101
|
Coelho J, Almeida-Trapp M, Pimentel D, Soares F, Reis P, Rego C, Mithöfer A, Fortes AM. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:266-277. [PMID: 31128697 DOI: 10.1016/j.plantsci.2019.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Hormones play an important role in fruit ripening and in response to biotic stress. Nevertheless, analyses of hormonal profiling during plant development and defense are scarce. In this work, changes in hormonal metabolism in grapevine (Vitis vinifera) were compared between a susceptible (Trincadeira) and a tolerant (Syrah) variety during grape ripening and upon infection with Botrytis cinerea. Infection of grapes with the necrotrophic pathogen Botrytis cinerea leads to significant economic losses worldwide. Peppercorn-sized fruits were infected in the field and mock-treated and infected berries were collected at green, veraison and harvest stages for hormone analysis and targeted qPCR analysis of genes involved in hormonal metabolism and signaling. Results indicate a substantial reprogramming of hormonal metabolism during grape ripening and in response to fungal attack. Syrah and Trincadeira presented differences in the metabolism of abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonates during grape ripening that may be connected to fruit quality. On the other hand, high basal levels of salicylic acid (SA), jasmonates and IAA at an early stage of ripening, together with activated SA, jasmonates and IAA signaling, likely enable a fast defense response leading to grape resistance/ tolerance towards B. cinerea. The balance among the different phytohormones seems to depend on the ripening stage and on the intra-specific genetic background and may be fundamental in providing resistance or susceptibility. In addition, this study indicated the involvement of SA and IAA in defense against necrotrophic pathogens and gains insights into possible strategies for conventional breeding and/or gene editing aiming at improving grape quality and grape resistance against Botrytis cinerea.
Collapse
Affiliation(s)
- João Coelho
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marilia Almeida-Trapp
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Diana Pimentel
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Flávio Soares
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Pedro Reis
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Ana Margarida Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
102
|
Adkar-Purushothama CR, Perreault JP. Suppression of RNA-Dependent RNA Polymerase6 Favors the Accumulation of Potato Spindle Tuber Viroid in Nicotiana Benthamiana. Viruses 2019; 11:E345. [PMID: 31013994 PMCID: PMC6520914 DOI: 10.3390/v11040345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023] Open
Abstract
To date, two plant genes encoding RNA-dependent RNA polymerases (RdRs) that play major roles in the defense against RNA viruses have been identified: (i) RdR1, which is responsible for the viral small RNAs (vsRNAs) found in virus-infected plants, and, (ii) RdR6, which acts as a surrogate in the absence of RdR1. In this study, the role of RdR6 in the defense against viroid infection was examined by knock-down of RdR6 followed by potato spindle tuber viroid (PSTVd) infection. The suppression of RdR6 expression increased the plant's growth, as was illustrated by the plant's increased height. PSTVd infection of RdR6 compromised plants resulted in an approximately three-fold increase in the accumulation of viroid RNA as compared to that seen in control plants. Additionally, RNA gel blot assay revealed an increase in the number of viroids derived small RNAs in RdR6 suppressed plants as compared to control plants. These data provide a direct correlation between RdR6 and viroid accumulation and indicate the role of RDR6 in the plant's susceptibility to viroid infection.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
103
|
Coolen S, Van Pelt JA, Van Wees SCM, Pieterse CMJ. Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. PLANTA 2019; 249:1087-1105. [PMID: 30547240 DOI: 10.1007/s00425-018-3065-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/05/2018] [Indexed: 05/24/2023]
Abstract
In this genome-wide association study, we obtained novel insights into the genetic basis of the effect of herbivory or drought stress on the level of resistance against the fungus Botrytis cinerea. In nature, plants function in complex environments where they encounter different biotic and abiotic stresses individually, sequentially or simultaneously. The adaptive response to a single stress does not always reflect how plants respond to such a stress in combination with other stresses. To identify genetic factors that contribute to the plant's ability to swiftly adapt to different stresses, we investigated the response of Arabidopsis thaliana to infection by the necrotrophic fungus B. cinerea when preceded by Pieris rapae herbivory or drought stress. Using 346 natural A. thaliana accessions, we found natural genetic variation in the level of resistance against single B. cinerea infection. When preceded by herbivory or drought stress, the level of B. cinerea resistance was differentially influenced in the 346 accessions. To study the genetic factors contributing to the differential adaptation of A. thaliana to B. cinerea infection under multi-stress conditions, we performed a genome-wide association study supported by quantitative trait loci mapping and fine mapping with full genome sequences of 164 accessions. This yielded several genes previously associated with defense to B. cinerea and additional candidate genes with putative roles in the plant's adaptive response to a combination of herbivory, drought and B. cinerea infection.
Collapse
Affiliation(s)
- Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 80056, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
104
|
Haile ZM, Malacarne G, Pilati S, Sonego P, Moretto M, Masuero D, Vrhovsek U, Engelen K, Baraldi E, Moser C. Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection. FRONTIERS IN PLANT SCIENCE 2019; 10:1704. [PMID: 32082332 PMCID: PMC7002552 DOI: 10.3389/fpls.2019.01704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/16/2023]
Abstract
Botrytis cinerea is an important necrotroph in vineyards. Primary infections are mostly initiated by airborne conidia from overwintered sources around bloom, then the fungus remains quiescent from bloom till maturity and egresses at ripeness. We previously described in detail the process of flower infection and quiescence initiation. Here, we complete the characterization studying the cross-talk between the plant and the fungus during pathogen quiescence and egression by an integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cv. Pinot Noir were inoculated with a GFP-labeled strain of B. cinerea at full cap-off stage, and molecular analyses were carried out at 4 weeks post inoculation (wpi, fungal quiescent state) and at 12 wpi (fungal pre-egression and egression states). The expressed fungal transcriptome highlighted that the fungus remodels its cell wall to evade plant chitinases besides undergoing basal metabolic activities. Berries responded by differentially regulating genes encoding for different PR proteins and genes involved in monolignol, flavonoid, and stilbenoid biosynthesis pathways. At 12 wpi, the transcriptome of B. cinerea in the pre-egressed samples showed that virulence-related genes were expressed, suggesting infection process was initiated. The egressed B. cinerea expressed almost all virulence and growth related genes that enabled the pathogen to colonize the berries. In response to egression, ripe berries reprogrammed different defense responses, though futile. Examples are activation of membrane localized kinases, stilbene synthases, and other PR proteins related to SA and JA-mediated responses. Our results indicated that hard-green berries defense program was capable to hamper B. cinerea growth. However, ripening associated fruit cell wall self-disassembly together with high humidity created the opportunity for the fungus to egress and cause bunch rot.
