101
|
Zhao X, Li C, Yan C, Wang J, Yuan C, Zhang H, Shan S. Transcriptome and proteome analyses of resistant preharvest peanut seed coat in response to Aspergillus flavus infection. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
102
|
Transcriptomic analysis of contrasting inbred lines and F 2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes Genomics 2019; 41:811-829. [PMID: 30900192 DOI: 10.1007/s13258-019-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.
Collapse
|
103
|
Liu X, Li J, Zhao H, Liu B, Günther-Pomorski T, Chen S, Liesche J. Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake. J Cell Biol 2019; 218:1408-1421. [PMID: 30782779 PMCID: PMC6446840 DOI: 10.1083/jcb.201810121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/08/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images. The quenching assay was used to investigate how changes in cell wall porosity affect the capability for extension growth in the model plant Arabidopsis thaliana Results suggest that increased porosity is not a precondition but a result of cell extension, thereby providing new insight on the mechanism plant organ growth. Furthermore, it was shown that higher cell wall porosity can facilitate the action of antifungal drugs in Saccharomyces cerevisiae, presumably by facilitating uptake.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Jiazhou Li
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Heyu Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Boyang Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Thomas Günther-Pomorski
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, China.,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China .,Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, China
| |
Collapse
|
104
|
Polko JK, Kieber JJ. The Regulation of Cellulose Biosynthesis in Plants. THE PLANT CELL 2019; 31:282-296. [PMID: 30647077 PMCID: PMC6447023 DOI: 10.1105/tpc.18.00760] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Cell walls define the shape of plant cells, controlling the extent and orientation of cell elongation, and hence organ growth. The main load-bearing component of plant cell walls is cellulose, and how plants regulate its biosynthesis during development and in response to various environmental perturbations is a central question in plant biology. Cellulose is synthesized by cellulose synthase (CESA) complexes (CSCs) that are assembled in the Golgi apparatus and then delivered to the plasma membrane (PM), where they actively synthesize cellulose. CSCs travel along cortical microtubule paths that define the orientation of synthesis of the cellulose microfibrils. CSCs recycle between the PM and various intracellular compartments, and this trafficking plays an important role in determining the level of cellulose synthesized. In this review, we summarize recent findings in CESA complex organization, CESA posttranslational modifications and trafficking, and other components that interact with CESAs. We also discuss cell wall integrity maintenance, with a focus on how this impacts cellulose biosynthesis.
Collapse
Affiliation(s)
- Joanna K Polko
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
105
|
Gao Y, Zietsman AJJ, Vivier MA, Moore JP. Deconstructing Wine Grape Cell Walls with Enzymes During Winemaking: New Insights from Glycan Microarray Technology. Molecules 2019; 24:E165. [PMID: 30621128 PMCID: PMC6337510 DOI: 10.3390/molecules24010165] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 01/01/2019] [Indexed: 11/22/2022] Open
Abstract
Enzyme-aid maceration is carried out in most modern winemaking industries with a range of positive impacts on wine production. However, inconsistencies in enzyme efficiency are an issue complicated by unclear targets (limited information available on berry cell wall architecture of different cultivars) and the complex wine environment (i.e., fermenting must). Recent studies have been performed to develop a clearer picture of grape cell wall structures, maceration effects, and interactions between important wine compounds and grape-derived polysaccharides. This review highlights critically important recent studies on grape berry cell wall changes during ripening, the importance of enzymes during maceration (skin contact phase) and deconstruction processes that occur during alcoholic fermentation. The novelty of the Comprehensive Microarray Polymer Profiling (CoMPP) technique using cell wall probes (e.g., antibodies) as a method for following cell wall derived polymers during different biological and biotechnological processes is discussed. Recent studies, using CoMPP together with classical analytical methods, confirmed the developmental pattern of berry cell wall changes (at the polymer level) during grape ripening. This innovative technique were also used to track enzyme-assisted depectination of grape skins during wine fermentation and determine how this influence the release of wine favourable compounds. Furthermore, polysaccharides (e.g., arabinogalactan proteins) present in the final wine could be identified. Overall, CoMPP provides a much more enriched series of datasets compared to traditional approaches. Novel insights and future studies investigating grape cell wall and polyphenol interactions, and the tailoring of enzyme cocktails for consistent, effective and "customized" winemaking is advanced and discussed.
Collapse
Affiliation(s)
- Yu Gao
- Center for Viticulture and Enology, Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China.
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| | - Anscha J J Zietsman
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| | - Melané A Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| | - John P Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| |
Collapse
|
106
|
Corral-Martínez P, Driouich A, Seguí-Simarro JM. Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition of the Cell Wall During Microspore Embryogenesis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:332. [PMID: 30984213 PMCID: PMC6447685 DOI: 10.3389/fpls.2019.00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 05/05/2023]
Abstract
Microspore embryogenesis is a manifestation of plant cell totipotency whereby new cell walls are formed as a consequence of the embryogenic switch. In particular, the callose-rich subintinal layer created immediately upon induction of embryogenesis was recently related to protection against stress. However, little is currently known about the functional significance of other compositional changes undergone by the walls of embryogenic microspores. We characterized these changes in Brassica napus at different stages during induction of embryogenic microspores and development of microspore-derived embryos (MDEs) by using a series of monoclonal antibodies specific for cell wall components, including arabinogalactan-proteins (AGPs), pectins, xyloglucan and xylan. We used JIM13, JIM8, JIM14 and JIM16 for AGPs, CCRC-M13, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1 and LM15 for xyloglucan, and LM11 for xylan. By transmission electron microscopy and quantification of immunogold labeling on high-pressure frozen, freeze-substituted samples, we profiled the changes in cell wall ultrastructure and composition at the different stages of microspore embryogenesis. As a reference to compare with, we also studied in vivo microspores and maturing pollen grains. We showed that the cell wall of embryogenic microspores is a highly dynamic structure whose architecture, arrangement and composition changes dramatically as microspores undergo embryogenesis and then transform into MDEs. Upon induction, the composition of the preexisting microspore intine walls is remodeled, and unusual walls with a unique structure and composition are formed. Changes in AGP composition were related to developmental fate. In particular, AGPs containing the JIM13 epitope were massively excreted into the cell apoplast, and appeared associated to cell totipotency. According to the ultrastructure and the pectin and xyloglucan composition of these walls, we deduced that commitment to embryogenesis induces the formation of fragile, plastic and deformable cell walls, which allow for cell expansion and microspore growth. We also showed that these special walls are transient, since cell wall composition in microspore-derived embryos was completely different. Thus, once adopted the embryogenic developmental pathway and far from the effects of heat shock exposure, cell wall biosynthesis would approach the structure, composition and properties of conventional cell walls.
Collapse
Affiliation(s)
- Patricia Corral-Martínez
- COMAV – Universitat Politècnica de València, Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Patricia Corral-Martínez, Jose M. Seguí-Simarro,
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche Normandie-Végétal – FED 4277, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - Jose M. Seguí-Simarro
- COMAV – Universitat Politècnica de València, Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Patricia Corral-Martínez, Jose M. Seguí-Simarro,
| |
Collapse
|
107
|
Penning BW, McCann MC, Carpita NC. Evolution of the Cell Wall Gene Families of Grasses. FRONTIERS IN PLANT SCIENCE 2019; 10:1205. [PMID: 31681352 PMCID: PMC6805987 DOI: 10.3389/fpls.2019.01205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Grasses and related commelinid monocot species synthesize cell walls distinct in composition from other angiosperm species. With few exceptions, the genomes of all angiosperms contain the genes that encode the enzymes for synthesis of all cell-wall polysaccharide, phenylpropanoid, and protein constituents known in vascular plants. RNA-seq analysis of transcripts expressed during development of the upper and lower internodes of maize (Zea mays) stem captured the expression of cell-wall-related genes associated with primary or secondary wall formation. High levels of transcript abundances were not confined to genes associated with the distinct walls of grasses but also of those associated with xyloglucan and pectin synthesis. Combined with proteomics data to confirm that expressed genes are translated, we propose that the distinctive cell-wall composition of grasses results from sorting downstream from their sites of synthesis in the Golgi apparatus and hydrolysis of the uncharacteristic polysaccharides and not from differential expression of synthases of grass-specific polysaccharides.
