101
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
102
|
Raffan S, Halford NG. Cereal asparagine synthetase genes. THE ANNALS OF APPLIED BIOLOGY 2021; 178:6-22. [PMID: 33518769 PMCID: PMC7818274 DOI: 10.1111/aab.12632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 05/12/2023]
Abstract
Asparagine synthetase catalyses the transfer of an amino group from glutamine to aspartate to form glutamate and asparagine. The accumulation of free (nonprotein) asparagine in crops has implications for food safety because free asparagine is the precursor for acrylamide, a carcinogenic contaminant that forms during high-temperature cooking and processing. Here we review publicly available genome data for asparagine synthetase genes from species of the Pooideae subfamily, including bread wheat and related wheat species (Triticum and Aegilops spp.), barley (Hordeum vulgare) and rye (Secale cereale) of the Triticeae tribe. Also from the Pooideae subfamily: brachypodium (Brachypodium dIstachyon) of the Brachypodiae tribe. More diverse species are also included, comprising sorghum (Sorghum bicolor) and maize (Zea mays) of the Panicoideae subfamily and rice (Oryza sativa) of the Ehrhartoideae subfamily. The asparagine synthetase gene families of the Triticeae species each comprise five genes per genome, with the genes assigned to four groups: 1, 2, 3 (subdivided into 3.1 and 3.2) and 4. Each species has a single gene per genome in each group, except that some bread wheat varieties (genomes AABBDD) and emmer wheat (Triticum dicoccoides; genomes AABB) lack a group 2 gene in the B genome. This raises questions about the ancestry of cultivated pasta wheat and the B genome donor of bread wheat, suggesting that the hybridisation event that gave rise to hexaploid bread wheat occurred more than once. In phylogenetic analyses, genes from the other species cluster with the Triticeae genes, but brachypodium, sorghum and maize lack a group 2 gene, while rice has only two genes, one group 3 and one group 4. This means that TaASN2, the most highly expressed asparagine synthetase gene in wheat grain, has no equivalent in maize, rice, sorghum or brachypodium. An evolutionary pathway is proposed in which a series of gene duplications gave rise to the five genes found in modern Triticeae species.
Collapse
Affiliation(s)
- Sarah Raffan
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
| | | |
Collapse
|
103
|
Chen L, Yun M, Cao Z, Liang Z, Liu W, Wang M, Yan J, Yang S, He X, Jiang B, Peng Q, Lin Y. Phenotypic Characteristics and Transcriptome of Cucumber Male Flower Development Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:758976. [PMID: 34745192 PMCID: PMC8570340 DOI: 10.3389/fpls.2021.758976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 05/16/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop, which is thermophilic not heat resistant. High-temperature stress always results in sterility at reproductive stage. In the present study, we evaluate the male flower developmental changes under normal (CK) and heat stress (HS) condition. After HS, the activities of peroxidase (POD) and superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were increased. In addition, the pollen fertility was significantly decreased; and abnormal tapetum and microspore were observed by paraffin section. Transcriptome analysis results presented that total of 5828 differentially expressed genes (DEGs) were identified after HS. Among these DEGs, 20 DEGs were found at four stages, including DNA binding transcription factor, glycosyltransferase, and wound-responsive family protein. The gene ontology term of carbohydrate metabolic process was significantly enriched in all anther stages, and many saccharides and starch synthase-related genes, such as invertase, sucrose synthase, and starch branching enzyme, were significantly different expressed in HS compared with CK. Furthermore, co-expression network analysis showed a module (midnightblue) strongly consistent with HS, and two hub genes (CsaV3_6G004180 and CsaV3_5G034860) were found with a high degree of connectivity to other genes. Our results provide comprehensive understandings on male flower development in cucumber under HS.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Maomao Yun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
104
|
Luo C, Fernie AR, Yan J. Single-Cell Genomics and Epigenomics: Technologies and Applications in Plants. TRENDS IN PLANT SCIENCE 2020; 25:1030-1040. [PMID: 32532595 DOI: 10.1016/j.tplants.2020.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The development of genomics and epigenomics has allowed rapid advances in our understanding of plant biology. However, conventional bulk analysis dilutes cell-specific information by providing only average information, thereby limiting the resolution of genomic and functional genomic studies. Recent advances in single-cell sequencing technology concerning genomics and epigenomics open new avenues to dissect cell heterogeneity in multiple biological processes. Recent applications of these approaches to plants have provided exciting insights into diverse biological questions. We highlight the methodologies underlying the current techniques of single-cell genomics and epigenomics before covering their recent applications, potential significance, and future perspectives in plant biology.
Collapse
Affiliation(s)
- Cheng Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
105
|
Wu H, Gontarek BC, Yi G, Beall BD, Neelakandan AK, Adhikari B, Chen R, McCarty DR, Severin AJ, Becraft PW. The thick aleurone1 Gene Encodes a NOT1 Subunit of the CCR4-NOT Complex and Regulates Cell Patterning in Endosperm. PLANT PHYSIOLOGY 2020; 184:960-972. [PMID: 32737073 PMCID: PMC7536710 DOI: 10.1104/pp.20.00703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) thick aleurone1 (thk1-R) mutants form multiple aleurone layers in the endosperm and have arrested embryogenesis. Prior studies suggest that thk1 functions downstream of defective kernel1 (dek1) in a regulatory pathway that controls aleurone cell fate and other endosperm traits. The original thk1-R mutant contained an ∼2-Mb multigene deletion, which precluded identification of the causal gene. Here, ethyl methanesulfonate mutagenesis produced additional alleles, and RNA sequencing from developing endosperm was used to identify a candidate gene based on differential expression compared with the wild-type progenitor. Gene editing confirmed the gene identity by producing mutant alleles that failed to complement existing thk1 mutants and that produced multiple-aleurone homozygous phenotypes. Thk1 encodes a homolog of NEGATIVE ON TATA-LESS1, a protein that acts as a scaffold for the CARBON CATABOLITE REPRESSION4-NEGATIVE ON TATA-LESS complex. This complex is highly conserved and essential in all eukaryotes for regulating a wide array of gene expression and cellular activities. Maize also harbors a duplicate locus, thick aleurone-like1, which likely accounts for the ability of thk1 mutants to form viable cells. Transcriptomic analysis indicated that THK1 regulates activities involving cell division, signaling, differentiation, and metabolism. Identification of thk1 provides an important new component of the DEK1 regulatory system that patterns cell fate in endosperm.