Collapse
Affiliation(s)
- Zeraye Mehari Haile
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- *Correspondence: Giulia Malacarne,
| | - Stefania Pilati
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Kristof Engelen
- ESAT-ELECTA, Electrical Energy and Computer Architectures, Leuven, Belgium
| | - Elena Baraldi
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| |
Collapse
|
105
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
106
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
107
|
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q. MYC2 Regulates the Termination of Jasmonate Signaling via an Autoregulatory Negative Feedback Loop. THE PLANT CELL 2019; 31:106-127. [PMID: 30610166 PMCID: PMC6391702 DOI: 10.1105/tpc.18.00405] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
In tomato (Solanum lycopersicum), as in other plants, the immunity hormone jasmonate (JA) triggers genome-wide transcriptional changes in response to pathogen and insect attack. These changes are largely regulated by the basic helix-loop-helix (bHLH) transcription factor MYC2. The function of MYC2 depends on its physical interaction with the MED25 subunit of the Mediator transcriptional coactivator complex. Although much has been learned about the MYC2-dependent transcriptional activation of JA-responsive genes, relatively less studied is the termination of JA-mediated transcriptional responses and the underlying mechanisms. Here, we report an unexpected function of MYC2 in regulating the termination of JA signaling through activating a small group of JA-inducible bHLH proteins, termed MYC2-TARGETED BHLH1 (MTB1), MTB2, and MTB3. MTB proteins negatively regulate JA-mediated transcriptional responses via their antagonistic effects on the functionality of the MYC2-MED25 transcriptional activation complex. MTB proteins impair the formation of the MYC2-MED25 complex and compete with MYC2 to bind to its target gene promoters. Therefore, MYC2 and MTB proteins form an autoregulatory negative feedback circuit to terminate JA signaling in a highly organized manner. We provide examples demonstrating that gene editing tools such as CRISPR/Cas9 open up new avenues to exploit MTB genes for crop protection.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiafang Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mingming Fang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanhui Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
108
|
Haile ZM, Nagpala-De Guzman EG, Moretto M, Sonego P, Engelen K, Zoli L, Moser C, Baraldi E. Transcriptome Profiles of Strawberry ( Fragaria vesca) Fruit Interacting With Botrytis cinerea at Different Ripening Stages. FRONTIERS IN PLANT SCIENCE 2019; 10:1131. [PMID: 31620156 PMCID: PMC6759788 DOI: 10.3389/fpls.2019.01131] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/15/2019] [Indexed: 05/04/2023]
Abstract
Gray mold caused by Botrytis cinerea is a major cause of economic losses in strawberry fruit production, limiting fruit shelf life and commercialization. When the fungus infects Fragaria × ananassa strawberry at flowering or unripe fruit stages, symptoms develop after an extended latent phase on ripe fruits before or after harvesting. To elucidate the growth kinetics of B. cinerea on flower/fruit and the molecular responses associated with low susceptibility of unripe fruit stages, woodland strawberry Fragaria vesca flowers and fruits, at unripe white and ripe red stages, were inoculated with B. cinerea. Quantification of fungal genomic DNA within 72 h postinoculation (hpi) showed limited fungal growth on open flower and white fruit, while on red fruit, the growth was exponential starting from 24 hpi and sporulation was observed within 48 hpi. RNA sequencing applied to white and red fruit at 24 hpi showed that a total of 2,141 genes (12.5% of the total expressed genes) were differentially expressed due to B. cinerea infection. A broad transcriptional reprogramming was observed in both unripe and ripe fruits, involving in particular receptor and signaling, secondary metabolites, and defense response pathways. Membrane-localized receptor-like kinases and nucleotide-binding site leucine-rich repeat genes were predominant in the surveillance system of the fruits, most of them being downregulated in white fruits and upregulated in red fruits. In general, unripe fruits exhibited a stronger defense response than red fruits. Genes encoding for pathogenesis-related proteins and flavonoid polyphenols as well as genes involved in cell-wall strengthening were upregulated, while cell-softening genes appeared to be switched off. As a result, B. cinerea remained quiescent in white fruits, while it was able to colonize ripe red fruits.
Collapse
Affiliation(s)
- Zeraye Mehari Haile
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkasa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Kristof Engelen
- ESAT-ELECTA, Electrical Energy and Computer Architectures, Leuven, Belgium
| | - Lisa Zoli
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
| | - Claudio Moser
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Elena Baraldi
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
- *Correspondence: Elena Baraldi,
| |
Collapse
|
109
|
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K. Green leaf volatile production by plants: a meta-analysis. THE NEW PHYTOLOGIST 2018; 220:666-683. [PMID: 28665020 DOI: 10.1111/nph.14671] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
666 I. Introduction 667 II. Biosynthesis 667 III. Meta-analysis 669 IV. The type of stress influences the total amount of GLVs released 669 V. Herbivores can modulate the wound-induced release of GLVs 669 VI. Fungal infection greatly induces GLV production 672 VII. Monocots and eudicots respond differentially to different types of stress 673 VIII. The type of stress does not influence the proportion of GLVs per chemical class 673 IX. The type of stress does influence the isomeric ratio within each chemical class 674 X. GLVs: from signal perception to signal transduction 676 XI. GLVs influence the C/N metabolism 677 XII. Interaction with plant hormones 678 XIII. General conclusions and unanswered questions 678 Acknowledgements 679 References 679 SUMMARY: Plants respond to stress by releasing biogenic volatile organic compounds (BVOCs). Green leaf volatiles (GLVs), which are abundantly produced across the plant kingdom, comprise an important group within the BVOCs. They can repel or attract herbivores and their natural enemies; and they can induce plant defences or prime plants for enhanced defence against herbivores and pathogens and can have direct toxic effects on bacteria and fungi. Unlike other volatiles, GLVs are released almost instantly upon mechanical damage and (a)biotic stress and could thus function as an immediate and informative signal for many organisms in the plant's environment. We used a meta-analysis approach in which data from the literature on GLV production during biotic stress responses were compiled and interpreted. We identified that different types of attackers and feeding styles add a degree of complexity to the amount of emitted GLVs, compared with wounding alone. This meta-analysis illustrates that there is less variation in the GLV profile than we presumed, that pathogens induce more GLVs than insects and wounding, and that there are clear differences in GLV emission between monocots and dicots. Besides the meta-analysis, this review provides an update on recent insights into the perception and signalling of GLVs in plants.
Collapse
Affiliation(s)
- Maarten Ameye
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Verwaeren
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Kris Audenaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
110
|
Duc NH, Csintalan Z, Posta K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:297-307. [PMID: 30245343 DOI: 10.1016/j.plaphy.2018.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 05/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can alleviate drought and temperature stresses in plants, but it is unknown whether the benefits can be maintained when the plants are exposed to combined drought and heat stress. In this study, the impacts of AM fungi, Septoglomus deserticola and Septoglomus constrictum on tomato plant tolerance to combined drought and heat stress were investigated. No substantial differences in physiological parameters were found in all plants under non-stress conditions, except a higher expression of SlLOXD and SlPIP2.7 in plants + S. constrictum. Under drought, heat and drought + heat stress, both fungal symbionts could moderate oxidative stress by decreasing the lipid peroxidation, hydrogen peroxide level and improving leaf and root antioxidant enzyme activities, however better performance in plants + S. constrictum. Under drought and the combined stress, inoculation with S. constrictum enhanced stomatal conductance, leaf water potential and relative water content, elevated Fv/Fm and biomass production of the hosts as compared to non-inoculated plants whilst these improvements in plants + S. deserticola were not obvious. Under the combined stress inoculation of S. constrictum did not change the expression of SlNCED and SlPIP2.7 in roots as under heat stress. Expression of SlLOXD in root were upregulated in plants + S. contrictum under drought + heat stress as in mycorrhizal roots under drought stress. Altogether, our results indicated that AM inoculation, particularly with S. constrictum had a positive influence on the tomato plant tolerance to drought + heat stress. Further studies are essential to add some light on molecular mechanisms of mycorrhizal plant tolerance to this combined stress.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Institute of Genetics, Microbiology and Biotechnology, Szent István University, Páter Károly Street 1, Gödöllő, H-2100, Hungary
| | - Zsolt Csintalan
- Institute of Botany and Ecophysiology, Szent István University, Páter Károly Street 1, Gödöllő, H-21000, Hungary
| | - Katalin Posta
- Institute of Genetics, Microbiology and Biotechnology, Szent István University, Páter Károly Street 1, Gödöllő, H-2100, Hungary.
| |
Collapse
|
111
|
Proietti S, Caarls L, Coolen S, Van Pelt JA, Van Wees SC, Pieterse CM. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:2342-2356. [PMID: 29852537 PMCID: PMC6175328 DOI: 10.1111/pce.13357] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T-DNA insertion mutant analysis to affect SA-JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA-JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.
