101
|
Phan TK, Bindra GK, Williams SA, Poon IK, Hulett MD. Combating Human Pathogens and Cancer by Targeting Phosphoinositides and Their Metabolism. Trends Pharmacol Sci 2019; 40:866-882. [DOI: 10.1016/j.tips.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
|
102
|
Xin C, Kim J, Quan H, Yin M, Jeong S, Choi JI, Jang EA, Lee CH, Kim DH, Bae HB. Ginsenoside Rg3 promotes Fc gamma receptor-mediated phagocytosis of bacteria by macrophages via an extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent mechanism. Int Immunopharmacol 2019; 77:105945. [PMID: 31644962 DOI: 10.1016/j.intimp.2019.105945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
Abstract
Ginsenoside Rg3 is a steroidal saponin abundant in Korean red ginseng that has high anti-inflammatory activity. Rg3 exerts an immunomodulatory effect in acute inflammatory conditions such as bacterial infections. In this study, we determined the effect of Rg3 on bacterial uptake by macrophages and the related intracellular signaling pathways. Rg3 increased macrophage phagocytosis of IgG-opsonized Escherichia coli and IgG-opsonized beads (IgGbeads), but not of non-opsonized beads. Rg3 also enhanced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (p38 MAPK), but not that of Akt. The inclusion of IgGbeads in macrophage cultures also increased the phosphorylation of ERK1/2 and p38, but co-culture of macrophages with non-opsonized beads did not affect the phosphorylation of ERK1/2 and p38. The Rg3-induced promotion of phagocytosis was inhibited by PD98059, an ERK1/2 inhibitor, and SB203580, a p38 inhibitor. PD98059 inhibited Rg3-induced p38 MAPK phosphorylation, but SB203580 did not suppress ERK1/2 phosphorylation. Culture of macrophages with Rg3 increased actin polymerization, and this effect was inhibited by SB203580 and PD98059. The Rg3-induced increase in phagocytosis was also inhibited by NSC23766, a Rac1 inhibitor and CASIN, a Cdc42 inhibitor. Intraperitoneal injection of Rg3 increased the phosphorylation of ERK1/2 and p38 as well as the phagocytosis of bacteria by lung cells. These results demonstrate that ginsenoside Rg3 enhances macrophage phagocytosis of bacteria by activating the ERK1/2 and p38 MAPK pathways.
Collapse
Affiliation(s)
- Chun Xin
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Joungmin Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hui Quan
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Mei Yin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanamdo, South Korea
| | - Jeong-Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun-A Jang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanamdo, South Korea
| | - Chang-Hun Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Dae-Hun Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, Gwangju, South Korea; Department of Anesthesiology and Pain Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanamdo, South Korea.
| |
Collapse
|
103
|
Velle KB, Fritz-Laylin LK. Diversity and evolution of actin-dependent phenotypes. Curr Opin Genet Dev 2019; 58-59:40-48. [DOI: 10.1016/j.gde.2019.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/19/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
|
104
|
Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio 2019; 10:mBio.01743-19. [PMID: 31551332 PMCID: PMC6759761 DOI: 10.1128/mbio.01743-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Monocytes arriving at the site of infection differentiate into functional effector macrophages to replenish the resident sentinel cells. Bordetella pertussis, the pertussis agent, secretes an adenylate cyclase toxin-hemolysin (CyaA) that binds myeloid phagocytes through complement receptor 3 (CD11b/CD18) and swiftly delivers its adenylyl cyclase enzyme domain into phagocytes. This ablates the bactericidal capacities of phagocytes through massive and unregulated conversion of cytosolic ATP into the key signaling molecule cAMP. We show that exposure of primary human monocytes to as low a concentration as 22.5 pM CyaA, or a low (2:1) multiplicity of infection by CyaA-producing B. pertussis bacteria, blocks macrophage colony-stimulating factor (M-CSF)-driven differentiation of monocytes. CyaA-induced cAMP signaling mediated through the activity of protein kinase A (PKA) efficiently blocked expression of macrophage markers, and the monocytes exposed to 22.5 pM CyaA failed to acquire the characteristic intracellular complexity of mature macrophage cells. Neither M-CSF-induced endoplasmic reticulum (ER) expansion nor accumulation of Golgi bodies, mitochondria, or lysosomes was observed in toxin-exposed monocytes, which remained small and poorly phagocytic and lacked pseudopodia. Exposure to 22.5 pM CyaA toxin provoked loss of macrophage marker expression on in vitro differentiated macrophages, as well as on primary human alveolar macrophages, which appeared to dedifferentiate into monocyte-like cells with upregulated CD14 levels. This is the first report that terminally differentiated tissue-resident macrophage cells can be dedifferentiated in vitro The results suggest that blocking of monocyte-to-macrophage transition and/or dedifferentiation of the sentinel cells of innate immunity through cAMP-elevating toxin action may represent a novel immune evasion strategy of bacterial pathogens.IMPORTANCE Macrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agent Bordetella pertussis The adenylate cyclase toxin (CyaA) mediates immune evasion of B. pertussis by suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion of host immunity, where CyaA at very low (22 pM) concentrations could inhibit maturation of human monocyte precursors into the more phagocytic macrophage cells. Furthermore, exposure to low CyaA amounts has been shown to trigger dedifferentiation of mature primary human alveolar macrophages back into monocyte-like cells. This unprecedented capacity is likely to promote survival of the pathogen in the airways, both by preventing maturation of monocytes attracted to the site of infection into phagocytic macrophages and by dedifferentiation of the already airway-resident sentinel cells.
Collapse
|
105
|
Jeng EE, Bhadkamkar V, Ibe NU, Gause H, Jiang L, Chan J, Jian R, Jimenez-Morales D, Stevenson E, Krogan NJ, Swaney DL, Snyder MP, Mukherjee S, Bassik MC. Systematic Identification of Host Cell Regulators of Legionella pneumophila Pathogenesis Using a Genome-wide CRISPR Screen. Cell Host Microbe 2019; 26:551-563.e6. [PMID: 31540829 DOI: 10.1016/j.chom.2019.08.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
During infection, Legionella pneumophila translocates over 300 effector proteins into the host cytosol, allowing the pathogen to establish an endoplasmic reticulum (ER)-like Legionella-containing vacuole (LCV) that supports bacterial replication. Here, we perform a genome-wide CRISPR-Cas9 screen and secondary targeted screens in U937 human monocyte/macrophage-like cells to systematically identify host factors that regulate killing by L. pneumophila. The screens reveal known host factors hijacked by L. pneumophila, as well as genes spanning diverse trafficking and signaling pathways previously not linked to L. pneumophila pathogenesis. We further characterize C1orf43 and KIAA1109 as regulators of phagocytosis and show that RAB10 and its chaperone RABIF are required for optimal L. pneumophila replication and ER recruitment to the LCV. Finally, we show that Rab10 protein is recruited to the LCV and ubiquitinated by the effectors SidC/SdcA. Collectively, our results provide a wealth of previously undescribed insights into L. pneumophila pathogenesis and mammalian cell function.