Collapse
Affiliation(s)
- Bryan W. Penning
- Corn, Soybean and Wheat Quality Research, USDA-ARS, Wooster, OH, United States
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, West Lafayette, IN, United States
| | - Nicholas C. Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, West Lafayette, IN, United States
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Nicholas C. Carpita,
| |
Collapse
|
108
|
Izquierdo L, Martín I, Albornos L, Hernández-Nistal J, Hueso P, Dopico B, Labrador E. Overexpression of Cicer arietinum βIII-Gal but not βIV-Gal in arabidopsis causes a reduction of cell wall β-(1,4)-galactan compensated by an increase in homogalacturonan. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:135-146. [PMID: 30268077 DOI: 10.1016/j.jplph.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
In Cicer arietinum, as in several plant species, the β-galactosidases are encoded by multigene families, although the role of the different proteins is not completely elucidated. Here, we focus in 2 members of this family, βIII-Gal and βIV-Gal, with high degree of amino acid sequence identity (81%), but involved in different developmental processes according to previous studies. Our objective is to deepen in the function of these proteins by establishing their substrate specificity and the possible alterations caused in the cell wall polysaccharides when they are overproduced in Arabidopsis thaliana by constructing the 35S::βIII-Gal and 35S::βIV-Gal transgenic plants. βIII-Gal does cause visible alterations of the morphology of the transgenic plant, all related to a decrease in growth at different stages of development. FTIR spectroscopy and immunological studies showed that βIII-Gal causes changes in the structure of the arabidopsis cell wall polysaccharides, mainly a reduction of the galactan side chains which is compensated by a marked increase in homogalacturonan, which allows us to attribute to galactan a role in the control of the architecture of the cell wall, and therefore in the processes of growth. The 35S::βIV-Gal plants do not present any phenotypic changes, neither in their morphology nor in their cell walls. In spite of the high sequence homology, our results show different specificity of substrate for these proteins, maybe due to other dissimilar characteristics, such as isoelectric points or the number of N-glycosylation sites, which could determine their enzymatic properties and their distinct action in the cell walls.
Collapse
Affiliation(s)
- Lucía Izquierdo
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Ignacio Martín
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Lucía Albornos
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | | | - Pablo Hueso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Berta Dopico
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Emilia Labrador
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain.
| |
Collapse
|
109
|
Zhong R, Cui D, Ye ZH. Members of the DUF231 Family are O-Acetyltransferases Catalyzing 2-O- and 3-O-Acetylation of Mannan. PLANT & CELL PHYSIOLOGY 2018; 59:2339-2349. [PMID: 30102392 DOI: 10.1093/pcp/pcy159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Mannans are hemicellulosic polysaccharides commonly found in the primary and secondary cell walls of land plants, and their mannosyl residues are often acetylated at O-2 and O-3. Currently, little is known about the genes responsible for the acetylation of mannans. In this report, we investigated the roles of a subgroup of DUF231 proteins including 11 from Arabidopsis thaliana and one from Amorphophallus konjac in mannan acetylation. Acetyltransferase activity assays of their recombinant proteins revealed that four Arabidopsis DUF231 proteins possessed an enzymatic activity capable of transferring acetyl groups from acetyl-CoA onto the mannohexaose acceptor, and thus were named mannan O-acetyltransferases (MOAT1, MOAT2, MOAT3 and MOAT4). Their close homolog from A. konjac (named AkMOAT1) also exhibited mannan O-acetyltransferase activity. Structural analysis of the MOAT-catalyzed reaction products demonstrated that these MOATs catalyzed 2-O- and 3-O-monoacetylation of mannosyl residues, an acetyl substitution pattern similar to that of Arabidopsis glucomannan. Site-directed mutagenesis showed that mutations of the conserved residues in the GDS and DXXH motifs of MOAT3 abolished its acetyltransferase activity, indicating the essential roles of these motifs in its activity. In addition, simultaneous RNA interference (RNAi) inhibition of the expression of the four Arabidopsis MOAT genes led to a drastic reduction in the degree of acetyl substitutions in glucomannan, further corroborating their role in glucomannan acetylation. Together, these results present the first lines of biochemical and genetic evidence demonstrating that these four Arabidopsis DUF231 members and their close A. konjac homolog are mannan O-acetyltransferases.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
110
|
Zhong R, Cui D, Ye ZH. Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. PLANTA 2018; 248:1159-1171. [PMID: 30083810 DOI: 10.1007/s00425-018-2972-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 05/26/2023]
Abstract
AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
111
|
Saffer AM. Expanding roles for pectins in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:910-923. [PMID: 29727062 DOI: 10.1111/jipb.12662] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/02/2018] [Indexed: 05/19/2023]
Abstract
Pectins are complex cell wall polysaccharides important for many aspects of plant development. Recent studies have discovered extensive physical interactions between pectins and other cell wall components, implicating pectins in new molecular functions. Pectins are often localized in spatially-restricted patterns, and some of these non-uniform pectin distributions contribute to multiple aspects of plant development, including the morphogenesis of cells and organs. Furthermore, a growing number of mutants affecting cell wall composition have begun to reveal the distinct contributions of different pectins to plant development. This review discusses the interactions of pectins with other cell wall components, the functions of pectins in controlling cellular morphology, and how non-uniform pectin composition can be an important determinant of developmental processes.
Collapse
Affiliation(s)
- Adam M Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, OML260, 266 Whitney Ave, New Haven, CT 06520-8104, USA
| |
Collapse
|
112
|
Del-Bem LE. Xyloglucan evolution and the terrestrialization of green plants. THE NEW PHYTOLOGIST 2018; 219:1150-1153. [PMID: 29851097 DOI: 10.1111/nph.15191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xyloglucan (XyG) is the major noncellulosic nonpectic matrix polysaccharide in cell walls of most land plants. Initially thought to be restricted to land plants, the last decade has seen the detection of XyG and the discovery of synthesis and modification/degradation genes in charophycean green algae (CGA). Recently, a totally new function of XyG was discovered as a potent soil aggregator released by roots and rhizoids of all major groups of land plants. In this Viewpoint, I show the presence of a complex XyG genetic machinery in most CGA groups. I discuss the context of XyG evolution in light of the terrestrialization of early CGA that gave rise to embryophytes and its possible role in early soil formation.