Collapse
Affiliation(s)
- Silvia Proietti
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Lotte Caarls
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Silvia Coolen
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Johan A. Van Pelt
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C.M. Van Wees
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
112
|
Huang L, Yin X, Sun X, Yang J, Rahman MZ, Chen Z, Wang X. Expression of a Grape VqSTS36-Increased Resistance to Powdery Mildew and Osmotic Stress in Arabidopsis but Enhanced Susceptibility to Botrytis cinerea in Arabidopsis and Tomato. Int J Mol Sci 2018; 19:E2985. [PMID: 30274342 PMCID: PMC6213015 DOI: 10.3390/ijms19102985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Stilbene synthase genes make a contribution to improving the tolerances of biotic and abiotic stress in plants. However, the mechanisms mediated by these STS genes remain unclear. To provide insight into the role of STS genes defense against biotic and abiotic stress, we overexpressed VqSTS36 in Arabidopsis thaliana and tomato (Micro-Tom) via Agrobacterium-mediated transformation. VqSTS36-transformed Arabidopsis lines displayed an increased resistance to powdery mildew, but both VqSTS36-transformed Arabidopsis and tomato lines showed the increased susceptibility to Botrytis cinerea. Besides, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress in seed and seedlings. When transgenic plants were treated with a different stress, qPCR assays of defense-related genes in transgenic Arabidopsis and tomato suggested that VqSTS36 played a specific role in different phytohormone-related pathways, including salicylic acid, jasmonic acid, and abscisic acid signaling pathways. All of these results provided a better understanding of the mechanism behind the role of VqSTS36 in biotic and abiotic stress.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiaomeng Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Jinhua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Mohammad Zillur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zhiping Chen
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
113
|
Xu S, Liao CJ, Jaiswal N, Lee S, Yun DJ, Lee SY, Garvey M, Kaplan I, Mengiste T. Tomato PEPR1 ORTHOLOG RECEPTOR-LIKE KINASE1 Regulates Responses to Systemin, Necrotrophic Fungi, and Insect Herbivory. THE PLANT CELL 2018; 30:2214-2229. [PMID: 30131419 PMCID: PMC6181013 DOI: 10.1105/tpc.17.00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Endogenous peptides regulate plant immunity and growth. Systemin, a peptide specific to the Solanaceae, is known for its functions in plant responses to insect herbivory and pathogen infections. Here, we describe the identification of the tomato (Solanum lycopersicum) PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the TOMATO PROTEIN KINASE1b (TPK1b) interacting protein and demonstrate its biological functions in systemin signaling and tomato immune responses. Tomato PORK1 RNA interference (RNAi) plants with significantly reduced PORK1 expression showed increased susceptibility to tobacco hornworm (Manduca sexta), reduced seedling growth sensitivity to the systemin peptide, and compromised systemin-mediated resistance to Botrytis cinerea. Systemin-induced expression of Proteinase Inhibitor II (PI-II), a classical marker for systemin signaling, was abrogated in PORK1 RNAi plants. Similarly, in response to systemin and wounding, the expression of jasmonate pathway genes was attenuated in PORK1 RNAi plants. TPK1b, a key regulator of tomato defense against B. cinerea and M. sexta, was phosphorylated by PORK1. Interestingly, wounding- and systemin-induced phosphorylation of TPK1b was attenuated when PORK1 expression was suppressed. Our data suggest that resistance to B. cinerea and M. sexta is dependent on PORK1-mediated responses to systemin and subsequent phosphorylation of TPK1b. Altogether, PORK1 regulates tomato systemin, wounding, and immune responses.
Collapse
Affiliation(s)
- Siming Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK 21 Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Michael Garvey
- Department of Entomology, Smith Hall, Purdue University, West Lafayette, Indiana 47907-2089
| | - Ian Kaplan
- Department of Biomedical Science and Engineering, Konkuk University, Gwangjin-gu, Seoul 05029, South Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
114
|
Zhang S, Wang L, Zhao R, Yu W, Li R, Li Y, Sheng J, Shen L. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8949-8956. [PMID: 30092129 DOI: 10.1021/acs.jafc.8b02191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play an important role in defense responses to biotic and abiotic stresses. In order to investigate the role of SlMAPK3 in tomato plant resistance to Botrytis cinerea, two lines of slmapk3 mutants and wild-type (WT) tomato plants were used. The results showed that slmapk3 mutants were more susceptible to B. cinerea and that knockout of SlMAPK3 reduced the activities of defense enzymes and enhanced the accumulation of reactive oxygen species (ROS). Furthermore, we detected the expressions of salicylic acid (SA) and jasmonic acid (JA) signaling-related genes and found that knockout of SlMAPK3 enhanced the expressions of SlPR1, SlPAD4 and SlEDS1, whereas reduced the expressions of SlLoxC, SlPI I and SlPI II and enhanced the expressions of SlJAZ1 and SlMYC2. We postulate that SlMAPK3 plays a positive role in tomato plant resistance to B. cinerea through regulating ROS accumulation and SA and JA defense signaling pathways.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Liu Wang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Wenqing Yu
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Rui Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yujing Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development , Renmin University of China , Beijing 100872 , China
| | - Lin Shen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
115
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
116
|
|
117
|
Adkar-Purushothama CR, Perreault JP. Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biol 2018; 15:955-966. [PMID: 29683389 DOI: 10.1080/15476286.2018.1462653] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Understanding in intimate details how the viroid interaction with host's defense genes is a cornerstone for developing viroid resistant plants. In this present study, small RNAs (sRNA) derived from Potato spindle tuber viroid (PSTVd) were studied in silico in order to detect any interactions with the serine threonine kinase receptor, a transmembrane protein that plays a role in disease resistance in plants. Using molecular biology techniques, it was determined that PSTVd infection negatively affects at least three serine threonine kinase receptors as well as with three other genes that are known to be involved in the overall development of the tomato plants. The transient expression of these putative PSTVd-sRNAs, using the microRNA sequence as a backbone, in tomato plants induced phenotypes similar to viroid infection. Mutants created by altering the sequence of PSTVd in these regions failed to infect the tomato plant. The data presented here illustrates the importance of these regions in viroid survival, and suggests a possible avenue of exploration for the development of viroid resistant plants.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- a RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer , Université de Sherbrooke , 3201 rue Jean-Mignault, Sherbrooke , Québec , Canada
| | - Jean-Pierre Perreault
- a RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer , Université de Sherbrooke , 3201 rue Jean-Mignault, Sherbrooke , Québec , Canada
| |
Collapse
|
118
|
Hu Z, Shao S, Zheng C, Sun Z, Shi J, Yu J, Qi Z, Shi K. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. PLANTA 2018; 247:1217-1227. [PMID: 29445868 DOI: 10.1007/s00425-018-2860-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
N-decanoyl-homoserine lactone activates plant systemic resistance against Botrytis cinerea in tomato plants, which is largely dependent on jasmonic acid biosynthesis and signal transduction pathways. Rhizosphere bacteria secrete N-acylated-homoserine lactones (AHLs), a type of specialized quorum-sensing signal molecule, to coordinate their population density during communication with their eukaryotic hosts. AHLs behave as low molecular weight ligands that are sensed by plants and promote the host's resistance against foliar pathogens. In this study, we report on N-decanoyl-homoserine lactone (DHL), which is a type of AHL that induces systemic immunity in tomato plants and protects the host organism against the necrotrophic fungus Botrytis cinerea. Upon DHL treatment, tomato endogenous jasmonic acid (JA) biosynthesis (rather than salicylic acid biosynthesis) and signal transduction were significantly activated. Strikingly, the DHL-induced systemic resistance against B. cinerea was blocked in the tomato JA biosynthesis mutant spr2 and JA signaling gene-silenced plants. Our findings highlight the role of DHL in systemic resistance against economically important necrotrophic pathogens and suggest that DHL-induced immunity against B. cinerea is largely dependent on the JA signaling pathway. Manipulation of DHL-induced resistance is an attractive disease management strategy that could potentially be used to enhance disease resistance in diverse plant species.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Chenfei Zheng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Zenghui Sun
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Junying Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Experimental Station of Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
119
|
The role of chloroplasts in plant pathology. Essays Biochem 2018; 62:21-39. [PMID: 29273582 DOI: 10.1042/ebc20170020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally-by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves-and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection.
Collapse
|
120
|
Pastor V, Sánchez-Bel P, Gamir J, Pozo MJ, Flors V. Accurate and easy method for systemin quantification and examining metabolic changes under different endogenous levels. PLANT METHODS 2018; 14:33. [PMID: 29713366 PMCID: PMC5918566 DOI: 10.1186/s13007-018-0301-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/20/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Systemin has been extensively studied since it was discovered and is described as a peptidic hormone in tomato plants and other Solanaceae. Jasmonic acid and systemin are proposed to act through a positive feed-back loop with jasmonic acid, playing synergistic roles in response to both wounding and insect attack. Despite its biological relevance, most studies regarding the function of systemin in defence have been studied via PROSYSTEMIN (PROSYS) gene expression, which encodes the propeptide prosystemin that is later cleaved to systemin (SYS). Interestingly, hardly any studies have been based on quantification of the peptide. RESULTS In this study, a simple and accurate method for systemin quantification was developed to understand its impact on plant metabolism. The basal levels of systemin were found to be extremely low. To study the role of endogenous systemin on plant metabolism, systemin was quantified in a transgenic line overexpressing the PROSYS gene (PS+) and in a silenced antisense line (PS-). We evaluated the relevance of systemin in plant metabolism by analysing the metabolomic profiles of both lines compared to wildtype plants through untargeted metabolomic profiling. Compounds within the lignan biosynthesis and tyrosine metabolism pathways strongly accumulated in PS+ compared to wild-type plants and to plants from the PS- line. The exogenous treatments with SYS enhanced accumulation of lignans, which confirms the role of SYS in cell wall reinforcement. Unexpectedly, PS+ plants displayed wild-type levels of jasmonic acid (JA) but elevated accumulation of 12-oxo-phytodienoic acid (OPDA), suggesting that PS+ should not be used as an over-accumulator of JA in experimental setups. CONCLUSIONS A simple method, requiring notably little sample manipulation to quantify the peptide SYS, is described. Previous studies were based on genetic changes. In our study, SYS accumulated at extremely low levels in wild-type tomato leaves, showed slightly higher levels in the PROSYSTEMIN-overexpressing plants and was absent in the silenced lines. These small changes have a significant impact on plant metabolism. SA and OPDA, but not JA, were higher in the PROSYS-overexpressing plants.