Collapse
Affiliation(s)
- Edwin E Jeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Varun Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nnejiuwa U Ibe
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Haley Gause
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanne Chan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
106
|
Hartenstein V, Martinez P. Phagocytosis in cellular defense and nutrition: a food-centered approach to the evolution of macrophages. Cell Tissue Res 2019; 377:527-547. [PMID: 31485720 PMCID: PMC6750737 DOI: 10.1007/s00441-019-03096-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
The uptake of macromolecules and larger energy-rich particles into the cell is known as phagocytosis. Phagocytosed material is enzymatically degraded in membrane-bound vesicles of the endosome/lysosome system (intracellular digestion). Whereas most, if not all, cells of the animal body are equipped with the molecular apparatus for phagocytosis and intracellular digestion, a few cell types are specialized for a highly efficient mode of phagocytosis. These are the ("professional") macrophages, motile cells that seek out and eliminate pathogenic invaders or damaged cells. Macrophages form the backbone of the innate immune system. Developmentally, they derive from specialized compartments within the embryonic mesoderm and early vasculature as part of the process of hematopoiesis. Intensive research has revealed in detail molecular and cellular mechanisms of phagocytosis and intracellular digestion in macrophages. In contrast, little is known about a second type of cell that is "professionally" involved in phagocytosis, namely the "enteric phagocyte." Next to secretory (zymogenic) cells, enteric phagocytes form one of the two major cell types of the intestine of most invertebrate animals. Unlike vertebrates, these invertebrates only partially digest food material in the intestinal lumen. The resulting food particles are absorbed by phagocytosis or pinocytosis and digested intracellularly. In this review, we provide a brief overview of the enteric phagocytes described electron microscopically for diverse invertebrate clades, to then to compare these cells with the "canonical" phagocyte ultrastructure established for macrophages. In addition, we will review observations and speculations associated with the hypothesis that macrophages are evolutionarily derived from enteric phagocytes. This idea was already proposed in the late nineteenth century by Elias Metschnikoff who pioneered the research of phagocytosis for both macrophages and enteric phagocytes. We presume that modern approaches to better understand phagocytosis will be helped by considering the deep evolutionary relationship between the two cell types.
Collapse
Affiliation(s)
- V Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - P Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Passeig Lluı's Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
107
|
Xiao Joe JT, Chiou PP, Kuo CY, Jia Lin JH, Wu JL, Lu MW. The microbiota profile and transcriptome analysis of immune response during metamorphosis stages in orange spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 90:141-149. [PMID: 31055020 DOI: 10.1016/j.fsi.2019.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Metamorphosis is a transformation process in larval development associated with changes in morphological and physiological features, including the immune system. The gastrointestinal tract harbors a plethora of bacteria, which might affect the digestion and absorption of nutrients, immunity, and gut-brain crosstalk in the host. In this study, we have performed metagenomic and transcriptomic analyses on the intestines of grouper at the pre-, mid- and post-metamorphosis stages. The sequencing data of 16S rRNA gene showed drastic changes in the microbial communities at different developmental stages. The transcriptomic data revealed that the leukocyte transendothelial migration and the phagosome pathways might play important roles in mediating immunity in grouper at the three developmental stages. This information will increase our understanding of the metamorphosis process in grouper larvae, and shed light on the development of antimicrobial strategy during larval development.
Collapse
Affiliation(s)
- Joan Tang Xiao Joe
- Doctoral Degree Program in Marine Biotechnology, The College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Pinwen Peter Chiou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chia-Yu Kuo
- Doctoral Degree Program in Marine Biotechnology, The College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | | | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
108
|
The Small GTPase Arf6: An Overview of Its Mechanisms of Action and of Its Role in Host⁻Pathogen Interactions and Innate Immunity. Int J Mol Sci 2019; 20:ijms20092209. [PMID: 31060328 PMCID: PMC6539230 DOI: 10.3390/ijms20092209] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
The small GTase Arf6 has several important functions in intracellular vesicular trafficking and regulates the recycling of different types of cargo internalized via clathrin-dependent or -independent endocytosis. It activates the lipid modifying enzymes PIP 5-kinase and phospholipase D, promotes actin polymerization, and affects several functionally distinct processes in the cell. Arf6 is used for the phagocytosis of pathogens and can be directly or indirectly targeted by various pathogens to block phagocytosis or induce the uptake of intracellular pathogens. Arf6 is also used in the signaling of Toll-like receptors and in the activation of NADPH oxidases. In this review, we first give an overview of the different roles and mechanisms of action of Arf6 and then focus on its role in innate immunity and host–pathogen interactions.
Collapse
|
109
|
Leprêtre M, Almunia C, Armengaud J, Salvador A, Geffard A, Palos-Ladeiro M. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. J Proteomics 2019; 202:103366. [PMID: 31015035 DOI: 10.1016/j.jprot.2019.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The immune system of bivalves is of great interest since it reflects the health status of these organisms during stressful conditions. While immune molecular responses are well documented for marine bivalves, few information is available for continental bivalves such as the zebra mussel, Dreissena polymorpha. A proteogenomic approach was conducted on both hemocytes and plasma to identified immune proteins of this non-model species. Combining transcriptomic sequences with mass spectrometry data acquired on proteins is a relevant strategy since 3020 proteins were identified, representing the largest protein inventory for this sentinel organism. Functional annotation and gene ontology (GO) analysis performed on the identified proteins described the main molecular players of hemocytes and plasma in immunity. GO analysis highlights the complementary immune functions of these two compartments in the management of micro-organisms. Functional annotation revealed new mechanisms in the immune defence of the zebra mussel. Proteins rarely observed in the hemolymph of bivalves were pinpointed such as natterin-like and thaumatin-like proteins. Furthermore, the high abundance of complement-related proteins observed in plasma suggested a strong implication of the complement system in the immune defence of D. polymorpha. This work brings a better understanding of the molecular mechanisms involved in zebra mussel immunity. SIGNIFICANCE: Although the molecular mechanisms of marine bivalves are widely investigated, little information is known for continental bivalves. Moreover, few proteomic studies described the complementarity of both hemolymphatic compartments (cellular and plasmatic) in the immune defence of invertebrates. The recent proteogenomics concept made it possible to discover proteins in non-model organisms. Here, we propose a proteogenomic strategy with the zebra mussel, a key sentinel species for biomonitoring of freshwater, to identify and describe the molecular actors involved in the immune system in both hemocytes and plasma compartments. More widely, this study provided new insight into bivalve immunity.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France.
