cell fates. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.
Collapse
Affiliation(s)
- Julien Lavenus
- Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Tatsuaki Goh
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Soazig Guyomarc'h
- Université de Montpellier, UMR DIADE, 34394 Montpellier cedex 5, France
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Mikael Lucas
- Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Kim Kenobi
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Etienne Farcot
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom Inria, Virtual Plants Team, 34095 Montpellier cedex 5, France
| | | | | | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
103
|
Li J, Zhu D, Wang R, Shen W, Guo Y, Ren Y, Shen W, Huang L. β-Cyclodextrin-hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1. PLANT CELL REPORTS 2015; 34:381-93. [PMID: 25433859 DOI: 10.1007/s00299-014-1716-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 05/26/2023]
Abstract
β-Cyclodextrin-hemin complex-induced tomato lateral root formation was associated with nitric oxide and heme oxygenase 1 by modulating cell cycle regulatory genes. β-Cyclodextrin-hemin complex (β-CDH), a complex by combining β-cyclodextrin (β-CD) with hemin, a heme oxygenase 1 (HO1) inducer, was a trigger of cucumber adventitious root formation by enhancing HO1 gene expression. In this report, our results identified the previously unknown function of β-CDH in plants: the inducer of tomato lateral root (LR) formation. β-CDH-triggered LR formation is hemin-specific, since β-CD failed to induce LR development. Because nitric oxide (NO) is involved in LR formation, the correlation of β-CDH with NO and HO1 was investigated. Our analysis suggested that β-CDH induced an increase in endogenous NO production, followed by up-regulation of tomato HO1 gene and LR formation, all of which were mimicked by hemin and two NO-releasing compounds (SNP and GSNO). The induction of HO1 gene expression and LR formation triggered by β-CDH or hemin were significantly blocked by an inhibitor of HO1. Further results revealed that both β-CDH- and SNP-stimulated HO1 gene expression and thereafter LR formation were sensitive to the removal of NO with a potent NO scavenger, and the responses of SNP were significantly blocked by an inhibitor of HO1. Molecular evidence illustrated that representative cell cycle regulatory genes, including SlCDKA1, SlCYCA3;1, SlCYCA2;1, and SlCYCD3;1, were significantly up-regulated by β-CDH and SNP, but obviously blocked when seedlings were co-treated with the scavenger of NO or the inhibitor of HO1. In summary, our physiological and molecular evidence demonstrated that both NO and HO1 were involved in the β-CDH-induced LR formation with, at least partially, HO1 acting downstream of NO signaling.
Collapse
Affiliation(s)
- Jiale Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1437-52. [PMID: 25540438 PMCID: PMC4339602 DOI: 10.1093/jxb/eru499] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation.
Collapse
Affiliation(s)
- Amanda Rasmussen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent 9000, Belgium Plant and Crop Sciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Seyed Abdollah Hosseini
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstrasse 3, 06466 Gatersleben, Germany
| | - Mohammed-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstrasse 3, 06466 Gatersleben, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Kuehnhaeuser Strasse 101, 99090 Erfurt, Germany
| | - Danny Geelen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent 9000, Belgium
| |
Collapse
|
105
|
Żabka A, Trzaskoma P, Winnicki K, Polit JT, Chmielnicka A, Maszewski J. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:62-70. [PMID: 25462968 DOI: 10.1016/j.jplph.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/26/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Agnieszka Chmielnicka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
106
|
Vilches-Barro A, Maizel A. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:31-8. [PMID: 25449724 DOI: 10.1016/j.pbi.2014.10.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 05/04/2023]
Abstract
Lateral roots are formed postembryonically and determine the final shape of the root system, a determinant of the plants ability to uptake nutrients and water. The lateral root primordia are initiated deep into the main root and to protrude out the primary root they have to grow through three cell layers. Recent findings have revealed that these layers are not merely a passive physical obstacle to the emergence of the lateral root but have an active role in its formation. Here, we review examples of communication between the lateral root primordium and the surrounding tissues, highlighting the importance of auxin-mediated growth coordination as well as cell and tissue mechanics for the morphogenesis of lateral roots.
Collapse
Affiliation(s)
- Amaya Vilches-Barro
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
107
|
Guseman JM, Hellmuth A, Lanctot A, Feldman TP, Moss BL, Klavins E, Calderón Villalobos LIA, Nemhauser JL. Auxin-induced degradation dynamics set the pace for lateral root development. Development 2015; 142:905-9. [PMID: 25633353 DOI: 10.1242/dev.117234] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unresolved issue whether differences in Aux/IAA turnover rates played a significant role in plant responses to auxin. Here, we use the well-established model of lateral root development to directly test the hypothesis that the rate of auxin-induced Aux/IAA turnover sets the pace for auxin-regulated developmental events. We did this by generating transgenic plants expressing degradation rate variants of IAA14, a crucial determinant of lateral root initiation. Progression through the well-established stages of lateral root development was strongly correlated with the engineered rates of IAA14 turnover, leading to the conclusion that Aux/IAAs are auxin-initiated timers that synchronize developmental transitions.