Collapse
Affiliation(s)
- Victoria Pastor
- Associated Unit EEZ-UJI. Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Universitat Jaume I, Associated Unit to the CSIC, Castellón de la Plana, Castellón Spain
| | - Paloma Sánchez-Bel
- Associated Unit EEZ-UJI. Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Universitat Jaume I, Associated Unit to the CSIC, Castellón de la Plana, Castellón Spain
| | - Jordi Gamir
- Department of Soil Microbiology and Symbiotic Systems, Estacion Experimental del Zaidin (CSIC), Granada, Spain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estacion Experimental del Zaidin (CSIC), Granada, Spain
| | - Víctor Flors
- Associated Unit EEZ-UJI. Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Universitat Jaume I, Associated Unit to the CSIC, Castellón de la Plana, Castellón Spain
| |
Collapse
|
121
|
Sun X, Huo L, Jia X, Che R, Gong X, Wang P, Ma F. Overexpression of MdATG18a in apple improves resistance to Diplocarpon mali infection by enhancing antioxidant activity and salicylic acid levels. HORTICULTURE RESEARCH 2018; 5:57. [PMID: 30393539 PMCID: PMC6210185 DOI: 10.1038/s41438-018-0059-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Marssonina apple blotch, caused by Diplocarpon mali, is one of the most serious diseases of apple. Autophagy plays a key role in pathogen resistance. We previously showed that MdATG18a has a positive influence on drought tolerance. Herein, we describe how overexpression (OE) of MdATG18a enhances resistance to D. mali infection, probably because less H2O2 but more salicylic acid (SA) is accumulated in the leaves of OE apple plants. Expression of chitinase, β-1,3-glucanase, and SA-related marker genes was induced more strongly by D. mali in OE lines. Transcript levels of other important MdATG genes were also drastically increased by D. mali in OE plants, which indicated increased autophagy activities. Taken together, these results demonstrate that OE of MdATG18a enhances resistance to infection by D. mali and plays positive roles in H2O2-scavenging and SA accumulations. Our findings provide important information for designing strategies which could induce autophagy to minimize the impact of this disease on apple production.
Collapse
Affiliation(s)
- Xun Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Liuqing Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| |
Collapse
|
122
|
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and defense processes. Preciously, it is regraded some plant peptides function in plant growth and development, whereas others regulate defense response in plant-microbe interactions. However, this prejudice is got rid due to more and more evidence showed growth-related plant peptides also exhibit bifunctional roles in plant defense response against different microbial pathogens. Here we provide a mini-review of reported types of plant peptides, including their basic information, reported receptor ligands, and especially direct or indirect roles in plant immune responses.
Collapse
Affiliation(s)
- Z. Hu
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - H. Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - K. Shi
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
- CONTACT Kai Shi Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
123
|
Buonanno M, Coppola M, Di Lelio I, Molisso D, Leone M, Pennacchio F, Langella E, Rao R, Monti SM. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Sci 2017; 27:620-632. [PMID: 29168260 DOI: 10.1002/pro.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Prosystemin, originally isolated from Lycopersicon esculentum, is a tomato pro-hormone of 200 aminoacid residues which releases a bioactive peptide of 18 aminoacids called Systemin. This signaling peptide is involved in the activation of defense genes in solanaceous plants in response to herbivore feeding damage. Using biochemical, biophysical and bioinformatics approaches we characterized Prosystemin, showing that it is an intrinsically disordered protein possessing a few secondary structure elements within the sequence. Plant treatment with recombinant Prosystemin promotes early and late plant defense genes, which limit the development and survival of Spodoptera littoralis larvae fed with treated plants.
Collapse
Affiliation(s)
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | | |
Collapse
|
124
|
Scartazza A, Picciarelli P, Mariotti L, Curadi M, Barsanti L, Gualtieri P. The role of Euglena gracilis paramylon in modulating xylem hormone levels, photosynthesis and water-use efficiency in Solanum lycopersicum L. PHYSIOLOGIA PLANTARUM 2017; 161:486-501. [PMID: 28767129 DOI: 10.1111/ppl.12611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
β-1,3-glucans such as paramylon act as elicitors in plants, modifying the hormonal levels and the physiological responses. Plant hormones affect all phases of the plant life cycle and their responses to environmental stresses, both biotic and abiotic. The aim of this study was to investigate the effects of a root treatment with Euglena gracilis paramylon on xylem hormonal levels, photosynthetic performance and dehydration stress in tomato (Solanum lycopersicum). Paramylon granules were processed to obtain the linear fibrous structures capable to interact with tomato cell membrane. Modulation of hormone levels (abscisic acid, jasmonic acid and salicylic acid) and related physiological responses such as CO2 assimilation rate, stomatal and mesophyll conductance, intercellular CO2 concentration, transpiration rate, water-use efficiency, quantum yield of photosystem II and leaf water potential were investigated. The results indicate a clear dose-dependent effect of paramylon on the hormonal content of xylem sap, photosynthetic performance and dehydration tolerance. Paramylon has the capability to enhance plant defense capacity against abiotic stress, such as drought, by modulating the conductance to CO2 diffusion from air to the carboxylation sites and improving the water-use efficiency.
Collapse
Affiliation(s)
- Andrea Scartazza
- Istituto di Biologia Agroambientale e Forestale, CNR, 00016, Monterotondo Scalo, Roma, Italy
| | - Piero Picciarelli
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | - Lorenzo Mariotti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | - Maurizio Curadi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | | | | |
Collapse
|
125
|
Kasal-Slavik T, Eschweiler J, Kleist E, Mumm R, Goldbach HE, Schouten A, Wildt J. Early biotic stress detection in tomato (Solanum lycopersicum) by BVOC emissions. PHYTOCHEMISTRY 2017; 144:180-188. [PMID: 28946050 DOI: 10.1016/j.phytochem.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
We investigated impacts of early and mild biotic stress on Biogenic Volatile Organic Compounds (BVOC) emissions from tomato in order to test their potential for early (biotic) stress detection. Tomato plants were exposed to two common fungal pathogens, Botrytis cinerea and Oidium neolycopesici and the sap-sucking aphid Myzus persicae. Furthermore, plants were exposed to methyl jasmonate (MeJA) in order to identify BVOC emissions related to activation of jasmonic acid (JA) signalling pathway. These emissions where then used as a reference for identifying active JA signalling pathway in plants at early stages of biotic stress. After infection by the necrotrophic fungus B. cinerea, changes in BVOC emissions indicated that tomato plants had predominantly activated the jasmonic acid (JA) signalling pathway. The plants were able to modify their defence pathways in order to overcome fungal infection. When tomato plants were infected with the biotrophic fungus O. neolycopersici, only minor changes in BVOC emissions were observed with additional emissions of the sesquiterpene α-copaene. α-copaene emissions allowed the identification of general biotic stress in the plants, without pinpointing the actual triggered defence pathway. BVOC emissions during M. persicae attack had changed before the occurrence of visual symptoms. Despite low infestation rates, plants emitted methyl salicylate indicating activation of the SA-mediated defence pathway.
