101
|
Mroue S, Simeunovic A, Robert HS. Auxin production as an integrator of environmental cues for developmental growth regulation. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:201-212. [PMID: 28992278 DOI: 10.1093/jxb/erx259] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Being sessile organisms, plants have evolved mechanisms allowing them to control their growth and development in response to environmental changes. This occurs by means of complex interacting signalling networks that integrate diverse environmental cues into co-ordinated and highly regulated responses. Auxin is an essential phytohormone that functions as a signalling molecule, driving both growth and developmental processes. It is involved in numerous biological processes ranging from control of cell expansion and cell division to tissue specification, embryogenesis, and organ development. All these processes require the formation of auxin gradients established and maintained through the combined processes of biosynthesis, metabolism, and inter- and intracellular directional transport. Environmental conditions can profoundly affect the plant developmental programme, and the co-ordinated shoot and root growth ought to be fine-tuned to environmental challenges such as temperature, light, and nutrient and water content. The key role of auxin as an integrator of environmental signals has become clear in recent years, and emerging evidence implicates auxin biosynthesis as an essential component of the overall mechanisms of plants tolerance to stress. In this review, we provide an account of auxin's role as an integrator of environmental signals and, in particular, we highlight the effect of these signals on the control of auxin production.
Collapse
Affiliation(s)
- Souad Mroue
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Andrea Simeunovic
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Hélène S Robert
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| |
Collapse
|
102
|
Qiao L, Zhang W, Li X, Zhang L, Zhang X, Li X, Guo H, Ren Y, Zheng J, Chang Z. Characterization and Expression Patterns of Auxin Response Factors in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1395. [PMID: 30283490 PMCID: PMC6157421 DOI: 10.3389/fpls.2018.01395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/03/2018] [Indexed: 05/22/2023]
Abstract
Auxin response factors (ARFs) are important transcription factors involved in both the auxin signaling pathway and the regulatory development of various plant organs. In this study, 23 TaARF members encoded by a total of 68 homeoalleles were isolated from 18 wheat chromosomes (excluding chromosome 4). The TaARFs, including their conserved domains, exon/intron structures, related microRNAs, and alternative splicing (AS) variants, were then characterized. Phylogenetic analysis revealed that members of the TaARF family share close homology with ARFs in other grass species. qRT-PCR analyses revealed that 20 TaARF members were expressed in different organs and tissues and that the expression of some members significantly differed in the roots, stems, and leaves of wheat seedlings in response to exogenous auxin treatment. Moreover, protein network analyses and co-expression results showed that TaTIR1-TaARF15/18/19-TaIAA13 may interact at both the protein and genetic levels. The results of subsequent evolutionary analyses showed that three transcripts of TaARF15 in the A subgenome of wheat exhibited high evolutionary rate and underwent positive selection. Transgenic analyses indicated that TaARF15-A.1 promoted the growth of roots and leaves of Arabidopsis thaliana and was upregulated in the overexpression plants after auxin treatment. Our results will provide reference information for subsequent research and utilization of the TaARF gene family.
Collapse
Affiliation(s)
- Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Li
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Plant Protection, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaojun Zhang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Xin Li
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Huijuan Guo
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yuan Ren
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Jun Zheng
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| | - Zhijian Chang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| |
Collapse
|
103
|
Olatunji D, Geelen D, Verstraeten I. Control of Endogenous Auxin Levels in Plant Root Development. Int J Mol Sci 2017; 18:E2587. [PMID: 29194427 PMCID: PMC5751190 DOI: 10.3390/ijms18122587] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.
Collapse
Affiliation(s)
- Damilola Olatunji
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Inge Verstraeten
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
104
|
Yan Z, Liu X, Ljung K, Li S, Zhao W, Yang F, Wang M, Tao Y. Type B Response Regulators Act As Central Integrators in Transcriptional Control of the Auxin Biosynthesis Enzyme TAA1. PLANT PHYSIOLOGY 2017; 175:1438-1454. [PMID: 28931628 PMCID: PMC5664468 DOI: 10.1104/pp.17.00878] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 05/22/2023]
Abstract
During embryogenesis and organ formation, establishing proper gradient is critical for auxin function, which is achieved through coordinated regulation of both auxin metabolism and transport. Expression of auxin biosynthetic genes is often tissue specific and is regulated by environmental signals. However, the underlying regulatory mechanisms remain elusive. Here, we investigated the transcriptional regulation of a key auxin biosynthetic gene, l-Tryptophan aminotransferase of Arabidopsis1 (TAA1). A canonical and a novel Arabidopsis (Arabidopsis thaliana) response regulator (ARR) binding site were identified in the promoter and the second intron of TAA1, which were required for its tissue-specific expression. C-termini of a subset of the type B ARRs selectively bind to one or both cis elements and activate the expression of TAA1 We further demonstrated that the ARRs not only mediate the transcriptional regulation of TAA1 by cytokinins, but also mediate its regulation by ethylene, light, and developmental signals. Through direct protein-protein interactions, the transcriptional activity of ARR1 is enhanced by ARR12, DELLAs, and ethylene-insenstive3 (EIN3). Our study thus revealed the ARR proteins act as key node that mediate the regulation of auxin biosynthesis by various hormonal, environmental, and developmental signals through transcriptional regulation of the key auxin biosynthesis gene TAA1.
Collapse
Affiliation(s)
- Zhenwei Yan
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
- State Key Laboratory of Cellular Stress Biology, Xiamen University
| | - Xin Liu
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Shuning Li
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Wanying Zhao
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Fan Yang
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Meiling Wang
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Yi Tao
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
- State Key Laboratory of Cellular Stress Biology, Xiamen University
| |
Collapse
|
105
|
Zhang J, Wei J, Li D, Kong X, Rengel Z, Chen L, Yang Y, Cui X, Chen Q. The Role of the Plasma Membrane H +-ATPase in Plant Responses to Aluminum Toxicity. FRONTIERS IN PLANT SCIENCE 2017; 8:1757. [PMID: 29089951 PMCID: PMC5651043 DOI: 10.3389/fpls.2017.01757] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/25/2017] [Indexed: 05/04/2023]
Abstract
Aluminum (Al) toxicity is a key factor limiting plant growth and crop production on acid soils. Increasing the plant Al-detoxification capacity and/or breeding Al-resistant cultivars are a cost-effective strategy to support crop growth on acidic soils. The plasma membrane H+-ATPase plays a central role in all plant physiological processes. Changes in the activity of the plasma membrane H+-ATPase through regulating the expression and phosphorylation of this enzyme are also involved in many plant responses to Al toxicity. The plasma membrane H+-ATPase mediated H+ influx may be associated with the maintenance of cytosolic pH and the plasma membrane gradients as well as Al-induced citrate efflux mediated by a H+-ATPase-coupled MATE co-transport system. In particular, modulating the activity of plasma membrane H+-ATPase through application of its activators (e.g., magnesium or IAA) or using transgenics has effectively enhanced plant resistance to Al stress in several species. In this review, we critically assess the available knowledge on the role of the plasma membrane H+-ATPase in plant responses to Al stress, incorporating physiological and molecular aspects.