Collapse
Affiliation(s)
- Hao Wu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Bryan C Gontarek
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
| | - Gibum Yi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
| | - Brandon D Beall
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| | | | - Bibechana Adhikari
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
| | - Rumei Chen
- Department of Crop Genomics and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Donald R McCarty
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Interdepartmental Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
106
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
107
|
Wu TY, Müller M, Gruissem W, Bhullar NK. Genome Wide Analysis of the Transcriptional Profiles in Different Regions of the Developing Rice Grains. RICE (NEW YORK, N.Y.) 2020; 13:62. [PMID: 32894395 PMCID: PMC7477059 DOI: 10.1186/s12284-020-00421-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/20/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Rice is an important food source for humans worldwide. Because of its nutritional and agricultural significance, a number of studies addressed various aspects of rice grain development and grain filling. Nevertheless, the molecular processes underlying grain filling and development, and in particular the contributions of different grain tissues to these processes, are not understood. MAIN TEXT Using RNA-sequencing, we profiled gene expression activity in grain tissues comprised of cross cells (CC), the nucellar epidermis (NE), ovular vascular trace (OVT), endosperm (EN) and the aleurone layer (AL). These tissues were dissected using laser capture microdissection (LCM) at three distinct grain development stages. The mRNA expression datasets offer comprehensive and new insights into the gene expression patterns in different rice grain tissues and their contributions to grain development. Comparative analysis of the different tissues revealed their similar and/or unique functions, as well as the spatio-temporal regulation of common and tissue-specific genes. The expression patterns of genes encoding hormones and transporters indicate an important role of the OVT tissue in metabolite transport during grain development. Gene co-expression network prediction on OVT-specific genes identified several distinct and common development-specific transcription factors. Further analysis of enriched DNA sequence motifs proximal to OVT-specific genes revealed known and novel DNA sequence motifs relevant to rice grain development. CONCLUSION Together, the dataset of gene expression in rice grain tissues is a novel and useful resource for further work to dissect the molecular and metabolic processes during rice grain development.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
- Present address: Temasek Life Science Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Marlen Müller
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
- Present address: Roche Glycart AG, Wagistrasse 10, 8952, Schlieren, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
108
|
Zhao H, Qin Y, Xiao Z, Li Q, Yang N, Pan Z, Gong D, Sun Q, Yang F, Zhang Z, Wu Y, Xu C, Qiu F. Loss of Function of an RNA Polymerase III Subunit Leads to Impaired Maize Kernel Development. PLANT PHYSIOLOGY 2020; 184:359-373. [PMID: 32591429 PMCID: PMC7479876 DOI: 10.1104/pp.20.00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Kernel size is an important factor determining grain yield. Although a number of genes affecting kernel development in maize (Zea mays) have been identified by analyzing kernel mutants, most of the corresponding mutants cannot be used in maize breeding programs due to low germination or incomplete seed development. Here, we characterized small kernel7, a recessive small-kernel mutant with a mutation in the gene encoding the second-largest subunit of RNA polymerase III (RNAPΙΙΙ; NRPC2). A frame shift in ZmNRPC2 leads to a premature stop codon, resulting in significantly reduced levels of transfer RNAs and 5S ribosomal RNA, which are transcribed by RNAPΙΙΙ. Loss-of-function nrpc2 mutants created by CRISPR/CAS9 showed significantly reduced kernel size due to altered endosperm cell size and number. ZmNRPC2 affects RNAPIII activity and the expression of genes involved in cell proliferation and endoreduplication to control kernel development via physically interacting with RNAPIII subunits RPC53 and AC40, transcription factor class C1 and Floury3. Notably, unlike the semidominant negative mutant floury3, which has defects in starchy endosperm, small kernel7 only affects kernel size but not the composition of kernel storage proteins. Our findings provide novel insights into the molecular network underlying maize kernel size, which could facilitate the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
109
|
Wang R, Liu C, Li Q, Chen Z, Sun S, Wang X. Spatiotemporal Resolved Leaf Angle Establishment Improves Rice Grain Yield via Controlling Population Density. iScience 2020; 23:101489. [PMID: 32898833 PMCID: PMC7486458 DOI: 10.1016/j.isci.2020.101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022] Open
Abstract
Leaf angle is mainly determined by the lamina joint (LJ) and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors (TFs) determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle and that the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms of how the cytological dynamics of LJ determined leaf erectness and served as a valuable resource to remodel rice architecture for high yield by controlling population density.
Collapse
Affiliation(s)
- Rongna Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China
| | - Qinzhong Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhina Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Science, Henan University, Kaifeng 475004, China.
| |
Collapse
|
110
|
Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton ( Gossypium hirsutum L.) Genotypes at the Seedling Stage. Int J Mol Sci 2020; 21:ijms21145095. [PMID: 32707667 PMCID: PMC7404027 DOI: 10.3390/ijms21145095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Young cotyledons of cotton seedlings are most susceptible to chilling stress. To gain insight into the potential mechanism of cold tolerance of young cotton cotyledons, we conducted physiological and comparative transcriptome analysis of two varieties with contrasting phenotypes. The evaluation of chilling injury of young cotyledons among 74 cotton varieties revealed that H559 was the most tolerant and YM21 was the most sensitive. The physiological analysis found that the ROS scavenging ability was lower, and cell membrane damage was more severe in the cotyledons of YM21 than that of H559 under chilling stress. RNA-seq analysis identified a total of 44,998 expressed genes and 19,982 differentially expressed genes (DEGs) in young cotyledons of the two varieties under chilling stress. Weighted gene coexpression network analysis (WGCNA) of all DEGs revealed four significant modules with close correlation with specific samples. The GO-term enrichment analysis found that lots of genes in H559-specific modules were involved in plant resistance to abiotic stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways such as plant hormone signal transduction, MAPK signaling, and plant–pathogen interaction were related to chilling stress response. A total of 574 transcription factors and 936 hub genes in these modules were identified. Twenty hub genes were selected for qRT-PCR verification, revealing the reliability and accuracy of transcriptome data. These findings will lay a foundation for future research on the molecular mechanism of cold tolerance in cotyledons of cotton.
Collapse
|
111
|
Gu W, Yu D, Guan Y, Wang H, Qin T, Sun P, Hu Y, Wei J, Zheng H. The dynamic transcriptome of waxy maize (Zea mays L. sinensis Kulesh) during seed development. Genes Genomics 2020; 42:997-1010. [PMID: 32676852 DOI: 10.1007/s13258-020-00967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Waxy maize (Zea mays L. sinensis Kulesh) is a mutant of maize (Zea mays L.) with a mutation at Waxy1 (Wx1) gene locus. The seed of waxy maize has higher viscosity compared to regular maize. By now, we know little about the expression patterns of genes that involved in the seed development of waxy maize. OBJECTIVE By analyzing the transcriptome data during waxy maize seed development, we attempt to dig out the genes that may influence the seed development of waxy maize. METHODS The seeds of waxy maize inbred line SWL01 from six phases after pollination were used to do RNA-seq. Bioinformatics methods were used to analyze the expression patterns of the expressed genes, to identify the genes involved in waxy maize seed development. RESULTS A total of 24,546 genes including 1611 transcription factors (TFs) were detected during waxy maize seed development. Coexpression analysis of expressed genes revealed the dynamic processes of waxy maize seed development. Particularly, 2457 genes including 177 TFs were specially expressed in waxy maize seed, some of which mainly involved in the process of seed dormancy and maturation. In addition, 2681, 5686, 4491, 4386, 3669 and 4624 genes were identified to be differential expressed genes (DEGs) at six phases compared to regular maize B73, and 113 DEGs among them may be key genes that lead the difference of seed development between waxy and regular maizes in milk stage. CONCLUSION In summary, we elucidated the expression patterns of expressed genes during waxy maize seed development globally. A series of genes that associated with seed development were identified in our research, which may provide an important resource for functional study of waxy maize seed development to help molecular assisted breeding.
Collapse
Affiliation(s)
- Wei Gu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Diansi Yu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yuan Guan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hui Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Tao Qin
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Pingdong Sun
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yingxiong Hu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jihui Wei
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hongjian Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China. .,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
112
|
Li Q, Wu Y. The encyclopedia of maize kernel gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:879-881. [PMID: 31456310 DOI: 10.1111/jipb.12869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/24/2019] [Indexed: 05/26/2023]
Abstract
This commentary highlights the recent two studies which uncovered dynamic maize kernel RNA-seq transcriptomes from early seed development, storage filling to maturation, day by day, hour by hour. These two studies provide a 'maize kernel gene expression dictionary' that will be powerful for the future studies in seed biology.
Collapse
Affiliation(s)
- Qi Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
113
|
McCoy MJ, Fire AZ. Intron and gene size expansion during nervous system evolution. BMC Genomics 2020; 21:360. [PMID: 32410625 PMCID: PMC7222433 DOI: 10.1186/s12864-020-6760-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
Abstract
Background The evolutionary radiation of animals was accompanied by extensive expansion of gene and genome sizes, increased isoform diversity, and complexity of regulation. Results Here we show that the longest genes are enriched for expression in neuronal tissues of diverse vertebrates and of invertebrates. Additionally, we show that neuronal gene size expansion occurred predominantly through net gains in intron size, with a positional bias toward the 5′ end of each gene. Conclusions We find that intron and gene size expansion is a feature of many genes whose expression is enriched in nervous systems. We speculate that unique attributes of neurons may subject neuronal genes to evolutionary forces favoring net size expansion. This process could be associated with tissue-specific constraints on gene function and/or the evolution of increasingly complex gene regulation in nervous systems.