Collapse
Affiliation(s)
- Tina Kasal-Slavik
- Department of Plant Nutrition, INRES, Universität Bonn, Karlrobert Kreiten Str. 13, 53115, Bonn, Germany; Institut für Bio- und Geowissenschaften, IBG-2, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Julia Eschweiler
- Department of Molecular Phytomedicine, INRES, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Einhard Kleist
- Institut für Bio- und Geowissenschaften, IBG-2, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Roland Mumm
- Plant Research International, Wageningen University and Research Centre, 6700 AA, Wageningen, The Netherlands; Centre for BioSystems Genomics, 6700AB, Wageningen, The Netherlands
| | - Heiner E Goldbach
- Department of Plant Nutrition, INRES, Universität Bonn, Karlrobert Kreiten Str. 13, 53115, Bonn, Germany
| | - Alexander Schouten
- Laboratory of Nematology, Experimental Plant Sciences, Wageningen University and Research Centre, 6700 AA, Wageningen, The Netherlands
| | - Jürgen Wildt
- Institut für Bio- und Geowissenschaften, IBG-2, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
126
|
Chen L, Meng J, Zhai J, Xu P, Luan Y. MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:177-187. [PMID: 29223339 DOI: 10.1016/j.plantsci.2017.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 05/21/2023]
Abstract
Plants have evolved a variety of mechanisms to perceive and resist the assault of pathogens. The biotrophs, necrotrophs and hemibiotrophs are types of plant pathogens that activate diverse salicylic acid (SA) and jasmonic acid (JA) signaling pathways. In this study we showed that the expressions of miR396a-5p and -3p in Solanum lycopersicum (S. lycopersicum) were both down-regulated after infection by hemibiotroph Phytophthora infestans (P. infestans) and necrotroph Botrytis cinerea (B. cinerea) infection. Overexpression of miR396a-5p and -3p in transgenic tomato enhanced the susceptibility of S. lycopersicum to P. infestans and B. cinerea infection and the tendency to produce reactive oxygen species (ROS) under pathogen-related biotic stress. Additionally, miR396a regulated growth-regulating factor1 (GRF1), salicylic acid carboxyl methyltransferase (SAMT), glycosyl hydrolases (GH) and nucleotide-binding site-leucine-rich repeat (NBS-LRR) and down-regulated their levels. This ultimately led to inhibition of the expression of pathogenesis-related 1 (PR1), TGA transcription factors1 and 2 (TGA1 and TGA2) and JA-dependent proteinase inhibitors I and II (PI I and II), but enhanced the endogenous SA content and nonexpressor of pathogenesis-related genes 1 (NPR1) expression. Taken together, our results showed that negative regulation of target genes and their downstream genes expressions by miR396a-5p and -3p are critical for tomato abiotic stresses via affecting SA or JA signaling pathways.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Junmiao Zhai
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Pinsan Xu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
127
|
Portieles R, Ochagavia ME, Canales E, Silva Y, Chacón O, Hernández I, López Y, Rodríguez M, Terauchi R, Borroto C, Santos R, Bolton MD, Ayra-Pardo C, Borrás-Hidalgo O. High-throughput SuperSAGE for gene expression analysis of Nicotiana tabacum-Rhizoctonia solani interaction. BMC Res Notes 2017; 10:603. [PMID: 29162149 PMCID: PMC5697063 DOI: 10.1186/s13104-017-2934-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The ubiquitous soil pathogen Rhizoctonia solani causes serious diseases in different plant species. Despite the importance of this disease, little is known regarding the molecular basis of susceptibility. SuperSAGE technology and next-generation sequencing were used to generate transcript libraries during the compatible Nicotiana tabacum-R. solani interaction. Also, we used the post-transcriptional silencing to evaluate the function of a group of important genes. RESULTS A total of 8960 and 8221 unique Tag sequences identified as differentially up- and down-regulated were obtained. Based on gene ontology classification, several annotated UniTags corresponded to defense response, metabolism and signal transduction. Analysis of the N. tabacum transcriptome during infection identified regulatory genes implicated in a number of hormone pathways. Silencing of an mRNA induced by salicylic acid reduced the susceptibility of N. tabacum to R. solani. We provide evidence that the salicylic acid pathway was involved in disease development. This is important for further development of disease management strategies caused by this pathogen.
Collapse
Affiliation(s)
- Roxana Portieles
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | | | - Eduardo Canales
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Yussuan Silva
- Tobacco Research Institute, Carretera de Tumbadero 8, 6063, San Antonio de los Baños, Havana, Cuba
| | - Osmani Chacón
- Tobacco Research Institute, Carretera de Tumbadero 8, 6063, San Antonio de los Baños, Havana, Cuba
| | - Ingrid Hernández
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Yunior López
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Mayra Rodríguez
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan
| | - Carlos Borroto
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico
| | - Ramón Santos
- Universidad Técnica Luis Vargas Torres de Esmeraldas, Av. Kennedy 704, Esmeraldas, Ecuador
| | - Melvin D. Bolton
- USDA-Agricultural Research Service, Northern Crops Science Laboratory, 1605 Albrecht Blvd., Fargo, ND 58102-2765 USA
| | - Camilo Ayra-Pardo
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
- Henan Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University, Henan, 473061 People’s Republic of China
| | - Orlando Borrás-Hidalgo
- Center for Genetic Engineering and Biotechnology, 10600 Havana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, 250353 People’s Republic of China
| |
Collapse
|
128
|
Coppola M, Cascone P, Madonna V, Di Lelio I, Esposito F, Avitabile C, Romanelli A, Guerrieri E, Vitiello A, Pennacchio F, Rao R, Corrado G. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Sci Rep 2017; 7:15522. [PMID: 29138416 PMCID: PMC5686165 DOI: 10.1038/s41598-017-15481-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Pasquale Cascone
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Valentina Madonna
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Esposito
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Concetta Avitabile
- Istituto di Biostrutture e Bioimmagini (CNR), via Mezzocannone 16, 80134, Napoli, Italy
| | - Alessandra Romanelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131, Napoli, NA, Italy
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
129
|
Kusajima M, Okumura Y, Fujita M, Nakashita H. Abscisic acid modulates salicylic acid biosynthesis for systemic acquired resistance in tomato. Biosci Biotechnol Biochem 2017; 81:1850-1853. [DOI: 10.1080/09168451.2017.1343121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Among the regulatory mechanisms of systemic acquired resistance (SAR) in tomato, antagonistic interaction between salicylic acid (SA) and abscisic acid (ABA) signaling pathways was investigated. Treatment with 1,2-benzisothiazol-3(2H)-one1,1-dioxide (BIT) induced SAR in tomato thorough SA biosynthesis. Pretreatment of ABA suppressed BIT-induced SAR including SA accumulation, suggesting that ABA suppressed SAR by inhibiting SA biosynthesis.
Collapse
Affiliation(s)
- Miyuki Kusajima
- Research Center for Bioresources Development, Faculty of Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Yasuko Okumura
- Research Center for Bioresources Development, Faculty of Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Moeka Fujita
- Research Center for Bioresources Development, Faculty of Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Hideo Nakashita
- Research Center for Bioresources Development, Faculty of Biotechnology, Fukui Prefectural University, Awara, Japan
| |
Collapse
|
130
|
Di X, Gomila J, Takken FLW. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2017; 18:1024-1035. [PMID: 28390170 PMCID: PMC6638294 DOI: 10.1111/mpp.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/05/2023]
Abstract
Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Jo Gomila
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| |
Collapse
|
131
|
Zhu W, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, Savidor A, Sharon I, Eizner E, Valerius O, Braus GH, Bowler K, Bar-Peled M, Sharon A. BcXYG1, a Secreted Xyloglucanase from Botrytis cinerea, Triggers Both Cell Death and Plant Immune Responses. PLANT PHYSIOLOGY 2017; 175:438-456. [PMID: 28710128 PMCID: PMC5580746 DOI: 10.1104/pp.17.00375] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In search of Botrytis cinerea cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the BcXYG1 gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a B. cinerea strain overexpressing BcXYG1 produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Mordechi Ronen
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Gur
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itai Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elad Eizner
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Physical Electronics, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oliver Valerius
- Complex Carbohydrate Research Center, Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Gerhard H Braus
- Complex Carbohydrate Research Center, Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Kyle Bowler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Georg-August-Universität, Goettingen, 37073 Germany
| | - Maor Bar-Peled
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Georg-August-Universität, Goettingen, 37073 Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
132
|
Adkar-Purushothama CR, Iyer PS, Perreault JP. Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants. Sci Rep 2017; 7:8341. [PMID: 28827569 PMCID: PMC5566334 DOI: 10.1038/s41598-017-08823-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
It is well established that viroid derived small RNA (vd-sRNA) induces RNA silencing of endogenous mRNA. However, it remains not clear how exactly viroid infections can lead to severe symptom induction given the fact that fewer vd-sRNAs binding the specific target mRNAs were recovered from the infected plants. To answer this question, the two least expressed (+) and (−) strand vd-sRNAs of potato spindle tuber viroid (PSTVd) binding to both the 3′ UTR and the coding region of tomato mRNAs were analyzed by infecting tomato plants with two variants of PSTVd. As products of these putative target mRNAs are involved in plant phenotype, the effect of this viroid on these genes were analyzed by infecting tomato plants with two variants of PSTVd. The direct interaction between the vd-sRNAs and putative mRNAs was validated by artificial microRNA experiments in a transient expression system and by RNA ligase-mediated rapid amplification of cDNA ends. Parallel analysis of RNA ends of viroid infected plants revealed the widespread cleavage of the target mRNAs in locations other than the vd-sRNA binding site during the viroid infection implying the viroid-infection induced vd-sRNA independent degradation of endogenous mRNAs during viroid infection.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- Département de Biochimie, RNA Group/Groupe ARN, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Pavithran Sridharan Iyer
- Département de Physique, Université de Sherbrooke, 2500 Boulevard de l'Université Sherbrooke, Québec, J1K 2R1, Canada
| | - Jean-Pierre Perreault
- Département de Biochimie, RNA Group/Groupe ARN, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
133
|
Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato. THE PLANT CELL 2017; 29:1883-1906. [PMID: 28733419 PMCID: PMC5590496 DOI: 10.1105/tpc.16.00953] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes.