Collapse
Affiliation(s)
- Jessica M Guseman
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Antje Hellmuth
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Amy Lanctot
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Tamar P Feldman
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Britney L Moss
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Eric Klavins
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
108
|
Mironova VV, Omelyanchuk NA, Wiebe DS, Levitsky VG. Computational analysis of auxin responsive elements in the Arabidopsis thaliana L. genome. BMC Genomics 2014; 15 Suppl 12:S4. [PMID: 25563792 PMCID: PMC4331925 DOI: 10.1186/1471-2164-15-s12-s4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Auxin responsive elements (AuxRE) were found in upstream regions of target genes for ARFs (Auxin response factors). While Chip-seq data for most of ARFs are still unavailable, prediction of potential AuxRE is restricted by consensus models that detect too many false positive sites. Using sequence analysis of experimentally proven AuxREs, we revealed both an extended nucleotide context pattern for AuxRE itself and three distinct types of its coupling motifs (Y-patch, AuxRE-like, and ABRE-like), which together with AuxRE may form the composite elements. Computational analysis of the genome-wide distribution of the predicted AuxREs and their impact on auxin responsive gene expression allowed us to conclude that: (1) AuxREs are enriched around the transcription start site with the maximum density in 5'UTR; (2) AuxREs mediate auxin responsive up-regulation, not down-regulation. (3) Directly oriented single AuxREs and reverse multiple AuxREs are mostly associated with auxin responsiveness. In the composite AuxRE elements associated with auxin response, ABRE-like and Y-patch are 5'-flanking or overlapping AuxRE, whereas AuxRE-like motif is 3'-flanking. The specificity in location and orientation of the coupling elements suggests them as potential binding sites for ARFs partners.
Collapse
|
109
|
Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ. Branching out in roots: uncovering form, function, and regulation. PLANT PHYSIOLOGY 2014; 166:538-50. [PMID: 25136060 PMCID: PMC4213086 DOI: 10.1104/pp.114.245423] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.
Collapse
Affiliation(s)
- Jonathan A Atkinson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Amanda Rasmussen
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Richard Traini
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Craig Sturrock
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (J.A.A., A.R., R.T., U.V., C.S., S.J.M., D.M.W., M.J.B.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (M.J.B.)
| |
Collapse
|
110
|
Lamport DTA, Varnai P, Seal CE. Back to the future with the AGP-Ca2+ flux capacitor. ANNALS OF BOTANY 2014; 114:1069-85. [PMID: 25139429 PMCID: PMC4195563 DOI: 10.1093/aob/mcu161] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp-arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca(2+) when paired with its adjacent sidechain. SCOPE AGPs bind Ca(2+) (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H(+)-ATPase generates a low periplasmic pH that dissociates AGP-Ca(2+) carboxylates (pka ∼3); the consequential large increase in free Ca(2+) drives entry into the cytosol via Ca(2+) channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca(2+) waves. This differs markedly from animals, in which cytosolic Ca(2+) originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca(2+) storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca(2+), hence an AGP-Ca(2+) oscillator. CONCLUSIONS The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This accounts for the involvement of AGPs in plant morphogenesis, including tropic and nastic movements.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Peter Varnai
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
111
|
Sénéchal F, Wattier C, Rustérucci C, Pelloux J. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5125-60. [PMID: 25056773 PMCID: PMC4400535 DOI: 10.1093/jxb/eru272] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 05/18/2023]
Abstract
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Collapse
Affiliation(s)
- Fabien Sénéchal
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christopher Wattier
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Christine Rustérucci
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| | - Jérôme Pelloux
- EA3900 BIOPI Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 Rue St Leu, F-80039 Amiens, France
| |
Collapse
|
112
|
Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. FRONTIERS IN PLANT SCIENCE 2014; 5:495. [PMID: 25324849 PMCID: PMC4179338 DOI: 10.3389/fpls.2014.00495] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/06/2014] [Indexed: 05/02/2023]
Abstract
Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.
Collapse
Affiliation(s)
| | | | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| |
Collapse
|
113
|
Gibbs DJ, Voß U, Harding SA, Fannon J, Moody LA, Yamada E, Swarup K, Nibau C, Bassel GW, Choudhary A, Lavenus J, Bradshaw SJ, Stekel DJ, Bennett MJ, Coates JC. AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. THE NEW PHYTOLOGIST 2014; 203:1194-1207. [PMID: 24902892 PMCID: PMC4286813 DOI: 10.1111/nph.12879] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/07/2014] [Indexed: 05/18/2023]
Abstract
Plant root system plasticity is critical for survival in changing environmental conditions. One important aspect of root architecture is lateral root development, a complex process regulated by hormone, environmental and protein signalling pathways. Here we show, using molecular genetic approaches, that the MYB transcription factor AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. We identify AtMYB93 as an interaction partner of the lateral-root-promoting ARABIDILLO proteins. Atmyb93 mutants have faster lateral root developmental progression and enhanced lateral root densities, while AtMYB93-overexpressing lines display the opposite phenotype. AtMYB93 is expressed strongly, specifically and transiently in the endodermal cells overlying early lateral root primordia and is additionally induced by auxin in the basal meristem of the primary root. Furthermore, Atmyb93 mutant lateral root development is insensitive to auxin, indicating that AtMYB93 is required for normal auxin responses during lateral root development. We propose that AtMYB93 is part of a novel auxin-induced negative feedback loop stimulated in a select few endodermal cells early during lateral root development, ensuring that lateral roots only develop when absolutely required. Putative AtMYB93 homologues are detected throughout flowering plants and represent promising targets for manipulating root systems in diverse crop species.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Susan A Harding
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica Fannon
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura A Moody
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Erika Yamada
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Candida Nibau
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anushree Choudhary
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julien Lavenus
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Susan J Bradshaw
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
114
|
Manzano C, Pallero-Baena M, Casimiro I, De Rybel B, Orman-Ligeza B, Van Isterdael G, Beeckman T, Draye X, Casero P, Del Pozo JC. The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development. PLANT PHYSIOLOGY 2014; 165:1105-1119. [PMID: 24879433 PMCID: PMC4081325 DOI: 10.1104/pp.114.238873] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 05/19/2023]
Abstract
Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.