| |
Collapse
|
110
|
Kim TH, Ly C, Christodoulides A, Nowell CJ, Gunning PW, Sloan EK, Rowat AC. Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function. FASEB J 2019; 33:3997-4006. [PMID: 30509116 PMCID: PMC6404566 DOI: 10.1096/fj.201801429rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Critical functions of immune cells require them to rapidly change their shape and generate forces in response to cues from their surrounding environment. However, little is known about how soluble factors that may be present in the microenvironment modulate key aspects of cellular mechanobiology-such as immune cell deformability and force generation-to impact functions such as phagocytosis and migration. Here we show that signaling by soluble stress hormones through β-adrenoceptors (β-AR) reduces the deformability of macrophages; this is dependent on changes in the organization of the actin cytoskeleton and is associated with functional changes in phagocytosis and migration. Pharmacologic interventions reveal that the impact of β-AR signaling on macrophage deformability is dependent on actin-related proteins 2/3, indicating that stress hormone signaling through β-AR shifts actin organization to favor branched structures rather than linear unbranched actin filaments. These findings show that through remodeling of the actin cytoskeleton, β-AR-mediated stress hormone signaling modulates macrophage mechanotype to impact functions that play a critical role in immune response.-Kim, T.-H., Ly, C., Christodoulides, A., Nowell, C. J., Gunning, P. W., Sloan, E. K., Rowat, A. C. Stress hormone signaling through β-adrenergic receptors regulates macrophage mechanotype and function.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Alexei Christodoulides
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Cameron J. Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter W. Gunning
- School of Medical Sciences, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Erica K. Sloan
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
- UCLA AIDS Institute, University of California, Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
111
|
Jones LO, Stafford JL. Imaging flow cytometry and confocal microscopy-based examination of F-actin and phosphoinositide dynamics during leukocyte immune-type receptor-mediated phagocytic events. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:199-211. [PMID: 30503359 DOI: 10.1016/j.dci.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Cells of the innate immune system rapidly detect and eliminate invading microbes using surface-expressed immunoregulatory receptors that translate extracellular binding events into potent effector responses. Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins that have been shown to regulate several innate immune cell effector responses including the phagocytic process. The mechanisms by which these receptors regulate phagocytosis are not entirely understood but we have previously shown that different IpLITR-types use ITAM-dependent as well as ITAM-independent pathways for controlling target engulfment. The main objective of this study was to develop and use imaging flow cytometry and confocal microscopy-based assays to further examine both F-actin and phosphoinositide dynamics that occur during the different IpLITR-mediated phagocytic pathways. Results show that the ITAM-dependent IpLITR-induced phagocytic response promotes canonical changes in F-actin polymerization and PI(4,5)P2 redistributions. However, the ITAM-independent IpLITR phagocytic response induced unique patterns of F-actin and PI(4,5)P2 redistributions, which are likely due to its ability to regulate alternative signaling pathways. Additionally, both IpLITR-induced phagocytic pathways induced target internalization into PI(3)P-enriched phagosomes indicative of a maturing phagosome compartment. Overall, this imaging-based platform can be further applied to monitor the recruitment and distribution of signaling molecules during IpLITR-mediated phagocytic processes and may serve as a useful strategy for functional examinations of other immunoregulatory receptor-types in fish.
Collapse
Affiliation(s)
- Lena O Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
112
|
Hanna SJ, McCoy-Simandle K, Leung E, Genna A, Condeelis J, Cox D. Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J Cell Sci 2019; 132:jcs.223321. [PMID: 30659112 DOI: 10.1242/jcs.223321] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
The interaction between tumor cells and macrophages is crucial in promoting tumor invasion and metastasis. In this study, we examined a novel mechanism of intercellular communication, namely membranous actin-based tunneling nanotubes (TNTs), that occurs between macrophages and tumor cells in the promotion of macrophage-dependent tumor cell invasion. The presence of heterotypic TNTs between macrophages and tumor cells induced invasive tumor cell morphology, which was dependent on EGF-EGFR signaling. Furthermore, reduction of a protein involved in TNT formation, M-Sec (TNFAIP2), in macrophages inhibited tumor cell elongation, blocked the ability of tumor cells to invade in 3D and reduced macrophage-dependent long-distance tumor cell streaming in vitro Using an in vivo zebrafish model that recreates macrophage-mediated tumor cell invasion, we observed TNT-mediated macrophage-dependent tumor cell invasion, distant metastatic foci and areas of metastatic spread. Overall, our studies support a role for TNTs as a novel means of interaction between tumor cells and macrophages that leads to tumor progression and metastasis.
Collapse
Affiliation(s)
- Samer J Hanna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Kessler McCoy-Simandle
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Edison Leung
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Alessandro Genna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA .,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| |
Collapse
|
113
|
Kim JK, Shin YJ, Ha LJ, Kim DH, Kim DH. Unraveling the Mechanobiology of the Immune System. Adv Healthc Mater 2019; 8:e1801332. [PMID: 30614636 PMCID: PMC7700013 DOI: 10.1002/adhm.201801332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/01/2018] [Indexed: 12/20/2022]
Abstract
Cells respond and actively adapt to environmental cues in the form of mechanical stimuli. This extends to immune cells and their critical role in the maintenance of tissue homeostasis. Multiple recent studies have begun illuminating underlying mechanisms of mechanosensation in modulating immune cell phenotypes. Since the extracellular microenvironment is critical to modify cellular physiology that ultimately determines the functionality of the cell, understanding the interactions between immune cells and their microenvironment is necessary. This review focuses on mechanoregulation of immune responses mediated by macrophages, dendritic cells, and T cells, in the context of modern mechanobiology.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Leslie Jaesun Ha
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
114
|
Sprangers S, Everts V. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol 2019; 75-76:190-200. [DOI: 10.1016/j.matbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
|
115
|
Wen X, Xu X, Sun W, Chen K, Pan M, Wang JM, Bolland SM, Jin T. G-protein-coupled formyl peptide receptors play a dual role in neutrophil chemotaxis and bacterial phagocytosis. Mol Biol Cell 2018; 30:346-356. [PMID: 30540534 PMCID: PMC6589574 DOI: 10.1091/mbc.e18-06-0358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A dogma of innate immunity is that neutrophils use G-protein–coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein–coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2–/–) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+ response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.