Collapse
Affiliation(s)
- Minmin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - David T W Tzeng
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Silin Zhong
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chuanyou Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
134
|
|
135
|
Simionato AS, Navarro MOP, de Jesus MLA, Barazetti AR, da Silva CS, Simões GC, Balbi-Peña MI, de Mello JCP, Panagio LA, de Almeida RSC, Andrade G, de Oliveira AG. The Effect of Phenazine-1-Carboxylic Acid on Mycelial Growth of Botrytis cinerea Produced by Pseudomonas aeruginosa LV Strain. Front Microbiol 2017; 8:1102. [PMID: 28659907 PMCID: PMC5469906 DOI: 10.3389/fmicb.2017.01102] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
One of the most important postharvest plant pathogens that affect strawberries, grapes and tomatoes is Botrytis cinerea, known as gray mold. The fungus remains in latent form until spore germination conditions are good, making infection control difficult, causing great losses in the whole production chain. This study aimed to purify and identify phenazine-1-carboxylic acid (PCA) produced by the Pseudomonas aeruginosa LV strain and to determine its antifungal activity against B. cinerea. The compounds produced were extracted with dichloromethane and passed through a chromatographic process. The purity level of PCA was determined by reversed-phase high-performance liquid chromatography semi-preparative. The structure of PCA was confirmed by nuclear magnetic resonance and electrospray ionization mass spectrometry. Antifungal activity was determined by the dry paper disk and minimum inhibitory concentration (MIC) methods and identified by scanning electron microscopy and confocal microscopy. The results showed that PCA inhibited mycelial growth, where MIC was 25 μg mL-1. Microscopic analysis revealed a reduction in exopolysaccharide (EPS) formation, showing distorted and damaged hyphae of B. cinerea. The results suggested that PCA has a high potential in the control of B. cinerea and inhibition of EPS (important virulence factor). This natural compound is a potential alternative to postharvest control of gray mold disease.
Collapse
Affiliation(s)
- Ane S. Simionato
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Miguel O. P. Navarro
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Maria L. A. de Jesus
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - André R. Barazetti
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Caroline S. da Silva
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Glenda C. Simões
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Maria I. Balbi-Peña
- Laboratório de Fitopatologia, Departamento de Agronomia, Universidade Estadual de LondrinaLondrina, Brazil
| | - João C. P. de Mello
- Laboratório de Produtos Fitoterápicos, Departamento de Farmácia e Farmacologia, Universidade Estadual de MaringáMaringá, Brazil
| | - Luciano A. Panagio
- Laboratório de Micologia, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Ricardo S. C. de Almeida
- Laboratório de Micologia, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Galdino Andrade
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
| | - Admilton G. de Oliveira
- Laboratório de Ecologia Microbiana, Departamento de Microbiologia, Universidade Estadual de LondrinaLondrina, Brazil
- Laboratório de Microscopia Eletrônica e Microanálise, Universidade Estadual de LondrinaLondrina, Brazil
| |
Collapse
|
136
|
Zhang Y, Liang Y, Qiu D, Yuan J, Yang X. Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Protein Expr Purif 2017; 136:20-26. [PMID: 28606662 DOI: 10.1016/j.pep.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/20/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
The Botrytis cinerea BcSpl1 protein is a member of the cerato-platanin family, and consists of 137 amino acids and two disulfide bridges. This protein induces the onset of necrosis in infiltrated plant hosts. Recombinant BcSpl1 proteins produced in Pichia pastoris (pBcSpl1) and Escherichia coli (eBcSpl1) were initially compared regarding their abilities to induce necrosis and systemic acquired resistance (SAR). The pBcSpl1 and eBcSpl1 treatments led to the development of necrotic lesions on tomato leaves, and provided tomato plants with SAR to B. cinerea. The lesion area of leaves infiltrated with the BcSpl1 proteins decreased by 22.7% (pBcSpl1) and 21.8% (eBcSpl1). Additionally, eBcSpl1 up-regulated the expression levels of some defense-related genes, including PR-1a, prosystemin, PI I, and PI II, as well as SIPK and TPK1b, which encode two protein kinases. Furthermore, eBcSpl1 exhibited chitin-binding properties. Our data revealed that the E. coli expression system produces higher BcSpl1 yields than the P. pastoris system. This high-yield expression of BcSpl1 may be relevant for future large-scale applications of this elicitor to improve crop production.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Jingjing Yuan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China.
| |
Collapse
|
137
|
Zhu X, Soliman A, Islam MR, Adam LR, Daayf F. Verticillium dahliae's Isochorismatase Hydrolase Is a Virulence Factor That Contributes to Interference With Potato's Salicylate and Jasmonate Defense Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:399. [PMID: 28400778 PMCID: PMC5368275 DOI: 10.3389/fpls.2017.00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/08/2017] [Indexed: 05/05/2023]
Abstract
This study aimed to dissect the function of the Isochorismatase Hydrolase (ICSH1) gene in Verticillium dahliae's pathogenesis on potato. VdICSH1 was up-regulated in V. dahliae after induction with extracts from potato tissues. Its expression increased more in response to root extracts than to leaf and stem extracts. However, such expression in response to root extracts was not significantly different in the highly and weakly aggressive isolates tested. During infection of detached potato leaves, VdICSH1 expression increased significantly in the highly aggressive isolate compared to the weakly aggressive one. We generated icsh1 mutants from a highly aggressive isolate of V. dahliae and compared their pathogenicity with that of the original wild type strain. The analysis showed that this gene is required for full virulence of V. dahliae on potatoes. When we previously found differential accumulation of ICSH1 protein in favor of the highly aggressive isolate, as opposed to the weakly aggressive one, we had hypothesized that ICSH would interfere with the host's defense SA-based signaling. Here, we measured the accumulation of both salicylic acid (SA) and jasmonic acid (JA) in potato plants inoculated with an icsh1 mutant in comparison with the wild type strain. The higher accumulation of bound SA in the leaves in response to the icsh1 mutant compared to the wild type confirms the hypothesis that ICSH1 interferes with SA. However, the different trends in SA and JA accumulation in potato in the roots and in the stems at the early infection stages compared to the leaves at later stages indicate that they are both associated to potato defenses against V. dahliae. The expression of members of the isochorismatase family in the icsh1 mutants compensate that of ICSH1 transcripts, but this compensation disappears in presence of the potato leaf extracts. This study indicates ICSH1's involvement in V. dahliae's pathogenicity and provides more insight into its alteration of the SA/JA defense signaling's networking.