Collapse
Affiliation(s)
- Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dongxu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiangying Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Limei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
106
|
Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM. Multiple Routes of Light Signaling during Root Photomorphogenesis. TRENDS IN PLANT SCIENCE 2017; 22:803-812. [PMID: 28705537 DOI: 10.1016/j.tplants.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
107
|
Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H. Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:1358. [PMID: 28848571 PMCID: PMC5550694 DOI: 10.3389/fpls.2017.01358] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/20/2017] [Indexed: 05/08/2023]
Abstract
Aluminum (Al) rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSIS THALIANA ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (AtALMT1), which encodes an Al-activated malate transporter, revealed that the Al-inducible expression is regulated by a SENSITIVE TO PROTON RHIXOTOXICITY 1 (STOP1) zinc-finger transcription factor. This system, which involves STOP1 and organic acid transporters, is conserved in diverse plant species. The expression of AtALMT1 is also upregulated by several phytohormones and hydrogen peroxide, suggesting there is crosstalk among the signals involved in the transcriptional regulation of AtALMT1. Additionally, phytohormones and reactive oxygen species (ROS) activate various transcriptional responses, including the expression of genes related to increased Al tolerance or the suppression of root growth under Al stress conditions. For example, Al suppressed root growth due to abnormal accumulation of auxin and cytokinin. It activates transcription of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and other phytohormone responsive genes in distal transition zone, which causes suppression of root elongation. On the other hand, overexpression of Al inducible genes for ROS-detoxifying enzymes such as GLUTATHIONE-S-TRANSFERASE, PEROXIDASE, SUPEROXIDE DISMUTASE enhances Al resistance in several plant species. We herein summarize the complex transcriptional regulation of an Al-inducible genes affected by STOP1, phytohormones, and ROS.
Collapse
Affiliation(s)
| | - Ayan Sadhukhan
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | | | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| | - Sanjib K. Panda
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
- Faculty of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu UniversityGifu, Japan
| |
Collapse
|
108
|
Shao A, Ma W, Zhao X, Hu M, He X, Teng W, Li H, Tong Y. The Auxin Biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A Increases Grain Yield of Wheat. PLANT PHYSIOLOGY 2017; 174:2274-2288. [PMID: 28626005 PMCID: PMC5543937 DOI: 10.1104/pp.17.00094] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits, but little progress had been made because low or high auxin contents often cause developmental inhibition. Here, we performed a genome-wide analysis of bread wheat (Triticum aestivum) to identify the Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) genes that function in the tryptophan-dependent pathway of auxin biosynthesis. Sequence mining together with gene cloning identified 15 TaTAR genes, among which 12 and three genes were phylogenetically close to Arabidopsis (Arabidopsis thaliana) AtTAR2 and AtTAR3, respectively. TaTAR2.1 had the most abundant transcripts in the TaTAR2 genes and was expressed mainly in roots and up-regulated by low nitrogen (N) availability. Knockdown of TaTAR2.1 caused vegetative and reproductive deficiencies and impaired lateral root (LR) growth under both high- and low-N conditions. Overexpressing TaTAR2.1-3A in wheat enhanced LR branching, plant height, spike number, grain yield, and aerial N accumulation under different N supply levels. In addition, overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions. Our results indicate that TaTAR2.1 is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat.
Collapse
Affiliation(s)
- An Shao
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Ma
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengyun Hu
- Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xue He
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Teng
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Li
- Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
109
|
Jiang F, Wang T, Wang Y, Kochian LV, Chen F, Liu J. Identification and characterization of suppressor mutants of stop1. BMC PLANT BIOLOGY 2017; 17:128. [PMID: 28738784 PMCID: PMC5525285 DOI: 10.1186/s12870-017-1079-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/20/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Proton stress and aluminum (Al) toxicity are major constraints limiting crop growth and yields on acid soils (pH < 5). In Arabidopsis, STOP1 is a master transcription factor that controls the expression of a set of well-characterized Al tolerance genes and unknown processes involved in low pH resistance. As a result, loss-of-function stop1 mutants are extremely sensitive to low pH and Al stresses. RESULTS Here, we report on screens of an ethyl-methane sulphonate (EMS)-mutagenized stop1 population and isolation of nine strong stop1 suppressor mutants, i.e., the tolerant to proton stress (tps) mutants, with significantly enhanced root growth at low pH (4.3). Genetic analyses indicated these dominant and partial gain-of-function mutants are caused by mutations in single nuclear genes outside the STOP1 locus. Physiological characterization of the responses of these tps mutants to excess levels of Al and other metal ions further classified them into five groups. Three tps mutants also displayed enhanced resistance to Al stress, indicating that these tps mutations partially rescue the hypersensitive phenotypes of stop1 to both low pH stress and Al stress. The other six tps mutants showed enhanced resistance only to low pH stress but not to Al stress. We carried out further physiologic and mapping-by-sequencing analyses for two tps mutants with enhanced resistance to both low pH and Al stresses and identified the genomic regions and candidate loci in chromosomes 1 and 2 that harbor these two TPS genes. CONCLUSION We have identified and characterized nine strong stop1 suppressor mutants. Candidate loci for two tps mutations that partially rescue the hypersensitive phenotypes of stop1 to low pH and Al stresses were identified by mapping-by-sequencing approaches. Further studies could provide insights into the structure and function of TPSs and the regulatory networks underlying the STOP1-mediated processes that lead to resistance to low pH and Al stresses in Arabidopsis.
Collapse
Affiliation(s)
- Fei Jiang
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853 USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
- College of Life Science, Sichuan University, Chengdu, Sichuan China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
| | - Yuqi Wang
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853 USA
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, S7N 4J8 Canada
| | - Fang Chen
- College of Life Science, Sichuan University, Chengdu, Sichuan China
| | - Jiping Liu
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853 USA
| |
Collapse
|
110
|
Yang ZB, Liu G, Liu J, Zhang B, Meng W, Müller B, Hayashi KI, Zhang X, Zhao Z, De Smet I, Ding Z. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep 2017; 18:1213-1230. [PMID: 28600354 DOI: 10.15252/embr.201643806] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/09/2022] Open
Abstract
Auxin acts synergistically with cytokinin to control the shoot stem-cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress-induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al-induced auxin signaling. Al stress triggers a local cytokinin response in the root-apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up-regulated specifically in the root-apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum-induced root growth inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Bing Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| | - Wenjing Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Bruno Müller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, China
| |
Collapse
|
111
|
Mettbach U, Strnad M, Mancuso S, Baluška F. Immunogold-EM analysis reveal brefeldin a-sensitive clusters of auxin in Arabidopsis root apex cells. Commun Integr Biol 2017; 10:e1327105. [PMID: 28702129 PMCID: PMC5501221 DOI: 10.1080/19420889.2017.1327105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 11/05/2022] Open
Abstract
Immunogold electron microscopy (EM) study of Arabidopsis root apices analyzed using specific IAA antibody and high-pressure freeze fixation technique allowed, for the first time, vizualization of subcellular localization of IAA in cells assembled intactly within plant tissues. Our quantitative analysis reveals that there is considerable portion of IAA gold particles that clusters within vesicles and membraneous compartments in all root apex cells. There are clear tissue-specific and developmental differences of clustered IAA in root apices. These findings have significant consequences for our understanding of this small molecule which is controlling plant growth, development and behavior.