Collapse
Affiliation(s)
- Matthew J McCoy
- Grass Fellowship Program, Marine Biological Laboratory, Woods Hole, MA, 02543, USA. .,Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
114
|
Zhou P, Li Z, Magnusson E, Gomez Cano F, Crisp PA, Noshay JM, Grotewold E, Hirsch CN, Briggs SP, Springer NM. Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions. THE PLANT CELL 2020; 32:1377-1396. [PMID: 32184350 PMCID: PMC7203921 DOI: 10.1105/tpc.20.00080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 05/22/2023]
Abstract
The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed a large number of publically available maize (Zea mays) transcriptome data sets including >6000 RNA sequencing samples to generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene expression are more likely associated with changes in target gene expression. Integrating information from our TF-target predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74 previously identified trans-eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential targets for breeding or biotechnological applications.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Zhi Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Erika Magnusson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Fabio Gomez Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Steven P Briggs
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
115
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
116
|
Basso V, Kohler A, Miyauchi S, Singan V, Guinet F, Šimura J, Novák O, Barry KW, Amirebrahimi M, Block J, Daguerre Y, Na H, Grigoriev IV, Martin F, Veneault-Fourrey C. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. PLANT, CELL & ENVIRONMENT 2020; 43:1047-1068. [PMID: 31834634 DOI: 10.1111/pce.13702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development.
Collapse
Affiliation(s)
- Veronica Basso
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Annegret Kohler
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Shingo Miyauchi
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Vasanth Singan
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Frédéric Guinet
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Jan Šimura
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Ondřej Novák
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Kerrie W Barry
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Mojgan Amirebrahimi
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Jonathan Block
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Yohann Daguerre
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Hyunsoo Na
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Igor V Grigoriev
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California
| | - Francis Martin
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
117
|
Doll NM, Just J, Brunaud V, Caïus J, Grimault A, Depège-Fargeix N, Esteban E, Pasha A, Provart NJ, Ingram GC, Rogowsky PM, Widiez T. Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum. THE PLANT CELL 2020; 32:833-852. [PMID: 32086366 PMCID: PMC7145466 DOI: 10.1105/tpc.19.00756] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 05/23/2023]
Abstract
Seeds are complex biological systems comprising three genetically distinct tissues nested one inside another (embryo, endosperm, and maternal tissues). However, the complexity of the kernel makes it difficult to understand intercompartment interactions without access to spatially accurate information. Here, we took advantage of the large size of the maize (Zea mays) kernel to characterize genome-wide expression profiles of tissues at different embryo/endosperm interfaces. Our analysis identifies specific transcriptomic signatures in two interface tissues compared with whole seed compartments: the scutellar aleurone layer and the newly named endosperm adjacent to scutellum (EAS). The EAS, which appears around 9 d after pollination and persists for around 11 d, is confined to one to three endosperm cell layers adjacent to the embryonic scutellum. Its transcriptome is enriched in genes encoding transporters. The absence of the embryo in an embryo specific mutant can alter the expression pattern of EAS marker genes. The detection of cell death in some EAS cells together with an accumulation of crushed cell walls suggests that the EAS is a dynamic zone from which cell layers in contact with the embryo are regularly eliminated and to which additional endosperm cells are recruited as the embryo grows.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Jeremy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France
| | - José Caïus
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, F-91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France
| | - Aurélie Grimault
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| |
Collapse
|
118
|
Shen S, Liang XG, Zhang L, Zhao X, Liu YP, Lin S, Gao Z, Wang P, Wang ZM, Zhou SL. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PLANT, CELL & ENVIRONMENT 2020; 43:903-919. [PMID: 31851373 DOI: 10.1111/pce.13704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- School of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhi-Min Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
119
|
Wu ZG, Jiang W, Tao ZM, Pan XJ, Yu WH, Huang HL. Morphological and stage-specific transcriptome analyses reveal distinct regulatory programs underlying yam (Dioscorea alata L.) bulbil growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1899-1914. [PMID: 31832647 PMCID: PMC7242083 DOI: 10.1093/jxb/erz552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/12/2019] [Indexed: 06/09/2023]
Abstract
In yam (Dioscorea spp) species, bulbils at leaf axils are the most striking species-specific axillary structure and exhibit important ecological niches. Genetic regulation underlying bulbil growth remains largely unclear so far. Here, we characterize yam (Dioscorea alata L.) bulbil development using histological analysis, and perform full transcriptional profiling on key developmental stages together with phytohormone analyses. Using the stage-specific scoring algorithm, we have identified 3451 stage-specifically expressed genes that exhibit a tight link between major transcriptional changes and stages. Co-expressed gene clusters revealed an obvious over-representation of genes associated with cell division and expansion at the initiation stage of bulbils (T1). Transcriptional changes of hormone-related genes highly coincided with hormone levels, indicating that bulbil initiation and growth are coordinately controlled by multiple phytohormones. In particular, localized auxin is transiently required to trigger bulbil initiation, and be further depleted or exported from bulbils to promote growth by up-regulation of genes involved in auxinconjugation and efflux. The sharp increase in supply of sucrose and an enhanced trehalose-6-phophate pathway at T1 were observed, suggesting that sucrose probably functions as a key signal and promotes bulbil initiation. Analysis of the expression of transcription factors (TFs) predicated 149 TFs as stage-specifically expressed; several T1-specific TFs (from Aux/IAA, E2F, MYB, and bHLH families) have been shown to play key roles in triggering bulbil formation. Together, our work provides a crucial angle for in-depth understanding of the molecular programs underlying yam's unique bulbil development processes. Stage-specific gene sets can be queried to obtain key candidates regulating bulbil growth, serving as valuable resources for further functional research.
Collapse
Affiliation(s)
- Zhi-Gang Wu
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Wu Jiang
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zheng-Ming Tao
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiao-Jun Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen-Hui Yu
- Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
120
|
Olsen OA. The Modular Control of Cereal Endosperm Development. TRENDS IN PLANT SCIENCE 2020; 25:279-290. [PMID: 31956036 DOI: 10.1016/j.tplants.2019.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 05/05/2023]
Abstract
Expansion of the human population demands a significant increase in cereal production. The main component of cereal grains is endosperm, a body of starchy endosperm (SE) cells surrounded by aleurone (AL) cells with transfer cells (TC) at the base and embryo surrounding (ESR) cells adjacent to the embryo. The data reviewed here emphasize the modular nature of endosperm by first suggesting that sucrose promotes development of the fertilized triploid endosperm cell. Next, that the basal syncytial endosperm responds to glucose by turning on TC development. The default endosperm cell fate is SE and ESR differentiation is likely activated by signaling from the embryo. Cells on the exterior surface of the endosperm are specified as AL cells.
Collapse
Affiliation(s)
- Odd-Arne Olsen
- Department of Plant Science, Norwegian University of Life Sciences, 1434, Ås, Norway.
| |
Collapse
|
121
|
Zhang X, Ding X, Marshall RS, Paez-Valencia J, Lacey P, Vierstra RD, Otegui MS. Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. eLife 2020; 9:51918. [PMID: 32011236 PMCID: PMC7046470 DOI: 10.7554/elife.51918] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and re-model ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.
Collapse
Affiliation(s)
- Xiaoguo Zhang
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | - Xinxin Ding
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | | | - Julio Paez-Valencia
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | - Patrick Lacey
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States
| | | | - Marisa S Otegui
- Department of Botany, Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, United States.,Department of Genetics, University of Wisconsin, Madison, United States
| |
Collapse
|
122
|
Li H, Li Y, Yu J, Wu T, Zhang J, Tian J, Yao Y. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. HORTICULTURE RESEARCH 2020; 7:19. [PMID: 32025322 PMCID: PMC6994661 DOI: 10.1038/s41438-020-0238-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/10/2019] [Indexed: 05/20/2023]
Abstract
Flavonols are polyphenolic compounds that play important roles in plant stress resistance and development. They are also valuable components of the human diet. The Malus crabapple cultivar 'Flame' provides an excellent model for studying flavonol biosynthesis due to the high flavonol content of its fruit peel. To obtain a more detailed understanding of the flavonol regulatory network involved in fruit development, the transcriptomes of the fruit of the Malus cv. 'Flame' from five continuous developmental stages were analyzed using RNA sequencing. A flavonol-related gene module was identified through weighted gene coexpression network analysis (WGCNA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that phytohormones are involved in regulating flavonol biosynthesis during fruit development. A putative transcription factor, MdMYB8, was selected for further study through hub gene correlation network analysis and yeast one-hybrid assays. Stable overexpression or RNAi knockdown of MdMYB8 in transgenic 'Orin' apple calli resulted in a higher or lower flavonol content, respectively, suggesting that MdMYB8 is a regulator of flavonol biosynthesis. This transcriptome analysis provides valuable data for future studies of flavonol synthesis and regulation.