Collapse
Affiliation(s)
- Concepción Manzano
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Mercedes Pallero-Baena
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Ilda Casimiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Bert De Rybel
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Beata Orman-Ligeza
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Gert Van Isterdael
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Tom Beeckman
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Xavier Draye
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Pedro Casero
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain (C.M., M.P.-B., I.C., J.C.d.P.);Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain (M.P.-B., I.C., P.C.);Department of Plant Systems Biology, Integrative Plant Biology Division, Flanders Interuniversity Institute for Biotechnology, B-9052 Ghent, Belgium (B.D.R., B.O.-L., G.V.I., T.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (B.D.R., G.V.I., T.B.); andUniversite Catholique de Louvain, Earth and Life Institute, B-1348 Louvain-la-Neuve, Belgium (B.O.-L., X.D.)
| |
Collapse
|
115
|
Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. THE PLANT CELL 2014; 26:2889-904. [PMID: 25052716 PMCID: PMC4145121 DOI: 10.1105/tpc.114.127993] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 05/02/2023]
Abstract
The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaoyu Geng
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Chunmei He
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Rong Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Zhaojun Ding
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
116
|
Del Pozo JC, Manzano C. Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2617-2632. [PMID: 24215077 DOI: 10.1093/jxb/ert363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants are sessile organisms that have to adapt their growth to the surrounding environment. Concomitant with this adaptation capability, they have adopted a post-embryonic development characterized by continuous growth and differentiation abilities. Constant growth is based on the potential of stem cells to divide almost incessantly and on a precise balance between cell division and cell differentiation. This balance is influenced by environmental conditions and by the genetic information of the cell. Among the internal cues, the cross-talk between different hormonal signalling pathways is essential to control this division/differentiation equilibrium. Auxin, one of the most important plant hormones, regulates cell division and differentiation, among many other processes. Amazing advances in auxin signal transduction at the molecular level have been reported, but how this signalling is connected to the cell cycle is, so far, not well known. Auxin signalling involves the auxin-dependent degradation of transcription repressors by F-box-containing E3 ligases of ubiquitin. Recently, SKP2A, another F-box protein, was shown to bind auxin and to target cell-cycle repressors for proteolysis, representing a novel mechanism that links auxin to cell division. In this review, a general vision of what is already known and the most recent advances on how auxin signalling connects to cell division and the role of the ubiquitin pathway in plant cell cycle will be covered.
Collapse
Affiliation(s)
- Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Concepción Manzano
- Centro de Biotecnología y Genómica de Plantas (CBGP) INIA-UPM. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
117
|
Kajala K, Ramakrishna P, Fisher A, C. Bergmann D, De Smet I, Sozzani R, Weijers D, Brady SM. Omics and modelling approaches for understanding regulation of asymmetric cell divisions in arabidopsis and other angiosperm plants. ANNALS OF BOTANY 2014; 113:1083-1105. [PMID: 24825294 PMCID: PMC4030820 DOI: 10.1093/aob/mcu065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Asymmetric cell divisions are formative divisions that generate daughter cells of distinct identity. These divisions are coordinated by either extrinsic ('niche-controlled') or intrinsic regulatory mechanisms and are fundamentally important in plant development. SCOPE This review describes how asymmetric cell divisions are regulated during development and in different cell types in both the root and the shoot of plants. It further highlights ways in which omics and modelling approaches have been used to elucidate these regulatory mechanisms. For example, the regulation of embryonic asymmetric divisions is described, including the first divisions of the zygote, formative vascular divisions and divisions that give rise to the root stem cell niche. Asymmetric divisions of the root cortex endodermis initial, pericycle cells that give rise to the lateral root primordium, procambium, cambium and stomatal cells are also discussed. Finally, a perspective is provided regarding the role of other hormones or regulatory molecules in asymmetric divisions, the presence of segregated determinants and the usefulness of modelling approaches in understanding network dynamics within these very special cells. CONCLUSIONS Asymmetric cell divisions define plant development. High-throughput genomic and modelling approaches can elucidate their regulation, which in turn could enable the engineering of plant traits such as stomatal density, lateral root development and wood formation.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Priya Ramakrishna
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Adam Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dominique C. Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, The Netherlands
| | - Siobhan M. Brady
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
118
|
Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. THE NEW PHYTOLOGIST 2014; 202:1197-1211. [PMID: 24533947 DOI: 10.1111/nph.12735] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/21/2014] [Indexed: 05/20/2023]
Abstract
In plants, roots are essential for water and nutrient acquisition. MicroRNAs (miRNAs) regulate their target mRNAs by transcript cleavage and/or inhibition of protein translation and are known as major post-transcriptional regulators of various developmental pathways and stress responses. In Arabidopsis thaliana, four isoforms of miR169 are encoded by 14 different genes and target diverse mRNAs, encoding subunits A of the NF-Y transcription factor complex. These miRNA isoforms and their targets have previously been linked to nutrient signalling in plants. By using mimicry constructs against different isoforms of miR169 and miR-resistant versions of NF-YA genes we analysed the role of specific miR169 isoforms in root growth and branching. We identified a regulatory node involving the particular miR169defg isoform and NF-YA2 and NF-YA10 genes that acts in the control of primary root growth. The specific expression of MIM169defg constructs altered specific cell type numbers and dimensions in the root meristem. Preventing miR169defg-regulation of NF-YA2 indirectly affected laterial root initiation. We also showed that the miR169defg isoform affects NF-YA2 transcripts both at mRNA stability and translation levels. We propose that a specific miR169 isoform and the NF-YA2 target control root architecture in Arabidopsis.