Collapse
Affiliation(s)
- Luiz-Eduardo Del-Bem
- Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia (UFBA), Av. Reitor Miguel Calmon, s/n - Vale do Canela, 40110-100, Salvador-BA, Brazil
| |
Collapse
|
113
|
Rui Y, Chen Y, Kandemir B, Yi H, Wang JZ, Puri VM, Anderson CT. Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics. FRONTIERS IN PLANT SCIENCE 2018; 9:1202. [PMID: 30177940 PMCID: PMC6110162 DOI: 10.3389/fpls.2018.01202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Guard cells are pairs of epidermal cells that control gas diffusion by regulating the opening and closure of stomatal pores. Guard cells, like other types of plant cells, are surrounded by a three-dimensional, extracellular network of polysaccharide-based wall polymers. In contrast to the walls of diffusely growing cells, guard cell walls have been hypothesized to be uniquely strong and elastic to meet the functional requirements of withstanding high turgor and allowing for reversible stomatal movements. Although the walls of guard cells were long underexplored as compared to extensive studies of stomatal development and guard cell signaling, recent research has provided new genetic, cytological, and physiological data demonstrating that guard cell walls function centrally in stomatal development and dynamics. In this review, we highlight and discuss the latest evidence for how wall polysaccharides are synthesized, deposited, reorganized, modified, and degraded in guard cells, and how these processes influence stomatal form and function. We also raise open questions and provide a perspective on experimental approaches that could be used in the future to shed light on the composition and architecture of guard cell walls.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
| | - Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - James Z. Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Virendra M. Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
114
|
Edqvist J, Blomqvist K, Nieuwland J, Salminen TA. Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 2018; 59:1374-1382. [PMID: 29555656 PMCID: PMC6071764 DOI: 10.1194/jlr.r083139] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
The nonspecific lipid transfer proteins (LTPs) are small compact proteins folded around a tunnel-like hydrophobic cavity, making them suitable for lipid binding and transport. LTPs are encoded by large gene families in all land plants, but they have not been identified in algae or any other organisms. Thus, LTPs are considered key proteins for plant survival on and colonization of land. LTPs are abundantly expressed in most plant tissues, both above and below ground. They are usually localized to extracellular spaces outside the plasma membrane. Although the in vivo functions of LTPs remain unclear, accumulating evidence suggests a role for LTPs in the transfer and deposition of monomers required for assembly of the waterproof lipid barriers, such as cutin and cuticular wax, suberin, and sporopollenin, formed on many plant surfaces. Some LTPs may be involved in other processes, such as signaling during pathogen attacks. Here, we present the current status of LTP research with a focus on the role of these proteins in lipid barrier deposition and cell expansion. We suggest that LTPs facilitate extracellular transfer of barrier materials and adhesion between barriers and extracellular materials. A growing body of research may uncover the true role of LTPs in plants.
Collapse
Affiliation(s)
| | | | - Jeroen Nieuwland
- Faculty of Computing, Engineering, and Science, University of South Wales, CF37 1DL Pontypridd, United Kingdom
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
115
|
Culbertson AT, Ehrlich JJ, Choe JY, Honzatko RB, Zabotina OA. Structure of xyloglucan xylosyltransferase 1 reveals simple steric rules that define biological patterns of xyloglucan polymers. Proc Natl Acad Sci U S A 2018; 115:6064-6069. [PMID: 29784804 PMCID: PMC6003343 DOI: 10.1073/pnas.1801105115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant cell wall is primarily a polysaccharide mesh of the most abundant biopolymers on earth. Although one of the richest sources of biorenewable materials, the biosynthesis of the plant polysaccharides is poorly understood. Structures of many essential plant glycosyltransferases are unknown and suitable substrates are often unavailable for in vitro analysis. The dearth of such information impedes the development of plants better suited for industrial applications. Presented here are structures of Arabidopsis xyloglucan xylosyltransferase 1 (XXT1) without ligands and in complexes with UDP and cellohexaose. XXT1 initiates side-chain extensions from a linear glucan polymer by transferring the xylosyl group from UDP-xylose during xyloglucan biosynthesis. XXT1, a homodimer and member of the GT-A fold family of glycosyltransferases, binds UDP analogously to other GT-A fold enzymes. Structures here and the properties of mutant XXT1s are consistent with a SNi-like catalytic mechanism. Distinct from other systems is the recognition of cellohexaose by way of an extended cleft. The XXT1 dimer alone cannot produce xylosylation patterns observed for native xyloglucans because of steric constraints imposed by the acceptor binding cleft. Homology modeling of XXT2 and XXT5, the other two xylosyltransferases involved in xyloglucan biosynthesis, reveals a structurally altered cleft in XXT5 that could accommodate a partially xylosylated glucan chain produced by XXT1 and/or XXT2. An assembly of the three XXTs can produce the xylosylation patterns of native xyloglucans, suggesting the involvement of an organized multienzyme complex in the xyloglucan biosynthesis.
Collapse
Affiliation(s)
- Alan T Culbertson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Jacqueline J Ehrlich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Richard B Honzatko
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011;
| |
Collapse
|
116
|
Genome-Wide Expression Profiles of Hemp ( Cannabis sativa L.) in Response to Drought Stress. Int J Genomics 2018; 2018:3057272. [PMID: 29862250 PMCID: PMC5976996 DOI: 10.1155/2018/3057272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Drought is the main environmental factor impairing hemp growth and yield. In order to decipher the molecular responses of hemp to drought stress, transcriptome changes of drought-stressed hemp (DS1 and DS2), compared to well-watered control hemp (CK1 and CK2), were studied with RNA-Seq technology. RNA-Seq generated 9.83, 11.30, 11.66, and 11.31 M clean reads in the CK1, CK2, DS1, and DS2 libraries, respectively. A total of 1292 differentially expressed genes (DEGs), including 409 (31.66%) upregulated and 883 (68.34%) downregulated genes, were identified. The expression patterns of 12 selected genes were validated by qRT-PCR, and the results were accordant with Illumina analysis. Gene Ontology (GO) and KEGG analysis illuminated particular important biological processes and pathways, which enriched many candidate genes such as NAC, B3, peroxidase, expansin, and inositol oxygenase that may play important roles in hemp tolerance to drought. Eleven KEGG pathways were significantly influenced, the most influenced being the plant hormone signal transduction pathway with 15 differentially expressed genes. A similar expression pattern of genes involved in the abscisic acid (ABA) pathway under drought, and ABA induction, suggested that ABA is important in the drought stress response of hemp. These findings provide useful insights into the drought stress regulatory mechanism in hemp.
Collapse
|
117
|
Voiniciuc C, Pauly M, Usadel B. Monitoring Polysaccharide Dynamics in the Plant Cell Wall. PLANT PHYSIOLOGY 2018; 176:2590-2600. [PMID: 29487120 PMCID: PMC5884611 DOI: 10.1104/pp.17.01776] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
New technologies reveal the deposition and remodeling of plant cell wall polysaccharides and their impact on plant development.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, 52074 Aachen, Germany
- Forschungszentum Jülich, IBG-2 Plant Sciences, 52428 Juelich, Germany
| |
Collapse
|
118
|
Majda M, Robert S. The Role of Auxin in Cell Wall Expansion. Int J Mol Sci 2018; 19:ijms19040951. [PMID: 29565829 PMCID: PMC5979272 DOI: 10.3390/ijms19040951] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.
Collapse
Affiliation(s)
- Mateusz Majda
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
119
|
Honta H, Inamura T, Konishi T, Satoh S, Iwai H. UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum. JOURNAL OF PLANT RESEARCH 2018; 131:307-317. [PMID: 29052022 DOI: 10.1007/s10265-017-0985-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 05/27/2023]
Abstract
Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.