Collapse
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
123
|
Liu J, Fernie AR, Yan J. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. PLANT COMMUNICATIONS 2020; 1:100010. [PMID: 33404535 PMCID: PMC7747985 DOI: 10.1016/j.xplc.2019.100010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
After being domesticated from teosinte, cultivated maize (Zea mays ssp. mays) spread worldwide and now is one of the most important staple crops. Due to its tremendous phenotypic and genotypic diversity, maize also becomes to be one of the most widely used model plant species for fundamental research, with many important discoveries reported by maize researchers. Here, we provide an overview of the history of maize domestication and key genes controlling major domestication-related traits, review the currently available resources for functional genomics studies in maize, and discuss the functions of most of the maize genes that have been positionally cloned and can be used for crop improvement. Finally, we provide some perspectives on future directions regarding functional genomics research and the breeding of maize and other crops.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| | - Alisdair R. Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
124
|
Chen M, Bui AQ, Goldberg RB. Using Giant Scarlet Runner Bean (Phaseolus coccineus) Embryos to Dissect the Early Events in Plant Embryogenesis. Methods Mol Biol 2020; 2122:205-222. [PMID: 31975305 DOI: 10.1007/978-1-0716-0342-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The giant embryo of the scarlet runner bean (Phaseolus coccineus) has been used historically to investigate the molecular and developmental processes that control the early events of plant embryo development. In more recent years, our laboratory has been using scarlet runner bean embryos to uncover the genes and regulatory events that control embryo proper and suspensor region differentiation shortly after fertilization. In this chapter we describe methods that we have developed to isolate scarlet runner bean embryos at the globular stage of development, and capture embryo proper and suspensor regions by either hand dissection or laser capture microdissection (LCM) for use in downstream genomic analysis. These methods are also applicable for use in investigating the early events of common bean (Phaseolus vulgaris) embryo development, a close relative of scarlet runner bean, which also has a giant embryo in addition to a sequenced genome.
Collapse
Affiliation(s)
- Min Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Anhthu Q Bui
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.,Inviata Ltd., Research Triangle Park, Morrisville, NC, USA
| | - Robert B Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
125
|
Wang M, Gao L, Li G, Zhou C, Jian J, Xing Z, Wang Y, Zhang W, Song Z, Hu Y, Yang J. Interspecific Variation in the Unsaturation Level of Seed Oils Were Associated With the Expression Pattern Shifts of Duplicated Desaturase Genes and the Potential Role of Other Regulatory Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:616338. [PMID: 33519875 PMCID: PMC7838364 DOI: 10.3389/fpls.2020.616338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Seed oils are of great economic importance both for human consumption and industrial applications. The nutritional quality and industrial value of seed oils are mostly determined by their fatty acid profiles, especially the relative proportions of unsaturated fatty acids. Tree peony seed oils have recently been recognized as novel edible oils enriched in α-linolenic acid (ALA). However, congeneric species, such as Paeonia ostii and P. ludlowii, showed marked variation in the relative proportions of different unsaturated fatty acids. By comparing the dynamics of fatty acid accumulation and the time-course gene expression patterns between P. ostii and P. ludlowii, we identified genes that were differentially expressed between two species in developing seeds, and showed congruent patterns of variation between expression levels and phenotypes. In addition to the well-known desaturase and acyltransferase genes associated with fatty acid desaturation, among them were some genes that were conservatively co-expressed with the desaturation pathway genes across phylogenetically distant ALA-rich species, including Camelina sativa and Perilla frutescens. Go enrichment analysis revealed that these genes were mainly involved in transcriptional regulation, protein post-translational modification and hormone biosynthesis and response, suggesting that the fatty acid synthesis and desaturation pathway might be subject to multiple levels of regulation.
Collapse
Affiliation(s)
- Mengli Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Lexuan Gao
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gengyun Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Chengchuan Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Jinjing Jian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Zhen Xing
- Tibet Agricultural and Animal Husbandry University, Linzhi, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Yonghong Hu,
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Yonghong Hu,
| |
Collapse
|
126
|
Li H, Han M, Yu L, Wang S, Zhang J, Tian J, Yao Y. Transcriptome Analysis Identifies Two Ethylene Response Factors That Regulate Proanthocyanidin Biosynthesis During Malus Crabapple Fruit Development. FRONTIERS IN PLANT SCIENCE 2020; 11:76. [PMID: 32161606 PMCID: PMC7054237 DOI: 10.3389/fpls.2020.00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Proanthocyanidins (PAs) are a class of flavonoid compounds in plants that play many important roles in pest and disease resistance and are beneficial components of the human diet. The crabapple (Malus) provides an excellent model to study PA biosynthesis and metabolism; therefore, to gain insights into the PA regulatory network in Malus plants, we performed RNA-seq profiling of fruits of the 'Flame' cultivar at five sequential developmental stages. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that differentially expressed genes (DEGs) related to the functional category 'plant hormone signal transduction' were significantly enriched during fruit development. Further analysis showed that ethylene signal transduction pathway genes or response genes, such as ERS (ethylene response sensor), EIN3 (ETHYLENE INSENSITIVE 3) and ERFs (ethylene response factors), may play an important role in the regulatory network of PA biosynthesis. Additionally, 12 DEGs, including 10 ERFs, 1 MYB, and 1 bHLH transcription factor, associated with PA biosynthesis were identified using WGCNA. The expression patterns of these genes correlated with PA accumulation trends and transcriptome data from qRT-PCR analysis. The expression of RAP2-4 (RELATED TO APETALA 2-4) and RAV1 (related to ABI3/VP1), which belong to the ERF transcription factor family, showed the greatest correlations with PAs accumulation among the 12 identified TFs. Agrobacterium mediated-transient overexpression of the RAP2-4 led to an increase in PA abundance in crabapple leaves and apple fruits, and the opposite results were observed in RAV1-overexpressed crabapple leaves and apple fruits. Moreover, a yeast one-hybrid assay showed that RAP2-4 and RAV1 specifically bound the promoters of the PA biosynthetic genes McLAR1 and McANR2, respectively. These results indicate that RAP2-4 act as an inducer and RAV1 act as a repressor of PA biosynthesis by regulating the expression of the PA biosynthetic genes McLAR1 and McANR2. Taken together, we identified two potential regulators of PA biosynthesis and provide new insights into the ethylene-PA regulatory network.
Collapse
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mingzheng Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lujia Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Sifan Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- *Correspondence: Ji Tian, ; Yuncong Yao,
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- *Correspondence: Ji Tian, ; Yuncong Yao,
| |
Collapse
|
127
|
Zheng X, Li Q, Li C, An D, Xiao Q, Wang W, Wu Y. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation. THE PLANT CELL 2019; 31:2613-2635. [PMID: 31530735 PMCID: PMC6881121 DOI: 10.1105/tpc.19.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 05/05/2023]
Abstract
During maize (Zea mays) seed development, the endosperm functions as the major organ for storage of photoassimilate, serving to nourish the embryo. α-Zeins and globulins (GLBs) predominantly accumulate in the maize endosperm and embryo, respectively. Here, we show that suppression of α-zeins by RNA interference (αRNAi) in the endosperm results in more GLB1 being synthesized in the embryo, thereby markedly increasing the size and number of protein storage vacuoles. Glb genes are strongly expressed in the middle-to-upper section of the scutellum, cells of which are significantly enlarged by αRNAi induction. Elimination of GLBs caused an apparent reduction in embryo protein level, regardless of whether α-zeins were expressed or suppressed in the endosperm, indicating that GLBs represent the dominant capacity for storage of amino acids allocated from the endosperm. It appears that protein reallocation is mostly regulated at the transcriptional level. Genes differentially expressed between wild-type and αRNAi kernels are mainly involved in sulfur assimilation and nutrient metabolism, and many are transactivated by VIVIPAROUS1 (VP1). In vp1 embryos, misshapen scutellum cells contain notably less cellular content and are unable to respond to αRNAi induction. Our results demonstrate that VP1 is essential for scutellum development and protein reallocation from the endosperm to embryo.
