101
|
Verma N, Burma PK. Regulation of tapetum-specific A9 promoter by transcription factors AtMYB80, AtMYB1 and AtMYB4 in Arabidopsis thaliana and Nicotiana tabacum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:481-494. [PMID: 28849604 DOI: 10.1111/tpj.13671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/18/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Tapetum-specific promoters have been successfully used for developing transgenic-based pollination control systems. Although several tapetum-specific promoters have been identified, in-depth studies on regulation of such promoters are scarce. The present study analyzes the regulation of the A9 promoter, one of the first tapetum-specific promoter identified in Arabidopsis thaliana. Transcription factors (TFs) AtMYB80, AtMYB1 (positive regulators) identified by in silico analysis were found to upregulate A9 promoter activity following the over-expression of the TFs in transient and stable (transgenic) expression assays in both A. thaliana and tobacco. Furthermore, mutations of binding sites of these TFs in the A9 promoter led to loss of its activity. The role of a negative regulator AtMYB4 was also studied by analyzing the activity of A9 promoter following transient expression of RNAi against the TF and by mutating binding sites for AtMYB4 in the A9 promoter. While no changes were observed in case of A. thaliana, the A9 promoter was activated in the roots of transgenic tobacco plants, highlighting the role of these cis-elements in keeping the A9 promoter repressed in the roots of tobacco.
Collapse
Affiliation(s)
- Neetu Verma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Kumar Burma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
102
|
Zhu X, Yu J, Shi J, Tohge T, Fernie AR, Meir S, Aharoni A, Xu D, Zhang D, Liang W. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:612-628. [PMID: 28783252 DOI: 10.1111/jipb.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/03/2017] [Indexed: 05/07/2023]
Abstract
Lipid and phenolic metabolism are important for pollen exine formation. In Arabidopsis, polyketide synthases (PKSs) are essential for both sporopollenin biosynthesis and exine formation. Here, we characterized the role of a polyketide synthase (OsPKS2) in male reproduction of rice (Oryza sativa). Recombinant OsPKS2 catalyzed the condensation of fatty acyl-CoA with malonyl-CoA to generate triketide and tetraketide α-pyrones, the main components of pollen exine. Indeed, the ospks2 mutant had defective exine patterning and was male sterile. However, the mutant showed no significant reduction in sporopollenin accumulation. Compared with the WT (wild type), ospks2 displayed unconfined and amorphous tectum and nexine layers in the exine, and less organized Ubisch bodies. Like the pksb/lap5 mutant of the Arabidopsis ortholog, ospks2 showed broad alterations in the profiles of anther-related phenolic compounds. However, unlike pksb/lap5, in which most detected phenolics were substantially decreased, ospks2 accumulated higher levels of phenolics. Based on these results and our observation that OsPKS2 is unable to fully restore the exine defects in the pksb/lap5, we propose that PKS proteins have functionally diversified during evolution. Collectively, our results suggest that PKSs represent a conserved and diversified biochemical pathway for anther and pollen development in higher plants.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, SA 5005, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
103
|
Zou T, Li S, Liu M, Wang T, Xiao Q, Chen D, Li Q, Liang Y, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep 2017; 7:6863. [PMID: 28761138 PMCID: PMC5537339 DOI: 10.1038/s41598-017-07064-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/21/2017] [Indexed: 11/25/2022] Open
Abstract
Strictosidine synthase (STR) plays an important role in the biosynthesis of terpenoid indole alkaloids (TIAs) and is expressed in a range of active meristematic tissues of higher plants. STR proteins are involved in different physiological and biochemical pathways. However, the function of STR proteins in rice development remains poorly understood. In this study, we identified 21 possible STR-like (OsSTRL) family members in rice genome and found that only one gene, OsSTRL2, exhibited a pre-emergency specific florescence expression pattern. Tissue-specific expression profile analysis, β-glucuronidase histochemical (GUS) staining and RNA in situ hybridization confirmed that OsSTRL2 was highly expressed in tapetal cells and microspores. Comparative protein sequence analysis indicated that OsSTRL2 lacked the key catalytic residue found in a typical STR (STR1), although it possessed conserved β-propellers and α-helices formed the basic structure of STR1. OsSTRL2 knockout mutant resulted to male sterility because of the defects in anther development and pollen wall formation. Subcellular localization of OsSTRL2-YFP revealed that the OsSTRL2 protein was primarily localized in the endoplasmic reticulum (ER). Therefore, OsSTRL2 is an atypical strictosidine synthase that plays crucial roles in regulating anther development and pollen wall formation in rice.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China.
| | - Mingxing Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Xiao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China.
| |
Collapse
|
104
|
Han Z, Qin Y, Deng Y, Kong F, Wang Z, Shen G, Wang J, Duan B, Li R. Expression profiles of a cytoplasmic male sterile line of Gossypium harknessii and its fertility restorer and maintainer lines revealed by RNA-Seq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:106-115. [PMID: 28551417 DOI: 10.1016/j.plaphy.2017.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
The Gossypium harknessii background cytoplasmic male sterility (CMS) system has been used in cotton hybrid breeding in China. However, the mechanism underlying pollen abortion and fertility restoration in CMS remains to be determined. In this study, we used RNA-seq to identify critical genes and pathways associated with CMS in G. harknessii based CMS lines (588A), the near isogenic restorer lines (588R), and maintainer lines (588B). We performed an assembly of 80,811,676 raw reads into 89,939 high-quality unigenes with an average length of 698 bp. Among these, 72.62% unigenes were annotated in public protein databases and were classified into functional clusters. In addition, we investigated the changes in expression of genes between 588A and 588B (588R); the RNA-seq data showed 742 differentially expressed genes (DEGs) between 588A and 588B and 748 DEGs between 588A and 588R. They were mainly down-regulated in 588A and most of them distributed in metabolic and biosynthesis of secondary metabolites pathways. Further analysis revealed 23 pollen development related genes were differentially expressed between 588A and 588B. Numerous genes associated with tapetum development were down-regulated in 588A, implicating tapetum dysplasia may be a key reason for pollen abortion in CMS lines. Also, among DEGs between 588A and 588R, we identified two PPR genes which were highly up-regulated in restorer line. This study may provide assistance for detailed molecular analysis and a better understanding of harknessii based CMS in cotton.