Collapse
Affiliation(s)
- Hideyuki Honta
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takuya Inamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
120
|
Zhu L, Dama M, Pauly M. Identification of an arabinopyranosyltransferase from Physcomitrella patens involved in the synthesis of the hemicellulose xyloglucan. PLANT DIRECT 2018; 2:e00046. [PMID: 31245712 PMCID: PMC6508525 DOI: 10.1002/pld3.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/18/2023]
Abstract
The hemicellulose xyloglucan consists of a backbone of a β-1,4 glucan substituted with xylosyl moieties and many other, diverse side chains that are important for its proper function. Many, but not all glycosyltransferases involved in the biosynthesis of xyloglucan have been identified. Here, we report the identification of an hitherto elusive xyloglucan:arabinopyranosyltransferase. This glycosyltransferase was isolated from the moss Physcomitrella patens, where it acts as a xyloglucan "D"-side chain transferase (XDT). Heterologous expression of PpXDT in the Arabidopsis thaliana double mutant mur3.1 xlt2, where xyloglucan consists of a xylosylated glucan without further glycosyl substituents, results in the production of the arabinopyranose-containing "D" side chain as characterized by oligosaccharide mass profiling, glycosidic linkage analysis, and NMR analysis. In addition, expression of a related Physcomitrella glycosyltransferase ortholog of PpXLT2 leads to the production of the galactose-containing "L" side chain. The presence of the "D" and "L" xyloglucan side chains in the Arabidopsis double mutant Atmur3.1 xlt2 expressing PpXDT and PpXLT2, respectively, rescues the dwarfed phenotype of untransformed Atmur3.1 xlt2 mutants to nearly wild-type height. Expression of PpXDT and PpXLT2 in the Atmur3.1 xlt2 mutant also enhanced root growth.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Murali Dama
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell and BiotechnologyUniversity of DusseldorfDusseldorfGermany
| |
Collapse
|
121
|
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu HM, Cheung AY, Dinneny JR. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca 2+ Signaling. Curr Biol 2018; 28:666-675.e5. [PMID: 29456142 PMCID: PMC5894116 DOI: 10.1016/j.cub.2018.01.023] [Citation(s) in RCA: 439] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
Abstract
Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind diglucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall.
Collapse
Affiliation(s)
- Wei Feng
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Daniel Kita
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, UMR1318, Institut National pour la Recherche Agronomique-AgroParisTech, Saclay Plant Science, Route de St-Cyr, Versailles 78026, France; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Heather N Cartwright
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Vinh Doan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Qiaohong Duan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jacob Maman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Ina Schmitz-Thom
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, MA 01003, USA.
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA; Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
122
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
123
|
Armezzani A, Abad U, Ali O, Robin AA, Vachez L, Larrieu A, Mellerowicz EJ, Taconnat L, Battu V, Stanislas T, Liu M, Vernoux T, Traas J, Sassi M. Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis. Development 2018; 145:dev.162255. [DOI: 10.1242/dev.162255] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
The shoot apical meristem of higher plants continuously generates new tissues and organs through complex changes in growth rates and directions of its individual cells. Cell growth, driven by turgor pressure, largely depends on the cell walls, which allow cell expansion through synthesis and structural changes. A previous study revealed a major contribution of wall isotropy in organ emergence, through the disorganization of cortical microtubules. We show here that this disorganization is coupled with the transcriptional control of genes involved in wall remodelling. Some of these genes are induced when microtubules are disorganized and cells shift to isotropic growth. Mechanical modelling shows that this coupling has the potential to compensate for reduced cell expansion rates induced by the shift to isotropic growth. Reciprocally, cell wall loosening induced by different treatments or altered cell wall composition promotes a disruption of microtubule alignment. Our data thus indicate the existence of a regulatory module activated during organ outgrowth, linking microtubule arrangements to cell wall remodelling.
Collapse
Affiliation(s)
- Alessia Armezzani
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ursula Abad
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Ali
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
- INRIA team MOSAIC, Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Amélie Andres Robin
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Laetitia Vachez
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Antoine Larrieu
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology
Swedish University of Agricultural Sciences (Sveriges lantbruksuniversitet) S901-83 Umea, Sweden
| | - Ludivine Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Virginie Battu
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Massimiliano Sassi
- Laboratoire de Reproduction et Développement des Plantes, Universite de Lyon, ENS de Lyon, UCBL, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
124
|
Zheng Y, Wang X, Chen Y, Wagner E, Cosgrove DJ. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:211-226. [PMID: 29160933 DOI: 10.1111/tpj.13778] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 05/02/2023]
Abstract
Xyloglucan has been hypothesized to bind extensively to cellulose microfibril surfaces and to tether microfibrils into a load-bearing network, thereby playing a central role in wall mechanics and growth, but this view is challenged by newer results. Here we combined high-resolution imaging by field emission scanning electron microscopy (FESEM) with nanogold affinity tags and selective endoglucanase treatments to assess the spatial location and conformation of xyloglucan in onion cell walls. FESEM imaging of xyloglucanase-digested cell walls revealed an altered microfibril organization but did not yield clear evidence of xyloglucan conformations. Backscattered electron detection provided excellent detection of nanogold affinity tags in the context of wall fibrillar organization. Labelling with xyloglucan-specific CBM76 conjugated with nanogold showed that xyloglucans were associated with fibril surfaces in both extended and coiled conformations, but tethered configurations were not observed. Labelling with nanogold-conjugated CBM3, which binds the hydrophobic surface of crystalline cellulose, was infrequent until the wall was predigested with xyloglucanase, whereupon microfibril labelling was extensive. When tamarind xyloglucan was allowed to bind to xyloglucan-depleted onion walls, CBM76 labelling gave positive evidence for xyloglucans in both extended and coiled conformations, yet xyloglucan chains were not directly visible by FESEM. These results indicate that an appreciable, but still small, surface of cellulose microfibrils in the onion wall is tightly bound with extended xyloglucan chains and that some of the xyloglucan has a coiled conformation.
Collapse
Affiliation(s)
- Yunzhen Zheng
- Center for Lignocellulose Structure and Formation, Penn State University, University Park, PA, 16802, USA
- Department of Biology, Penn State University, University Park, PA, 16802, USA
| | - Xuan Wang
- Center for Lignocellulose Structure and Formation, Penn State University, University Park, PA, 16802, USA
- Department of Biology, Penn State University, University Park, PA, 16802, USA
| | - Yuning Chen
- Department of Biology, Penn State University, University Park, PA, 16802, USA
| | - Edward Wagner
- Department of Biology, Penn State University, University Park, PA, 16802, USA
| | - Daniel J Cosgrove
- Center for Lignocellulose Structure and Formation, Penn State University, University Park, PA, 16802, USA
- Department of Biology, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
125
|
Yi H, Rui Y, Kandemir B, Wang JZ, Anderson CT, Puri VM. Mechanical Effects of Cellulose, Xyloglucan, and Pectins on Stomatal Guard Cells of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1566. [PMID: 30455709 PMCID: PMC6230562 DOI: 10.3389/fpls.2018.01566] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/08/2018] [Indexed: 05/18/2023]
Abstract
Stomata function as osmotically tunable pores that facilitate gas exchange at the surface of plants. Stomatal opening and closure are regulated by turgor changes in guard cells that result in mechanically regulated deformations of guard cell walls. However, how the molecular, architectural, and mechanical heterogeneities that exist in guard cell walls affect stomatal dynamics is unclear. In this work, stomata of wild type Arabidopsis thaliana plants or of mutants lacking normal cellulose, hemicellulose, or pectins were experimentally induced to close or open. Three-dimensional images of these stomatal complexes were collected using confocal microscopy, images were landmarked, and three-dimensional finite element models (FEMs) were constructed for each complex. Stomatal opening was simulated with a 5 MPa turgor increase. By comparing experimentally measured and computationally modeled changes in stomatal geometry across genotypes, anisotropic mechanical properties of guard cell walls were determined and mapped to cell wall components. Deficiencies in cellulose or hemicellulose were both predicted to stiffen guard cell walls, but differentially affected stomatal pore area and the degree of stomatal opening. Additionally, reducing pectin molecular mass altered the anisotropy of calculated shear moduli in guard cell walls and enhanced stomatal opening. Based on the unique architecture of guard cell walls and our modeled changes in their mechanical properties in cell wall mutants, we discuss how each polysaccharide class contributes to wall architecture and mechanics in guard cells. This study provides new insights into how the walls of guard cells are constructed to meet the mechanical requirements of stomatal dynamics.