Collapse
Affiliation(s)
- Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
128
|
Yu Z, Lin J, Li QQ. Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation. THE PLANT CELL 2019; 31:2332-2352. [PMID: 31427469 PMCID: PMC6790095 DOI: 10.1105/tpc.18.00545] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 05/10/2023]
Abstract
A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.
Collapse
Affiliation(s)
- Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| |
Collapse
|
129
|
Zhang Y, Gao X, Li J, Gong X, Yang P, Gao J, Wang P, Feng B. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC PLANT BIOLOGY 2019; 19:397. [PMID: 31510928 PMCID: PMC6737659 DOI: 10.1186/s12870-019-2001-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Drought stress is a major abiotic stress that causes huge losses in agricultural production. Proso millet (Panicum miliaceum L.) can efficiently adapt to drought stress and provides important information and gene resources to improve drought tolerance. However, its complex drought-responsive mechanisms remain unclear. RESULTS Among 37 core Chinese proso millet cultivars, Jinshu 6 (JS6) was selected as the drought-sensitive test material, whereas Neimi 5 (NM5) was selected as the drought-tolerant test material under PEG-induced water stress. After sequencing, 1695 differentially expressed genes (DEGs) were observed in JS6 and NM5 without PEG-induced water stress (JS6CK and NM5CK). A total of 833 and 2166 DEGs were found in the two cultivars under simulated drought by using 20% PEG-6000 for 6 (JS6T6 and NM5T6) and 24 h (JS6T24 and NM5T24), respectively. The DEGs in JS6T6 and JS6T24 treatments were approximately 0.298- and 0.754-fold higher than those in NM5T6 and NM5T24, respectively. Compared with the respective controls, more DEGs were found in T6 treatments than in T24 treatments. A delay in the transcriptional responses of the ROS scavenging system to simulated drought treatment and relatively easy recovery of the expression of photosynthesis-associated genes were observed in NM5. Compared with JS6, different regulation strategies were observed in the jasmonic acid (JA) signal transduction pathway of NM5. CONCLUSION Under PEG-induced water stress, NM5 maintained highly stable gene expression levels. Compared with drought-sensitive cultivars, the different regulation strategies in the JA signal transduction pathway in drought-tolerant cultivars may be one of the driving forces underlying drought stress tolerance.
Collapse
Affiliation(s)
- Yuyu Zhang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Xiaoli Gao
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Jing Li
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Xiangwei Gong
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Pu Yang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Jinfeng Gao
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Pengke Wang
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| | - Baili Feng
- College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, 712100 Shaanxi China
| |
Collapse
|
130
|
Rao X, Dixon RA. Co-expression networks for plant biology: why and how. Acta Biochim Biophys Sin (Shanghai) 2019; 51:981-988. [PMID: 31436787 DOI: 10.1093/abbs/gmz080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022] Open
Abstract
Co-expression network analysis is one of the most powerful approaches for interpretation of large transcriptomic datasets. It enables characterization of modules of co-expressed genes that may share biological functional linkages. Such networks provide an initial way to explore functional associations from gene expression profiling and can be applied to various aspects of plant biology. This review presents the applications of co-expression network analysis in plant biology and addresses optimized strategies from the recent literature for performing co-expression analysis on plant biological systems. Additionally, we describe the combined interpretation of co-expression analysis with other genomic data to enhance the generation of biologically relevant information.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
131
|
Lu C, Pu Y, Liu Y, Li Y, Qu J, Huang H, Dai S. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:415-428. [PMID: 31416008 DOI: 10.1016/j.plaphy.2019.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
The variation of flower color of chrysanthemum (Chrysanthemum×morifolium) is extremely rich, and carotenoids, which are mainly stored in the plastid, are important pigments that determine the color of chrysanthemum. However, the genetic regulation of the carotenoid metabolism pathway in this species still remains unclear. In this study, a pink chrysanthemum cultivar, 'Jianliuxiang Pink', and its three bud sport mutants (including white, yellow and red color mutants, 'Jianliuxiang White', 'Jianliuxiang Yellow' and 'Jianliuxiang Red', respectively) were used as experimental materials to analyze the dynamic changes of carotenoid components and plastid ultrastructure at different developmental stages of ray florets. We found that the carotenoid components and plastid ultrastructure of the four color cultivars in the early developmental stage of the chrysanthemum capitulum (S1) were almost identical, and the carotenoids mainly included violaxanthin, lutein and β-carotene, which exist in proplastids and immature chloroplasts. With the development of capitulum, the chloroplasts in 'Jianliuxiang White' and 'Jianliuxiang Pink' were degraded, and the protoplasts did not transform but rather formed vesicles that accumulated trace amounts of carotenoids. The proplastids and chloroplasts in 'Jianliuxiang Yellow' and 'Jianliuxiang Red' were all transformed into chromoplasts and consist of lutein as well as lutein's isomer and derivatives. Using comparative transcriptomics combined with gene expression analysis, we found that CmPg-1, CmPAP10, and CmPAP13, which were involved in chromoplast transformation, CmLCYE, which was involved in carotenoid biosynthesis, and CmCCD4a-2, which was involved in carotenoid degradation, were differentially expressed between four cultivars, and these key genes therefore should affect the accumulation of carotenoids in chrysanthemum. In addition, six transcription factors, CmMYB305, CmMYB29, CmRAD3, CmbZIP61, CmAGL24, CmNAC1, were screened using weighted gene co-expression correlation network analysis (WGCNA) combined with correlative analysis to determine whether they play an important role in carotenoid accumulation by regulating structural genes related to the carotenoid metabolism pathway and plastid development. This study analyzed dynamic changes of carotenoid components and plastid ultrastructure of the four bud mutation cultivars of chrysanthemum and identified structural genes and transcription factors that may be involved in carotenoid accumulation. The above results laid a solid foundation for further analysis of the regulatory mechanism of the carotenoid biosynthesis pathway in chrysanthemum.
Collapse
Affiliation(s)
- Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ya Pu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yajun Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiaping Qu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
132
|
Feng G, Wu J, Yi H. Global tissue-specific transcriptome analysis of Citrus sinensis fruit across six developmental stages. Sci Data 2019; 6:153. [PMID: 31434903 PMCID: PMC6704135 DOI: 10.1038/s41597-019-0162-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Citrus sinensis fruit is a type of nonclimacteric fruit that mainly consists of four tissues: the epicarp, albedo, segment membrane and juice sac. The fruit quality is determined by the characteristics of these four tissues. However, our knowledge of the molecular processes that occur in these four tissues during citrus fruit development and ripening is limited. Tissue-specific transcriptomes provide a comprehensive and detailed molecular regulatory network of citrus fruit development and ripening. In our study, we collected four types of tissue from C. sinensis fruits at six developmental stages. A total of 72 libraries were constructed from 24 samples (each sample had three replicates), and the transcriptomes were sequenced by an Illumina HiSeq 4000. The comprehensive analyses of the transcriptomes from the four tissues and six developmental stages presented here provide a valuable resource for the discovery of the molecular networks underlying citrus fruit development and ripening.
Collapse
Affiliation(s)
- Guizhi Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juxun Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
133
|
Jiang J, Xing F, Wang C, Zeng X, Zou Q. Investigation and development of maize fused network analysis with multi-omics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:380-387. [PMID: 31220804 DOI: 10.1016/j.plaphy.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 05/19/2023]
Abstract
Maize is a critically important staple crop in the whole world, which has contributed to both economic security and food in planting areas. The main target for researchers and breeding is the improvement of maize quality and yield. The use of computational biology methods combined with multi-omics for selecting biomolecules of interest for maize breeding has been receiving more attention. Moreover, the rapid growth of high-throughput sequencing data provides the opportunity to explore biomolecules of interest at the molecular level in maize. Furthermore, we constructed weighted networks for each of the omics and then integrated them into a final fused weighted network based on a nonlinear combination method. We also analyzed the final fused network and mined the orphan nodes, some of which were shown to be transcription factors that played a key role in maize development. This study could help to improve maize production via insights at the multi-omics level and provide a new perspective for maize researchers. All related data have been released at http://lab.malab.cn/∼jj/maize.htm.