Collapse
Affiliation(s)
- Xi Wen
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Xuehua Xu
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Wenxiang Sun
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Research Institute at Frederick, Frederick, MD 21702-1201
| | - Miao Pan
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Research Institute at Frederick, Frederick, MD 21702-1201
| | - Silvia M Bolland
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Tian Jin
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| |
Collapse
|
116
|
Horsthemke M, Wilden J, Bachg AC, Hanley PJ. Time-lapse 3D Imaging of Phagocytosis by Mouse Macrophages. J Vis Exp 2018. [PMID: 30394377 DOI: 10.3791/57566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phagocytosis plays a key role in host defense, as well as in tissue development and maintenance, and involves rapid, receptor-mediated rearrangements of the actin cytoskeleton to capture, envelop and engulf large particles. Although phagocytic receptors, downstream signaling pathways, and effectors, such as Rho GTPases, have been identified, the dynamic cytoskeletal remodeling of specific receptor-mediated phagocytic events remain unclear. Four decades ago, two distinct mechanisms of phagocytosis, exemplified by Fcγ receptor (FcγR)- and complement receptor (CR)-mediated phagocytosis, were identified using scanning electron microscopy. Binding of immunoglobulin G (IgG)-opsonized particles to FcγRs triggers the protrusion of thin membrane extensions, which initially form a so-called phagocytic cup around the particle before it becomes completely enclosed and retracted into the cell. In contrast, complement opsonized particles appear to sink into the phagocyte following binding to complement receptors. These two modes of phagocytosis, phagocytic cup formation and sinking in, have become well established in the literature. However, the distinctions between the two modes have become blurred by reports that complement receptor-mediated phagocytosis may induce various membrane protrusions. With the availability of high resolution imaging techniques, phagocytosis assays are required that allow real-time 3D (three dimensional) visualization of how specific phagocytic receptors mediate the uptake of individual particles. More commonly used approaches for the study of phagocytosis, such as end-point assays, miss the opportunity to understand what is happening at the interface of particles and phagocytes. Here we describe phagocytic assays, using time-lapse spinning disk confocal microscopy, that allow 3D imaging of single phagocytic events. In addition, we describe assays to unambiguously image Fcγ receptor- or complement receptor-mediated phagocytosis.
Collapse
|
117
|
Wang Y, Liu J, Chen X, Sun H, Peng S, Kuang Y, Pi J, Zhuang T, Zhang L, Yu Z, Tomlinson B, Chan P, Chen Y, Zhang Y, Li Y. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-кB and IL-1β signal pathways. J Cell Mol Med 2018; 23:476-486. [PMID: 30334371 PMCID: PMC6307808 DOI: 10.1111/jcmm.13950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Circulating endothelial-derived microparticles (EMPs) are reported to be increased in acute coronary syndrome (ACS). However, it remains unclear whether EMPs from dysfunctional endothelium participate in the initiation and progression of ACS and what the underlying mechanisms might be. METHODS Plasma EMPs were measured in 22 patients with ACS and 20 control patients without coronary artery diseases. EMPs from dysfunctional human umbilical vein endothelial cells (HUVECs) stressed by serum-starvation or hypoxia were compared to the EMPs from healthy HUVECs. Confocal and fluorescent microscopy was used to visualize the incorporation of EMPs into monocytes and the translocation of NF-кB. Monocyte adhesion, cell proliferation, and phagocytosis were detected by PKH26 red fluorescent labelling, Ki67 immunostaining, and Sudan IV staining for uptake of oxidized low-density lipoprotein, respectively. RESULTS Plasma EMPs was significantly increased in ACS patients compared to controls. EMPs were incorporated into monocytes and EMPs from stressed HUVECs produced more pro-inflammatory cytokines compared to vehicle control, which was depended on NF-кB and IL-1β signal pathways. EMPs from dysfunctional endothelium promoted monocyte adherence via NF-кB and IL-1β-mediated MCP-1 and CCR-5 signals, as well as proliferation via the NF-кB and IL-1β-mediated Cyclin D1 signals. Finally, EMPs from dysfunctional endothelium showed greater promotion of macrophage phagocytosis forming foam cells to produce more pro-inflammatory cytokines. CONCLUSION MPs might be involved in the inflammatory process in patients with ACS via NF-κB and IL-1β-dependent signals. Targeting EMP-mediated inflammatory responses may be a promising therapeutic strategy to limit the progression of disease in ACS.
Collapse
Affiliation(s)
- Yanfang Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoli Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Sun
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Peng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yashu Kuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjiang Pi
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brain Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yihan Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
118
|
Regulation of Macrophage Activation and Polarization by HCC-Derived Exosomal lncRNA TUC339. Int J Mol Sci 2018; 19:ijms19102958. [PMID: 30274167 PMCID: PMC6213212 DOI: 10.3390/ijms19102958] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes released by cells can serve as vehicles for delivery of biological materials and signals. Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nt, which roles are increasingly appreciated in various biological content. Tumor-derived exosomal lncRNAs have been implicated as signaling mediators to orchestrate cell function among neighbor tumor cells. However, the role of tumor-derived lncRNAs in cross-talk with environmental macrophages has yet to be explored. In this paper, we demonstrated that hepatocellular carcinoma (HCC) cells–derived exosomes contain elevated levels of lncRNA TUC339 and that HCC-derived exosomes could be taken up by THP-1 cells. In seeking to dissect the biological function of tumor secreting TUC339 in macrophages, we applied loss-of-function and gain-of-function strategies. We observed increased pro-inflammatory cytokine production, increased co-stimulatory molecule expression, and enhanced phagocytosis upon suppression of TUC339 by siRNA in THP-1 cells, and the opposite effect upon over-expression of this lncRNA, which indicates that TUC339 was involved in the regulation of macrophage activation. Moreover, we detected an elevated level of TUC339 in M(IL-4) macrophages as compared to M(IFN-γ + LPS) macrophages and a down-regulation of TUC339 expression during M(IL-4)-to-M(IFN-γ + LPS) repolarization and vice versa. Furthermore, suppression of TUC339 in macrophages diminished the expression of M(IL-4) markers upon IL-4 treatment while overexpression of TUC339 in macrophages enhanced M(IL-4) markers upon IFN-γ + LPS treatment, which suggests a critical function of TUC339 in the regulation of macrophage M1/M2 polarization. Lastly, using microarray analysis, we identified cytokine-cytokine receptor interaction, CXCR chemokine receptor binding, Toll-like receptor signaling, FcγR-mediated phagocytosis, regulation of the actin cytoskeleton, and cell proliferation are related with TUC339 function in macrophages. Our results provide evidence for a novel regulatory function of tumor-derived exosomal lncRNA TUC339 in environmental macrophages and shed light on the complicated interactions between tumor and immune cells through exosomal lncRNAs.