Collapse
Affiliation(s)
- Xiaohan Zhu
- Department of Plant Science, University of Manitoba, WinnipegMB, Canada
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, WinnipegMB, Canada
- Department of Genetics, Faculty of Agriculture, University of TantaTanta, Egypt
| | - Md. R. Islam
- Department of Plant Pathology, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Lorne R. Adam
- Department of Plant Science, University of Manitoba, WinnipegMB, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
138
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
139
|
Lecompte F, Nicot PC, Ripoll J, Abro MA, Raimbault AK, Lopez-Lauri F, Bertin N. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. ANNALS OF BOTANY 2017; 119:931-943. [PMID: 28065923 PMCID: PMC5378192 DOI: 10.1093/aob/mcw240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 10/10/2016] [Indexed: 05/18/2023]
Abstract
Background and aims Plant soluble sugars, as main components of primary metabolism, are thought to be implicated in defence against pathogenic fungi. However, the function of sucrose and hexoses remains unclear. This study aimed to identify robust patterns in the dynamics of soluble sugars in sink tissues of tomato plants during the course of infection by the necrotrophic fungus Botrytis cinerea . Distinct roles for glucose and fructose in defence against B. cinerea were hypothesized. Methods We examined sugar contents and defence hormonal markers in tomato stem tissues before and after infection by B. cinerea , in a range of abiotic environments created by various nitrogen and water supplies. Key Results Limited nitrogen or water supplies increased tomato stem susceptibility to B. cinerea . Glucose and fructose contents of tissues surrounding infection sites evolved differently after inoculation. The fructose content never decreased after inoculation with B. cinerea , while that of glucose showed either positive or negative variation, depending on the abiotic environment. An increase in the relative fructose content (defined as the proportion of fructose in the soluble sugar pool) was observed in the absence of glucose accumulation and was associated with lower susceptibility. A lower expression of the salicylic acid marker PR1a , and a lower repression of a jasmonate marker COI1 were associated with reduced susceptibility. Accordingly, COI1 expression was positively correlated with the relative fructose contents 7 d after infection. Conclusions Small variations of fructose content among the sugar pool are unlikely to affect intrinsic pathogen growth. Our results highlight distinct use of host glucose and fructose after infection by B. cinerea and suggest strongly that adjustment of the relative fructose content is required for enhanced plant defence.
Collapse
Affiliation(s)
| | | | | | | | - Astrid K. Raimbault
- UMR Qualisud, Université d’Avignon et des Pays du Vaucluse, F-84916 Avignon, France
| | - Félicie Lopez-Lauri
- UMR Qualisud, Université d’Avignon et des Pays du Vaucluse, F-84916 Avignon, France
| | | |
Collapse
|
140
|
Bubici G, Carluccio AV, Stavolone L, Cillo F. Prosystemin overexpression induces transcriptional modifications of defense-related and receptor-like kinase genes and reduces the susceptibility to Cucumber mosaic virus and its satellite RNAs in transgenic tomato plants. PLoS One 2017; 12:e0171902. [PMID: 28182745 PMCID: PMC5300215 DOI: 10.1371/journal.pone.0171902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
Systemin is a plant signal peptide hormone involved in the responses to wounding and insect damage in the Solanaceae family. It works in the same signaling pathway of jasmonic acid (JA) and enhances the expression of proteinase inhibitors. With the aim of studying a role for systemin in plant antiviral responses, a tomato (Solanum lycopersicum) transgenic line overexpressing the prosystemin cDNA, i.e. the systemin precursor, was inoculated with Cucumber mosaic virus (CMV) strain Fny supporting either a necrogenic or a non-necrogenic satellite RNA (satRNA) variant. Transgenic plants showed reduced susceptibility to both CMV/satRNA combinations. While symptoms of the non-necrogenic inoculum were completely suppressed, a delayed onset of lethal disease occurred in about half of plants challenged with the necrogenic inoculum. RT-qPCR analysis showed a correlation between the systemin-mediated reduced susceptibility and the JA biosynthetic and signaling pathways (e.g. transcriptional alteration of lipoxygenase D and proteinase inhibitor II). Moreover, transgenically overexpressed systemin modulated the expression of a selected set of receptor-like protein kinase (RLK) genes, including some playing a known role in plant innate immunity. A significant correlation was found between the expression profiles of some RLKs and the systemin-mediated reduced susceptibility to CMV/satRNA. These results show that systemin can increase plant defenses against CMV/satRNA through transcriptional reprogramming of diverse signaling pathways.
Collapse
Affiliation(s)
- Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Anna Vittoria Carluccio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy.,International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria
| | - Fabrizio Cillo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
141
|
Valueva TA, Zaichik BT, Kudryavtseva NN. Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants. BIOCHEMISTRY (MOSCOW) 2017; 81:1709-1718. [DOI: 10.1134/s0006297916130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
AbuQamar S, Moustafa K, Tran LS. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol 2017; 37:262-274. [PMID: 28056558 DOI: 10.1080/07388551.2016.1271767] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.
Collapse
Affiliation(s)
- Synan AbuQamar
- a Department of Biology , United Arab Emirates University , Al-Ain , UAE
| | - Khaled Moustafa
- b Conservatoire National des Arts et Métiers , Paris , France
| | - Lam Son Tran
- c Plant Abiotic Stress Research Group & Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,d Signaling Pathway Research Unit , RIKEN Center for Sustainable Resource Science , Yokohama , Kanagawa , Japan
| |
Collapse
|
143
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
144
|
López‐Cruz J, Óscar C, Emma F, Pilar G, Carmen G. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. MOLECULAR PLANT PATHOLOGY 2017; 18:16-31. [PMID: 26780422 PMCID: PMC6638242 DOI: 10.1111/mpp.12370] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 05/20/2023]
Abstract
Plants activate responses against pathogens, including the oxidative burst. Necrotrophic pathogens can produce reactive oxygen species (ROS) that benefit the colonization process. Previously, we have demonstrated that tomato plants challenged with Botrytis cinerea accumulate ROS and callose, together with the induction of genes involved in defence, signalling and oxidative metabolism. Here, we studied the infection phenotype of the Δbcsod1 strain in both tomato and Arabidopsis plants. This mutant lacks bcsod1, which encodes Cu-Zn superoxide dismutase (SOD). This enzyme catalyses the conversion of superoxide ion ( O2-) into hydrogen peroxide (H2 O2 ). ROS play a protective role and act as signals in plants. Δbcsod1 displayed reduced virulence compared with wild-type B05.10 in both species. Plants infected with Δbcsod1 accumulated less H2 O2 and more O2- than those infected with B05.10, which is associated with an increase in the defensive polymer callose. This supports a major role of fungal SOD in H2 O2 production during the plant-pathogen interaction. The early induction of the callose synthase gene PMR4 suggested that changes in ROS altered plant defensive responses at the transcriptional level. The metabolites and genes involved in signalling and in response to oxidative stress were differentially expressed on Δbcsod1 infection, supporting the notion that plants perceive changes in ROS balance and activate defence responses. A higher O2- /H2 O2 ratio seems to be beneficial for plant protection against this necrotroph. Our results highlight the relevance of callose and the oxylipin 12-oxo-phytodienoic acid (OPDA) in the response to changes in the oxidative environment, and clarify the mechanisms that underlie the responses to Botrytis in Arabidopsis and tomato plants.
Collapse
Affiliation(s)
- Jaime López‐Cruz
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de AlimentosCSIC46980 Paterna, ValenciaSpain
| | - Crespo‐Salvador Óscar
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de AlimentosCSIC46980 Paterna, ValenciaSpain
| | - Fernández‐Crespo Emma
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio NaturalEscola Superior de Tecnologia i Ciències Experimentals, Universitat Jaume I12071 CastellónSpain
| | - García‐Agustín Pilar
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio NaturalEscola Superior de Tecnologia i Ciències Experimentals, Universitat Jaume I12071 CastellónSpain
| | - González‐Bosch Carmen
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de AlimentosCSIC46980 Paterna, ValenciaSpain
| |
Collapse
|
145
|
Lin CH, Chen CY. The pathogen-inducible promoter of defense-related LsGRP1 gene from Lilium functioning in phylogenetically distinct species of plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:22-31. [PMID: 27964782 DOI: 10.1016/j.plantsci.2016.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
A suitable promoter greatly enhances the efficiency of target gene expression of plant molecular breeding and farming; however, only very few promoters are available for economically important non-graminaceous ornamental monocots. In this study, an 868-bp upstream region of defense-related LsGRP1 of Lilium, named PLsGRP1, was cloned by genome walking and proven to exhibit promoter activity in Nicotiana benthamiana and Lilium 'Stargazer' as assayed by agroinfiltration-based β-glucuronidase (GUS) expression system. Many putative biotic stress-, abiotic stress- and physiological regulation-related cis-acting elements were found in PLsGRP1. Serial deletion analysis of PLsGRP1 performed in Nicotiana tabacum var. Wisconsin 38 accompanied with types of treatments indicated that 868-bp PLsGRP1 was highly induced upon pathogen challenges and cold stress while the 131-bp 3'-end region of PLsGRP1 could be dramatically induced by many kinds of abiotic stresses, biotic stresses and phytohormone treatments. Besides, transient GUS expression in a fern, gymnosperms, monocots and dicots revealed good promotor activity of PLsGRP1 in many phylogenetically distinct plant species. Thus, pathogen-inducible PLsGRP1 and its 131-bp 3'-end region are presumed potential as tools for plant molecular breeding and farming.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| |
Collapse
|
146
|
Gonorazky G, Guzzo MC, Abd‐El‐Haliem AM, Joosten MH, Laxalt AM. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2016; 17:1354-1363. [PMID: 26868615 PMCID: PMC6638316 DOI: 10.1111/mpp.12365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5 transcripts and that SlPLC2, but not SlPLC5, is required for xylanase-induced expression of defense-related genes. In this work we studied the role of SlPLC2 in the interaction between tomato and the necrotrophic fungus Botrytis cinerea. Inoculation of tomato leaves with B. cinerea increases SlPLC2 transcript levels. We knocked-down the expression of SlPLC2 by virus-induced gene silencing and plant defense responses were analyzed upon B. cinerea inoculation. SlPLC2 silenced plants developed smaller necrotic lesions concomitantly with less proliferation of the fungus. Silencing of SlPLC2 resulted as well in a reduced production of reactive oxygen species. Upon B. cinerea inoculation, transcript levels of the salicylic acid (SA)-defense pathway marker gene SlPR1a were diminished in SlPLC2 silenced plants compared to non-silenced infected plants, while transcripts of the jasmonic acid (JA)-defense gene markers Proteinase Inhibitor I and II (SlPI-I and SlPI-II) were increased. This implies that SlPLC2 participates in plant susceptibility to B. cinerea.