Collapse
Affiliation(s)
- Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hojae Yi
| | - Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - James Z. Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
- Charles T. Anderson
| | - Virendra M. Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
126
|
Cosgrove DJ. Diffuse Growth of Plant Cell Walls. PLANT PHYSIOLOGY 2018; 176:16-27. [PMID: 29138349 PMCID: PMC5761826 DOI: 10.1104/pp.17.01541] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/13/2017] [Indexed: 05/04/2023]
Abstract
Structural and functional roles of cellulose, xyloglucan, and pectins in cell wall enlargement are reappraised with insights from mechanics, atomic force microscopy, and other methods.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
| |
Collapse
|
127
|
McCormick S. Nanoscale imaging of xyloglucan in plant cell walls. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:209-210. [PMID: 29297611 DOI: 10.1111/tpj.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
128
|
Liu C, Wang B, Li Z, Peng Z, Zhang J. TsNAC1 Is a Key Transcription Factor in Abiotic Stress Resistance and Growth. PLANT PHYSIOLOGY 2018; 176:742-756. [PMID: 29122985 PMCID: PMC5761785 DOI: 10.1104/pp.17.01089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 05/05/2023]
Abstract
NAC proteins constitute one of the largest families of plant-specific transcription factors, and a number of these proteins participate in the regulation of plant development and responses to abiotic stress. T. HALOPHILA STRESS RELATED NAC1 (TsNAC1), cloned from the halophyte Thellungiella halophila, is a NAC transcription factor gene, and its overexpression can improve abiotic stress resistance, especially in salt stress tolerance, in both T. halophila and Arabidopsis (Arabidopsis thaliana) and retard the growth of these plants. In this study, the transcriptional activation activity of TsNAC1 and RD26 from Arabidopsis was compared with the target genes' promoter regions of TsNAC1 from T. halophila, and the results showed that the transcriptional activation activity of TsNAC1 was higher in tobacco (Nicotiana tabacum) and yeast. The target sequence of the promoter from the target genes also was identified, and TsNAC1 was shown to target the positive regulators of ion transportation, such as T. HALOPHILA H+-PPASE1, and the transcription factors MYB HYPOCOTYL ELONGATION-RELATED and HOMEOBOX12 In addition, TsNAC1 negatively regulates the expansion of cells, inhibits LIGHT-DEPENDENT SHORT HYPOCOTYLS1 and UDP-XYLOSYLTRANSFERASE2, and directly controls the expression of MULTICOPY SUPPRESSOR OF IRA14 Based on these results, we propose that TsNAC1 functions as an important upstream regulator of plant abiotic stress responses and vegetative growth.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Baomei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhaoxia Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhenghua Peng
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Juren Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
129
|
Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, Zagórska-Marek B, Viotti C, Jönsson H, Mellerowicz EJ, Hamant O, Robert S. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells. Dev Cell 2017; 43:290-304.e4. [DOI: 10.1016/j.devcel.2017.10.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
|
130
|
Fusari CM, Kooke R, Lauxmann MA, Annunziata MG, Enke B, Hoehne M, Krohn N, Becker FFM, Schlereth A, Sulpice R, Stitt M, Keurentjes JJB. Genome-Wide Association Mapping Reveals That Specific and Pleiotropic Regulatory Mechanisms Fine-Tune Central Metabolism and Growth in Arabidopsis. THE PLANT CELL 2017; 29:2349-2373. [PMID: 28954812 PMCID: PMC5774568 DOI: 10.1105/tpc.17.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A more direct approach is to identify enzyme activity QTL, which distinguishes between cis-QTL in structural genes encoding enzymes and regulatory trans-QTL. Using genome-wide association studies, we mapped QTL for 24 enzyme activities, nine metabolites, three structural components, and biomass in Arabidopsis thaliana We detected strong cis-QTL for five enzyme activities. A cis-QTL for UDP-glucose pyrophosphorylase activity in the UGP1 promoter is maintained through balancing selection. Variation in acid invertase activity reflects multiple evolutionary events in the promoter and coding region of VAC-INVcis-QTL were also detected for ADP-glucose pyrophosphorylase, fumarase, and phosphoglucose isomerase activity. We detected many trans-QTL, including transcription factors, E3 ligases, protein targeting components, and protein kinases, and validated some by knockout analysis. trans-QTL are more frequent but tend to have smaller individual effects than cis-QTL. We detected many colocalized QTL, including a multitrait QTL on chromosome 4 that affects six enzyme activities, three metabolites, protein, and biomass. These traits are coordinately modified by different ACCELERATED CELL DEATH6 alleles, revealing a trade-off between metabolism and defense against biotic stress.
Collapse
Affiliation(s)
- Corina M Fusari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rik Kooke
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| | - Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Beatrice Enke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
131
|
Johnson KL, Gidley MJ, Bacic A, Doblin MS. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose'! Curr Opin Biotechnol 2017; 49:163-171. [PMID: 28915438 DOI: 10.1016/j.copbio.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
The complexity and recalcitrance of plant cell walls has contributed to the success of plants colonising land. Conversely, these attributes have also impeded progress in understanding the roles of walls in controlling and directing developmental processes during plant growth and also in unlocking their potential for biotechnological innovation. Recent technological advances have enabled the probing of how primary wall structures and molecular interactions of polysaccharides define their biomechanical (and hence functional) properties. The outputs have led to a new paradigm that places greater emphasis on understanding how the wall, as a biomechanical construct and cell surface sensor, modulates both plant growth and material properties. Armed with this knowledge, we are gaining the capacity to design walls 'fit for (biotechnological) purpose'!