Collapse
Affiliation(s)
- Céline Sorin
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
| | - Marie Declerck
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Aurélie Christ
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Thomas Blein
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- INRA, Institut JP Bourgin, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Linnan Ma
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Christine Lelandais-Brière
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
| | - Maria Fransiska Njo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
| | - Caroline Hartmann
- Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France
| |
Collapse
|
119
|
Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 2014; 9:e98376. [PMID: 24859293 PMCID: PMC4032270 DOI: 10.1371/journal.pone.0098376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruno Vieira
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Teresa Lino-Neto
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Filipa Monteiro
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Center of Statistics and Applications from Lisbon University, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Maria Salomé Pais
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rui Tavares
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Octávio S. Paulo
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
120
|
Ma Q, Robert S. Auxin biology revealed by small molecules. PHYSIOLOGIA PLANTARUM 2014; 151:25-42. [PMID: 24252105 DOI: 10.1111/ppl.12128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 05/08/2023]
Abstract
The plant hormone auxin regulates virtually every aspect of plant growth and development and unraveling its molecular and cellular modes of action is fundamental for plant biology research. Chemical genomics is the use of small molecules to modify protein functions. This approach currently rises as a powerful technology for basic research. Small compounds with auxin-like activities or affecting auxin-mediated biological processes have been widely used in auxin research. They can serve as a tool complementary to genetic and genomic methods, facilitating the identification of an array of components modulating auxin metabolism, transport and signaling. The employment of high-throughput screening technologies combined with informatics-based chemical design and organic chemical synthesis has since yielded many novel small molecules with more instantaneous, precise and specific functionalities. By applying those small molecules, novel molecular targets can be isolated to further understand and dissect auxin-related pathways and networks that otherwise are too complex to be elucidated only by gene-based methods. Here, we will review examples of recently characterized molecules used in auxin research, highlight the strategies of unraveling the mechanisms of these small molecules and discuss future perspectives of small molecule applications in auxin biology.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | | |
Collapse
|
121
|
Patton KL, John DJ, Norris JL, Lewis DR, Muday GK. Hierarchical Probabilistic Interaction Modeling for Multiple Gene Expression Replicates. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:336-346. [PMID: 26355781 DOI: 10.1109/tcbb.2014.2299804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microarray technology allows for the collection of multiple replicates of gene expression time course data for hundreds of genes at a handful of time points. Developing hypotheses about a gene transcriptional network, based on time course gene expression data is an important and very challenging problem. In many situations there are similarities which suggest a hierarchical structure between the replicates. This paper develops posterior probabilities for network features based on multiple hierarchical replications. Through Bayesian inference, in conjunction with the Metropolis-Hastings algorithm and model averaging, a hierarchical multiple replicate algorithm is applied to seven sets of simulated data and to a set of Arabidopsis thaliana gene expression data. The models of the simulated data suggest high posterior probabilities for pairs of genes which have at least moderate signal partial correlation. For the Arabidopsis model, many of the highest posterior probability edges agree with the literature.
Collapse
|
122
|
Horstman A, Willemsen V, Boutilier K, Heidstra R. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. TRENDS IN PLANT SCIENCE 2014; 19:146-57. [PMID: 24280109 DOI: 10.1016/j.tplants.2013.10.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 05/18/2023]
Abstract
Members of the AINTEGUMENTA-LIKE (AIL) family of APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain transcription factors are expressed in all dividing tissues in the plant, where they have central roles in developmental processes such as embryogenesis, stem cell niche specification, meristem maintenance, organ positioning, and growth. When overexpressed, AIL proteins induce adventitious growth, including somatic embryogenesis and ectopic organ formation. The Arabidopsis (Arabidopsis thaliana) genome contains eight AIL genes, including AINTEGUMENTA, BABY BOOM, and the PLETHORA genes. Studies on these transcription factors have revealed their intricate relationship with auxin as well as their involvement in an increasing number of gene regulatory networks, in which extensive crosstalk and feedback loops have a major role.
Collapse
Affiliation(s)
- Anneke Horstman
- Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Viola Willemsen
- Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kim Boutilier
- Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Renze Heidstra
- Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
123
|
Motte H, Vereecke D, Geelen D, Werbrouck S. The molecular path to in vitro shoot regeneration. Biotechnol Adv 2014; 32:107-21. [DOI: 10.1016/j.biotechadv.2013.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/20/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
124
|
Perianez-Rodriguez J, Manzano C, Moreno-Risueno MA. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin? FRONTIERS IN PLANT SCIENCE 2014; 5:219. [PMID: 24904615 PMCID: PMC4033269 DOI: 10.3389/fpls.2014.00219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/02/2014] [Indexed: 05/22/2023]
Abstract
Plants have extraordinary developmental plasticity as they continuously form organs during post-embryonic development. In addition they may regenerate organs upon in vitro hormonal induction. Advances in the field of plant regeneration show that the first steps of de novo organogenesis through in vitro culture in hormone containing media (via formation of a proliferating mass of cells or callus) require root post-embryonic developmental programs as well as regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation is delivered during lateral root initiation and callus formation. Implications in reprograming, cell fate and pluripotency acquisition are discussed. Finally, we analyze the function of cell cycle regulators and connections with epigenetic regulation. Future work dissecting plant organogenesis driven by both endogenous and exogenous cues (upon hormonal induction) may reveal new paradigms of common regulation.
Collapse
Affiliation(s)
| | | | - Miguel A. Moreno-Risueno
- *Correspondence: Miguel A. Moreno-Risueno, Department of Biotechnology, Center for Plant Genomics and Biotechnology, Universidad Politecnica de Madrid, Parque Cientïfico y Tecnológico de la U.P.M., Campus de Montegancedo, C/M-40 km 38 s/n, 28223 Madrid, Spain e-mail:
| |
Collapse
|
125
|
Cuesta C, Wabnik K, Benková E. Systems approaches to study root architecture dynamics. FRONTIERS IN PLANT SCIENCE 2013; 4:537. [PMID: 24421783 PMCID: PMC3872734 DOI: 10.3389/fpls.2013.00537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/11/2013] [Indexed: 05/05/2023]
Abstract
The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed.