Collapse
|
119
|
Lillico DME, Pemberton JG, Stafford JL. Selective Regulation of Cytoskeletal Dynamics and Filopodia Formation by Teleost Leukocyte Immune-Type Receptors Differentially Contributes to Target Capture During the Phagocytic Process. Front Immunol 2018; 9:1144. [PMID: 30002653 PMCID: PMC6032007 DOI: 10.3389/fimmu.2018.01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Phagocytosis evolved from a fundamental nutrient acquisition mechanism in primitive unicellular amoeboids, into a dynamic and complex component of innate immunity in multicellular organisms. To better understand the cellular mechanisms contributing to phagocytic processes across vertebrates, our research has focused on characterizing the involvement of innate immune proteins originally identified in channel catfish (Ictalurus punctatus) called leukocyte immune-type receptors (IpLITRs). These unique teleost proteins share basic structural as well as distant phylogenetic relationships with several immunoregulatory proteins within the mammalian immunoglobulin superfamily. In the present study, we use a combination of live-cell confocal imaging and high-resolution scanning electron microscopy to further examine the classical immunoreceptor tyrosine-based activation motif (ITAM)-dependent phagocytic pathway mediated by the chimeric construct IpLITR 2.6b/IpFcRγ-L and the functionally diverse immunoreceptor tyrosine-based inhibitory motif-containing receptor IpLITR 1.1b. Results demonstrate that IpLITR 1.1b-expressing cells can uniquely generate actin-dense filopodia-like protrusions during the early stages of extracellular target interactions. In addition, we observed that these structures retract after contacting extracellular targets to secure captured microspheres on the cell surface. This activity was often followed by the generation of robust secondary waves of actin polymerization leading to the formation of stabilized phagocytic cups. At depressed temperatures of 27°C, IpLITR 2.6b/IpFcRγ-L-mediated phagocytosis was completely blocked, whereas IpLITR 1.1b-expressing cells continued to generate dynamic actin-dense filopodia at this lower temperature. Overall, these results provide new support for the hypothesis that IpLITR 1.1b, but not IpLITR 2.6b/IpFcRγ-L, directly triggers filopodia formation when expressed in representative myeloid cells. This also offers new information regarding the directed ability of immunoregulatory receptor-types to initiate dynamic membrane structures and provides insights into an alternative ITAM-independent target capture pathway that is functionally distinct from the classical phagocytic pathways.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
120
|
Pan M, Neilson MP, Grunfeld AM, Cruz P, Wen X, Insall RH, Jin T. A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biol 2018; 16:e2005754. [PMID: 29799847 PMCID: PMC5969738 DOI: 10.1371/journal.pbio.2005754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Phagocytes locate microorganisms via chemotaxis and then consume them using phagocytosis. Dictyostelium amoebas are stereotypical phagocytes that prey on diverse bacteria using both processes. However, as typical phagocytic receptors, such as complement receptors or Fcγ receptors, have not been found in Dictyostelium, it remains mysterious how these cells recognize bacteria. Here, we show that a single G-protein-coupled receptor (GPCR), folic acid receptor 1 (fAR1), simultaneously recognizes the chemoattractant folate and the phagocytic cue lipopolysaccharide (LPS), a major component of bacterial surfaces. Cells lacking fAR1 or its cognate G-proteins are defective in chemotaxis toward folate and phagocytosis of Klebsiella aerogenes. Computational simulations combined with experiments show that responses associated with chemotaxis can also promote engulfment of particles coated with chemoattractants. Finally, the extracellular Venus-Flytrap (VFT) domain of fAR1 acts as the binding site for both folate and LPS. Thus, fAR1 represents a new member of the pattern recognition receptors (PRRs) and mediates signaling from both bacterial surfaces and diffusible chemoattractants to reorganize actin for chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Alexander M. Grunfeld
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
121
|
Tang X, Alasiri M, Bamashmous A, Aljahdali B, Cao F, Dibart S, Salih E. The involvement of Kav001 in inhibition of LPS/P. gingivalis-induced. J Cell Biochem 2018; 119:6072-6079. [PMID: 29637600 DOI: 10.1002/jcb.26805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/23/2018] [Indexed: 12/24/2022]
Abstract
TNF-a is an important cytokine mediator of inflammation which suggests that inhibition of TNF activity may provide potential for clinical application. Recent data indicated that treatment of both human and mouse cells with Kavain significantly modulates P. gingivalis- and LPS-induced TNF-α expression. In order to obtain a selective analog with optimized biological activity and structural physico-chemical properties of Kavain, Kavain analogs were designed and synthesized and found one Kavain analogue (named Kav001) that is similar to Kavain but soluble and does not induce a significant toxicity. Both studies in vitro and in vivo treatment by Kav001 showed stronger biological function as compared to Kavain. Furthermore, most mouse bone marrow macrophages up-regulated Bcl-6 while down-regulating LITAF expression after treatment with Kav001 for 36 h. Consequently, this led to an extension of macrophage pseudopods due to its immune response to P.g. infection/LPS stimulation.
Collapse
Affiliation(s)
- Xiaoren Tang
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| | - Mansour Alasiri
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| | - Abdullah Bamashmous
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| | - Bushra Aljahdali
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| | - Feng Cao
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| | - Serge Dibart
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| | - Erdjan Salih
- Department of Periodontology, Boston University Goldman School of Dental School, Boston, Massachusetts
| |
Collapse
|
122
|
Overton NLD, Brakhage AA, Thywißen A, Denning DW, Bowyer P. Mutations in EEA1 are associated with allergic bronchopulmonary aspergillosis and affect phagocytosis of Aspergillus fumigatus by human macrophages. PLoS One 2018; 13:e0185706. [PMID: 29547649 PMCID: PMC5856258 DOI: 10.1371/journal.pone.0185706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) in asthma is a severe, life-affecting disease that potentially affects over 4.8 million people globally. In the UK, ABPA is predominantly caused by the fungus Aspergillus fumigatus. Phagocytosis is important in clearance of this fungus, and Early Endosome Antigen 1 (EEA1) has been demonstrated to be involved in phagocytosis of fungi. We sought to investigate the role of EEA1 mutations and phagocytosis in ABPA. We used exome sequencing to identify variants in EEA1 associated with ABPA. We then cultured monocyte-derived macrophages (MDMs) from 17 ABPA subjects with A. fumigatus conidia, and analyzed phagocytosis and phagolysosome acidification in relation to the presence of these variants. We found that variants in EEA1 were associated with ABPA and with the rate of phagocytosis of A. fumigatus conidia and the acidification of phagolysosomes. MDMs from ABPA subjects carrying the disease associated genotype showed increased acidification and phagocytosis compared to those from ABPA subjects carrying the non-associated genotypes or healthy controls.The identification of ABPA-associated variants in EEA that have functional effects on MDM phagocytosis and phagolysosome acidification of A. fumigatus conidia revolutionizes our understanding of susceptibility to this disease, which may in future benefit patients by earlier identification or improved treatments. We suggest that the increased phagocytosis and acidification observed demonstrates an over-active MDM profile in these patients, resulting in an exaggerated cellular response to the presence of A. fumigatus in the airways.