Collapse
Affiliation(s)
- Zongfu Han
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Yuxiang Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Yongsheng Deng
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Fanjin Kong
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Zongwen Wang
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Guifang Shen
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Jinghui Wang
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Bing Duan
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China
| | - Ruzhong Li
- Cotton Research Centre, Shandong Academy of Agricultural Sciences, 250100 Jinan, PR China.
| |
Collapse
|
105
|
Ji JL, Yang LM, Fang ZY, Zhuang M, Zhang YY, Lv HH, Liu YM, Li ZS. Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1441-1451. [PMID: 28405714 DOI: 10.1007/s00122-017-2899-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The LTR-retrotransposon insertion in BoCYP704B1 is proved to be the primary cause of the male sterility in cabbage. Effective allele-specific markers were developed for marker-assisted selection of male sterile gene. 83121A is a spontaneous male sterile mutant identified from cabbage. Genetic analysis indicated that male sterility is controlled by a single recessive gene. Pollen wall formation in the 83121A mutant was severely defective, with a lack of sporopollenin or exine. To understand the mechanisms of male sterility in 83121A, transcription analysis using RNA-Seq was carried out in the buds of the male sterile line 83121A and the male fertile line 83121B, which are near-isogenic lines differing only in the fertility trait. Via expression analysis of differentially expressed genes involved in pollen exine development before the bicellular pollen stage, BoCYP704B1 was identified as a candidate gene, which was approximately downregulated 30-fold in 83121A. BoCYP704B1 is a member of the evolutionarily conserved CYP704B family, which is essential for sporopollenin formation. The BoCYP704B1 transcript is specifically detected in the developing anthers of wild-type cabbage. Further sequence analysis revealed that a 5424-bp long terminal repeat-retrotransposon (LTR-RT) was inserted into the first exon of BoCYP704B1 in 83121A, which is not found in wild-type plants. The insertion of LTR-RT not only reduced the expression of BoCYP704B1 but also altered structure of protein encoded by BoCYP704B1. Moreover, linkage analysis showed that the homozygotic mutational BoCYP704B1 always cosegregated with male sterility. These data suggest that the LTR-RT insertion in BoCYP704B1 hinders sporopollenin formation in 83121A leading to male sterility. The allele-specific markers developed in this study were effective for marker-assisted selection of the male sterile gene.
Collapse
Affiliation(s)
- Jia-Lei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Li-Mei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Zhi-Yuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yang-Yong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hong-Hao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yu-Mei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhan-Sheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
106
|
Yang X, Liang W, Chen M, Zhang D, Zhao X, Shi J. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. PLANTA 2017; 246:105-122. [PMID: 28382520 DOI: 10.1007/s00425-017-2691-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/02/2017] [Indexed: 05/18/2023]
Abstract
Loss of function mutation of rice OsACOS12 impairs lipid metabolism-mediated anther cuticle and pollen wall formation, and interferes with tapetum programmed cell death, leading to male sterility. Acyl-CoA Synthetase (ACOS) is one of the enzymes activating fatty acids for various metabolic functions in plants. Here, we show that OsACOS12, an orthologue of Arabidopsis ACOS5 in rice, is crucial for rice fertility. Similar to acos5, osaocs12 mutant had no mature pollen. But unlike acos5, osaocs12 produced defective anthers lacking cutin and Ubisch bodies on the epidermal and inner surfaces, respectively, and delayed programmed cell death (PCD)-induced tapetum degradation. Those phenotypic changes were evident at stage 10, during which OsACOS12 had its maximum expression in tapetal cells and microspores. Chemical analysis revealed that the levels of anther cuticular lipid components (wax and cutin monomers) were significantly reduced in osaocs12, while the expression levels of three known lipid biosynthetic genes were unchanged. Recombinant OsACOS12 enzyme was shown to catalyze the conversion of C18:1 fatty acid to C18:1 CoA in vitro. Phylogenetic analysis indicated that OsACOS12 is an ancient and conserved enzyme associated with the plant's colonization to earth. Collectively, our study suggests that OsACOS12 is an ancient enzyme participating in a conserved metabolic pathway for diversified biochemical functions to secure male reproduction in plants.
Collapse
Affiliation(s)
- Xijia Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Plant Genomics Center, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| | - Xiangxiang Zhao
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China.
| |
Collapse
|
107
|
Liu Z, Lin S, Shi J, Yu J, Zhu L, Yang X, Zhang D, Liang W. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:263-277. [PMID: 28378445 DOI: 10.1111/tpj.13561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/28/2023]
Abstract
Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.
Collapse
Affiliation(s)
- Ze Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sen Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
108
|
Wani TA, Pandith SA, Gupta AP, Chandra S, Sharma N, Lattoo SK. Molecular and functional characterization of two isoforms of chalcone synthase and their expression analysis in relation to flavonoid constituents in Grewia asiatica L. PLoS One 2017; 12:e0179155. [PMID: 28662128 PMCID: PMC5491003 DOI: 10.1371/journal.pone.0179155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/24/2017] [Indexed: 01/09/2023] Open
Abstract
Chalcone synthase constitutes a functionally diverse gene family producing wide range of flavonoids by catalyzing the initial step of the phenylpropanoid pathway. There is a pivotal role of flavonoids in pollen function as they are imperative for pollen maturation and pollen tube growth during sexual reproduction in flowering plants. Here we focused on medicinally important fruit-bearing shrub Grewia asiatica. It is a rich repository of flavonoids. The fruits are highly acclaimed for various putative health benefits. Despite its importance, full commercial exploitation is hampered due to two drawbacks which include short shelf life of its fruits and larger seed volume. To circumvent these constraints, seed abortion is one of the viable options. Molecular interventions tested in a number of economic crops have been to impair male reproductive function by disrupting the chalcone synthase (CHS) gene activity. Against this backdrop the aim of the present study included cloning and characterization of two full-length cDNA clones of GaCHS isoforms from the CHS multigene family. These included GaCHS1 (NCBI acc. KX129910) and GaCHS2 (NCBI acc. KX129911) with an ORF of 1176 and 1170 bp, respectively. GaCHSs were heterologously expressed and purified in E. coli to validate their functionality. Functionality of CHS isoforms was also characterized via enzyme kinetic studies using five different substrates. We observed differential substrate specificities in terms of their Km and Vmax values. Accumulation of flavonoid constituents naringenin and quercetin were also quantified and their relative concentrations corroborated well with the expression levels of GaCHSs. Further, our results demonstrate that GaCHS isoforms show differential expression patterns at different reproductive phenological stages. Transcript levels of GaCHS2 were more than its isoform GaCHS1 at the anthesis stage of flower development pointing towards its probable role in male reproductive maturity.
Collapse
Affiliation(s)
- Tareq A Wani
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Shahzad A Pandith
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Ajai P Gupta
- Quality Control and Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Suresh Chandra
- Genetic Resources and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Namrata Sharma
- Department of Botany, University of Jammu, Jammu Tawi, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
109
|
Li H, Wang Y, Wu M, Li L, Jin C, Zhang Q, Chen C, Song W, Wang C. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli ( Brassica oleracea var. italica) Pollen. FRONTIERS IN PLANT SCIENCE 2017; 8:404. [PMID: 28392797 PMCID: PMC5364186 DOI: 10.3389/fpls.2017.00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli (Brassica oleracea var. italica) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, Nankai UniversityTianjin, China
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Yu Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chuan Jin
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Qingli Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| |
Collapse
|
110
|
Kontturi J, Osama R, Deng X, Bashandy H, Albert VA, Teeri TH. Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida. PHYTOCHEMISTRY 2017; 134:38-45. [PMID: 27884449 DOI: 10.1016/j.phytochem.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 05/22/2023]
Abstract
The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization.