Collapse
Affiliation(s)
| | - M. Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - S. Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
112
|
Liu X, Lin Y, Liu D, Wang C, Zhao Z, Cui X, Liu Y, Yang Y. MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.). Sci Rep 2017; 7:1620. [PMID: 28487539 PMCID: PMC5431644 DOI: 10.1038/s41598-017-01803-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
An isobaric tags for relative and absolute quantitative (iTRAQ)-based quantitative proteomic approach was used to screen the differentially expressed proteins during control treatment (CK), aluminum (Al) and Al+ indole-3-acetic acid (IAA) treatment of wheat lines ET8 (Al-tolerant). Further, the the expression levels of auxin response factor (ARF), Aux/IAA, Mitogen activated protein kinase (MAPK) 2c, and MAPK1a were analyzed. Results showed that 16 proteins were determined to be differentially expressed in response to Al and IAA co-treatment compared with Al alone. Among them, MAPK2c and MAPK1a proteins displayed markedly differential expression during the processes. The expression of ARF2 was upregulated and Aux/IAA was downregulated by Al, while both in concentration- and time-dependent manners. Western-blot detection of MAPK2c and MAPK1a indicated that Al upregulated MAPK2c and downregulated MAPK1a in both concentration- and time-dependent manners. Exogenous IAA could promote the expression of MAPK2c, but inhibit the expression of MAPK1a in the presence/absence of Al. These findings indicated that IAA acted as one of the key signaling molecule controls the response mechanism of wheat malic acid efflux to Al stress through the suppression/activation of Aux/IAA and ARFs, and the activity of MAPK2c and MAPK1a were positively or negatively regulated.
Collapse
Affiliation(s)
- Xinwei Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.,Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Yameng Lin
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.,Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Diqiu Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengxiao Wang
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhuqing Zhao
- Centre for Microelement Research of Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuming Cui
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Liu
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Ye Yang
- Yunnan Provincial Key Laboratory of Panax notoginseng, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
113
|
Geng X, Horst WJ, Golz JF, Lee JE, Ding Z, Yang ZB. LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:491-504. [PMID: 28181322 DOI: 10.1111/tpj.13506] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 05/24/2023]
Abstract
A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls.
Collapse
Affiliation(s)
- Xiaoyu Geng
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Walter J Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, Hannover, 30419, Germany
| | - John F Golz
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
114
|
NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:5047-5052. [PMID: 28439024 DOI: 10.1073/pnas.1618557114] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the aquaporin (AQP) family have been suggested to transport aluminum (Al) in plants; however, the Al form transported by AQPs and the roles of AQPs in Al tolerance remain elusive. Here we report that NIP1;2, a plasma membrane-localized member of the Arabidopsis nodulin 26-like intrinsic protein (NIP) subfamily of the AQP family, facilitates Al-malate transport from the root cell wall into the root symplasm, with subsequent Al xylem loading and root-to-shoot translocation, which are critical steps in an internal Al tolerance mechanism in Arabidopsis We found that NIP1;2 transcripts are expressed mainly in the root tips, and that this expression is enhanced by Al but not by other metal stresses. Mutations in NIP1;2 lead to hyperaccumulation of toxic Al3+ in the root cell wall, inhibition of root-to-shoot Al translocation, and a significant reduction in Al tolerance. NIP1;2 facilitates the transport of Al-malate, but not Al3+ ions, in both yeast and Arabidopsis We demonstrate that the formation of the Al-malate complex in the root tip apoplast is a prerequisite for NIP1;2-mediated Al removal from the root cell wall, and that this requires a functional root malate exudation system mediated by the Al-activated malate transporter, ALMT1. Taken together, these findings reveal a critical linkage between the previously identified Al exclusion mechanism based on root malate release and an internal Al tolerance mechanism identified here through the coordinated function of NIP1;2 and ALMT1, which is required for Al removal from the root cell wall, root-to-shoot Al translocation, and overall Al tolerance in Arabidopsis.
Collapse
|
115
|
Wang J, Hou Q, Li P, Yang L, Sun X, Benedito VA, Wen J, Chen B, Mysore KS, Zhao J. Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:79-95. [PMID: 28052433 DOI: 10.1111/tpj.13471] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 05/02/2023]
Abstract
The multidrug and toxin extrusion (MATE) transporter family comprises 70 members in the Medicago truncatula genome, and they play seemingly important, yet mostly uncharacterized, physiological functions. Here, we employed bioinformatics and molecular genetics to identify and characterize MATE transporters involved in citric acid export, Al3+ tolerance and Fe translocation. MtMATE69 is a citric acid transporter induced by Fe-deficiency. Overexpression of MtMATE69 in hairy roots altered Fe homeostasis and hormone levels under Fe-deficient or Fe-oversupplied conditions. MtMATE66 is a plasma membrane citric acid transporter primarily expressed in root epidermal cells. The mtmate66 mutant had less root growth than the wild type under Al3+ stress, and seedlings were chlorotic under Fe-deficient conditions. Overexpression of MtMATE66 rendered hairy roots more tolerant to Al3+ toxicity. MtMATE55 is involved in seedling development and iron homeostasis, as well as hormone signaling. The mtmate55 mutant had delayed development and chlorotic leaves in mature plants. Both knock-out and overexpression mutants of MtMATE55 showed altered Fe accumulation and abnormal hormone levels compared with the wild type. We demonstrate that the zinc-finger transcription factor MtSTOP is essentially required for MtMATE66 expression and plant resistance to H+ and Al3+ toxicity. The proper expression of two previously characterized MATE flavonoid transporters MtMATE1 and MtMATE2 also depends on several transcription factors. This study reveals not only functional diversity of MATE transporters and regulatory mechanisms in legumes against H+ and Al3+ stresses, but also casts light on their role in metal nutrition and hormone signaling under various stresses.
Collapse
Affiliation(s)
- Junjie Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Qiuqiang Hou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Lina Yang
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Xuecheng Sun
- College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430075, China
| | - Vagner A Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jiangqi Wen
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| | - Kirankumar S Mysore
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075, China
| |
Collapse
|
116
|
Liu WC, Li YH, Yuan HM, Zhang BL, Zhai S, Lu YT. WD40-REPEAT 5a functions in drought stress tolerance by regulating nitric oxide accumulation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 93:883-893. [PMID: 26825291 DOI: 10.1111/tpj.13816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) generation by NO synthase (NOS) in guard cells plays a vital role in stomatal closure for adaptive plant response to drought stress. However, the mechanism underlying the regulation of NOS activity in plants is unclear. Here, by screening yeast deletion mutants with decreased NO accumulation and NOS-like activity when subjected to H2 O2 stress, we identified TUP1 as a novel regulator of NOS-like activity in yeast. Arabidopsis WD40-REPEAT 5a (WDR5a), a homolog of yeast TUP1, complemented H2 O2 -induced NO accumulation of a yeast mutant Δtup1, suggesting the conserved role of WDR5a in regulating NO accumulation and NOS-like activity. This note was further confirmed by using an Arabidopsis RNAi line wdr5a-1 and two T-DNA insertion mutants of WDR5a with reduced WDR5a expression, in which both H2 O2 -induced NO accumulation and stomatal closure were repressed. This was because H2 O2 -induced NOS-like activity was inhibited in the mutants compared with that of the wild type. Furthermore, these wdr5a mutants were more sensitive to drought stress as they had reduced stomatal closure and decreased expression of drought-related genes. Together, our results revealed that WDR5a functions as a novel factor to modulate NOS-like activity for changes of NO accumulation and stomatal closure in drought stress tolerance.