Collapse
Affiliation(s)
- Nicola L. D. Overton
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Andreas Thywißen
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - David W. Denning
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group (MFIG), Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
123
|
Wang R, Feng W, Yang F, Yang X, Wang L, Chen C, Hu Y, Ren Q, Zheng G. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia. Immunol Cell Biol 2017; 96:190-203. [PMID: 29363207 DOI: 10.1111/imcb.1029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chong Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
124
|
Lam JGT, Vadia S, Pathak-Sharma S, McLaughlin E, Zhang X, Swanson J, Seveau S. Host cell perforation by listeriolysin O (LLO) activates a Ca 2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Mol Biol Cell 2017; 29:270-284. [PMID: 29187576 PMCID: PMC5996962 DOI: 10.1091/mbc.e17-09-0561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Host cell invasion is an indispensable step for a successful infection by intracellular pathogens. Recent studies identified pathogen-induced host cell plasma membrane perforation as a novel mechanism used by diverse pathogens (Trypanosoma cruzi, Listeria monocytogenes, and adenovirus) to promote their internalization into target cells. It was concluded that T. cruzi and adenovirus damage the host cell plasma membrane to hijack the endocytic-dependent membrane resealing machinery, thereby invading the host cell. We studied L. monocytogenes and its secreted pore-forming toxin listeriolysin O (LLO) to identify key signaling events activated upon plasma membrane perforation that lead to bacterial internalization. Using various approaches, including fluorescence resonance energy transfer imaging, we found that the influx of extracellular Ca2+ subsequent to LLO-mediated plasma membrane perforation is required for the activation of a conventional protein kinase C (cPKC). cPKC is positioned upstream of Rac1 and the Arp2/3 complex, which activation leads to F-actin--dependent bacterial internalization. Inhibition of this pathway did not prevent membrane resealing, revealing that perforation-dependent L. monocytogenes endocytosis is distinct from the resealing machinery. These studies identified the LLO-dependent endocytic pathway of L. monocytogenes and support a novel model for pathogen uptake promoted by plasma membrane injury that is independent of membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210.,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Stephen Vadia
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarika Pathak-Sharma
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Eric McLaughlin
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5624
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 .,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
125
|
Fallon EA, Chun TT, Young WA, Gray C, Ayala A, Heffernan DS. Program Cell Death Receptor-1-Mediated Invariant Natural Killer T-Cell Control of Peritoneal Macrophage Modulates Survival in Neonatal Sepsis. Front Immunol 2017; 8:1469. [PMID: 29209308 PMCID: PMC5701916 DOI: 10.3389/fimmu.2017.01469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/19/2017] [Indexed: 02/02/2023] Open
Abstract
We have shown that invariant natural killer T (iNKT) cells mediate sepsis-induced end-organ changes and immune responses, including macrophage bacterial phagocytosis, a finding regulated by the check point protein program cell death receptor-1 (PD-1). Furthermore, PD-1 mediates mortality in both adult and neonatal murine sepsis as well as in surgical patients. Given our previous findings, we hypothesize that iNKT cells will also modulate neonatal sepsis survival, and that this effect is regulated in part through PD-1. We utilized a polymicrobial intra-peritoneal cecal slurry (CS) sepsis model in wild type (WT), iNKT−/− or PD-1−/− 5–7 day old neonatal pups. Typically, tissues were harvested at 24 h for various bioassays/histology and, in some cases, survival was assessed for up to 7 days. Interestingly, similar to what we recently reported for PD-1−/− mice following CS, iNKT−/−-deficient animals exhibit a markedly improved survival vs. WT. Histologically, minor alterations in liver architectural, which were noted in WT pups, were attenuated in both iNKT−/− and PD-1−/− pups. Following CS, PECAM-1 expression was unchanged in the WT pups but increased in both iNKT−/− and PD-1−/− pups. In WT, following CS the emergence of a Ly6Clow subpopulation was noted among the influxed peritoneal macrophage population. Conversely, within iNKT−/− pups, there were fewer peritoneal macrophages and a greater percentage of Ly6Chigh macrophages. We show not only a key role for iNKT cells in affecting end-organ damage as well as alterations in phagocytes phenotypes in neonatal sepsis but that this iNKT cell mediated effect is driven by the central checkpoint protein PD-1.
Collapse
Affiliation(s)
- Eleanor A Fallon
- Division of Surgical Research, Department of Surgery, Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Tristen T Chun
- Division of Surgical Research, Department of Surgery, Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Whitney A Young
- Division of Surgical Research, Department of Surgery, Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Chyna Gray
- Division of Surgical Research, Department of Surgery, Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University and Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
126
|
Li Z, Jiao Y, Fan EK, Scott MJ, Li Y, Li S, Billiar TR, Wilson MA, Shi X, Fan J. Aging-Impaired Filamentous Actin Polymerization Signaling Reduces Alveolar Macrophage Phagocytosis of Bacteria. THE JOURNAL OF IMMUNOLOGY 2017; 199:3176-3186. [PMID: 28947541 DOI: 10.4049/jimmunol.1700140] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022]
Abstract
In elderly patients, bacterial infection often causes severe complications and sepsis. Compared to younger patients, older patients are more susceptible to sepsis caused by respiratory infection. Macrophage (Mϕ) phagocytosis of bacteria plays a critical role in the clearance of pathogens and the initiation of immune responses. It has been suggested that Mϕ exhibit age-related functional alterations, including reduced chemotaxis, phagocytosis, antibacterial defense, and the ability to generate reactive oxygen species. However, the mechanisms behind these changes remain unclear. The present study sought to determine changes in bacterial phagocytosis in aging alveolar Mϕ (AMϕ) and the underlying mechanisms. We show that bacteria initiate cytoskeleton remodeling in AMϕ through interaction with macrophage receptor with collagenous structure (MARCO), a bacterial scavenger receptor. This remodeling, in turn, promotes enhanced cell surface expression of MARCO and bacterial phagocytosis. We further demonstrate that Rac1-GTP mediates MARCO signaling and activates actin-related protein-2/3 complex, an F-actin nucleator, thereby inducing F-actin polymerization, filopodia formation, and increased cell surface expression of MARCO, all of which are essential for the execution of bacteria phagocytosis. However, AMϕ isolated from aging mice exhibit suppressed Rac1 mRNA and protein expression, which resulted in decreases in Rac1-GTP levels and actin-related protein-2/3 activation, as well as subsequent attenuation of F-actin polymerization, filopodia formation, and cell surface expression of MARCO. As a result, bacterial phagocytosis in aging AMϕ is decreased. This study highlights a previously unidentified mechanism by which aging impairs Mϕ phagocytosis of bacteria. Targeting these pathways may improve outcomes of bacterial infection in elderly patients.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Yang Jiao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Department of Anesthesiology, Shanghai Xinhua Hospital, Jiaotong University School of Medicine, Shanghai 200092, China
| | - Erica K Fan
- University of Pittsburgh School of Arts and Science, Pittsburgh, PA 15213
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261; and
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Mark A Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| | - Xueyin Shi
- Department of Anesthesiology, Shanghai Xinhua Hospital, Jiaotong University School of Medicine, Shanghai 200092, China;
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; .,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
127
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
128
|
Escoll P, Song OR, Viana F, Steiner B, Lagache T, Olivo-Marin JC, Impens F, Brodin P, Hilbi H, Buchrieser C. Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe 2017; 22:302-316.e7. [PMID: 28867389 DOI: 10.1016/j.chom.2017.07.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The intracellular bacteria Legionella pneumophila encodes a type IV secretion system (T4SS) that injects effector proteins into macrophages in order to establish and replicate within the Legionella-containing vacuole (LCV). Once generated, the LCV interacts with mitochondria through unclear mechanisms. We show that Legionella uses both T4SS-independent and T4SS-dependent mechanisms to respectively interact with mitochondria and induce mitochondrial fragmentation that ultimately alters mitochondrial metabolism. The T4SS effector MitF, a Ran GTPase activator, is required for fission of the mitochondrial network. These effects of MitF occur through accumulation of mitochondrial DNM1L, a GTPase critical for fission. Furthermore mitochondrial respiration is abruptly halted in a T4SS-dependent manner, while T4SS-independent upregulation of cellular glycolysis remains elevated. Collectively, these alterations in mitochondrial dynamics promote a Warburg-like phenotype in macrophages that favors bacterial replication. Hence the rewiring of cellular bioenergetics to create a replication permissive niche in host cells is a virulence strategy of L. pneumophila.