Collapse
Affiliation(s)
- Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
132
|
Zhu XF, Wan JX, Wu Q, Zhao XS, Zheng SJ, Shen RF. PARVUS affects aluminium sensitivity by modulating the structure of glucuronoxylan in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:1916-1925. [PMID: 28622705 DOI: 10.1111/pce.12999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 05/28/2023]
Abstract
Glucuronoxylan (GX), an important component of hemicellulose in the cell wall, appears to affect aluminium (Al) sensitivity in plants. To investigate the role of GX in cell-wall-localized xylan, we examined the Arabidopsis thaliana parvus mutant in detail. This mutant lacks α-D-glucuronic acid (GlcA) side chains in GX and has greater resistance to Al stress than wild-type (WT) plants. The parvus mutant accumulated lower levels of Al in its roots and cell walls than WT despite having cell wall pectin content and pectin methylesterase (PME) activity similar to those of WT. Our results suggest that the altered properties of hemicellulose in the mutant contribute to its decreased Al accumulation. Although we observed almost no differences in hemicellulose content between parvus and WT under control conditions, less Al was retained in parvus hemicellulose than in WT. This observation is consistent with the finding that GlcA substitutions in WT GX, but not mutant GX, were increased under Al stress. Taken together, these results suggest that the modulation of GlcA levels in GX affects Al resistance by influencing the Al binding capacity of the root cell wall in Arabidopsis.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiang Xue Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xu Sheng Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
133
|
Naoumkina M, Hinchliffe DJ, Fang DD, Florane CB, Thyssen GN. Role of xyloglucan in cotton (Gossypium hirsutum L.) fiber elongation of the short fiber mutant Ligon lintless-2 (Li 2). Gene 2017; 626:227-233. [PMID: 28546126 DOI: 10.1016/j.gene.2017.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
Abstract
Xyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li2) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth. Li2 represents an excellent model system to study fiber elongation. To understand the role of xyloglucan in cotton fiber elongation we used the short fiber mutant Li2 and its near isogenic wild type for analysis of xyloglucan content and expression of xyloglucan-related genes in developing fibers. Accumulation of xyloglucan was significantly higher in Li2 developing fibers than in wild type. Genes encoding enzymes for nine family members of xyloglucan biosynthesis were identified in the draft Gossypium hirsutum genome. RNAseq analysis revealed that most differentially expressed xyloglucan-related genes were down-regulated in Li2 fiber cells. RT-qPCR analysis revealed that the peak of expression for the majority of xyloglucan-related genes in wild type developing fibers was 5-16days post anthesis (DPA) compared to 1-3 DPA in Li2 fibers. Thus, our results suggest that early activation of xyloglucan-related genes and down regulation of xyloglucan degradation genes during the elongation phase lead to elevated accumulation of xyloglucan that restricts elongation of fiber cells in Li2.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | - Doug J Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA; Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| |
Collapse
|
134
|
Phyo P, Wang T, Xiao C, Anderson CT, Hong M. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR. Biomacromolecules 2017; 18:2937-2950. [DOI: 10.1021/acs.biomac.7b00888] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pyae Phyo
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| | - Tuo Wang
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| | - Chaowen Xiao
- Department
of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Charles T. Anderson
- Department
of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mei Hong
- Department
of Chemistry, Massachusetts Institute of Technology, 170 Albany
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
135
|
Amanda D, Doblin MS, Galletti R, Bacic A, Ingram GC, Johnson KL. Regulation of cell wall genes in response to DEFECTIVE KERNEL1 (DEK1)-induced cell wall changes. PLANT SIGNALING & BEHAVIOR 2017; 12:e1345405. [PMID: 28692330 PMCID: PMC5616153 DOI: 10.1080/15592324.2017.1345405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Defective Kernel1 (DEK1) is a plant-specific calpain involved in epidermis specification and maintenance. DEK1 regulation of the epidermal cell wall is proposed to be key to ensure tissue integrity and coordinated growth. Changes in the expression of DEK1 are correlated with changes in the expression of cell wall-related genes. For example, we have found that Lipid transfer protein 3 (LTP3), EXPANSIN 11 (EXP11), and an AP2 transcription factor (AP2TF) are misexpressed in plants with constitutively altered levels of DEK1 activity. RT-qPCR studies show that LTP3 and AP2TF may respond to a DEK1-generated signal whereas EXP11 is not altered immediately after dexamethasone induction of CALPAIN suggesting it is not in the direct signaling pathway downstream of DEK1. Our data suggest these genes are regulated by a feedback mechanism in response to DEK1-induced changes in the cell wall, and contribute to the phenotypes seen in plants with altered DEK1 expression.
Collapse
Affiliation(s)
- Dhika Amanda
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS, INRA, UCB Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Gwyneth C. Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS, INRA, UCB Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kim L. Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
136
|
Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Curr Biol 2017; 27:2248-2259.e4. [DOI: 10.1016/j.cub.2017.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022]
|
137
|
Özparpucu M, Rüggeberg M, Gierlinger N, Cesarino I, Vanholme R, Boerjan W, Burgert I. Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:480-490. [PMID: 28440915 DOI: 10.1111/tpj.13584] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Lignin engineering is a promising tool to reduce the energy input and the need of chemical pre-treatments for the efficient conversion of plant biomass into fermentable sugars for downstream applications. At the same time, lignin engineering can offer new insight into the structure-function relationships of plant cell walls by combined mechanical, structural and chemical analyses. Here, this comprehensive approach was applied to poplar trees (Populus tremula × Populus alba) downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD) in order to gain insight into the impact of lignin reduction on mechanical properties. The downregulation of CAD resulted in a significant decrease in both elastic modulus and yield stress. As wood density and cellulose microfibril angle (MFA) did not show any significant differences between the wild type and the transgenic lines, these structural features could be excluded as influencing factors. Fourier transform infrared spectroscopy (FTIR) and Raman imaging were performed to elucidate changes in the chemical composition directly on the mechanically tested tissue sections. Lignin content was identified as a mechanically relevant factor, as a correlation with a coefficient of determination (r²) of 0.65 between lignin absorbance (as an indicator of lignin content) and tensile stiffness was found. A comparison of the present results with those of previous investigations shows that the mechanical impact of lignin alteration under tensile stress depends on certain structural conditions, such as a high cellulose MFA, which emphasizes the complex relationship between the chemistry and mechanical properties in plant cell walls.
Collapse
Affiliation(s)
- Merve Özparpucu
- Institute for Building Materials (IfB), ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Applied Wood Materials, Empa, 8600, Dübendorf, Switzerland
| | - Markus Rüggeberg
- Institute for Building Materials (IfB), ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Applied Wood Materials, Empa, 8600, Dübendorf, Switzerland
| | - Notburga Gierlinger
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna, 1190, Wien, Austria
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Ingo Burgert
- Institute for Building Materials (IfB), ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Applied Wood Materials, Empa, 8600, Dübendorf, Switzerland
| |
Collapse
|
138
|
Shah DU, Reynolds TPS, Ramage MH. The strength of plants: theory and experimental methods to measure the mechanical properties of stems. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4497-4516. [PMID: 28981787 DOI: 10.1093/jxb/erx245] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
From the stems of agricultural crops to the structural trunks of trees, studying the mechanical behaviour of plant stems is critical for both commerce and science. Plant scientists are also increasingly relying on mechanical test data for plant phenotyping. Yet there are neither standardized methods nor systematic reviews of current methods for the testing of herbaceous stems. We discuss the architecture of plant stems and highlight important micro- and macrostructural parameters that need to be controlled and accounted for when designing test methodologies, or that need to be understood in order to explain observed mechanical behaviour. Then, we critically evaluate various methods to test structural properties of stems, including flexural bending (two-, three-, and four-point bending) and axial loading (tensile, compressive, and buckling) tests. Recommendations are made on best practices. This review is relevant to fundamental studies exploring plant biomechanics, mechanical phenotyping of plants, and the determinants of mechanical properties in cell walls, as well as to application-focused studies, such as in agro-breeding and forest management projects, aiming to understand deformation processes of stem structures. The methods explored here can also be extended to other elongated, rod-shaped organs (e.g. petioles, midribs, and even roots).