Collapse
Affiliation(s)
- Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Bing-Lei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
117
|
Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. PLANT & CELL PHYSIOLOGY 2017; 58:426-439. [PMID: 28064248 DOI: 10.1093/pcp/pcw211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
High-throughput small RNA sequencing has identified several potential aluminum (Al)-responsive microRNAs (miRNAs); however, their regulatory role remains unknown. Here, we identified two miR393 family members in barley, and confirmed two target genes-HvTIR1 and HvAFB-through a modified form of 5'-RACE (rapid amplification of cDNA ends) as well as degradome data analysis. Furthermore, we investigated the biological function of the miR393/target module in root development and its Al stress response. The investigation showed that miR393 affected root growth and adventitious root number by altering auxin sensitivity. Al3+ exposure suppressed miR393 expression in root apex, while overexpression of miR393 counteracted Al-induced inhibition of root elongation and alleviated reactive oxygen species (ROS)-induced cell death. Target mimic (MIM393)-mediated inhibition of miR393's activity enhanced root sensitivity to Al toxicity. We also confirmed that auxin enhanced Al-induced root growth inhibition in barley via application of exogenous 1-naphthaleneacetic acid (NAA), and the expression of auxin-responsive genes in the root apex was induced upon Al treatment. Overexpression of miR393 attenuated the effect of exogenous NAA on Al-induced root growth inhibition, and down-regulated the expression of auxin-responsive genes under Al stress, implying that miR393 regulates root sensitivity to Al through the alteration of auxin signaling output in barley. Therefore, these data indicate that miR393 acts as an integrator of environmental cues in auxin signaling, and suggest a new strategy to improve plant resistance to Al toxicity.
Collapse
Affiliation(s)
- Bin Bai
- Laboratory of Plant-Animal Interactions, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China
- Yunnan Forestry Technological College, Kunming, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhanghui Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ning Hou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhui Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Muyuan Zhu
- Department of Science of Pesticides, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ning Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
118
|
Liu W, Xiong C, Yan L, Zhang Z, Ma L, Wang Y, Liu Y, Liu Z. Transcriptome Analyses Reveal Candidate Genes Potentially Involved in Al Stress Response in Alfalfa. FRONTIERS IN PLANT SCIENCE 2017; 8:26. [PMID: 28217130 PMCID: PMC5290290 DOI: 10.3389/fpls.2017.00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/05/2017] [Indexed: 05/23/2023]
Abstract
Alfalfa is the most extensively cultivated forage legume, yet most alfalfa cultivars are not aluminum tolerant, and the molecular mechanisms underlying alfalfa responses to Al stress are largely unknown. In this study, we aimed to understand how alfalfa responds to Al stress by identifying and analyzing Al-stress-responsive genes in alfalfa roots at the whole-genome scale. The transcriptome changes in alfalfa roots under Al stress for 4, 8, or 24 h were analyzed using Illumina high-throughput sequencing platforms. A total of 2464 differentially expressed genes (DEGs) were identified, and most were up-regulated at early (4 h) and/or late (24 h) Al exposure time points rather than at the middle exposure time point (8 h). Metabolic pathway enrichment analysis demonstrated that the DEGs involved in ribosome, protein biosynthesis, and process, the citrate cycle, membrane transport, and hormonal regulation were preferentially enriched and regulated. Biosynthesis inhibition and signal transduction downstream of auxin- and ethylene-mediated signals occur during alfalfa responses to root growth inhibition. The internal Al detoxification mechanisms play important roles in alfalfa roots under Al stress. These findings provide valuable information for identifying and characterizing important components in the Al signaling network in alfalfa and enhance understanding of the molecular mechanisms underlying alfalfa responses to Al stress.
Collapse
Affiliation(s)
- Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Conghui Xiong
- Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou UniversityLanzhou, China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Lichao Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Yajie Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| |
Collapse
|
119
|
Yang ZB, He C, Ma Y, Herde M, Ding Z. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition. PLANT PHYSIOLOGY 2017; 173:1420-1433. [PMID: 27932419 PMCID: PMC5291015 DOI: 10.1104/pp.16.01756] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 05/04/2023]
Abstract
Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress.
Collapse
|
120
|
Zhao J, Wang W, Zhou H, Wang R, Zhang P, Wang H, Pan X, Xu J. Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:272. [PMID: 28316607 PMCID: PMC5334637 DOI: 10.3389/fpls.2017.00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/14/2017] [Indexed: 05/05/2023]
Abstract
Mn toxicity inhibits both primary root (PR) growth and lateral root development. However, the mechanism underlying Mn-mediated root growth inhibition remains to be further elucidated. Here, we investigated the role of auxin in Mn-mediated inhibition of PR growth in Arabidopsis using physiological and genetic approaches. Mn toxicity inhibits PR elongation by reducing meristematic cell division potential. Mn toxicity also reduced auxin levels in root tips by reducing IAA biosynthesis and down-regulating the expression of auxin efflux carriers PIN4 and PIN7. Loss of function pin4 and pin7 mutants showed less inhibition of root growth than col-0 seedlings. These results indicated that this inhibitory effect of Mn toxicity on PR growth was mediated by affecting auxin biosynthesis and the expression of auxin efflux transporters PIN4 and PIN7.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
| | - Wenying Wang
- College of Life Science and Geography, Qinghai Normal UniversityXining, China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Ruling Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
| | - Ping Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
| | - Huichun Wang
- College of Life Science and Geography, Qinghai Normal UniversityXining, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of TechnologyHangzhou, China
- *Correspondence: Jin Xu, Xiangliang Pan,
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, KunmingChina
- *Correspondence: Jin Xu, Xiangliang Pan,
| |
Collapse
|
121
|
Zhang L, Wu XX, Wang J, Qi C, Wang X, Wang G, Li M, Li X, Guo YD. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:2156. [PMID: 29410672 PMCID: PMC5787101 DOI: 10.3389/fpls.2017.02156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/06/2017] [Indexed: 05/02/2023]
Abstract
Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage (Brassica oleracea). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La), cadmium (Cd), zinc (Zn), or copper (Cu). Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.
Collapse
Affiliation(s)
- Lei Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xin-Xin Wu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Jinfang Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Chuandong Qi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaoyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Gongle Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingyue Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xingsheng Li
- Shandong Huasheng Agriculture Co. Ltd, Shandong, China
| | - Yang-Dong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Yang-Dong Guo
| |
Collapse
|
122
|
Zhou P, Su L, Lv A, Wang S, Huang B, An Y. Gene Expression Analysis of Alfalfa Seedlings Response to Acid-Aluminum. Int J Genomics 2016; 2016:2095195. [PMID: 28074175 PMCID: PMC5198156 DOI: 10.1155/2016/2095195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 11/27/2022] Open
Abstract
Acid-Aluminum (Al) is toxic to plants and greatly affects crop production worldwide. To understand the responses of plants to acid soils and Aluminum toxicity, we examined global gene expression using microarray data in alfalfa seedlings with the treatment of acid-Aluminum. 3,926 genes that were identified significantly up- or downregulated in response to Al3+ ions with pH 4.5 treatment, 66.33% of which were found in roots. Their functional categories were mainly involved with phytohormone regulation, reactive oxygen species, and transporters. Both gene ontology (GO) enrichment and KEGG analysis indicated that phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis played a critical role on defense to Aluminum stress in alfalfa. In addition, we found that transcription factors such as the MYB and WRKY family proteins may be also involved in the regulation of reactive oxygen species reactions and flavonoid biosynthesis. Thus, the finding of global gene expression profile provided insights into the mechanisms of plant defense to acid-Al stress in alfalfa. Understanding the key regulatory genes and pathways would be advantageous for improving crop production not only in alfalfa but also in other crops under acid-Aluminum stress.