Collapse
Affiliation(s)
- Candela Cuesta
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | - Krzysztof Wabnik
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Genetics, Ghent UniversityTechnologiepark, Gent, Belgium
| | - Eva Benková
- Institute of Science and Technology AustriaKlosterneuburg, Austria
- Mendel Centre for Plant Genomics and Proteomics, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Eva Benková, Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria e-mail:
| |
Collapse
|
126
|
Van Norman JM, Xuan W, Beeckman T, Benfey PN. To branch or not to branch: the role of pre-patterning in lateral root formation. Development 2013; 140:4301-10. [PMID: 24130327 DOI: 10.1242/dev.090548] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The establishment of a pre-pattern or competence to form new organs is a key feature of the postembryonic plasticity of plant development, and the elaboration of such pre-patterns leads to remarkable heterogeneity in plant form. In root systems, many of the differences in architecture can be directly attributed to the outgrowth of lateral roots. In recent years, efforts have focused on understanding how the pattern of lateral roots is established. Here, we review recent findings that point to a periodic mechanism for establishing this pattern, as well as roles for plant hormones, particularly auxin, in the earliest steps leading up to lateral root primordium development. In addition, we compare the development of lateral root primordia with in vitro plant regeneration and discuss possible common molecular mechanisms.
Collapse
Affiliation(s)
- Jaimie M Van Norman
- Department of Biology, Duke Center for Systems Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
127
|
Jansen L, Hollunder J, Roberts I, Forestan C, Fonteyne P, Van Quickenborne C, Zhen RG, McKersie B, Parizot B, Beeckman T. Comparative transcriptomics as a tool for the identification of root branching genes in maize. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1092-102. [PMID: 23941360 DOI: 10.1111/pbi.12104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/09/2013] [Indexed: 05/09/2023]
Abstract
The root system is fundamental for plant development, is crucial for overall plant growth and is recently being recognized as the key for future crop productivity improvement. A major determinant of root system architecture is the initiation of lateral roots. While knowledge of the genetic and molecular mechanisms regulating lateral root initiation has mainly been achieved in the dicotyledonous plant Arabidopsis thaliana, only scarce data are available for major crop species, generally monocotyledonous plants. The existence of both similarities and differences at the morphological and anatomical level between plant species from both clades raises the question whether regulation of lateral root initiation may or may not be conserved through evolution. Here, we performed a targeted genome-wide transcriptome analysis during lateral root initiation both in primary and in adventitious roots of Zea mays and found evidence for the existence of common transcriptional regulation. Further, based on a comparative analysis with Arabidopsis transcriptome data, a core of genes putatively conserved across angiosperms could be identified. Therefore, it is plausible that common regulatory mechanisms for lateral root initiation are at play in maize and Arabidopsis, a finding that might encourage the extrapolation of knowledge obtained in Arabidopsis to crop species at the level of root system architecture.
Collapse
Affiliation(s)
- Leentje Jansen
- Integrative Plant Biology division, Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Vanneste S, Friml J. Calcium: The Missing Link in Auxin Action. PLANTS (BASEL, SWITZERLAND) 2013; 2:650-75. [PMID: 27137397 PMCID: PMC4844386 DOI: 10.3390/plants2040650] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Abstract
Due to their sessile lifestyles, plants need to deal with the limitations and stresses imposed by the changing environment. Plants cope with these by a remarkable developmental flexibility, which is embedded in their strategy to survive. Plants can adjust their size, shape and number of organs, bend according to gravity and light, and regenerate tissues that were damaged, utilizing a coordinating, intercellular signal, the plant hormone, auxin. Another versatile signal is the cation, Ca(2+), which is a crucial second messenger for many rapid cellular processes during responses to a wide range of endogenous and environmental signals, such as hormones, light, drought stress and others. Auxin is a good candidate for one of these Ca(2+)-activating signals. However, the role of auxin-induced Ca(2+) signaling is poorly understood. Here, we will provide an overview of possible developmental and physiological roles, as well as mechanisms underlying the interconnection of Ca(2+) and auxin signaling.
Collapse
Affiliation(s)
- Steffen Vanneste
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium.
| | - Jiří Friml
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg 3400, Austria
| |
Collapse
|
129
|
Rasmussen A, Depuydt S, Goormachtig S, Geelen D. Strigolactones fine-tune the root system. PLANTA 2013; 238:615-26. [PMID: 23801297 DOI: 10.1007/s00425-013-1911-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/05/2013] [Indexed: 05/07/2023]
Abstract
Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.
Collapse
Affiliation(s)
- Amanda Rasmussen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
130
|
Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. THE PLANT CELL 2013; 25:3329-46. [PMID: 24045021 PMCID: PMC3809535 DOI: 10.1105/tpc.113.114868] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/14/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in cellulase3/glycosylhydrolase9b3 and leucine rich extensin2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development.
Collapse
Affiliation(s)
- Daniel R. Lewis
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
| | - Amy L. Olex
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
| | - Stacey R. Lundy
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
| | - William H. Turkett
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
| | - Jacquelyn S. Fetrow
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
- Department of Physics, Wake Forest University, Winston Salem, North Carolina 27109
| | - Gloria K. Muday
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
- Address correspondence to
| |
Collapse
|
131
|
Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GFE. Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. MOLECULAR PLANT 2013; 6:1473-86. [PMID: 23519456 DOI: 10.1093/mp/sst053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
While it is known that patatin-related phospholipase A (pPLA) activity is rapidly activated within 3 min by auxin, hardly anything is known about how this signal influences downstream responses like transcription of early auxin-induced genes or other physiological responses. We screened mutants with T-DNA insertions in members of the pPLA gene family for molecular and physiological phenotypes related to auxin. Only one in nine Arabidopsis thaliana ppla knockdown mutants displayed an obvious constitutive auxin-related phenotype. Compared to wild-type, ppla-IIIδ mutant seedlings had decreased main root lengths and increased lateral root numbers. We tested auxin-induced gene expression as a molecular readout for primary molecular auxin responses in nine ppla mutants and found delayed up-regulation of auxin-responsive gene expression in all of them. Thirty minutes after auxin treatment, up-regulation of up to 40% of auxin-induced genes was delayed in mutant seedlings. We observed only a few cases with hypersensitive auxin-induced gene expression in ppla mutants. While, in three ppla mutants, which were investigated in detail, rapid up-regulation (as early as 10min after auxin stimulus) of auxin-regulated genes was impaired, late transcriptional responses were wild-type-like. This regulatory or dynamic phenotype was consistently observed in different ppla mutants with delayed up-regulation that frequently affected the same genes. This defect was not affected by pPLA transcript levels which remained constant. This indicates a posttranslational mechanism as a functional link of pPLAs to auxin signaling. The need for a receptor triggering an auxin response without employing transcription regulation is discussed.