Collapse
Affiliation(s)
- Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris 75724, France; CNRS UMR 3525, Paris 75724, France
| | - Ok-Ryul Song
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Flávia Viana
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris 75724, France; CNRS UMR 3525, Paris 75724, France
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thibault Lagache
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, CNRS UMR 3691, Paris, France
| | | | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Core, Ghent University, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris 75724, France; CNRS UMR 3525, Paris 75724, France.
| |
Collapse
|
129
|
Rotty JD, Brighton HE, Craig SL, Asokan SB, Cheng N, Ting JP, Bear JE. Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility. Dev Cell 2017; 42:498-513.e6. [PMID: 28867487 DOI: 10.1016/j.devcel.2017.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/19/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022]
Abstract
The Arp2/3 complex nucleates branched actin, forming networks involved in lamellipodial protrusion, phagocytosis, and cell adhesion. We derived primary bone marrow macrophages lacking Arp2/3 complex (Arpc2-/-) and directly tested its role in macrophage functions. Despite protrusion and actin assembly defects, Arpc2-/- macrophages competently phagocytose via FcR and chemotax toward CSF and CX3CL1. However, CR3 phagocytosis and fibronectin haptotaxis, both integrin-dependent processes, are disrupted. Integrin-responsive actin assembly and αM/β2 integrin localization are compromised in Arpc2-/- cells. Using an in vivo system to observe endogenous monocytes migrating toward full-thickness ear wounds we found that Arpc2-/- monocytes maintain cell speeds and directionality similar to control. Our work reveals that the Arp2/3 complex is not a general requirement for phagocytosis or chemotaxis but is a critical driver of integrin-dependent processes. We demonstrate further that cells lacking Arp2/3 complex function in vivo remain capable of executing important physiological responses that require rapid directional motility.
Collapse
Affiliation(s)
- Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Craig
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P Ting
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
130
|
Velle KB, Campellone KG. Extracellular motility and cell-to-cell transmission of enterohemorrhagic E. coli is driven by EspFU-mediated actin assembly. PLoS Pathog 2017; 13:e1006501. [PMID: 28771584 PMCID: PMC5557606 DOI: 10.1371/journal.ppat.1006501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/15/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely-related pathogens that attach tightly to intestinal epithelial cells, efface microvilli, and promote cytoskeletal rearrangements into protrusions called actin pedestals. To trigger pedestal formation, EPEC employs the tyrosine phosphorylated transmembrane receptor Tir, while EHEC relies on the multivalent scaffolding protein EspFU. The ability to generate these structures correlates with bacterial colonization in several animal models, but the precise function of pedestals in infection remains unclear. To address this uncertainty, we characterized the colonization properties of EPEC and EHEC during infection of polarized epithelial cells. We found that EPEC and EHEC both formed distinct bacterial communities, or "macrocolonies," that encompassed multiple host cells. Tir and EspFU, as well as the host Arp2/3 complex, were all critical for the expansion of macrocolonies over time. Unexpectedly, EspFU accelerated the formation of larger macrocolonies compared to EPEC Tir, as EspFU-mediated actin assembly drove faster bacterial motility to cell junctions, where bacteria formed a secondary pedestal on a neighboring cell and divided, allowing one of the daughters to disengage and infect the second cell. Collectively, these data reveal that EspFU enhances epithelial colonization by increasing actin-based motility and promoting an efficient method of cell-to-cell transmission.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
131
|
Lee BC, Lee SG, Choo MK, Kim JH, Lee HM, Kim S, Fomenko DE, Kim HY, Park JM, Gladyshev VN. Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci Rep 2017; 7:5119. [PMID: 28698597 PMCID: PMC5506048 DOI: 10.1038/s41598-017-05230-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Post-translational redox modification of methionine residues often triggers a change in protein function. Emerging evidence points to this reversible protein modification being an important regulatory mechanism under various physiological conditions. Reduction of oxidized methionine residues is catalyzed by methionine sulfoxide reductases (Msrs). Here, we show that one of these enzymes, a selenium-containing MsrB1, is highly expressed in immune-activated macrophages and contributes to shaping cellular and organismal immune responses. In particular, lipopolysaccharide (LPS) induces expression of MsrB1, but not other Msrs. Genetic ablation of MsrB1 did not preclude LPS-induced intracellular signaling in macrophages, but resulted in attenuated induction of anti-inflammatory cytokines, such as interleukin (IL)-10 and the IL-1 receptor antagonist. This anomaly was associated with excessive pro-inflammatory cytokine production as well as an increase in acute tissue inflammation in mice. Together, our findings suggest that MsrB1 controls immune responses by promoting anti-inflammatory cytokine expression in macrophages. MsrB1-dependent reduction of oxidized methionine in proteins may be a heretofore unrecognized regulatory event underlying immunity and inflammatory disease, and a novel target for clinical applications.
Collapse
Affiliation(s)
- Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ji Hyung Kim
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hae Min Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sorah Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Dmitri E Fomenko
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, South Korea
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
132
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
133
|
Abstract
Phagocytes recognize and eliminate pathogens, alert other tissues of impending threats, and provide a link between innate and adaptive immunity. They also maintain tissue homeostasis, consuming dead cells without causing alarm. The receptor engagement, signal transduction, and cytoskeletal rearrangements underlying phagocytosis are paradigmatic of other immune responses and bear similarities to macropinocytosis and cell migration. We discuss how the glycocalyx restricts access to phagocytic receptors, the processes that enable receptor engagement and clustering, and the remodeling of the actin cytoskeleton that controls the mobility of membrane proteins and lipids and provides the mechanical force propelling the phagocyte membrane toward and around the phagocytic prey.