Collapse
Affiliation(s)
- Gabriela Gonorazky
- Instituto de Investigaciones Biológicas, CONICET‐Universidad Nacional de Mar del PlataCC. 12457600Mar del PlataArgentina
| | - María Carla Guzzo
- Instituto de Fisiología y Recursos Genéticos VegetalesCIAP, INTA, CórdobaArgentina
| | - Ahmed M. Abd‐El‐Haliem
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB WageningenThe Netherlands
- Present address:
Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH AmsterdamThe Netherlands
| | - Matthieu H.A.J. Joosten
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB WageningenThe Netherlands
| | - Ana María Laxalt
- Instituto de Investigaciones Biológicas, CONICET‐Universidad Nacional de Mar del PlataCC. 12457600Mar del PlataArgentina
| |
Collapse
|
147
|
Brosseau C, El Oirdi M, Adurogbangba A, Ma X, Moffett P. Antiviral Defense Involves AGO4 in an Arabidopsis-Potexvirus Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:878-888. [PMID: 27762650 DOI: 10.1094/mpmi-09-16-0188-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In plants, RNA silencing regulates gene expression through the action of Dicer-like (DCL) and Argonaute (AGO) proteins via micro RNAs and RNA-dependent DNA methylation (RdDM). In addition, RNA silencing functions as an antiviral defense mechanism by targeting virus-derived double-stranded RNA. Plants encode multiple AGO proteins with specialized functions, including AGO4-like proteins that affect RdDM and AGO2, AGO5, and AGO1, which have antiviral activities. Here, we show that AGO4 is also required for defense against the potexvirus Plantago asiatica mosaic virus (PlAMV), most likely independent of RdDM components such as DCL3, Pol IV, and Pol V. Transient assays showed that AGO4 has direct antiviral activity on PlAMV and, unlike RdDM, this activity does not require nuclear localization of AGO4. Furthermore, although PlAMV infection causes a decrease in AGO4 expression, PlAMV causes a change in AGO4 localization from a largely nuclear to a largely cytoplasmic distribution. These results indicate an important role for AGO4 in targeting plant RNA viruses as well as demonstrating novel mechanisms of regulation of and by AGO4, independent of its canonical role in regulating gene expression by RdDM.
Collapse
Affiliation(s)
- Chantal Brosseau
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Mohamed El Oirdi
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- 2 Current address: Department of Biology, PYD, King Faisal University, Al Hasa, Kingdom of Saudi Arabia; and
| | - Ayooluwa Adurogbangba
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Xiaofang Ma
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
- 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Peter Moffett
- 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
148
|
Sanchez-Bel P, Troncho P, Gamir J, Pozo MJ, Camañes G, Cerezo M, Flors V. The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato. Front Microbiol 2016; 7:1598. [PMID: 27790197 PMCID: PMC5064179 DOI: 10.3389/fmicb.2016.01598] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/26/2016] [Indexed: 12/04/2022] Open
Abstract
Mycorrhizal plants are generally quite efficient in coping with environmental challenges. It has been shown that the symbiosis with arbuscular mycorrhizal fungi (AMF) can confer resistance against root and foliar pathogens, although the molecular mechanisms underlying such mycorrhiza-induced resistance (MIR) are poorly understood. Tomato plants colonized with the AMF Rhizophagus irregularis display enhanced resistance against the necrotrophic foliar pathogen Botrytis cinerea. Leaves from arbuscular mycorrhizal (AM) plants develop smaller necrotic lesions, mirrored also by a reduced levels of fungal biomass. A plethora of metabolic changes takes place in AMF colonized plants upon infection. Certain changes located in the oxylipin pathway indicate that several intermediaries are over-accumulated in the AM upon infection. AM plants react by accumulating higher levels of the vitamins folic acid and riboflavin, indolic derivatives and phenolic compounds such as ferulic acid and chlorogenic acid. Transcriptional analysis support the key role played by the LOX pathway in the shoots associated with MIR against B. cinerea. Interestingly, plants that have suffered a short period of nitrogen starvation appear to react by reprogramming their metabolic and genetic responses by prioritizing abiotic stress tolerance. Consequently, plants subjected to a transient nitrogen depletion become more susceptible to B. cinerea. Under these experimental conditions, MIR is severely affected although still functional. Many metabolic and transcriptional responses which are accumulated or activated by MIR such NRT2 transcript induction and OPDA and most Trp and indolic derivatives accumulation during MIR were repressed or reduced when tomato plants were depleted of N for 48 h prior infection. These results highlight the beneficial roles of AMF in crop protection by promoting induced resistance not only under optimal nutritional conditions but also buffering the susceptibility triggered by transient N depletion.
Collapse
Affiliation(s)
- Paloma Sanchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (Estación Experimental del Zaidín)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I Castellón, Spain
| | - Pilar Troncho
- Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I Castellón, Spain
| | - Jordi Gamir
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (Estación Experimental del Zaidín)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellón, Spain; Department of Biology. University of FribourgFribourg, Switzerland
| | - Maria J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spain Unidad Asociada-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I Granada, Spain
| | - Gemma Camañes
- Bioquímica y Biotecnología, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I Castellón, Spain
| | - Miguel Cerezo
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (Estación Experimental del Zaidín)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I Castellón, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (Estación Experimental del Zaidín)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I Castellón, Spain
| |
Collapse
|
149
|
Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. PLANT MOLECULAR BIOLOGY 2016; 91:713-25. [PMID: 26879412 PMCID: PMC4932134 DOI: 10.1007/s11103-016-0452-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Plants are constantly threatened by potential pathogens. In order to optimize the output of defense against pathogens with distinct lifestyles, plants depend on hormonal networks to fine-tune specific responses and regulate growth-defense tradeoffs. To counteract, pathogens have evolved various strategies to disturb hormonal homeostasis and facilitate infection. Many pathogens synthesize plant hormones; more importantly, toxins and effectors are produced to manipulate hormonal crosstalk. Accumulating evidence has shown that pathogens exert extensive effects on plant hormone pathways not only to defeat immunity, but also modify habitat structure, optimize nutrient acquisition, and facilitate pathogen dissemination. In this review, we summarize mechanisms by which a wide array of pathogens gain benefits from manipulating plant hormone pathways.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
150
|
Amil-Ruiz F, Garrido-Gala J, Gadea J, Blanco-Portales R, Muñoz-Mérida A, Trelles O, de los Santos B, Arroyo FT, Aguado-Puig A, Romero F, Mercado JÁ, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:1036. [PMID: 27471515 PMCID: PMC4945649 DOI: 10.3389/fpls.2016.01036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/01/2016] [Indexed: 05/04/2023]
Abstract
Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.
Collapse
Affiliation(s)
- Francisco Amil-Ruiz
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José Garrido-Gala
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - Antonio Muñoz-Mérida
- Departamento de Arquitectura de Computación, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Oswaldo Trelles
- Departamento de Arquitectura de Computación, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Berta de los Santos
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Francisco T. Arroyo
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Ana Aguado-Puig
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Fernando Romero
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - José-Ángel Mercado
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| |
Collapse
|