Collapse
Affiliation(s)
- Darshil U Shah
- Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK
| | - Thomas P S Reynolds
- Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK
| | - Michael H Ramage
- Department of Architecture, University of Cambridge, 1-5 Scroope Terrace, Cambridge CB2 1PX, UK
| |
Collapse
|
139
|
Lehman TA, Smertenko A, Sanguinet KA. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3321-3329. [PMID: 28666373 DOI: 10.1093/jxb/erx205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant morphogenesis depends on the synchronized anisotropic expansion of individual cells in response to developmental and environmental cues. The magnitude of cell expansion depends on the biomechanical properties of the cell wall, which in turn depends on both its biosynthesis and extensibility. Although the control of cell expansion by the phytohormone auxin is well established, its regulation of cell wall composition, trafficking of H+-ATPases, and K+ influx that drives growth is still being elucidated. Furthermore, the maintenance of auxin fluxes via the interaction between the cytoskeleton and PIN protein recycling on the plasma membrane remains under investigation. This review proposes a model that describes how the cell wall, auxin, microtubule binding-protein CLASP and Kin7/separase complexes, and vesicle trafficking are co-ordinated on a cellular level to mediate cell wall loosening during cell expansion.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
140
|
Wang T, Hong M. Structure and Dynamics of Polysaccharides in Plant Cell Walls from Solid-State NMR. NMR IN GLYCOSCIENCE AND GLYCOTECHNOLOGY 2017. [DOI: 10.1039/9781782623946-00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multidimensional high-resolution magic-angle-spinning solid-state NMR (SSNMR) spectroscopy has recently been shown to have the unique capability of revealing the molecular structure and dynamics of insoluble macromolecules in intact plant cell walls. This chapter summarizes the 2D and 3D SSNMR techniques used so far to study cell walls and key findings about cellulose interactions with matrix polysaccharides, cellulose microfibril structure, polysaccharide–protein interactions that are responsible for wall loosening, and polysaccharide–water interactions in the hydrated primary walls. These results provide detailed molecular insights into the structure of near-native plant cell walls, and revise the conventional tethered-network model by suggesting a single-network model for the primary cell wall, which has found increasing support from recent biochemical and biomechanical data.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology 170 Albany Street Cambridge MA 02139 USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology 170 Albany Street Cambridge MA 02139 USA
| |
Collapse
|
141
|
Xu Z, Wang M, Shi D, Zhou G, Niu T, Hahn MG, O'Neill MA, Kong Y. DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:156-169. [PMID: 28330559 DOI: 10.1016/j.plantsci.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/14/2016] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
Our previous study of the Arabidopsis mur3-3 mutant and mutant plants in which the mur3-3 phenotypes are suppressed (xxt2mur3-3, xxt5mur3-3, xxt1xxt2mur3-3 and 35Spro:XLT2:mur3-3) showed that hypocotyl cell elongation is decreased in plants that synthesize galactose-deficient xyloglucan. To obtain genome-wide insight into the transcriptome changes and regulatory networks that may be involved in this decreased elongation, we performed digital gene expression analyses of the etiolated hypocotyls of wild type (WT), mur3-3 and the four suppressor lines. Numerous differentially expressed genes (DEGs) were detected in comparisons between WT and mur3-3 (1423), xxt2mur3-3 and mur3-3 (675), xxt5mur3-3 and mur3-3 (1272), xxt1xxt2mur3-3 and mur3-3 (1197) and 35Spro:XLT2:mur3-3 vs mur3-3 (121). 550 overlapped DEGs were detected among WT vs mur3-3, xxt2mur3-3 vs mur3-3, xxt5mur3-3 vs mur3-3, and xxt1xxt2mur3-3 vs mur3-3 comparisons. These DEGs include 46 cell wall-related genes, 24 transcription factors, 6 hormone-related genes, 9 protein kinase genes and 9 aquaporin genes. The expression of all of the 550 overlapped genes is restored to near wild-type levels in the four mur3-3 suppressor lines. qRT-PCR of fifteen of these 550 genes showed that their expression levels are consistent with the digital gene expression data. Overexpression of some of these genes (XTH4, XTH30, PME3, EXPA11, MYB88, ROT3, AT5G37790, WAG2 and TIP2;3) that are down-regulated in mur3-3 partially rescued the short hypocotyl phenotype but not the aerial phenotype of mur3-3, indicating that different mechanisms exist between hypocotyl cell elongation and leaf cell elongation.
Collapse
Affiliation(s)
- Zongchang Xu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Meng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Dachuan Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Gongke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Tiantian Niu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA; Department of Plant Biology, University of Georgia, Athens, GA 30602-4712 USA.
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| |
Collapse
|
142
|
Griffiths JS, North HM. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions. THE NEW PHYTOLOGIST 2017; 214:959-966. [PMID: 28191645 DOI: 10.1111/nph.14468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/21/2016] [Indexed: 05/09/2023]
Abstract
The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage.
Collapse
Affiliation(s)
- Jonathan S Griffiths
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, CNRS, Université Paris-Saclay, Versailles, F-78000, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, CNRS, Université Paris-Saclay, Versailles, F-78000, France
| |
Collapse
|
143
|
Bendaoud A, Kehrbusch R, Baranov A, Duchemin B, Maigret JE, Falourd X, Staiger MP, Cathala B, Lourdin D, Leroy E. Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing. Carbohydr Polym 2017; 168:163-172. [PMID: 28457437 DOI: 10.1016/j.carbpol.2017.03.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
In this work, the properties of cellulose (CE)/xyloglucan (XG) biopolymer blends are investigated, taking inspiration from the outstanding mechanical properties of plant cell walls. CE and XG were first co-solubilized in an ionic liquid, 1-ethyl-3-methylimidazolium acetate, in order to blend these biopolymers with a varying CE:XG ratio. The biopolymers were then regenerated together using water to produce solid blends in the form of films. Water-soluble XG persisted in the films following regeneration in water, indicating an attractive interaction between the CE and XG. The final CE:XG ratio of the blends was close to the initial value in solutions, further suggesting that intimate mixing takes place between CE and XG. The resulting CE/XG films were found to be free of ionic liquid, transparent and with no evidence of phase separation at the micron scale. The mechanical properties of the blend with a CE:XG ratio close to one revealed a synergistic effect for which a maximum in the elongation and stress at break was observed in combination with a high elastic modulus. Atomic force microscopy indicates a co-continuous nanostructure for this composition. It is proposed that the non-monotonous variation of the mechanical performance of the films with XG content is due to this observed nanostructuration.
Collapse
Affiliation(s)
- Amine Bendaoud
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Rene Kehrbusch
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Anton Baranov
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | | - Jean Eudes Maigret
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Xavier Falourd
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Mark P Staiger
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Bernard Cathala
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Denis Lourdin
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Eric Leroy
- LUNAM Université, CNRS, GEPEA, UMR 6144, CRTT, 37, Boulevard de l'Université, 44606 St. Nazaire Cedex, France.
| |
Collapse
|
144
|
Chebli Y, Geitmann A. Cellular growth in plants requires regulation of cell wall biochemistry. Curr Opin Cell Biol 2017; 44:28-35. [DOI: 10.1016/j.ceb.2017.01.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022]
|
145
|
Gao H, Zhang Y, Wang W, Zhao K, Liu C, Bai L, Li R, Guo Y. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development. PLANT PHYSIOLOGY 2017; 173:219-239. [PMID: 27872247 PMCID: PMC5210706 DOI: 10.1104/pp.16.01719] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/20/2016] [Indexed: 05/23/2023]
Abstract
Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39 Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39 A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis.