Collapse
Affiliation(s)
- Juha Kontturi
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Raisa Osama
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xianbao Deng
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Hany Bashandy
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland; Department of Genetics, Cairo University, 13 Gamaa St., Giza, 12619, Egypt
| | - Victor A Albert
- Department of Biological Sciences, University of Buffalo, USA
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland.
| |
Collapse
|
111
|
Chen X, Zhang H, Sun H, Luo H, Zhao L, Dong Z, Yan S, Zhao C, Liu R, Xu C, Li S, Chen H, Jin W. IRREGULAR POLLEN EXINE1 Is a Novel Factor in Anther Cuticle and Pollen Exine Formation. PLANT PHYSIOLOGY 2017; 173:307-325. [PMID: 28049856 PMCID: PMC5210707 DOI: 10.1104/pp.16.00629] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/11/2016] [Indexed: 05/22/2023]
Abstract
Anther cuticle and pollen exine are protective barriers for pollen development and fertilization. Despite that several regulators have been identified for anther cuticle and pollen exine development in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), few genes have been characterized in maize (Zea mays) and the underlying regulatory mechanism remains elusive. Here, we report a novel male-sterile mutant in maize, irregular pollen exine1 (ipe1), which exhibited a glossy outer anther surface, abnormal Ubisch bodies, and defective pollen exine. Using map-based cloning, the IPE1 gene was isolated as a putative glucose-methanol-choline oxidoreductase targeted to the endoplasmic reticulum. Transcripts of IPE1 were preferentially accumulated in the tapetum during the tetrad and early uninucleate microspore stage. A biochemical assay indicated that ipe1 anthers had altered constituents of wax and a significant reduction of cutin monomers and fatty acids. RNA sequencing data revealed that genes implicated in wax and flavonoid metabolism, fatty acid synthesis, and elongation were differentially expressed in ipe1 mutant anthers. In addition, the analysis of transfer DNA insertional lines of the orthologous gene in Arabidopsis suggested that IPE1 and their orthologs have a partially conserved function in male organ development. Our results showed that IPE1 participates in the putative oxidative pathway of C16/C18 ω-hydroxy fatty acids and controls anther cuticle and pollen exine development together with MALE STERILITY26 and MALE STERILITY45 in maize.
Collapse
Affiliation(s)
- Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Hua Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Huayue Sun
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Hongbing Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Li Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Zhaobin Dong
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Shuangshuang Yan
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Cheng Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Renyi Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Chunyan Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Song Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.)
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.)
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Huabang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China;
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.);
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.);
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, MOE Key Laboratory of Crop Heterosis and Utilization (X.C., H.S., Z.D., W.J.), and Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops (S.Y.), China Agricultural University, Beijing 100193, China;
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (H.Z., L.Z., C.X., S.L., H.C.);
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, Hunan 410128, China (H.L.);
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (C.Z., R.L.); and
- University of the Chinese Academy of Sciences, Beijing 100039, China (H.Z.)
| |
Collapse
|
112
|
Li WL, Liu Y, Douglas CJ. Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning. PLANT PHYSIOLOGY 2017; 173:167-182. [PMID: 27495941 PMCID: PMC5210704 DOI: 10.1104/pp.16.00471] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/30/2016] [Indexed: 05/18/2023]
Abstract
The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophyte-derived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a transient cell wall matrix formed on the surface of microspores at the late tetrad stage, is hypothesized to play a key role. Arabidopsis (Arabidopsis thaliana) spongy (spg) and uneven pattern of exine (upex) mutants exhibit defective and irregular exine patterns. SPG2 (synonymous with IRREGULAR XYLEM9-LIKE [IRX9L]) encodes a family GT43 glycosyltransferase involved in xylan backbone biosynthesis, while UPEX1 encodes a family GT31 glycosyltransferase likely involved in galactosylation of arabinogalactan proteins. Imaging of developing irx9l microspores showed that the earliest detectable defect was in primexine formation. Furthermore, wild-type microspores contained primexine-localized epitopes indicative of the presence of xylan, but these were absent in irx9l These data, together with the spg phenotype of a mutant in IRX14L, which also plays a role in xylan backbone elongation, indicate the presence of xylan in pollen wall primexine, which plays a role in exine patterning on the microspore surface. We observed an aberrant primexine and irregular patterns of incipient sporopollenin deposition in upex1, suggesting that primexine-localized arabinogalactan proteins could play roles in sporopollenin adhesion and patterning early in microspore wall development. Our data provide new insights into the biochemical and functional properties of the primexine component of the microspore cell wall.
Collapse
Affiliation(s)
- Wenhua L Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yuanyuan Liu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
113
|
Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, Lampugnani ER, Doblin MS, Bacic A, Ishiguro S. KNS4/UPEX1: A Type II Arabinogalactan β-(1,3)-Galactosyltransferase Required for Pollen Exine Development. PLANT PHYSIOLOGY 2017; 173:183-205. [PMID: 27837085 PMCID: PMC5210738 DOI: 10.1104/pp.16.01385] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 05/02/2023]
Abstract
Pollen exine is essential for protection from the environment of the male gametes of seed-producing plants, but its assembly and composition remain poorly understood. We previously characterized Arabidopsis (Arabidopsis thaliana) mutants with abnormal pollen exine structure and morphology that we named kaonashi (kns). Here we describe the identification of the causal gene of kns4 that was found to be a member of the CAZy glycosyltransferase 31 gene family, identical to UNEVEN PATTERN OF EXINE1, and the biochemical characterization of the encoded protein. The characteristic exine phenotype in the kns4 mutant is related to an abnormality of the primexine matrix laid on the surface of developing microspores. Using light microscopy with a combination of type II arabinogalactan (AG) antibodies and staining with the arabinogalactan-protein (AGP)-specific β-Glc Yariv reagent, we show that the levels of AGPs in the kns4 microspore primexine are considerably diminished, and their location differs from that of wild type, as does the distribution of pectin labeling. Furthermore, kns4 mutants exhibit reduced fertility as indicated by shorter fruit lengths and lower seed set compared to the wild type, confirming that KNS4 is critical for pollen viability and development. KNS4 was heterologously expressed in Nicotiana benthamiana, and was shown to possess β-(1,3)-galactosyltransferase activity responsible for the synthesis of AG glycans that are present on both AGPs and/or the pectic polysaccharide rhamnogalacturonan I. These data demonstrate that defects in AGP/pectic glycans, caused by disruption of KNS4 function, impact pollen development and viability in Arabidopsis.
Collapse
Affiliation(s)
- Toshiya Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Joan Oñate Narciso
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Wei Zeng
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Allison van de Meene
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Masayuki Yasutomi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Shunsuke Takemura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Edwin R Lampugnani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Monika S Doblin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Antony Bacic
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (T.S., M.Y., S.T., S.I.); and
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Victoria 3010, Australia (J.O.N., W.Z., A.v.d.M., E.R.L., M.S.D., A.B.)
| |
Collapse
|
114
|
Xiong SX, Lu JY, Lou Y, Teng XD, Gu JN, Zhang C, Shi QS, Yang ZN, Zhu J. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:936-946. [PMID: 27460657 DOI: 10.1111/tpj.13284] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.