Collapse
Affiliation(s)
- Jing Jiang
- School of Aerospace Engineering, Xiamen University, Xiamen, 361001, China
| | - Fei Xing
- School of Aerospace Engineering, Xiamen University, Xiamen, 361001, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
134
|
Qi W, Lu L, Huang S, Song R. Maize Dek44 Encodes Mitochondrial Ribosomal Protein L9 and Is Required for Seed Development. PLANT PHYSIOLOGY 2019; 180:2106-2119. [PMID: 31182559 PMCID: PMC6670089 DOI: 10.1104/pp.19.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Mitochondrial respiration depends on proteins encoded by the nuclear and mitochondrial genomes. Many respiratory chain-related proteins are encoded by the mitochondrial genome and undergo translation by mitochondrial ribosomes. The newly identified maize (Zea mays) defective kernel44 (dek44) mutant produces small kernels showing embryo-lethal phenotypes. We cloned Dek44 by isolating the Mutator tag that produced the mutation and identified it as encoding a putative 50S ribosomal protein L9. Subcellular fractionation by ultracentrifugation confirmed that DEK44 is a mitochondrial ribosomal protein. DEK44 is highly conserved in monocots and only accumulates in kernels. Transcriptome and reverse transcription quantitative PCR analyses revealed that loss of DEK44 function affects the expression of genes encoding respiratory chain-related proteins from the mitochondrial and nuclear genomes. Blue native-PAGE revealed significantly reduced assembly of respiratory chain complexes in dek44 mutant kernels. Transmission electron microscopy indicated that the biogenesis and morphology of mitochondria were strongly affected in dek44 mutant kernels. Furthermore, DEK44 might regulate cell growth and kernel development via cyclin/cyclin-dependent kinase-mediated activities. This study provides insight into the regulation of kernel development based on mitochondrial ribosomal protein function.
Collapse
Affiliation(s)
- Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Lu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shengchan Huang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
135
|
Song W, Zhu J, Zhao H, Li Y, Liu J, Zhang X, Huang L, Lai J. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:706-727. [PMID: 30506638 DOI: 10.1111/jipb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yingnan Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jiangtao Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Liangliang Huang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| |
Collapse
|
136
|
Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:564-580. [PMID: 30916433 DOI: 10.1111/jipb.12806] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/16/2019] [Indexed: 05/04/2023]
Abstract
Seed development is a complex period of the flowering plant life cycle. After fertilization, the three main regions of the seed, embryo, endosperm and seed coat, undergo a series of developmental processes that result in the production of a mature seed that is developmentally arrested, desiccated, and metabolically quiescent. These processes are highly coordinated, both temporally and spatially, to ensure the proper growth and development of the seed. The transcription factor, LEAFY COTYLEDON1 (LEC1), is a central regulator that controls several aspects of embryo and endosperm development, including embryo morphogenesis, photosynthesis, and storage reserve accumulation. Thus, LEC1 regulates distinct sets of genes at different stages of seed development. Despite its critical importance for seed development, an understanding of the mechanisms underlying LEC1's multifunctionality is only beginning to be obtained. Recent studies describe the roles of specific transcription factors and the hormones, gibberellic acid and abscisic acid, in controlling the activity and transcriptional specificity of LEC1 across seed development. Moreover, studies indicate that LEC1 acts as a pioneer transcription factor to promote epigenetic reprogramming during embryogenesis. In this review, we discuss the mechanisms that enable LEC1 to serve as a central regulator of seed development.
Collapse
Affiliation(s)
- Leonardo Jo
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - Julie M Pelletier
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - John J Harada
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| |
Collapse
|
137
|
Yi F, Gu W, Chen J, Song N, Gao X, Zhang X, Zhou Y, Ma X, Song W, Zhao H, Esteban E, Pasha A, Provart NJ, Lai J. High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. THE PLANT CELL 2019; 31:974-992. [PMID: 30914497 PMCID: PMC6533015 DOI: 10.1105/tpc.18.00961] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 05/13/2023]
Abstract
The early maize (Zea mays) seed undergoes several developmental stages after double fertilization to become fully differentiated within a short period of time, but the genetic control of this highly dynamic and complex developmental process remains largely unknown. Here, we report a high temporal-resolution investigation of transcriptomes using 31 samples collected at an interval of 4 or 6 h within the first six days of seed development. These time-course transcriptomes were clearly separated into four distinct groups corresponding to the stages of double fertilization, coenocyte formation, cellularization, and differentiation. A total of 22,790 expressed genes including 1415 transcription factors (TFs) were detected in early stages of maize seed development. In particular, 1093 genes including 110 TFs were specifically expressed in the seed and displayed high temporal specificity by expressing only in particular period of early seed development. There were 160, 22, 112, and 569 seed-specific genes predominantly expressed in the first 16 h after pollination, coenocyte formation, cellularization, and differentiation stage, respectively. In addition, network analysis predicted 31,256 interactions among 1317 TFs and 14,540 genes. The high temporal-resolution transcriptome atlas reported here provides an important resource for future functional study to unravel the genetic control of seed development.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Gu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- China Specialty Maize Research Center (CIMMYT), Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiang Gao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yingsi Zhou
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuxu Ma
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
138
|
Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:133-145. [PMID: 30824046 DOI: 10.1016/j.plantsci.2019.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 05/22/2023]
Abstract
Kernel size in cereal is an important agronomic trait controlled by the interaction of genetic and environmental factors. The endosperm occupies most of the kernel area; for this reason, the endosperm cells dimension, number and metabolic content strongly influence kernel properties. This paper presents the transcriptomic and metabolomic analysis of the maize defective endosperm 18 (de18) mutant, where auxin accumulation in the endosperm is impaired. This mutation, involving the ZmYuc1 gene, leads to a reduced kernel size compared to the wild-type line B37. Our results mainly indicate that IAA concentration controls sugar and protein metabolism during kernel differentiation and it is necessary for BETL formation. Furthermore, a fine tuning of different auxin conjugates is reported as the main mechanism to counteract the auxin deficit. Some candidates as master regulators of endosperm transcriptional regulation mediated by auxin are found between MYB and MADS-box gene families. A link between auxin and storage protein accumulation is highlighted, suggesting that IAA directly or indirectly, through CK or ABA, regulates the transcription of zein coding genes. This study represents a move forward with respect to the current knowledge about the role of auxin during maize endosperm differentiation thus revealing the genes that are modulated by auxin and that control agronomic traits as kernel size and metabolic composition.
Collapse
Affiliation(s)
- Jamila Bernardi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Raffaella Battaglia
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
139
|
Gupta C, Pereira A. Recent advances in gene function prediction using context-specific coexpression networks in plants. F1000Res 2019; 8:F1000 Faculty Rev-153. [PMID: 30800290 PMCID: PMC6364378 DOI: 10.12688/f1000research.17207.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Predicting gene functions from genome sequence alone has been difficult, and the functions of a large fraction of plant genes remain unknown. However, leveraging the vast amount of currently available gene expression data has the potential to facilitate our understanding of plant gene functions, especially in determining complex traits. Gene coexpression networks-created by integrating multiple expression datasets-connect genes with similar patterns of expression across multiple conditions. Dense gene communities in such networks, commonly referred to as modules, often indicate that the member genes are functionally related. As such, these modules serve as tools for generating new testable hypotheses, including the prediction of gene function and importance. Recently, we have seen a paradigm shift from the traditional "global" to more defined, context-specific coexpression networks. Such coexpression networks imply genetic correlations in specific biological contexts such as during development or in response to a stress. In this short review, we highlight a few recent studies that attempt to fill the large gaps in our knowledge about cellular functions of plant genes using context-specific coexpression networks.