Collapse
Affiliation(s)
- Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengyin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
123
|
Ku L, Tian L, Su H, Wang C, Wang X, Wu L, Shi Y, Li G, Wang Z, Wang H, Song X, Dou D, Ren Z, Chen Y. Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions. BMC PLANT BIOLOGY 2016; 16:239. [PMID: 27809780 PMCID: PMC5094027 DOI: 10.1186/s12870-016-0930-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/24/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Photoperiodism refers to the ability of plants to measure day length to determine the season. This ability enables plants to coordinate internal biological activities with external changes to ensure normal growth. However, the influence of the photoperiod on maize flowering and stress responses under long-day (LD) conditions has not been analyzed by comparative transcriptome sequencing. The ZmCCT gene was previously identified as a homolog of the rice photoperiod response regulator Ghd7, and associated with the major quantitative trait locus (QTL) responsible for Gibberella stalk rot resistance in maize. However, its regulatory mechanism has not been characterized. RESULTS We mapped the ZmCCT-associated QTL (ZmCCT-AQ), which is approximately 130 kb long and regulates photoperiod responses and resistance to Gibberella stalk rot and drought in maize. To investigate the effects of ZmCCT-AQ under LD conditions, the transcriptomes of the photoperiod-insensitive inbred line Huangzao4 (HZ4) and its near-isogenic line (HZ4-NIL) containing ZmCCT-AQ were sequenced. A set of genes identified by RNA-seq exhibited higher basal expression levels in HZ4-NIL than in HZ4. These genes were associated with responses to circadian rhythm changes and biotic and abiotic stresses. The differentially expressed genes in the introgressed regions of HZ4-NIL conferred higher drought and heat tolerance, and stronger disease resistance relative to HZ4. Co-expression analysis and the diurnal expression rhythms of genes related to stress responses suggested that ZmCCT and one of the circadian clock core genes, ZmCCA1, are important nodes linking the photoperiod to stress tolerance responses under LD conditions. CONCLUSION Our study revealed that the photoperiod influences flowering and stress responses under LD conditions. Additionally, ZmCCT and ZmCCA1 are important functional links between the circadian clock and stress tolerance. The establishment of this particular molecular link has uncovered a new relationship between plant photoperiodism and stress responses.
Collapse
Affiliation(s)
- Lixia Ku
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Lei Tian
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Huihui Su
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Cuiling Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471003 China
| | - Xiaobo Wang
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Liuji Wu
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Yong Shi
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Guohui Li
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Zhiyong Wang
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Huitao Wang
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Xiaoheng Song
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Dandan Dou
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Zhaobin Ren
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| | - Yanhui Chen
- College of Agronomy, Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002 China
| |
Collapse
|
124
|
Wang P, Yu W, Zhang J, Rengel Z, Xu J, Han Q, Chen L, Li K, Yu Y, Chen Q. Auxin enhances aluminium-induced citrate exudation through upregulation of GmMATE and activation of the plasma membrane H+-ATPase in soybean roots. ANNALS OF BOTANY 2016; 118:933-940. [PMID: 27474509 PMCID: PMC5055814 DOI: 10.1093/aob/mcw133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/04/2016] [Accepted: 05/16/2016] [Indexed: 05/18/2023]
Abstract
Background and Aims Aluminium (Al) toxicity is a limiting factor for plant growth and crop production in acidic soils. Citrate exudation and activation of the plasma membrane H+-ATPase are involved in soybean responses to Al stress. Auxin has crucial functions in plant growth and stress responses. However, little is known about possible interactions between auxin and citrate exudation under Al stress. In this study, we elucidated the regulatory roles of IAA in Al-induced citrate exudation in soybean roots. Methods We measured IAA content, Al concentration, citrate exudation, plasma membrane H+-ATPase activity, expression of the relevant genes and phosphorylation of the plasma membrane H+-ATPase by integrating physiological characterization and molecular analysis using hydroponically grown soybean. Key Results The concentration of IAA was increased by 25 and 50 μm Al, but decreased to the control level at 200 μm Al. External addition of 50 μm IAA to the root medium containing 25, 50 or 200 μm Al decreased root Al concentration and stimulated Al-induced citrate exudation and the plasma membrane H+-ATPase activity. Reverse transcription-PCR analysis showed that exogenous IAA enhanced the expression of citrate exudation transporter (GmMATE) but not the plasma membrane H+-ATPase gene. The western blot results suggested that IAA enhanced phosphorylation of the plasma membrane H+-ATPase under Al stress. Conclusions Auxin enhanced Al-induced citrate exudation through upregulation of GmMATE and an increase in phosphorylation of the plasma membrane H+-ATPase in soybean roots.
Collapse
Affiliation(s)
- Ping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Wenqian Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6000, Australia
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Limei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Yongxiong Yu
- College of Zoological Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| |
Collapse
|
125
|
Kopittke PM. Role of phytohormones in aluminium rhizotoxicity. PLANT, CELL & ENVIRONMENT 2016; 39:2319-28. [PMID: 27352002 DOI: 10.1111/pce.12786] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 05/06/2023]
Abstract
Elevated concentrations of soluble aluminium (Al) reduce root growth in acid soils, but much remains unknown regarding the toxicity of this Al as well as the mechanisms by which plants respond. This review examines changes in phytohormones in Al-stressed plants. Al often results in a rapid 'burst' of ethylene in root apical tissues within 15-30 min, with this regulating an increase in auxin. This production of ethylene and auxin seems to be a component of a plant-response to toxic Al, resulting in cell wall modification or regulation of organic acid release. There is also evidence of a role of auxin in the expression of Al toxicity itself, with Al decreasing basipetal transport of auxin, thereby potentially decreasing wall loosening as required for elongation. Increasingly, changes in abscisic acid in root apices also seem to be involved in plant-responses to toxic Al. Changes in cytokinins, gibberellins and jasmonates following exposure to Al are also examined, although little information is available. Finally, although not a phytohormone, concentrations of nitric oxide change rapidly in Al-exposed tissues. The information presented in this review will assist in focusing future research efforts in examining the importance of phytohormones in plant tissues exposed to toxic levels of Al.
Collapse
Affiliation(s)
- Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
126
|
Liu G, Gao S, Tian H, Wu W, Robert HS, Ding Z. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis. PLoS Genet 2016; 12:e1006360. [PMID: 27716807 PMCID: PMC5065128 DOI: 10.1371/journal.pgen.1006360] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.