Collapse
Affiliation(s)
- Shuang-Xi Xiong
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jie-Yang Lu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yue Lou
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xiao-Dong Teng
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jing-Nan Gu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Cheng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Qiang-Sheng Shi
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
115
|
Shimizu Y, Ogata H, Goto S. Type III Polyketide Synthases: Functional Classification and Phylogenomics. Chembiochem 2016; 18:50-65. [DOI: 10.1002/cbic.201600522] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yugo Shimizu
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Hiroyuki Ogata
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| | - Susumu Goto
- Bioinformatics Center; Institute for Chemical Research; Kyoto University; Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
116
|
Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC PLANT BIOLOGY 2016. [PMID: 27871243 DOI: 10.1186/s12870-016-0943-949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Sporopollenin is a major component of the pollen exine pattern. In Arabidopsis, acyl-CoA synthetase5 (ACOS5) is involved in sporopollenin precursor biosynthesis. In this study, we identified its orthologue, OsACOS12, in rice (Oryza sativa) and compared the functional conservation of ACOS in rice to Arabidopsis. RESULTS Sequence analysis showed that OsACOS12 shares 63.9 % amino acid sequence identity with ACOS5. The osacos12 mutation caused by a pre-mature stop codon in LOC_Os04g24530 exhibits defective sexine resulting in a male sterile phenotype in rice. In situ hybridization shows that OsACOS12 is expressed in tapetal cells and microspores at the transcript level. The localization of OsACOS12-GFP demonstrated that OsACOS12 protein is accumulated in tapetal cells and anther locules. OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis. CONCLUSIONS OsACOS12 is an orthologue of ACOS5 that is essential for sporopollenin synthesis in rice. ACOS5 and OsACOS12 are conserved for pollen wall formation in monocot and dicot species.
Collapse
Affiliation(s)
- Yueling Li
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Dandan Li
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zongli Guo
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Qiangsheng Shi
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Shuangxi Xiong
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Cheng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China.
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China.
| |
Collapse
|
117
|
Li Y, Li D, Guo Z, Shi Q, Xiong S, Zhang C, Zhu J, Yang Z. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC PLANT BIOLOGY 2016; 16:256. [PMID: 27871243 PMCID: PMC5117612 DOI: 10.1186/s12870-016-0943-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sporopollenin is a major component of the pollen exine pattern. In Arabidopsis, acyl-CoA synthetase5 (ACOS5) is involved in sporopollenin precursor biosynthesis. In this study, we identified its orthologue, OsACOS12, in rice (Oryza sativa) and compared the functional conservation of ACOS in rice to Arabidopsis. RESULTS Sequence analysis showed that OsACOS12 shares 63.9 % amino acid sequence identity with ACOS5. The osacos12 mutation caused by a pre-mature stop codon in LOC_Os04g24530 exhibits defective sexine resulting in a male sterile phenotype in rice. In situ hybridization shows that OsACOS12 is expressed in tapetal cells and microspores at the transcript level. The localization of OsACOS12-GFP demonstrated that OsACOS12 protein is accumulated in tapetal cells and anther locules. OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis. CONCLUSIONS OsACOS12 is an orthologue of ACOS5 that is essential for sporopollenin synthesis in rice. ACOS5 and OsACOS12 are conserved for pollen wall formation in monocot and dicot species.
Collapse
Affiliation(s)
- Yueling Li
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Dandan Li
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Zongli Guo
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Qiangsheng Shi
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Shuangxi Xiong
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Cheng Zhang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234 China
| |
Collapse
|
118
|
Li H, Liang J, Chen H, Ding G, Ma B, He N. Evolutionary and functional analysis of mulberry type III polyketide synthases. BMC Genomics 2016; 17:540. [PMID: 27487946 PMCID: PMC4973071 DOI: 10.1186/s12864-016-2843-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/16/2016] [Indexed: 01/05/2023] Open
Abstract
Background Type III polyketide synthases are important for the biosynthesis of flavonoids and various plant polyphenols. Mulberry plants have abundant polyphenols, but very little is known about the mulberry type III polyketide synthase genes. An analysis of these genes may provide new targets for genetic improvement to increase relevant secondary metabolites and enhance the plant tolerance to biotic and abiotic stresses. Results Eighteen genes encoding type III polyketide synthases were identified, including six chalcone synthases (CHS), ten stilbene synthases (STS), and two polyketide synthases (PKS). Functional characterization of four genes representing most of the MnCHS and MnSTS genes by coexpression with 4-Coumaroyl-CoA ligase in Escherichia coli indicated that their products were able to catalyze p-coumaroyl-CoA and malonyl-CoA to generate naringenin and resveratrol, respectively. Microsynteny analysis within mulberry indicated that segmental and tandem duplication events contributed to the expansion of the MnCHS family, while tandem duplications were mainly responsible for the generation of the MnSTS genes. Combining the evolution and expression analysis results of the mulberry type III PKS genes indicated that MnCHS and MnSTS genes evolved mainly under purifying selection to maintain their original functions, but transcriptional subfunctionalization occurred during long-term species evolution. Moreover, mulberry leaves can rapidly accumulated oxyresveratrol after UV-C irradiation, suggesting that resveratrol was converted to oxyresveratrol. Conclusions Characterizing the functions and evolution of mulberry type III PKS genes is crucial for advancing our understanding of these genes and providing the basis for further studies on the biosynthesis of relevant secondary metabolites in mulberry plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2843-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Hu Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Guangyu Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
119
|
Qin M, Tian T, Xia S, Wang Z, Song L, Yi B, Wen J, Shen J, Ma C, Fu T, Tu J. Heterodimer Formation of BnPKSA or BnPKSB with BnACOS5 Constitutes a Multienzyme Complex in Tapetal Cells and is Involved in Male Reproductive Development in Brassica napus. PLANT & CELL PHYSIOLOGY 2016; 57:1643-56. [PMID: 27335346 DOI: 10.1093/pcp/pcw092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/29/2016] [Indexed: 05/07/2023]
Abstract
Multienzyme associations localized to specific subcellular sites are involved in several critical functions in cellular metabolism, such as plant survival and reproduction. To date, few multienzyme complexes involved in male fertility have been examined in Brassica napus Here, we reported that in B. napus, the members of a multienzyme complex work in an interaction pattern different from that in Arabidopsis thaliana for sporopollenin biosynthesis. 7365A, a male-sterile mutant with a relatively smooth anther cuticle, was found to have a dramatic reduction in both cutin monomers and wax composition. Proteomic comparison between the mutant 7365A and wild-type 7365B showed down-regulation of three sporopollenin biosynthetic enzymes, namely BnPKSA, BnPKSB and BnTKPR; these enzymes were tightly co-expressed with BnACOS5. BnPKSA and BnPKSB showed similar expression patterns but distinct accumulation levels, suggesting that they had partially distinct functions during sporopollenin biosynthesis. In vitro and in vivo analyses demonstrated that BnPKSB directly interacted with BnPKSA and BnACOS5, but no such interactions were found in the present investigation for BnTKPR1. Interestingly, the interaction between PKSA and PKSB has not been discovered in Arabidopsis, which may indicate a new interaction representing an additional efficient regulation method in B. napus Taken together, we propose that BnPKSA and BnPKSB may comprise a heterodimer combined with BnACOS5, constituting a sporopollenin metabolon in tapetal cells that is related to male reproductive development in B. napus.