Collapse
Affiliation(s)
- Chirag Gupta
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Andy Pereira
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
140
|
Song T, Li K, Wu T, Wang Y, Zhang X, Xu X, Yao Y, Han Z. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS One 2019; 14:e0210672. [PMID: 30695036 PMCID: PMC6350969 DOI: 10.1371/journal.pone.0210672] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022] Open
Abstract
Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. To identify new regulatory genes in apple (Malus domestica) that may be involved in regulating low temperature induced anthocyanin biosynthesis, we performed RNA-seq analysis of leaves from the ‘Gala’ apple cultivar following exposure to a low temperature (16 °C). A visible red color appeared on the upper leaves and the anthocyanin content increased significantly after the low temperature treatment. Genes from the flavonoid biosynthesis pathway were significantly enriched among the differentially expressed genes, and the expression of several transcription factors was shown by WGCNA (weighted gene co-expression network analysis) to correlate with anthocyanin accumulation, including members of the MYB, MADS, WRKY, WD40, Zinc Finger and HB-ZIP families. Three MYB transcription factors (MdMYB12, MdMYB22 and MdMYB114), which had several CBF/DREB response elements in their promoters, were significantly induced by low temperature exposure and their expression also correlated highly with anthocyanin accumulation. We hypothesize that they may act as regulators of anthocyanin biosynthesis and be regulated by CBF/DREB transcription factors in apple leaves under low temperature conditions. The analyses presented here provide insights into the molecular mechanisms underlying anthocyanin accumulation during low temperature exposure.
Collapse
Affiliation(s)
- Tingting Song
- College of Horticulture, China Agricultural University, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
- * E-mail:
| |
Collapse
|
141
|
A gene expression map of shoot domains reveals regulatory mechanisms. Nat Commun 2019; 10:141. [PMID: 30635575 PMCID: PMC6329838 DOI: 10.1038/s41467-018-08083-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023] Open
Abstract
Gene regulatory networks control development via domain-specific gene expression. In seed plants, self-renewing stem cells located in the shoot apical meristem (SAM) produce leaves from the SAM peripheral zone. After initiation, leaves develop polarity patterns to form a planar shape. Here we compare translating RNAs among SAM and leaf domains. Using translating ribosome affinity purification and RNA sequencing to quantify gene expression in target domains, we generate a domain-specific translatome map covering representative vegetative stage SAM and leaf domains. We discuss the predicted cellular functions of these domains and provide evidence that dome seemingly unrelated domains, utilize common regulatory modules. Experimental follow up shows that the RABBIT EARS and HANABA TARANU transcription factors have roles in axillary meristem initiation. This dataset provides a community resource for further study of shoot development and response to internal and environmental signals. The shoot apical meristem (SAM) maintains stem cells and generates new leaves and flowers from its periphery. Here via spatially resolved translatome profiling, Tian et al. define distinct molecular signatures of different SAM and leaf domains and identify regulators of axillary meristem initiation.
Collapse
|
142
|
Armenta-Medina A, Gillmor CS. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Curr Top Dev Biol 2019; 131:497-543. [DOI: 10.1016/bs.ctdb.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
143
|
Kim E, Xiong Y, Kang BH, Sung S. Identification of Long Noncoding RNAs in the Developing Endosperm of Maize. Methods Mol Biol 2019; 1933:49-65. [PMID: 30945178 DOI: 10.1007/978-1-4939-9045-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maize endosperm consists of three distinct types of tissues, including the starchy endosperm (SE), the basal endosperm transfer cell layer (BETL), and the aleurone cell layer (AL). Compartmentalization of these tissues during endosperm differentiation makes the endosperm development an excellent model to study changes in gene expression during development. By utilizing cryo-dissection of developing endosperm, morphologically distinct samples can be obtained for transcriptome and epigenome analysis. Here, we describe methods for the isolation of tissues from developing maize endosperm and for the transcriptome analysis to identify novel long noncoding RNAs. The transcriptome data can be further analyzed to illustrate spatiotemporal changes in both coding and noncoding transcripts during the endosperm development.
Collapse
Affiliation(s)
- Eundeok Kim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Yuqing Xiong
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Byung-Ho Kang
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- School of Life Sciences, State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Sibum Sung
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- International Scholar, Kyung-Hee University, Suwon, South Korea.
| |
Collapse
|
144
|
Wittmeyer K, Cui J, Chatterjee D, Lee TF, Tan Q, Xue W, Jiao Y, Wang PH, Gaffoor I, Ware D, Meyers BC, Chopra S. The Dominant and Poorly Penetrant Phenotypes of Maize Unstable factor for orange1 Are Caused by DNA Methylation Changes at a Linked Transposon. THE PLANT CELL 2018; 30:3006-3023. [PMID: 30563848 PMCID: PMC6354275 DOI: 10.1105/tpc.18.00546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 05/04/2023]
Abstract
The maize (Zea mays) mutant Unstable factor for orange1 (Ufo1) has been implicated in the epigenetic modifications of pericarp color1 (p1), which regulates the production of the flavonoid pigments phlobaphenes. Here, we show that the ufo1 gene maps to a genetically recalcitrant region near the centromere of chromosome 10. Transcriptome analysis of Ufo1-1 mutant and wild-type plants identified a candidate gene in the mapping region using a comparative sequence-based approach. The candidate gene, GRMZM2G053177, is overexpressed by >45-fold in multiple tissues of Ufo1-1, explaining the dominance of Ufo1-1 and its phenotypes. In the mutant stock, GRMZM2G053177 has a unique transcript originating within a CACTA transposon inserted in its first intron, and it is missing the first four codons of the wild-type transcript. GRMZM2G053177 expression is regulated by the DNA methylation status of the CACTA transposon, explaining the incomplete penetrance and poor expressivity of Ufo1-1 Transgenic overexpression lines of GRMZM2G053177 (Ufo1-1) phenocopy the p1-induced pigmentation in coleoptiles, tassels, leaf sheaths, husks, pericarps, and cob glumes. Transcriptome analysis of Ufo1 versus wild-type tissues revealed changes in several pathways related to abiotic and biotic stress. Thus, this study addresses the enigma of Ufo1 identity in maize, which had gone unsolved for more than 50 years.
Collapse
Affiliation(s)
- Kameron Wittmeyer
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jin Cui
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Debamalya Chatterjee
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tzuu-Fen Lee
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Qixian Tan
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Weiya Xue
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Po-Hao Wang
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Iffa Gaffoor
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
- U.S. Department of Agriculture, Agricultural Research Service, PSNR, Ithaca, New York, 14853
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- University of Missouri, Division of Plant Sciences, Columbia, Missouri 65211
| | - Surinder Chopra
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
145
|
Zhang T, Lv W, Zhang H, Ma L, Li P, Ge L, Li G. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC PLANT BIOLOGY 2018; 18:235. [PMID: 30326829 PMCID: PMC6192367 DOI: 10.1186/s12870-018-1441-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND In plants, the basic helix-loop-helix (bHLH) transcription factors play key roles in diverse biological processes. Genome-wide comprehensive and systematic analyses of bHLH proteins have been well conducted in Arabidopsis, rice, tomato and other plant species. However, only few of bHLH family genes have been functional characterized in maize. RESULTS In this study, our genome-wide analysis identified 208 putative bHLH family proteins (ZmbHLH proteins) in maize (Zea mays). We classified these proteins into 18 subfamilies by comparing the ZmbHLHs with Arabidopsis thaliana bHLH proteins. Phylogenetic analysis, conserved protein motifs, and exon-intron patterns further supported the evolutionary relationships among these bHLH proteins. Genome distribution analysis found that the 208 ZmbHLH loci were located non-randomly on the ten maize chromosomes. Further, analysis of conserved cis-elements in the promoter regions, protein interaction networks, and expression patterns in roots, leaves, and seeds across developmental stages, suggested that bHLH family proteins in maize are probably involved in multiple physiological processes in plant growth and development. CONCLUSION We performed a genome-wide, systematic analysis of bHLH proteins in maize. This comprehensive analysis provides a useful resource that enables further investigation of the physiological roles and molecular functions of the ZmbHLH transcription factors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
146
|
Zhan J, Li G, Ryu CH, Ma C, Zhang S, Lloyd A, Hunter BG, Larkins BA, Drews GN, Wang X, Yadegari R. Opaque-2 Regulates a Complex Gene Network Associated with Cell Differentiation and Storage Functions of Maize Endosperm. THE PLANT CELL 2018; 30:2425-2446. [PMID: 30262552 PMCID: PMC6241275 DOI: 10.1105/tpc.18.00392] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
Development of the cereal endosperm involves cell differentiation processes that enable nutrient uptake from the maternal plant, accumulation of storage products, and their utilization during germination. However, little is known about the regulatory mechanisms that link cell differentiation processes with those controlling storage product synthesis and deposition, including the activation of zein genes by the maize (Zea mays) bZIP transcription factor Opaque-2 (O2). Here, we mapped in vivo binding sites of O2 in B73 endosperm and compared the results with genes differentially expressed in B73 and B73o2 We identified 186 putative direct O2 targets and 1677 indirect targets, encoding a broad set of gene functionalities. Examination of the temporal expression patterns of O2 targets revealed at least two distinct modes of O2-mediated gene activation. Two O2-activated genes, bZIP17 and NAKED ENDOSPERM2 (NKD2), encode transcription factors, which can in turn coactivate other O2 network genes with O2. NKD2 (with its paralog NKD1) was previously shown to be involved in regulation of aleurone development. Collectively, our results provide insights into the complexity of the O2-regulated network and its role in regulation of endosperm cell differentiation and function.