Collapse
Affiliation(s)
- Guangchao Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Shan Gao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Huiyu Tian
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Wenwen Wu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
127
|
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information Integration and Communication in Plant Growth Regulation. Cell 2016; 164:1257-1268. [PMID: 26967291 DOI: 10.1016/j.cell.2016.01.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.
Collapse
Affiliation(s)
- Juthamas Chaiwanon
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wenfei Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
128
|
Kopittke PM, Menzies NW, Wang P, Blamey FPC. Kinetics and nature of aluminium rhizotoxic effects: a review. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4451-67. [PMID: 27302129 DOI: 10.1093/jxb/erw233] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acid soils with elevated levels of soluble aluminium (Al) comprise ~40% of the world's arable land, but there remains much uncertainty regarding the mechanisms by which Al is rhizotoxic. This review examines the kinetics of the toxic effects of Al on the root elongation rate (RER), its effects on root tissues, and its location at a subcellular level. Depending upon the concentration and plant species, soluble Al decreases the RER in a median time of 73min, but in as little as 5min in soybean. This is initially due to a decreased rate at which cells expand anisotropically in the elongation zone. Thereafter, rhizodermal and outer cortical cells rupture through decreased cell wall relaxation. It is in this region where most Al accumulates in the apoplast. Subsequently, Al impacts root growth at a subcellular level through adverse effects on the plasma membrane (PM), cytoplasm, and nucleus. At the PM, Al alters permeability, fluidity, and integrity in as little as 0.5h, whilst it also depolarizes the PM and reduces H(+)-ATPase activity. The Al potentially crosses the PM within 0.5h where it is able to bind to the nucleus and inhibit cell division; sequestration within the vacuole is required to reduce the toxic effects of Al within the cytoplasm. This review demonstrates the increasing evidence of the importance of the initial Al-induced inhibition of wall loosening, but there is evidence also of the deleterious effects of Al on other cellular processes which are important for long-term root growth and function.
Collapse
Affiliation(s)
- Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Peng Wang
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - F Pax C Blamey
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
129
|
Suzuki H, Yokawa K, Nakano S, Yoshida Y, Fabrissin I, Okamoto T, Baluška F, Koshiba T. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4581-91. [PMID: 27307546 PMCID: PMC4973731 DOI: 10.1093/jxb/erw232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1-2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1-3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0-1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0-1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ken Yokawa
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan IZMB, University of Bonn, D-53115 Bonn, Germany
| | - Sayuri Nakano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuriko Yoshida
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Isabelle Fabrissin
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | - Tomokazu Koshiba
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
130
|
Wang S, Ren X, Huang B, Wang G, Zhou P, An Y. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci Rep 2016; 6:30079. [PMID: 27435109 PMCID: PMC4951802 DOI: 10.1038/srep30079] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.
Collapse
Affiliation(s)
- Shengyin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaoyan Ren
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Jersey, NJ 08901, USA
| | - Ge Wang
- Instrumental Analysis Centre of Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
131
|
Sun L, Tian J, Zhang H, Liao H. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3655-3664. [PMID: 27190050 DOI: 10.1093/jxb/erw188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and limit plant growth on acid soils. It has been well documented that both P deficiency and Al toxicity alter root growth, including inhibition of primary roots and promotion of lateral roots. This suggests that plants adapt to both stresses through a common regulation pathway. Although an expanding set of results shows that phytohormones play vital roles in controlling root responses to Pi starvation and Al toxicity, it remains largely unknown whether P and Al coordinately regulate root growth through interacting phytohormone biosynthesis and signal transduction pathways. This review provides a summary of recent results concerning the influences of P deficiency and Al toxicity on root growth through the action of phytohormones, most notably auxin and ethylene. The objective is to facilitate increasing insights into complex responses of plants to adverse factors common on acid soils, which can spur development of 'smart' cultivars with better root growth and higher yield on these globally distributed marginal soils.
Collapse
Affiliation(s)
- Lili Sun
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Zhang
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
132
|
Lou HQ, Gong YL, Fan W, Xu JM, Liu Y, Cao MJ, Wang MH, Yang JL, Zheng SJ. A Formate Dehydrogenase Confers Tolerance to Aluminum and Low pH. PLANT PHYSIOLOGY 2016; 171:294-305. [PMID: 27021188 PMCID: PMC4854670 DOI: 10.1104/pp.16.01105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/26/2016] [Indexed: 05/22/2023]
Abstract
Formate dehydrogenase (FDH) is involved in various higher plant abiotic stress responses. Here, we investigated the role of rice bean (Vigna umbellata) VuFDH in Al and low pH (H(+)) tolerance. Screening of various potential substrates for the VuFDH protein demonstrated that it functions as a formate dehydrogenase. Quantitative reverse transcription-PCR and histochemical analysis showed that the expression of VuFDH is induced in rice bean root tips by Al or H(+) stresses. Fluorescence microscopic observation of VuFDH-GFP in transgenic Arabidopsis plants indicated that VuFDH is localized in the mitochondria. Accumulation of formate is induced by Al and H(+) stress in rice bean root tips, and exogenous application of formate increases internal formate content that results in the inhibition of root elongation and induction of VuFDH expression, suggesting that formate accumulation is involved in both H(+)- and Al-induced root growth inhibition. Over-expression of VuFDH in tobacco (Nicotiana tabacum) results in decreased sensitivity to Al and H(+) stress due to less production of formate in the transgenic tobacco lines under Al and H(+) stresses. Moreover, NtMATE and NtALS3 expression showed no changes versus wild type in these over-expression lines, suggesting that herein known Al-resistant mechanisms are not involved. Thus, the increased Al tolerance of VuFDH over-expression lines is likely attributable to their decreased Al-induced formate production. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms, and suggest a possible new route toward the improvement of plant performance in acidic soils, where Al toxicity and H(+) stress coexist.
Collapse
Affiliation(s)
- He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Yu Long Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Wei Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Meng Jie Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Ming-Hu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (H.Q.L., Y.L.G., J.M.X., Y.L., M.J.C., J.L.Y., S.J.Z.); College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China (W.F.); and Ningbo Municipal Head Station for Crop Farming Administration, Ningbo 315012, China (M.-H.W.)
| |
Collapse
|
133
|
Manoli A, Trevisan S, Voigt B, Yokawa K, Baluška F, Quaggiotti S. Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones. FRONTIERS IN PLANT SCIENCE 2016; 6:1269. [PMID: 26834770 PMCID: PMC4722128 DOI: 10.3389/fpls.2015.01269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
Nitrate (NO3 (-)) is a key element for crop production but its levels in agricultural soils are limited. Plants have developed mechanisms to cope with these NO3 (-) fluctuations based on sensing nitrate at the root apex. Particularly, the transition zone (TZ) of root apex has been suggested as a signaling-response zone. This study dissects cellular and molecular mechanisms underlying NO3 (-) resupply effects on primary root (PR) growth in maize, confirming nitric oxide (NO) as a putative modulator. Nitrate restoration induced PR elongation within the first 2 h, corresponding to a stimulation of cell elongation at the basal border of the TZ. Xyloglucans (XGs) immunolocalization together with Brefeldin A applications demonstrated that nitrate resupply induces XG accumulation. This effect was blocked by cPTIO (NO scavenger). Transcriptional analysis of ZmXET1 confirmed the stimulatory effect of nitrate on XGs accumulation in cells of the TZ. Immunolocalization analyses revealed a positive effect of nitrate resupply on auxin and PIN1 accumulation, but a transcriptional regulation of auxin biosynthesis/transport/signaling genes was excluded. Short-term nitrate treatment repressed the transcription of genes involved in strigolactones (SLs) biosynthesis and transport, mainly in the TZ. Enhancement of carotenoid cleavage dioxygenases (CCDs) transcription in presence of cPTIO indicated endogenous NO as a negative modulator of CCDs activity. Finally, treatment with the SLs-biosynthesis inhibitor (TIS108) restored the root growth in the nitrate-starved seedlings. Present report suggests that the NO-mediated root apex responses to nitrate are accomplished in cells of the TZ via integrative actions of auxin, NO and SLs.