Collapse
Affiliation(s)
- Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
120
|
Exploiting the Biosynthetic Potential of Type III Polyketide Synthases. Molecules 2016; 21:molecules21060806. [PMID: 27338328 PMCID: PMC6274091 DOI: 10.3390/molecules21060806] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
Polyketides are structurally and functionally diverse secondary metabolites that are biosynthesized by polyketide synthases (PKSs) using acyl-CoA precursors. Recent studies in the engineering and structural characterization of PKSs have facilitated the use of target enzymes as biocatalysts to produce novel functionally optimized polyketides. These compounds may serve as potential drug leads. This review summarizes the insights gained from research on type III PKSs, from the discovery of chalcone synthase in plants to novel PKSs in bacteria and fungi. To date, at least 15 families of type III PKSs have been characterized, highlighting the utility of PKSs in the development of natural product libraries for therapeutic development.
Collapse
|
121
|
Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. PLANT CELL REPORTS 2016; 35:967-93. [PMID: 26905724 DOI: 10.1007/s00299-016-1949-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, India.
| | - Uday C Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Deepak Bisht
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, India
| | | |
Collapse
|
122
|
Soid-Raggi G, Sánchez O, Ramos-Balderas JL, Aguirre J. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development. Front Microbiol 2016; 7:353. [PMID: 27047469 PMCID: PMC4804170 DOI: 10.3389/fmicb.2016.00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans.
Collapse
Affiliation(s)
| | | | | | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| |
Collapse
|
123
|
Daku RM, Rabbi F, Buttigieg J, Coulson IM, Horne D, Martens G, Ashton NW, Suh DY. PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability. PLoS One 2016; 11:e0146817. [PMID: 26752629 PMCID: PMC4709238 DOI: 10.1371/journal.pone.0146817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores.
Collapse
Affiliation(s)
- Rhys M. Daku
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fazle Rabbi
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Josef Buttigieg
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Ian M. Coulson
- Department of Geology, University of Regina, Regina, Saskatchewan, Canada
| | - Derrick Horne
- BioImaging Facility, University of British Colombia, Vancouver, British Columbia, Canada
| | - Garnet Martens
- BioImaging Facility, University of British Colombia, Vancouver, British Columbia, Canada
| | - Neil W. Ashton
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- * E-mail: (DYS); (NWA)
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
- * E-mail: (DYS); (NWA)
| |
Collapse
|
124
|
Abstract
Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.
Collapse
Affiliation(s)
- Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Xijia Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| |
Collapse
|
125
|
Gómez JF, Talle B, Wilson ZA. Anther and pollen development: A conserved developmental pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:876-91. [PMID: 26310290 PMCID: PMC4794635 DOI: 10.1111/jipb.12425] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/23/2015] [Indexed: 05/19/2023]
Abstract
Pollen development is a critical step in plant development that is needed for successful breeding and seed formation. Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield. However, although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species, such as Arabidopsis and rice, little is known about the equivalent processes in important crops. Nevertheless the onset of increased genomic information and genetic tools is facilitating translation of information from the models to crops, such as barley and wheat; this will enable increased understanding and manipulation of these pathways for agricultural improvement.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
126
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and Biochemical Mechanisms of Pollen Wall Development. TRENDS IN PLANT SCIENCE 2015; 20:741-753. [PMID: 26442683 DOI: 10.1016/j.tplants.2015.07.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 05/18/2023]
Abstract
The pollen wall is a specialized extracellular cell wall matrix that surrounds male gametophytes and plays an essential role in plant reproduction. Uncovering the mechanisms that control the synthesis and polymerization of the precursors of pollen wall components has been a major research focus in plant biology. We review current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regulation are addressed. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meihua Cui
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
127
|
Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep 2015; 5:9608. [PMID: 26043720 PMCID: PMC4456728 DOI: 10.1038/srep09608] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
To understand the mechanisms of male sterility in cotton (Gossypium spp.), combined histological, biochemical and transcription analysis using RNA-Seq was carried out in the anther of the single-gene recessive genic male sterility system of male sterile line 1355A and male fertile line 1355B, which are near-isogenic lines (NILs) differing only in the fertility trait. A total of 2,446 differentially expressed genes were identified between the anthers of 1355AB lines, at three different stages of development. Cluster analysis and functional assignment of differentially expressed genes revealed differences in transcription associated with pollen wall and anther development, including the metabolism of fatty acids, glucose, pectin and cellulose. Histological and biochemical analysis revealed that a major cellular defect in the 1355A was a thicker nexine, consistent with the RNA-seq data, and further gene expression studies implicated differences in fatty acids synthesis and metabolism. This study provides insight into the phenotypic characteristics and gene regulatory network of the genic male sterile line 1355A in upland cotton.
Collapse
|
128
|
Quilichini TD, Grienenberger E, Douglas CJ. The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. PHYTOCHEMISTRY 2015; 113:170-82. [PMID: 24906292 DOI: 10.1016/j.phytochem.2014.05.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The formation of the durable outer pollen wall, largely composed of sporopollenin, is essential for the protection of the male gametophyte and plant reproduction. Despite its apparent strict conservation amongst land plants, the composition of sporopollenin and the biosynthetic pathway(s) yielding this recalcitrant biopolymer remain elusive. Recent molecular genetic studies in Arabidopsis thaliana (Arabidopsis) and rice have, however, identified key genes involved in sporopollenin formation, allowing a better understanding of the biochemistry and cell biology underlying sporopollenin biosynthesis and pollen wall development. Herein, current knowledge of the biochemical composition of the outer pollen wall is reviewed, with an emphasis on enzymes with characterized biochemical activities in sporopollenin and pollen coat biosynthesis. The tapetum, which forms the innermost sporophytic cell layer of the anther and envelops developing pollen, plays an essential role in sporopollenin and pollen coat formation. Recent studies show that several tapetum-expressed genes encode enzymes that metabolize fatty acid derived compounds to form putative sporopollenin precursors, including tetraketides derived from fatty acyl-CoA starter molecules, but analysis of mutants defective in pollen wall development indicate that other components are also incorporated into sporopollenin. Also highlighted are the many uncertainties remaining in the development of a sporopollenin-fortified pollen wall, particularly in relation to the mechanisms of sporopollenin precursor transport and assembly into the patterned form of the pollen wall. A working model for sporopollenin biosynthesis is proposed based on the data obtained largely from studies of Arabidopsis, and future challenges to complete our understanding of pollen wall biology are outlined.