Collapse
Affiliation(s)
- Corinna Labusch
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzwissenschaften, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
132
|
Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture. Proc Natl Acad Sci U S A 2013; 110:15133-8. [PMID: 23980140 DOI: 10.1073/pnas.1305883110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is presumed to be involved in adaptive change toward species diversification. We thus examined how candidate genes underlying natural variation across populations might also mediate plasticity within an individual. Our implementation of an integrative "plasticity space" approach revealed that the root plasticity of a single Arabidopsis accession exposed to distinct environments broadly recapitulates the natural variation "space." Genome-wide association mapping identified the known gene PHOSPHATE 1 (PHO1) and other genes such as Root System Architecture 1 (RSA1) associated with differences in root allometry, a highly plastic trait capturing the distribution of lateral roots along the primary axis. The response of mutants in the Columbia-0 background suggests their involvement in signaling key modulators of root development including auxin, abscisic acid, and nitrate. Moreover, genotype-by-environment interactions for the PHO1 and RSA1 genes in Columbia-0 phenocopy the root allometry of other natural variants. This finding supports a role for plasticity responses in phenotypic evolution in natural environments.
Collapse
|
133
|
Nibau C, Tao L, Levasseur K, Wu HM, Cheung AY. The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3425-37. [PMID: 23918972 PMCID: PMC3733156 DOI: 10.1093/jxb/ert179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rac-like GTPases or Rho-related GTPases from plants (RAC/ROPs) are important components of hormone signalling pathways in plants. Based on phylogeny, several groups can be distinguished, and the underlying premise is that members of different groups perform distinct functions in the plant. AtRAC7/ROP9 is phylogenetically unique among 11 Arabidopsis RAC/ROPs, and here it was shown that it functions as a modulator of auxin and abscisic acid (ABA) signalling, a dual role not previously assigned to these small GTPases. Plants with reduced levels of AtRAC7/ROP9 had increased sensitivity to auxin and were less sensitive to ABA. On the other hand, overexpressing AtRAC7/ROP9 activated ABA-induced gene expression but repressed auxin-induced gene expression. In addition, both hormones regulated the activity of the AtRAC7/ROP9 promoter, suggesting a feedback mechanism to modulate the signalling output from the AtRAC7/ROP9-controlled molecular switch. High levels of AtRAC7/ROP9 were detected specifically in embryos and lateral roots, underscoring the important role of this protein during embryo development and lateral root formation. These results place AtRAC7/ROP9 as an important signal transducer in recently described pathways that integrate auxin and ABA signalling in the plant.
Collapse
Affiliation(s)
- Candida Nibau
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- * Present address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, UK
| | - Lizhen Tao
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Present address: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Kathryn Levasseur
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Present address: Division of Infectious Diseases, Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
- To whom correspondence should be addressed.
| |
Collapse
|
134
|
Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin. TRENDS IN PLANT SCIENCE 2013; 18:450-8. [PMID: 23701908 DOI: 10.1016/j.tplants.2013.04.006] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 05/18/2023]
Abstract
The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.
Collapse
Affiliation(s)
- Julien Lavenus
- Institut de Recherche pour le Développement (IRD), UMR DIADE (IRD/UM2), 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. Proc Natl Acad Sci U S A 2013; 110:12840-5. [PMID: 23847199 DOI: 10.1073/pnas.1310937110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxin is a key phytohormone regulating central processes in plants. Although the mechanism by which auxin triggers changes in gene expression is well understood, little is known about the specific role of the individual members of the TIR1/AFB auxin receptors, Aux/IAA repressors, and ARF transcription factors and/or molecular pathways acting downstream leading to plant responses to the environment. We previously reported a role for AFB3 in coordinating primary and lateral root growth to nitrate availability. In this work, we used an integrated genomics, bioinformatics, and molecular genetics approach to dissect regulatory networks acting downstream of AFB3 that are activated by nitrate in roots. We found that the NAC4 transcription factor is a key regulatory element controlling a nitrate-responsive network, and that nac4 mutants have altered lateral root growth but normal primary root growth in response to nitrate. This finding suggests that AFB3 is able to activate two independent pathways to control root system architecture. Our systems approach has unraveled key components of the AFB3 regulatory network leading to changes in lateral root growth in response to nitrate.
Collapse
|
136
|
Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A. Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 2013; 26:136-47. [PMID: 23850190 DOI: 10.1016/j.devcel.2013.06.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 04/05/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022]
Abstract
Cell-to-cell communication coordinates the behavior of individual cells to establish organ patterning and development. Although mobile signals are known to be important in lateral root development, the role of plasmodesmata (PD)-mediated transport in this process has not been investigated. Here, we show that changes in symplastic connectivity accompany and regulate lateral root organogenesis in Arabidopsis. This connectivity is dependent upon callose deposition around PD affecting molecular flux through the channel. Two plasmodesmal-localized β-1,3 glucanases (PdBGs) were identified that regulate callose accumulation and the number and distribution of lateral roots. The fundamental role of PD-associated callose in this process was illustrated by the induction of similar phenotypes in lines with altered callose turnover. Our results show that regulation of callose and cell-to-cell connectivity is critical in determining the pattern of lateral root formation, which influences root architecture and optimal plant performance.
Collapse
|
137
|
Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y. Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. THE PLANT CELL 2013; 25:2444-63. [PMID: 23903317 PMCID: PMC3753376 DOI: 10.1105/tpc.113.109538] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 05/19/2023]
Abstract
The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division.