Collapse
Affiliation(s)
- Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Guosheng Li
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Chuang Ma
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Alan Lloyd
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Brenda G Hunter
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68588
| | - Gary N Drews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
147
|
Robinson AJ, Tamiru M, Salby R, Bolitho C, Williams A, Huggard S, Fisch E, Unsworth K, Whelan J, Lewsey MG. AgriSeqDB: an online RNA-Seq database for functional studies of agriculturally relevant plant species. BMC PLANT BIOLOGY 2018; 18:200. [PMID: 30231853 PMCID: PMC6146512 DOI: 10.1186/s12870-018-1406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND The genome-wide expression profile of genes in different tissues/cell types and developmental stages is a vital component of many functional genomic studies. Transcriptome data obtained by RNA-sequencing (RNA-Seq) is often deposited in public databases that are made available via data portals. Data visualization is one of the first steps in assessment and hypothesis generation. However, these databases do not typically include visualization tools and establishing one is not trivial for users who are not computational experts. This, as well as the various formats in which data is commonly deposited, makes the processes of data access, sharing and utility more difficult. Our goal was to provide a simple and user-friendly repository that meets these needs for data-sets from major agricultural crops. DESCRIPTION AgriSeqDB ( https://expression.latrobe.edu.au/agriseqdb ) is a database for viewing, analysing and interpreting developmental and tissue/cell-specific transcriptome data from several species, including major agricultural crops such as wheat, rice, maize, barley and tomato. The disparate manner in which public transcriptome data is often warehoused and the challenge of visualizing raw data are both major hurdles to data reuse. The popular eFP browser does an excellent job of presenting transcriptome data in an easily interpretable view, but previous implementation has been mostly on a case-by-case basis. Here we present an integrated visualisation database of transcriptome data-sets from six species that did not previously have public-facing visualisations. We combine the eFP browser, for gene-by-gene investigation, with the Degust browser, which enables visualisation of all transcripts across multiple samples. The two visualisation interfaces launch from the same point, enabling users to easily switch between analysis modes. The tools allow users, even those without bioinformatics expertise, to mine into data-sets and understand the behaviour of transcripts of interest across samples and time. We have also incorporated an additional graphic download option to simplify incorporation into presentations or publications. CONCLUSION Powered by eFP and Degust browsers, AgriSeqDB is a quick and easy-to-use platform for data analysis and visualization in five crops and Arabidopsis. Furthermore, it provides a tool that makes it easy for researchers to share their data-sets, promoting research collaborations and data-set reuse.
Collapse
Affiliation(s)
| | - Muluneh Tamiru
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Rachel Salby
- Library, La Trobe University, Melbourne, Australia
| | | | | | | | - Eva Fisch
- Library, La Trobe University, Melbourne, Australia
| | | | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|
148
|
Zhang S, Zhan J, Yadegari R. Maize opaque mutants are no longer so opaque. PLANT REPRODUCTION 2018; 31:319-326. [PMID: 29978299 PMCID: PMC6105308 DOI: 10.1007/s00497-018-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/23/2018] [Indexed: 05/02/2023]
Abstract
The endosperm of angiosperms is a zygotic seed organ that stores nutrient reserves to support embryogenesis and seed germination. Cereal endosperm is also a major source of human calories and an industrial feedstock. Maize opaque endosperm mutants commonly exhibit opaque, floury kernels, along with other abnormal seed and/or non-seed phenotypes. The opaque endosperm phenotype is sometimes accompanied by a soft kernel texture and increased nutritional quality, including a higher lysine content, which are valuable agronomic traits that have drawn attention of maize breeders. Recently, an increasing number of genes that underlie opaque mutants have been cloned, and their characterization has begun to shed light on the molecular basis of the opaque endosperm phenotype. These mutants are categorized by disruption of genes encoding zein or non-zein proteins localized to protein bodies, enzymes involved in endosperm metabolic processes, or transcriptional regulatory proteins associated with endosperm storage programs.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
149
|
Chen Z, Zhao W, Ge D, Han Y, Ning K, Luo C, Wang S, Liu R, Zhang X, Wang Q. LCM-seq reveals the crucial role of LsSOC1 in heat-promoted bolting of lettuce (Lactuca sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:516-528. [PMID: 29772090 DOI: 10.1111/tpj.13968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 05/08/2023]
Abstract
Lettuce (Lactuca sativa L.) is one of the most economically important vegetables. The floral transition in lettuce is accelerated under high temperatures, which can significantly decrease yields. However, the molecular mechanism underlying the floral transition in lettuce is poorly known. Using laser capture microdissection coupled with RNA sequencing, we isolated shoot apical meristem cells from the bolting-sensitive lettuce line S39 at four critical stages of development. Subsequently, we screened specifically for the flowering-related gene LsSOC1 during the floral transition through comparative transcriptomic analysis. Molecular biology, developmental biology, and biochemical tools were combined to investigate the biological function of LsSOC1 in lettuce. LsSOC1 knockdown by RNA interference resulted in a significant delay in the timing of bolting and insensitivity to high temperature, which indicated that LsSOC1 functions as an activator during heat-promoted bolting in lettuce. We determined that two heat shock transcription factors, HsfA1e and HsfA4c, bound to the promoter of LsSOC1 to confirm that LsSOC1 played an important role in heat-promoted bolting. This study indicates that LsSOC1 plays a crucial role in the heat-promoted bolting process in lettuce. Further investigation of LsSOC1 may be useful for clarification of the bolting mechanism in lettuce.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Danfeng Ge
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yingyan Han
- Plant Science and Technology College, Beijing University of Agriculture/New Technological Laboratory in Agriculture Application in Beijing, Beijing, 102206, China
| | - Kang Ning
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Chen Luo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shenglin Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Renyi Liu
- College of Horticulture and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
150
|
Chen D, Fu LY, Hu D, Klukas C, Chen M, Kaufmann K. The HTPmod Shiny application enables modeling and visualization of large-scale biological data. Commun Biol 2018; 1:89. [PMID: 30271970 PMCID: PMC6123733 DOI: 10.1038/s42003-018-0091-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/03/2018] [Indexed: 01/20/2023] Open
Abstract
The wave of high-throughput technologies in genomics and phenomics are enabling data to be generated on an unprecedented scale and at a reasonable cost. Exploring the large-scale data sets generated by these technologies to derive biological insights requires efficient bioinformatic tools. Here we introduce an interactive, open-source web application (HTPmod) for high-throughput biological data modeling and visualization. HTPmod is implemented with the Shiny framework by integrating the computational power and professional visualization of R and including various machine-learning approaches. We demonstrate that HTPmod can be used for modeling and visualizing large-scale, high-dimensional data sets (such as multiple omics data) under a broad context. By reinvestigating example data sets from recent studies, we find not only that HTPmod can reproduce results from the original studies in a straightforward fashion and within a reasonable time, but also that novel insights may be gained from fast reinvestigation of existing data by HTPmod. Dijun Chen et al. present HTPmod, a Shiny web application for modeling and visualization of large-scale genomic and phenomic datasets. The authors show that HTPmod can quickly reproduce analyses of high-throughput biological datasets and produce publication-quality figures.
Collapse
Affiliation(s)
- Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany. .,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466, Germany.
| | - Liang-Yu Fu
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Dahui Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, 06466, Germany.,Digitalization in Research & Development (ROM), BASF SE, Ludwigshafen am Rhein, 67056, Germany
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany.
| |
Collapse
|