Collapse
Affiliation(s)
- Teagen D Quilichini
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Etienne Grienenberger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
129
|
Ma Y, Kang J, Wu J, Zhu Y, Wang X. Identification of tapetum-specific genes by comparing global gene expression of four different male sterile lines in Brassica oleracea. PLANT MOLECULAR BIOLOGY 2015; 87:541-54. [PMID: 25711971 PMCID: PMC4377141 DOI: 10.1007/s11103-015-0287-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 01/19/2015] [Indexed: 05/18/2023]
Abstract
The tapetum plays an important role in anther development by providing necessary enzymes and nutrients for pollen development. However, it is difficult to identify tapetum-specific genes on a large-scale because of the difficulty of separating tapetum cells from other anther tissues. Here, we reported the identification of tapetum-specific genes by comparing the gene expression patterns of four male sterile (MS) lines of Brassica oleracea. The abortive phenotypes of the four MS lines revealed different defects in tapetum and pollen development but normal anther wall development when observed by transmission electron microscopy. These tapetum displayed continuous defective characteristics throughout the anther developmental stages. The transcriptome from flower buds, covering all anther developmental stages, was analyzed and bioinformatics analyses exploring tapetum development-related genes were performed. We identified 1,005 genes differentially expressed in at least one of the MS lines and 104 were non-pollen expressed genes (NPGs). Most of the identified NPGs were tapetum-specific genes considering that anther walls were normally developed in all four MS lines. Among the 104 NPGs, 22 genes were previously reported as being involved in tapetum development. We further separated the expressed NPGs into different developmental stages based on the MS defects. The data obtained in this study are not only informative for research on tapetum development in B. oleracea, but are also useful for genetic pathway research in other related species.
Collapse
Affiliation(s)
- Yuan Ma
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| | - Jungen Kang
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Landianchang South Street 5, Beijing, 100081 China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| | - Yingguo Zhu
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing, 100087 China
| |
Collapse
|
130
|
Fellenberg C, Vogt T. Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. TRENDS IN PLANT SCIENCE 2015; 20:212-8. [PMID: 25739656 DOI: 10.1016/j.tplants.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/27/2015] [Accepted: 01/31/2015] [Indexed: 05/22/2023]
Abstract
The male gametophyte of higher plants appears as a solid box containing the essentials to transmit genetic material to the next generation. These consist of haploid generative cells that are required for reproduction, and an invasive vegetative cell producing the pollen tube, both mechanically protected by a rigid polymer, the pollen wall, and surrounded by a hydrophobic pollen coat. This coat mediates the direct contact to the biotic and abiotic environments. It contains a mixture of compounds required not only for fertilization but also for protection against biotic and abiotic stressors. Among its metabolites, the structural characteristics of two types of phenylpropanoids, hydroxycinnamic acid amides and flavonol glycosides, are highly conserved in Angiosperm pollen. Structural and functional aspects of these compounds will be discussed.
Collapse
Affiliation(s)
- Christin Fellenberg
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany; Department of Biology, Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC V8W 3N5, Canada
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
131
|
Pearce S, Ferguson A, King J, Wilson ZA. FlowerNet: a gene expression correlation network for anther and pollen development. PLANT PHYSIOLOGY 2015; 167:1717-30. [PMID: 25667314 PMCID: PMC4378160 DOI: 10.1104/pp.114.253807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/04/2015] [Indexed: 05/19/2023]
Abstract
Floral formation, in particular anther and pollen development, is a complex biological process with critical importance for seed set and for targeted plant breeding. Many key transcription factors regulating this process have been identified; however, their direct role remains largely unknown. Using publicly available gene expression data from Arabidopsis (Arabidopsis thaliana), focusing on those studies that analyze stamen-, pollen-, or flower-specific expression, we generated a network model of the global transcriptional interactions (FlowerNet). FlowerNet highlights clusters of genes that are transcriptionally coregulated and therefore likely to have interacting roles. Focusing on four clusters, and using a number of data sets not included in the generation of FlowerNet, we show that there is a close correlation in how the genes are expressed across a variety of conditions, including male-sterile mutants. This highlights the important role that FlowerNet can play in identifying new players in anther and pollen development. However, due to the use of general floral expression data in FlowerNet, it also has broad application in the characterization of genes associated with all aspects of floral development and reproduction. To aid the dissection of genes of interest, we have made FlowerNet available as a community resource (http://www.cpib.ac.uk/anther). For this resource, we also have generated plots showing anther/flower expression from a variety of experiments: These are normalized together where possible to allow further dissection of the resource.
Collapse
Affiliation(s)
- Simon Pearce
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| | - Alison Ferguson
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| | - John King
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| | - Zoe A Wilson
- Division of Plant Crop Sciences (S.P., A.F., Z.A.W.) and Centre for Plant Integrative Biology (S.P., J.K., Z.A.W.), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicstershire LE12 5RD, United Kingdom; andSchool of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom (S.P., J.K.)
| |
Collapse
|
132
|
Hsiao AS, Yeung EC, Ye ZW, Chye ML. The Arabidopsis cytosolic Acyl-CoA-binding proteins play combinatory roles in pollen development. PLANT & CELL PHYSIOLOGY 2015; 56:322-33. [PMID: 25395473 DOI: 10.1093/pcp/pcu163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In Arabidopsis, six acyl-CoA-binding proteins (ACBPs) have been identified and they have been demonstrated to function in plant stress responses and development. Three of these AtACBPs (AtACBP4-AtACBP6) are cytosolic proteins and all are expressed in floral organs as well as in other tissues. The roles of cytosolic AtACBPs in floral development were addressed in this study. To this end, a T-DNA insertional knockout mutant of acbp5 was characterized before use in crosses with the already available acbp4 and acbp6 T-DNA knockout mutants to examine their independent and combinatory functions in floral development. The single-gene knockout mutations did not cause any significant phenotypic changes, while phenotypic deficiencies affecting siliques and pollen were observed in the double mutants (acbp4acbp6 and acbp5acbp6) and the acbp4acbp5acbp6 triple mutant. Vacuole accumulation in the acbp4acbp6, acbp5acbp6 and acbp4acbp5acbp6 pollen was the most severe abnormality occurring in the double and triple mutants. Furthermore, scanning electron microscopy and transmission electron microscopy revealed exine and oil body defects in the acbp4acbp5acbp6 mutant, which also displayed reduced ability in in vitro pollen germination. Transgenic Arabidopsis expressing β-glucuronidase (GUS) driven from the various AtACBP promoters indicated that AtACBP6pro::GUS expression overlapped with AtACBP4pro::GUS expression in pollen grains and with AtACBP5pro::GUS expression in the microspores and tapetal cells. Taken together, these results suggest that the three cytosolic AtACBPs play combinatory roles in acyl-lipid metabolism during pollen development.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
133
|
Wallace S, Chater CC, Kamisugi Y, Cuming AC, Wellman CH, Beerling DJ, Fleming AJ. Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. THE NEW PHYTOLOGIST 2015; 205:390-401. [PMID: 25195943 DOI: 10.1111/nph.13012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/25/2014] [Indexed: 05/07/2023]
Abstract
The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function.