Collapse
Affiliation(s)
- Alessandro Manoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PaduaPadua, Italy
| | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PaduaPadua, Italy
| | - Boris Voigt
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Ken Yokawa
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PaduaPadua, Italy
| |
Collapse
|
134
|
Yu Y, Jin C, Sun C, Wang J, Ye Y, Zhou W, Lu L, Lin X. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. Sci Rep 2016; 6:18888. [PMID: 26744061 PMCID: PMC4705537 DOI: 10.1038/srep18888] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/27/2015] [Indexed: 11/18/2022] Open
Abstract
Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
135
|
Liu M, Xu J, Lou H, Fan W, Yang J, Zheng S. Characterization of VuMATE1 Expression in Response to Iron Nutrition and Aluminum Stress Reveals Adaptation of Rice Bean (Vigna umbellata) to Acid Soils through Cis Regulation. FRONTIERS IN PLANT SCIENCE 2016; 7:511. [PMID: 27148333 PMCID: PMC4835453 DOI: 10.3389/fpls.2016.00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/31/2016] [Indexed: 05/06/2023]
Abstract
Rice bean (Vigna umbellata) VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acid soils where Al stress imposed but Fe deficiency pressure released.
Collapse
Affiliation(s)
- Meiya Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
| | - Jiameng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Heqiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural UniversityKunming, China
- *Correspondence: Jianli Yang, ; Wei Fan,
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
- *Correspondence: Jianli Yang, ; Wei Fan,
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
136
|
Poupin MJ, Greve M, Carmona V, Pinedo I. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN. FRONTIERS IN PLANT SCIENCE 2016; 7:492. [PMID: 27148317 PMCID: PMC4828629 DOI: 10.3389/fpls.2016.00492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 05/05/2023]
Abstract
Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.
Collapse
Affiliation(s)
- María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
- *Correspondence: María J. Poupin,
| | - Macarena Greve
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Vicente Carmona
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| | - Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- Millennium Nucleus Center for Plant Systems and Synthetic BiologySantiago, Chile
| |
Collapse
|
137
|
Yuan HM, Huang X. Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:120-35. [PMID: 26138870 DOI: 10.1111/pce.12597] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
The root is the first plant organ to get in contact with the toxin cadmium (Cd), which is a widespread soil contaminant. Cd inhibits the growth of the primary root, but the mechanisms underlying this inhibition remain elusive. In this study, we used physiological, pharmacological and genetic approaches to investigate the roles of nitric oxide (NO) and auxin in Cd-mediated inhibition of Arabidopsis thaliana root meristem growth. Our study demonstrated that in the first 12 h of exposure, Cd inhibits primary root elongation through a decrease in the sizes of both the elongation and meristematic zones. Following Cd exposure, a decrease in auxin levels is associated with reduced PIN1/3/7 protein accumulation, but not with reduced PIN1/3/7 transcript levels. Additionally, Cd stabilized AXR3/IAA17 protein to repress auxin signalling in this Cd-mediated process. Furthermore, decreasing Cd-induced NO accumulation with either NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N(ω) -nitro-l-Arg-methylester (l-NAME) compromised the Cd-mediated inhibition of root meristem development, reduction in auxin and PIN1/3/7 accumulation, as well as stabilization of AXR3/IAA17, indicating that NO participates in Cd-mediated inhibition of root meristem growth. Taken together, our data suggest that Cd inhibits root meristem growth by NO-mediated repression of auxin accumulation and signalling in Arabidopsis.
Collapse
Affiliation(s)
- Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, China
| |
Collapse
|
138
|
Fan W, Lou HQ, Gong YL, Liu MY, Cao MJ, Liu Y, Yang JL, Zheng SJ. Characterization of an inducible C2 H2 -type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. THE NEW PHYTOLOGIST 2015; 208:456-68. [PMID: 25970766 DOI: 10.1111/nph.13456] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/12/2015] [Indexed: 05/18/2023]
Abstract
The rice bean (Vigna umbellata) root apex specifically secretes citrate through expression activation of Vigna umbellata Multidrug and Toxic Compound Extrusion 1 (VuMATE1) under aluminum (Al(3+) ) stress. However, the underlying mechanisms regulating VuMATE1 expression remain unknown. We isolated and characterized a gene encoding Sensitive to Proton Rhizotoxicity1 (STOP1)-like protein, VuSTOP1, from rice bean. The role of VuSTOP1 in regulating VuMATE1 expression was investigated using the yeast one-hybrid assay. We characterized the function of VuSTOP1 in Al(3) (+) - and H(+) -tolerance using in planta complementation assays. We demonstrated that VuSTOP1 has transactivation potential. We found that VuSTOP1 expression is inducible by Al(3+) and H(+) stress. However, although VuSTOP1 binds to the promoter of VuMATE1, the inconsistent tissue localization patterns of VuSTOP1 and VuMATE1 preclude VuSTOP1 as the major factor regulating VuMATE1 expression. In addition, when a protein translation inhibitor increased expression of VuSTOP1, VuMATE1 expression was inhibited. In planta complementation assay demonstrated that VuSTOP1 could fully restore expression of genes involved in H(+) tolerance, but could only partially restore expression of AtMATE. We conclude that VuSTOP1 plays a major role in H(+) tolerance, but only a minor role in Al(3+) tolerance. The differential transcriptional regulation of VuSTOP1 and VuMATE1 reveals a complex regulatory system controlling VuMATE1 expression.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - He Qiang Lou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Long Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei Ya Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Meng Jie Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
139
|
Roselló M, Poschenrieder C, Gunsé B, Barceló J, Llugany M. Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. J Inorg Biochem 2015; 152:160-6. [PMID: 26337117 DOI: 10.1016/j.jinorgbio.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/20/2015] [Indexed: 01/19/2023]
Abstract
Rice (Oryza sativa) is a highly Al-tolerant crop. Among other mechanisms, a higher expression of STAR1/STAR2 (sensitive to Al rhizotoxicity1/2) genes and of Nrat1 (NRAMP Aluminium Transporter 1), and ALS1 (Aluminium sensitive 1) can at least in part be responsible for the inducible Al tolerance in this species. Here we analysed the responses to Al in two contrasting rice varieties. All analysed toxicity/tolerance markers (root elongation, Evans blue, morin and haematoxylin staining) indicated higher Al-tolerance in variety Nipponbare, than in variety Modan. Nipponbare accumulated much less Al in the roots than Modan. Aluminium supply caused stronger expression of STAR1 in Nipponbare than in Modan. A distinctively higher increase of Al-induced abscisic acid (ABA) accumulation was found in the roots of Nipponbare than in Modan. Highest ABA levels were observed in Nipponbare after 48 h exposure to Al. This ABA peak was coincident in time with the highest expression level of STAR1. It is proposed that ABA may be required for cell wall remodulation facilitated by the enhanced UDP-glucose transport to the walls through STAR1/STAR2. Contrastingly, in the roots of Modan the expression of both Nrat1 coding for a plasma membrane Al-transporter and of ALS1 coding for a tonoplast-localized Al transporter was considerably enhanced. Moreover, Modan had a higher Al-induced expression of ASR1 a gene that has been proposed to code for a reactive oxygen scavenging protein. In conclusion, the Al-exclusion strategy of Nipponbare, at least in part mediated by STAR1 and probably regulated by ABA, provided better protection against Al toxicity than the accumulation and internal detoxification strategy of Modan mediated by Nrat1, ALS1 and ARS1.