Collapse
Affiliation(s)
- Marie-Christine Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Fabienne Granier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Olivier Pichon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Jean-Pierre Renou
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165, Unité Mixte de Recherche en Génomique Végétale, F-91057 Évry cedex 2, France
| | - Valérie Gaudin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
| | - Yves Chupeau
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318–AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–Centre de Versailles-Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
138
|
De Smet I, Lau S, Ehrismann JS, Axiotis I, Kolb M, Kientz M, Weijers D, Jürgens G. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3009-19. [PMID: 23682118 PMCID: PMC3697942 DOI: 10.1093/jxb/ert137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response.
Collapse
Affiliation(s)
- Ive De Smet
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- Present address: Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
- * These authors contributed equally to this work
| | - Steffen Lau
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- * These authors contributed equally to this work
| | - Jasmin S. Ehrismann
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- * These authors contributed equally to this work
| | - Ioannis Axiotis
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Martina Kolb
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Marika Kientz
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - Dolf Weijers
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- To whom correspondence should be addressed.
| |
Collapse
|
139
|
Del Bianco M, Giustini L, Sabatini S. Spatiotemporal changes in the role of cytokinin during root development. THE NEW PHYTOLOGIST 2013; 199:324-338. [PMID: 23692218 DOI: 10.1111/nph.12338] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/12/2013] [Indexed: 05/07/2023]
Abstract
The root is a dynamic system whose structure is regulated by a complex network of interactions between hormones. The primary root meristem is specified in the embryo. After germination, the primary root meristem grows and then reaches a final size that will be maintained during the life of the plant. Subsequently, secondary structures such as lateral roots and root nodules form via the re-specification of differentiated cells. Cytokinin plays key roles in the regulation of root development. Down-regulation of the cytokinin response is required for the specification of a new stem cell niche, during both embryo and lateral root development. In the root meristem, cytokinin signalling regulates the longitudinal zonation of the meristem by controlling cell differentiation. Moreover, cytokinin regulates radial patterning of root vasculature by promoting protophloem cell identity and by spatially inhibiting protoxylem formation. In this review, an effort is made to describe the known details of the role of cytokinin during root development, taking into account also the interactions between cytokinin and other hormones. Attention is given on the dynamicity of cytokinin signalling output during different developmental events. Indeed, there is much evidence that the effects of cytokinin change as organs grow, underlining the importance of the spatiotemporal specificity of cytokinin signalling.
Collapse
Affiliation(s)
- Marta Del Bianco
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università di Roma, Sapienza - via dei Sardi, 70-00185, Rome, Italy
| | - Leonardo Giustini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università di Roma, Sapienza - via dei Sardi, 70-00185, Rome, Italy
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università di Roma, Sapienza - via dei Sardi, 70-00185, Rome, Italy
| |
Collapse
|
140
|
Kang NY, Lee HW, Kim J. The AP2/EREBP Gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 Downstream of ARF7 and ARF19 to Regulate Lateral Root Development in Arabidopsis. ACTA ACUST UNITED AC 2013; 54:1326-34. [DOI: 10.1093/pcp/pct081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
141
|
Audenaert D, De Rybel B, Nguyen L, Beeckman T. Small-molecule screens to study lateral root development. Methods Mol Biol 2013; 959:189-95. [PMID: 23299676 DOI: 10.1007/978-1-62703-221-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Development of the root system is essential for proper plant growth and development. Extension of the root system is achieved by the continuous establishment of new meristems in existing parental root tissues, which leads to the development of lateral roots. This process of lateral root organogenesis consists of different developmental stages, which are all controlled by the plant hormone auxin. In this chapter, we describe a screening method in Arabidopsis thaliana to identify small synthetic molecules that interfere with the process of lateral root development during specific developmental stages.
Collapse
|
142
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
143
|
Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 DOI: 10.1371/jour-nal.pone.0064377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 05/23/2023] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
144
|
Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Curr Biol 2013; 23:956-62. [PMID: 23684976 DOI: 10.1016/j.cub.2013.04.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/22/2013] [Accepted: 04/18/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND The juxtaposition of newly formed primordia in the root and shoot differs greatly, but their formation in both contexts depends on local accumulation of the signaling molecule auxin. Whether the spacing of lateral roots along the main root and the arrangement of leaf primordia at the plant apex are controlled by related underlying mechanisms has remained unclear. RESULTS Here, we show that, in Arabidopsis thaliana, three transcriptional regulators implicated in phyllotaxis, PLETHORA3 (PLT3), PLT5, and PLT7, are expressed in incipient lateral root primordia where they are required for primordium development and lateral root emergence. Furthermore, all three PLT proteins prevent the formation of primordia close to one another, because, in their absence, successive lateral root primordia are frequently grouped in close longitudinal or radial clusters. The triple plt mutant phenotype is rescued by PLT-vYFP fusion proteins, which are expressed in the shoot meristem as well as the root, but not by expression of PLT7 in the shoot alone. Expression of all three PLT genes requires auxin response factors ARF7 and ARF19, and the reintroduction of PLT activity suffices to rescue lateral root formation in arf7,arf19. CONCLUSIONS Intriguingly PLT 3, PLT5, and PLT7 not only control the positioning of organs at the shoot meristem but also in the root; a striking observation that raises many evolutionary questions.