Collapse
Affiliation(s)
- Simon Wallace
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
134
|
Gu JN, Zhu J, Yu Y, Teng XD, Lou Y, Xu XF, Liu JL, Yang ZN. DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1005-13. [PMID: 25284309 DOI: 10.1111/tpj.12694] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 05/19/2023]
Abstract
The tapetum plays a critical role during the development and maturation of microspores. DYSFUNCTIONAL TAPETUM 1 (DYT1) is essential for early tapetal development. Here, we determined that the promoter region (-550 to -463 bp) contains indispensable cis-elements for DYT1 expression. Although DYT1 transcripts can be detected in both meiocytes and tapetal cells, localization of DYT1-GFP demonstrated that DYT1 is strictly located in tapetal cells during microsporogenesis. Chromatin immunoprecipitation (ChIP) analysis revealed that DYT1 directly binds the promoter region of Defective in Tapetal Development and Function 1 (TDF1), a transcription factor essential for tapetum development. When TDF1 driven by the DYT1 promoter is expressed in a dyt1 mutant, the expression of the transcription factors AMS, MS188/MYB80, TEK and MS1 and the pollen wall-related genes are restored. Although the pollen wall is not formed and the microspores are ruptured, DIOC2 staining showed that fatty acids, the precursors of the pollen wall, were synthesized in the transgenic lines. These results indicate that DYT1 regulates the expression of AMS, MS188/MYB80, TEK and MS1 for pollen wall formation, primarily via TDF1.
Collapse
Affiliation(s)
- Jing-Nan Gu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Jiang J, Yao L, Yu Y, Lv M, Miao Y, Cao J. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1095-105. [PMID: 24773757 DOI: 10.1111/jipb.12209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/25/2014] [Indexed: 05/08/2023]
Abstract
PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.
Collapse
Affiliation(s)
- Jingjing Jiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | | | | | | | | | | |
Collapse
|
136
|
Quilichini TD, Samuels AL, Douglas CJ. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis. THE PLANT CELL 2014; 26:4483-98. [PMID: 25415974 PMCID: PMC4277217 DOI: 10.1105/tpc.114.130484] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.
Collapse
Affiliation(s)
- Teagen D Quilichini
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
137
|
Quilichini TD, Douglas CJ, Samuels AL. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. ANNALS OF BOTANY 2014; 114:1189-201. [PMID: 24723448 PMCID: PMC4195548 DOI: 10.1093/aob/mcu042] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy. METHODS In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat. KEY RESULTS Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively. CONCLUSIONS This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed.
Collapse
Affiliation(s)
- Teagen D Quilichini
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6 T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6 T 1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
138
|
Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:979-94. [PMID: 24798002 DOI: 10.1111/jipb.12212] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/29/2014] [Indexed: 05/18/2023]
Abstract
Anther cuticle and pollen exine act as protective envelopes for the male gametophyte or pollen grain, but the mechanism underlying the synthesis of these lipidic polymers remains unclear. Previously, a tapetum-expressed CYP703A3, a putative cytochrome P450 fatty acid hydroxylase, was shown to be essential for male fertility in rice (Oryza sativa L.). However, the biochemical and biological roles of CYP703A3 has not been characterized. Here, we observed that cyp703a3-2 caused by one base insertion in CYP703A3 displays defective pollen exine and anther epicuticular layer, which differs from Arabidopsis cyp703a2 in which only defective pollen exine occurs. Consistently, chemical composition assay showed that levels of cutin monomers and wax components were dramatically reduced in cyp703a3-2 anthers. Unlike the wide range of substrates of Arabidopsis CYP703A2, CYP703A3 functions as an in-chain hydroxylase only for a specific substrate, lauric acid, preferably generating 7-hydroxylated lauric acid. Moreover, chromatin immunoprecipitation and expression analyses revealed that the expression of CYP703A3 is directly regulated by Tapetum Degeneration Retardation, a known regulator of tapetum PCD and pollen exine formation. Collectively, our results suggest that CYP703A3 represents a conserved and diversified biochemical pathway for in-chain hydroxylation of lauric acid required for the development of male organ in higher plants.
Collapse
Affiliation(s)
- Xijia Yang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Jepson C, Karppinen K, Daku RM, Sterenberg BT, Suh DY. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis--phylogeny, site-directed mutagenesis, and expression in nonanther tissues. FEBS J 2014; 281:3855-68. [PMID: 25040801 DOI: 10.1111/febs.12920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/10/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.
Collapse
Affiliation(s)
- Christina Jepson
- Department of Chemistry and Biochemistry, University of Regina, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
140
|
Zhang D, Liu D, Lv X, Wang Y, Xun Z, Liu Z, Li F, Lu H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. THE PLANT CELL 2014; 26:2939-61. [PMID: 25035401 PMCID: PMC4145124 DOI: 10.1105/tpc.114.127282] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/11/2014] [Accepted: 06/27/2014] [Indexed: 05/18/2023]
Abstract
Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xiaomeng Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Ying Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Zhili Xun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Zhixiong Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Fenglan Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
141
|
|
142
|
The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun 2014; 5:3855. [PMID: 24804694 PMCID: PMC4024750 DOI: 10.1038/ncomms4855] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/10/2014] [Indexed: 12/03/2022] Open
Abstract
The pollen wall, an essential structure for pollen function, consists of two layers, an inner intine and an outer exine. The latter is further divided into sexine and nexine. Many genes involved in sexine development have been reported, in which the MYB transcription factor Male Sterile 188 (MS188) specifies sexine in Arabidopsis. However, nexine formation remains poorly understood. Here we report the knockout of TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) leads to nexine absence in Arabidopsis. TEK encodes an AT-hook nuclear localized family protein highly expressed in tapetum during the tetrad stage. Absence of nexine in tek disrupts the deposition of intine without affecting sexine formation. We find that ABORTED MICROSPORES directly regulates the expression of TEK and MS188 in tapetum for the nexine and sexine formation, respectively. Our data show that a transcriptional cascade in the tapetum specifies the development of pollen wall. The nexine is a conserved layer of the pollen wall in land plants. The authors show that the AHL family protein TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) is necessary for nexine formation in Arabidopsis, acting downstream of the transcription factor ABORTED MICROSPORES (AMS).
Collapse
|
143
|
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D. ABORTED MICROSPORES Acts as a Master Regulator of Pollen Wall Formation in Arabidopsis. THE PLANT CELL 2014; 26:1544-1556. [PMID: 24781116 PMCID: PMC4036570 DOI: 10.1105/tpc.114.122986] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 05/18/2023]
Abstract
Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in Arabidopsis thaliana. Genome-wide coexpression analysis revealed 98 candidate genes with specific expression in the anther and 70 that showed reduced expression in ams. Among these 70 members, we showed that AMS can directly regulate 23 genes implicated in callose dissociation, fatty acids elongation, formation of phenolic compounds, and lipidic transport putatively involved in sporopollenin precursor synthesis. Consistently, ams mutants showed defective microspore release, a lack of sporopollenin deposition, and a dramatic reduction in total phenolic compounds and cutin monomers. The functional importance of the AMS pathway was further demonstrated by the observation of impaired pollen wall architecture in plant lines with reduced expression of several AMS targets: the abundant pollen coat protein extracellular lipases (EXL5 and EXL6), and CYP98A8 and CYP98A9, which are enzymes required for the production of phenolic precursors. These findings demonstrate the central role of AMS in coordinating sporopollenin biosynthesis and the secretion of materials for pollen wall patterning.