Collapse
Affiliation(s)
- Maite Roselló
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Benet Gunsé
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Juan Barceló
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
140
|
Li J, Xu HH, Liu WC, Zhang XW, Lu YT. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation. PLANT PHYSIOLOGY 2015; 168:1777-91. [PMID: 26109425 PMCID: PMC4528753 DOI: 10.1104/pp.15.00523] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/23/2015] [Indexed: 05/03/2023]
Abstract
Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Heng-Hao Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Xiao-Wei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| |
Collapse
|
141
|
Trevisan S, Manoli A, Ravazzolo L, Botton A, Pivato M, Masi A, Quaggiotti S. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3699-715. [PMID: 25911739 PMCID: PMC4473975 DOI: 10.1093/jxb/erv165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrate is an essential nutrient for plants, and crops depend on its availability for growth and development, but its presence in agricultural soils is far from stable. In order to overcome nitrate fluctuations in soil, plants have developed adaptive mechanisms allowing them to grow despite changes in external nitrate availability. Nitrate can act as both nutrient and signal, regulating global gene expression in plants, and the root tip has been proposed as the sensory organ. A set of genome-wide studies has demonstrated several nitrate-regulated genes in the roots of many plants, although only a few studies have been carried out on distinct root zones. To unravel new details of the transcriptomic and proteomic responses to nitrate availability in a major food crop, a double untargeted approach was conducted on a transition zone-enriched root portion of maize seedlings subjected to differing nitrate supplies. The results highlighted a complex transcriptomic and proteomic reprogramming that occurs in response to nitrate, emphasizing the role of this root zone in sensing and transducing nitrate signal. Our findings indicated a relationship of nitrate with biosynthesis and signalling of several phytohormones, such as auxin, strigolactones, and brassinosteroids. Moreover, the already hypothesized involvement of nitric oxide in the early response to nitrate was confirmed with the use of nitric oxide inhibitors. Our results also suggested that cytoskeleton activation and cell wall modification occurred in response to nitrate provision in the transition zone.
Collapse
Affiliation(s)
- Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Laura Ravazzolo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Alessandro Botton
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Micaela Pivato
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy Proteomics Centre of Padova University, VIMM and Padova University Hospital, Via Giuseppe Orus, 2, 35129 Padova, Italy
| | - Antonio Masi
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
142
|
Trumbo JL, Zhang B, Stewart CN. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:337-54. [PMID: 25707745 DOI: 10.1111/pbi.12319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 05/22/2023]
Abstract
Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.
Collapse
Affiliation(s)
- Jennifer Lynn Trumbo
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
143
|
Zhang M, Kong X, Xu X, Li C, Tian H, Ding Z. Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress. PLoS One 2015; 10:e0121222. [PMID: 25803026 PMCID: PMC4372355 DOI: 10.1371/journal.pone.0121222] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
Soil salinity is a major constraint to crop growth and yield. The primary and lateral roots of Arabidopsis thaliana are known to respond differentially to a number of environmental stresses, including salinity. Although the maize root system as a whole is known to be sensitive to salinity, whether or not different structural root systems show differential growth responses to salinity stress has not yet been investigated. The maize primary root (PR) was more tolerant of salinity stress than either the crown root (CR) or the seminal root (SR). To understand the molecular mechanism of these differential growth responses, RNA-Seq analysis was conducted on cDNA prepared from the PR, CR and SR of plants either non-stressed or exposed to 100 mM NaCl for 24 h. A set of 444 genes were shown to be regulated by salinity stress, and the transcription pattern of a number of genes associated with the plant salinity stress response differed markedly between the various types of root. The pattern of transcription of the salinity-regulated genes was shown to be very diverse in the various root types. The differential transcription of these genes such as transcription factors, and the accumulation of compatible solutes such as soluble sugars probably underlie the differential growth responses to salinity stress of the three types of roots in maize.
Collapse
Affiliation(s)
- Maolin Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
| | - Xiangbo Xu
- Maize Institute, Shandong Academy of Agricultural Sciences/National Maize Improvement Sub-Center/National Engineering Laboratory for Wheat and Maize, Jinan, 250000, Shandong, China
| | - Cuiling Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
- * E-mail:
| |
Collapse
|
144
|
Pejchar P, Potocký M, Krčková Z, Brouzdová J, Daněk M, Martinec J. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:66. [PMID: 25763003 PMCID: PMC4329606 DOI: 10.3389/fpls.2015.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 05/06/2023]
Abstract
Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity, and function of the non-specific phospholipase C4 (NPC4), a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana. We observed a lower expression of NPC4 using β-glucuronidase assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h). Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions. Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.
Collapse
Affiliation(s)
- Přemysl Pejchar
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, PragueCzech Republic
| | | | | | | | | | | |
Collapse
|
145
|
Pejchar P, Martinec J. Aluminum ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties. PLANT SIGNALING & BEHAVIOR 2015; 10:e1031938. [PMID: 26024014 PMCID: PMC4622580 DOI: 10.1080/15592324.2015.1031938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 05/20/2023]
Abstract
The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl₃. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.
Collapse
Key Words
- Arabidopsis thaliana
- BA, benzyl alcohol
- BODIPY
- BODIPY, 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene
- BY-2, Bright Yellow 2
- DAG, diacylglycerol
- HP-TLC, high-performance thin-layer chromatography
- MS, Murashige-Skoog
- NPC, non-specific phospholipase C
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PC-PLC, phosphatidylcholine-specific phospholipase C
- PI-PLC, phosphatidylinositol-specific phospholipase C
- PIP2, phosphatidylinositol 4, 5-bisphosphate
- PLD, phospholipase D
- PM, plasma membrane.
- aluminum toxicity
- benzyl alcohol
- diacylglycerol
- membrane fluidity
- non-specific phospholipase C
Collapse
Affiliation(s)
- Přemysl Pejchar
- Institute of Experimental Botany, v. v. i.; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, v. v. i.; Academy of Sciences of the Czech Republic; Prague, Czech Republic
| |
Collapse
|
146
|
Poschenrieder C, Tolrà R, Hajiboland R, Arroyave C, Barceló J. Mechanisms of Hyper-resistance and Hyper-tolerance to Aluminum in Plants. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
147
|
Aluminum-Induced Inhibition of Root Growth: Roles of Cell Wall Assembly, Structure, and Function. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|