Collapse
|
145
|
Chen X, Shi J, Hao X, Liu H, Shi J, Wu Y, Wu Z, Chen M, Wu P, Mao C. OsORC3 is required for lateral root development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:339-350. [PMID: 23346890 DOI: 10.1111/tpj.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 05/28/2023]
Abstract
The origin recognition complex (ORC) is a pivotal element in DNA replication, heterochromatin assembly, checkpoint regulation and chromosome assembly. Although the functions of the ORC have been determined in yeast and model animals, they remain largely unknown in the plant kingdom. In this study, Oryza sativa Origin Recognition Complex subunit 3 (OsORC3) was cloned using map-based cloning procedures, and functionally characterized using a rice (Oryza sativa) orc3 mutant. The mutant showed a temperature-dependent defect in lateral root (LR) development. Map-based cloning showed that a G→A mutation in the 9th exon of OsORC3 was responsible for the mutant phenotype. OsORC3 was strongly expressed in regions of active cell proliferation, including the primary root tip, stem base, lateral root primordium, emerged lateral root primordium, lateral root tip, young shoot, anther and ovary. OsORC3 knockdown plants lacked lateral roots and had a dwarf phenotype. The root meristematic zone of ORC3 knockdown plants exhibited increased cell death and reduced vital activity compared to the wild-type. CYCB1;1::GUS activity and methylene blue staining showed that lateral root primordia initiated normally in the orc3 mutant, but stopped growing before formation of the stele and ground tissue. Our results indicate that OsORC3 plays a crucial role in the emergence of lateral root primordia.
Collapse
Affiliation(s)
- Xinai Chen
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots. PLoS One 2013; 8:e58103. [PMID: 23472140 PMCID: PMC3589423 DOI: 10.1371/journal.pone.0058103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/03/2013] [Indexed: 12/23/2022] Open
Abstract
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
Collapse
|
147
|
Kim J, Lee HW. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e22979. [PMID: 23299420 PMCID: PMC3656993 DOI: 10.4161/psb.22979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPONSE FACTORS (ARFs), transcriptional regulators of auxin-regulated genes and Aux/IAA, negative regulators of ARFs, regulate lateral root formation. The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a unique class of transcription factors harbouring a conserved plant-specific lateral organ boundary domain and plays a role in lateral organ development of plants including lateral root formation. In our previous study, we showed that LBD18 stimulates lateral root formation in combination with LBD16 downstream of ARF7 and ARF19 during the auxin response. We have recently demonstrated that LBD18 activates expression of EXP14, a gene encoding the cell-wall loosening factor, by directly binding to the EXP14 promoter to promote lateral root emergence. Here we present the molecular function of LBD18 and its gene regulatory network during lateral root formation.
Collapse
|
148
|
Zhang H, Zhou H, Berke L, Heck AJR, Mohammed S, Scheres B, Menke FLH. Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth. Mol Cell Proteomics 2013; 12:1158-69. [PMID: 23328941 DOI: 10.1074/mcp.m112.021220] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is instrumental to early signaling events. Studying system-wide phosphorylation in relation to processes under investigation requires a quantitative proteomics approach. In Arabidopsis, auxin application can induce pericycle cell divisions and lateral root formation. Initiation of lateral root formation requires transcriptional reprogramming following auxin-mediated degradation of transcriptional repressors. The immediate early signaling events prior to this derepression are virtually uncharacterized. To identify the signal molecules responding to auxin application, we used a lateral root-inducible system that was previously developed to trigger synchronous division of pericycle cells. To identify and quantify the early signaling events following this induction, we combined (15)N-based metabolic labeling and phosphopeptide enrichment and applied a mass spectrometry-based approach. In total, 3068 phosphopeptides were identified from auxin-treated root tissue. This root proteome dataset contains largely phosphopeptides not previously reported and represents one of the largest quantitative phosphoprotein datasets from Arabidopsis to date. Key proteins responding to auxin treatment included the multidrug resistance-like and PIN2 auxin carriers, auxin response factor2 (ARF2), suppressor of auxin resistance 3 (SAR3), and sorting nexin1 (SNX1). Mutational analysis of serine 16 of SNX1 showed that overexpression of the mutated forms of SNX1 led to retarded growth and reduction of lateral root formation due to the reduced outgrowth of the primordium, showing proof of principle for our approach.
Collapse
Affiliation(s)
- Hongtao Zhang
- Bijvoet Center for Biomolecular Research, and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
149
|
Jansen L, Parizot B, Beeckman T. Inducible system for lateral roots in Arabidopsis thaliana and maize. Methods Mol Biol 2013; 959:149-158. [PMID: 23299673 DOI: 10.1007/978-1-62703-221-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of biological processes contributing to plant growth can be complicated by the small number of cells involved and by the brief and sudden appearance of some crucial developmental steps. Given such troublesome circumstances, methods to monitor the timing or to increase the number of concerned cells can be of great advantage to researchers. Lateral root initiation is a process taking place endogenously in a discrete number of cells of the parent root. It represents the onset of the formation of a new meristem and provides the below ground part of the plant the ability to react on environmental conditions such as nutrient and water availability. Insights into the underlying mechanisms of this developmental event can be of major importance to provide means of improving tolerance to nutrient and water deficient conditions. The exact timing and site of lateral root initiation are, however, impossible to predict, hampering exhaustive studies of the sequence of events directing this process. Here, we present a method to synchronize the induction of lateral roots in Arabidopsis thaliana and maize. By initially preventing the formation of laterals in young seedlings and subsequently inducing lateral root initiation, this method not only allows controlling the process in time but also enlarges significantly the population of cells involved, opening up the way to systems biology approaches.
Collapse
Affiliation(s)
- Leen Jansen
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | | | | |
Collapse
|
150
|
Abstract
Organogenesis is the developmental process for producing new organs from undifferentiated cells. In plants, most organs are formed during postembryonic development. Shoot lateral organs are generated in the shoot apical meristem whereas lateral roots develop outside the root apical meristem. While lateral organ formation at the shoot and root might seem quite different, recent genetic studies have highlighted numerous parallels between these processes. In particular, the dynamic accumulation of auxin has been shown to play a crucial role both as a "morphogenetic trigger" and as a morphogen in both phenomena. This suggests that a unique model system could be adopted to study organogenesis in plants. In this chapter we describe the conceptual and technical advantages that support lateral root development as a good model system for studying organogenesis in plants.
Collapse
|