Collapse
Affiliation(s)
- Jie Xu
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Ding
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gema Vizcay-Barrena
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, LE125RD, United Kingdom
| | - Jianxin Shi
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, LE125RD, United Kingdom
| | - Dabing Zhang
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
144
|
Grienenberger E, Douglas CJ. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 regulates xylem development and growth by a conserved mechanism that modulates hormone signaling. PLANT PHYSIOLOGY 2014; 164:1991-2010. [PMID: 24567189 PMCID: PMC3982757 DOI: 10.1104/pp.114.236406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/22/2014] [Indexed: 05/17/2023]
Abstract
Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways.
Collapse
|
145
|
|
146
|
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:21-34. [PMID: 23473981 DOI: 10.1016/j.plaphy.2013.02.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 05/19/2023]
Abstract
Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
147
|
Jimenez-Lopez JC, Kotchoni SO, Hernandez-Soriano MC, Gachomo EW, Alché JD. Structural functionality, catalytic mechanism modeling and molecular allergenicity of phenylcoumaran benzylic ether reductase, an olive pollen (Ole e 12) allergen. J Comput Aided Mol Des 2013; 27:873-95. [PMID: 24154826 DOI: 10.1007/s10822-013-9686-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Isoflavone reductase-like proteins (IRLs) are enzymes with key roles in the metabolism of diverse flavonoids. Last identified olive pollen allergen (Ole e 12) is an IRL relevant for allergy amelioration, since it exhibits high prevalence among atopic patients. The goals of this study are the characterization of (A) the structural-functionality of Ole e 12 with a focus in its catalytic mechanism, and (B) its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering (1) physicochemical properties and functional-regulatory motifs, (2) sequence analysis, 2-D and 3D structural homology modeling comparative study and molecular docking, (3) conservational and evolutionary analysis, (4) catalytic mechanism modeling, and (5) sequence, structure-docking based B-cell epitopes prediction, while T-cell epitopes were predicted by inhibitory concentration and binding score methods. Structural-based detailed features, phylogenetic and sequences analysis have identified Ole e 12 as phenylcoumaran benzylic ether reductase. A catalytic mechanism has been proposed for Ole e 12 which display Lys133 as one of the conserved residues of the IRLs catalytic tetrad (Asn-Ser-Tyr-Lys). Structure characterization revealed a conserved protein folding among plants IRLs. However, sequence polymorphism significantly affected residues involved in the catalytic pocket structure and environment (cofactor and substrate interaction-recognition). It might also be responsible for IRLs isoforms functionality and regulation, since micro-heterogeneities affected physicochemical and posttranslational motifs. This polymorphism might have large implications for molecular differences in B- and T-cells epitopes of Ole e 12, and its identification may help designing strategies to improve the component-resolving diagnosis and immunotherapy of pollen and food allergy through development of molecular tools.
Collapse
Affiliation(s)
- Jose C Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008, Granada, Spain,
| | | | | | | | | |
Collapse
|
148
|
Liu L, Fan XD. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 83:165-75. [PMID: 23756817 DOI: 10.1007/s11103-013-0085-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/25/2013] [Indexed: 05/07/2023]
Abstract
Pollen acts as a biological protector for protecting male sperm from various harsh conditions and is covered by an outer cell wall polymer called the exine, a major constituent of which is sporopollenin. The tapetum is in direct contact with the developing gametophytes and plays an essential role in pollen wall and pollen coat formation. The precise molecular mechanisms underlying tapetal development remain highly elusive, but molecular genetic studies have identified a number of genes that control the formation, differentiation, and programmed cell death of tapetum and interactions of genes in tapetal development. Herein, several lines of evidence suggest that sporopollenin is built up via catalytic enzyme reactions in the tapetum. Furthermore, as based on genetic evidence, we review the currently accepted understanding of the molecular regulation of sporopollenin biosynthesis and examine unanswered questions regarding the requirements underpinning proper exine pattern formation.
Collapse
Affiliation(s)
- Liang Liu
- National Centre for Molecular Crop Design, Beijing, 100085, China,
| | | |
Collapse
|
149
|
Wang Y, Lin YC, So J, Du Y, Lo C. Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. PHYSIOLOGIA PLANTARUM 2013; 149:13-24. [PMID: 23231646 DOI: 10.1111/ppl.12018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 05/07/2023]
Abstract
The development of pollen wall with proper sporopollenin deposition is essential for pollen viability and male fertility in flowering plants. Sporopollenin is a complex biopolymer synthesized from fatty acid and phenolic derivatives. Recent investigations in Arabidopsis have identified a number of anther-specific genes involved in the production of fatty-acyl monomers potentially required for exine formation. The existence of ancient biochemical pathways for sporopollenin biosynthesis has been widely proposed but experimental evidence from plant species other than Arabidopsis is not extensively available. Here, we investigated the metabolic steps catalyzed by the anther-specific acyl-CoA synthetase (ACOS), polyketide synthase (PKS) and tetraketide α-pyrone reductase (TKPR). Using fatty acids as starting substrates, sequential activities of heterologously expressed tobacco enzymes NtACOS1, NtPKS1 and NtTKPR1 resulted in the production of reduced tetraketide α-pyrones. Transgenic RNA interference lines were then generated for the different tobacco genes which were demonstrated to be indispensable for normal pollen development and male fertility. Similarly, recombinant rice OsPKS1 and OsTKPR1 were shown to function as downstream enzymes of NtACOS1. In addition, insertion mutant lines for these rice genes displayed different levels of impaired pollen and seed formation. Taken together, reduced tetraketide α-pyrones appear to represent common sporopollenin fatty-acyl precursors essential for male fertility in taxonomically distinct plant species.
Collapse
Affiliation(s)
- Yanbing Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
150
|
Meslet-Cladière L, Delage L, Leroux CJJ, Goulitquer S, Leblanc C, Creis E, Gall EA, Stiger-Pouvreau V, Czjzek M, Potin P. Structure/function analysis of a type iii polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. THE PLANT CELL 2013; 25:3089-103. [PMID: 23983220 PMCID: PMC3784601 DOI: 10.1105/tpc.113.111336] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/03/2013] [Accepted: 08/07/2013] [Indexed: 05/05/2023]
Abstract
Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium.
Collapse
Affiliation(s)
- Laurence Meslet-Cladière
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Européenne de Bretagne, Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6539, European Institute for Marine Sciences, 29280 Plouzané, Brittany, France
| | - Ludovic Delage
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| | - Cédric J.-J. Leroux
- Centre de Ressources de Biologie Marine, MetaboMer and Structural Biology Core Facilities, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| | - Sophie Goulitquer
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Centre de Ressources de Biologie Marine, MetaboMer and Structural Biology Core Facilities, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| | - Catherine Leblanc
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| | - Emeline Creis
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| | - Erwan Ar Gall
- Université Européenne de Bretagne, Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6539, European Institute for Marine Sciences, 29280 Plouzané, Brittany, France
| | - Valérie Stiger-Pouvreau
- Université Européenne de Bretagne, Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6539, European Institute for Marine Sciences, 29280 Plouzané, Brittany, France
| | - Mirjam Czjzek
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| | - Philippe Potin
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
- Université Pierre et Marie Curie, Université Paris 6, Marine Plants and Biomolecules Laboratory, Unité Mixte de Recherche 7139, Station Biologique de Roscoff, 29688 Roscoff cedex, Brittany, France
| |
Collapse
|