Collapse
Affiliation(s)
- Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Yinghui Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Keke Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Chunmei Liu
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Lin Bai
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.); and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang, Hebei 050024, People's Republic of China (H.G., Y.Z., W.W., K.Z., C.L., L.B., R.L., Y.G.)
| |
Collapse
|
146
|
Zhong R, Teng Q, Haghighat M, Yuan Y, Furey ST, Dasher RL, Ye ZH. Cytosol-Localized UDP-Xylose Synthases Provide the Major Source of UDP-Xylose for the Biosynthesis of Xylan and Xyloglucan. PLANT & CELL PHYSIOLOGY 2017; 58:156-174. [PMID: 28011867 DOI: 10.1093/pcp/pcw179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/18/2016] [Indexed: 05/27/2023]
Abstract
Xylan and xyloglucan are the two major cell wall hemicelluloses in plants, and their biosynthesis requires a steady supply of the sugar donor, UDP-xylose. UDP-xylose is synthesized through conversion of UDP-glucuronic acid (UDP-GlcA) by the activities of UDP-xylose synthase (UXS). There exist six UXS genes in the Arabidopsis thaliana genome; three of them (UXS1, UXS2 and UXS4) encode Golgi-localized enzymes and the other three (UXS3, UXS5 and UXS6) encode cytosol-localized enzymes. In this report, we investigated the contributions of these UXS genes in supplying UDP-xylose for the biosynthesis of xylan and xyloglucan. Expression analyses revealed that the six UXS genes exhibited distinct and overlapping expression patterns in different cell types of stems, root-hypocotyls and young seedlings, and that the relative enzymatic activity of UXS in the cytosol was 17 times higher than that in the Golgi. Among the six UXS genes, UXS3, UXS5 and UXS6 showed the highest expression in stems and were expressed predominantly in xylem cells and interfascicular fibers. Their predominant expression in secondary wall-forming cells was consistent with the finding that the expression of UXS3, UXS5 and UXS6 was directly activated by the secondary wall NAC master switches. Although simultaneous mutations of UXS1, UXS2 and UXS4 did not cause any apparent effects on plant growth and xylan biosynthesis, simultaneous down-regulation/mutations of UXS3, UXS5 and UXS6 led to a drastic reduction in secondary wall thickening, a severe deformation of xylem vessels, a significant decrease in xylan content without an apparent reduction in its chain length and an absence of GlcA side chains in xylan, which are reminiscent of the phenotypes of some known xylan-deficient mutants. Moreover, Immunolocalization with two xyloglucan monoclonal antibodies, LM15 and LM25, revealed a significant reduction in the amount of xylogulcan in the primary walls. These results demonstrate that the cytosol-localized UXS3, UXS5 and UXS6 play a predominant role in the supply of UDP-xylose for the biosynthesis of xylan and xyloglucan.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Quincy Teng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA , USA
| | | | - Youxi Yuan
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Samuel T Furey
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Robert L Dasher
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
147
|
Biswal AK, Tan L, Atmodjo MA, DeMartini J, Gelineo-Albersheim I, Hunt K, Black IM, Mohanty SS, Ryno D, Wyman CE, Mohnen D. Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:182. [PMID: 28725262 PMCID: PMC5513058 DOI: 10.1186/s13068-017-0866-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. RESULTS Arabidopsis, Populus, rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography-mass spectrometry (GC-MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC-MS of alditol acetates; (3) GC-MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods. CONCLUSIONS This work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Li Tan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Melani A. Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Jaclyn DeMartini
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
- Center for Environmental Research and Technology (CE-CERT) and Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, 92507 CA USA
- DuPont Industrial Biosciences, Palo Alto, CA 94304 USA
| | - Ivana Gelineo-Albersheim
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Kimberly Hunt
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
- South Georgia State College, Douglas, GA 31533 USA
| | - Ian M. Black
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
| | - Sushree S. Mohanty
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - David Ryno
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| | - Charles E. Wyman
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
- Center for Environmental Research and Technology (CE-CERT) and Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, 92507 CA USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge, 37831 TN USA
| |
Collapse
|
148
|
Wang H, Lan P, Shen RF. Integration of transcriptomic and proteomic analysis towards understanding the systems biology of root hairs. Proteomics 2016; 16:877-93. [PMID: 26749523 DOI: 10.1002/pmic.201500265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 11/11/2022]
Abstract
Plants and other multicellular organisms consist of many types of specialized cells. Systems-wide exploration of large-scale information from singe cell level is essential to understand how cell works. Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, in the interaction with microbe, and in plant anchorage, and represent an ideal model to study the biology of a single cell type. Single cell sampling combined with omics approaches has been applied to study plant root hairs. This review emphasizes the integration of omics approaches towards understanding the systems biology of root hairs, unraveling the common and plant species-specific properties of root hairs, as well as the concordance of protein and transcript abundance. Understanding plant root hair biology by mining the integrated omics data will provide a way to know how a single cell differentiates, elongates, and functions, which might help molecularly modify crops for developing sustainable agriculture practices.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P. R. China
| |
Collapse
|
149
|
Extraction, purification and anti-proliferative activities of polysaccharides from Lentinus edodes. Int J Biol Macromol 2016; 93:136-144. [DOI: 10.1016/j.ijbiomac.2016.05.100] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 11/22/2022]
|
150
|
Fernandes JC, Goulao LF, Amâncio S. Immunolocalization of cell wall polymers in grapevine (Vitis vinifera) internodes under nitrogen, phosphorus or sulfur deficiency. JOURNAL OF PLANT RESEARCH 2016; 129:1151-1163. [PMID: 27417099 DOI: 10.1007/s10265-016-0851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 04/05/2016] [Indexed: 06/06/2023]
Abstract
The impact on cell wall (CW) of the deficiency in nitrogen (-N), phosphorus (-P) or sulphur (-S), known to impair essential metabolic pathways, was investigated in the economically important fruit species Vitis vinifera L. Using cuttings as an experimental model a reduction in total internode number and altered xylem shape was observed. Under -N an increased internode length was also seen. CW composition, visualised after staining with calcofluor white, Toluidine blue and ruthenium red, showed decreased cellulose in all stresses and increased pectin content in recently formed internodes under -N compared to the control. Using CW-epitope specific monoclonal antibodies (mAbs), lower amounts of extensins incorporated in the wall were also observed under -N and -P conditions. Conversely, increased pectins with a low degree of methyl-esterification and richer in long linear 1,5-arabinan rhamnogalacturonan-I (RG-I) side chains were observed under -N and -P in mature internodes which, in the former condition, were able to form dimeric association through calcium ions. -N was the only condition in which 1,5-arabinan branched RG-I content was not altered, as -P and -S older internodes showed, respectively, lower and higher amounts of this polymer. Higher xyloglucan content in older internodes was also observed under -N. The results suggest that impairments of specific CW components led to changes in the deposition of other polymers to promote stiffening of the CW. The unchanged extensin amount observed under -S may contribute to attenuating the effects on the CW integrity caused by this stress. Our work showed that, in organized V. vinifera tissues, modifications in a given CW component can be compensated by synthesis of different polymers and/or alternative linking between polymers. The results also pinpoint different strategies at the CW level to overcome mineral stress depending on how essential they are to cell growth and plant development.
Collapse
Affiliation(s)
- J C Fernandes
- Instituto Superior de Agronomia, LEAF, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - L F Goulao
- Instituto Superior de Agronomia, LEAF, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
- BioTrop, Instituto de Investigação Científica Tropical (IICT, IP), Pólo Mendes Ferrão-Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - S Amâncio
- Instituto Superior de Agronomia, LEAF, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|