Collapse
Affiliation(s)
- Philip P Ostrowski
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON M5C 1N8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research & Learning, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
134
|
Johnston DGW, Kearney J, Zasłona Z, Williams MA, O'Neill LAJ, Corr SC. MicroRNA-21 Limits Uptake of Listeria monocytogenes by Macrophages to Reduce the Intracellular Niche and Control Infection. Front Cell Infect Microbiol 2017; 7:201. [PMID: 28589100 PMCID: PMC5440467 DOI: 10.3389/fcimb.2017.00201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
MiRNAs are important post-transcriptional regulators of gene expression. MiRNA expression is a crucial part of host responses to bacterial infection, however there is limited knowledge of their impact on the outcome of infections. We investigated the influence of miR-21 on macrophage responses during infection with Listeria monocytogenes, which establishes an intracellular niche within macrophages. MiR-21 is induced following infection of bone marrow-derived macrophages (BMDMs) with Listeria. MiR-21−/− macrophages display an increased bacterial burden with Listeria at 30 min and 2 h post-infection. This phenotype was reversed by the addition of synthetic miR-21 mimics to the system. To assess the immune response of wildtype (WT) and miR-21−/− macrophages, BMDMs were treated with bacterial LPS or infected with Listeria. There was no difference in IL-10 and IL-6 between WT and miR-21−/− BMDMs in response to LPS or Listeria. TNF-α was increased in miR-21−/− BMDMs stimulated with LPS or Listeria compared to WT macrophages. We next assessed the production of nitric oxide (NO), a key bactericidal factor in Listeria infection. There was no significant difference in NO production between WT and miR-21−/− cells, indicating that the increased bacterial burden may not be due to impaired killing. As the increased bacterial load was observed early following infection (30 min), we questioned whether this is due to differences in uptake of Listeria by WT and miR-21−/− macrophages. We show that miR-21-deficiency enhances uptake of FITC-dextran and FITC-Escherichia coli bioparticles by macrophages. The previously observed Listeria burden phenotype was ablated by pre-treatment of cells with the actin polymerization inhibitor cytochalasin-D. From analysis of miR-21 targets, we selected the pro-phagocytic regulators myristoylated alanine-rich C-kinase substrate (MARCKS) and Ras homolog gene family, member B (RhoB) for further investigation. MARCKS and RhoB are increased in miR-21−/− BMDMs, correlating with increased uptake of Listeria. Finally, intra-peritoneal infection of mice with Listeria led to increased bacterial burden in livers of miR-21−/− mice compared to WT mice. These findings suggest a possible role for miR-21 in regulation of phagocytosis during infection, potentially by repression of MARCKS and RhoB, thus serving to limit the availability of the intracellular niche of pathogens like L. monocytogenes.
Collapse
Affiliation(s)
- Daniel G W Johnston
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Zbigniew Zasłona
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Michelle A Williams
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College DublinDublin, Ireland
| |
Collapse
|
135
|
Kadena M, Kumagai Y, Vandenbon A, Matsushima H, Fukamachi H, Maruta N, Kataoka H, Arimoto T, Morisaki H, Funatsu T, Kuwata H. Microarray and gene co-expression analysis reveals that melatonin attenuates immune responses and modulates actin rearrangement in macrophages. Biochem Biophys Res Commun 2017; 485:414-420. [DOI: 10.1016/j.bbrc.2017.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 01/16/2023]
|
136
|
Li P, Wang H, Shao Q, Kong B, Qu X. Fucoidan modulates cytokine production and migration of THP-1-derived macrophages via colony-stimulating factor-1. Mol Med Rep 2017; 15:2325-2332. [DOI: 10.3892/mmr.2017.6228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2016] [Indexed: 11/06/2022] Open
|
137
|
Zwozdesky MA, Fei C, Lillico DME, Stafford JL. Imaging flow cytometry and GST pulldown assays provide new insights into channel catfish leukocyte immune-type receptor-mediated phagocytic pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:126-138. [PMID: 27984101 DOI: 10.1016/j.dci.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) control various innate immune cell effector responses including the phagocytic process. This large immunoregulatory receptor family also consists of multiple receptor-types with variable signaling abilities that is dependent on their inherent or acquired tyrosine-containing cytoplasmic tail (CYT) regions. For example, IpLITR 2.6b associates with the immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor molecule IpFcRγ-L, and when expressed in mammalian cells it activates phagocytosis using a similar profile of intracellular signaling mediators that also regulate the prototypical mammalian Fc receptor (FcR) phagocytic pathway. Alternatively, IpLITR 1.1b contains a long tyrosine-containing CYT with multifunctional capabilities including both inhibitory and stimulatory actions. Recently, we demonstrated that IpLITR 1.1b activates a unique phagocytic pathway involving the generation of multiple plasma membrane extensions that rapidly capture extracellular targets and secure them on the cell surface in phagocytic cup-like structures. Occasionally, these captured targets are completely engulfed albeit at a significantly lower rate than what was observed for IpLITR 2.6b. While this novel IpLITR 1.1b phagocytic activity is insensitive to classical blockers of phagocytosis, its distinct target capture and engulfment actions depend on the engagement of the actin polymerization machinery. However, it is not known how this protein translates target recognition into intracellular signaling events during this atypical mode of phagocytosis. Using imaging flow cytometry and GST pulldown assays, the aims of this study were to specifically examine what regions of the IpLITR 1.1b CYT trigger phagocytosis and to establish what profile of intracellular signaling molecules likely participate in its actions. Our results show that in stably transfected AD293 cells, the membrane proximal and distal CYT segments of IpLITR 1.1b independently regulate its phagocytic activities. These CYT regions were also shown to differentially recruit various SH2 domain-containing intracellular mediators, which provides new information about the dynamic immunoregulatory abilities of IpLITR 1.1b. Overall, this work further advances our understanding of how certain immunoregulatory receptor-types link extracellular target binding events to the actin polymerization machinery during a non-classical mode of phagocytosis.
Collapse
Affiliation(s)
- Myron A Zwozdesky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chenjie Fei
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
138
|
Miskolci V, Hodgson L, Cox D. Using Fluorescence Resonance Energy Transfer-Based Biosensors to Probe Rho GTPase Activation During Phagocytosis. Methods Mol Biol 2017; 1519:125-143. [PMID: 27815877 DOI: 10.1007/978-1-4939-6581-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The p21-family members of Rho GTPases are important for the control of actin cytoskeleton dynamics, and are critical regulators of phagocytosis. The three-dimensional structure of phagosomes and the highly compartmentalized nature of the signaling mechanisms during phagocytosis require high-resolution imaging using ratiometric biosensors to decipher Rho GTPase activities regulating phagosome formation and function. Here we describe methods for the expression and ratiometric imaging of FRET-based Rho GTPase biosensors in macrophages during phagocytosis. As an example, we show Cdc42 activity at the phagosome over Z-serial planes. In addition, we demonstrate the usage of a new, fast, and user-friendly deconvolution package that delivers significant improvements in the attainable details of Rho GTPase activity in phagosome structures.
Collapse
Affiliation(s)
- Veronika Miskolci
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Louis Hodgson
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Dianne Cox
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
139
|
Bichet M, Touquet B, Gonzalez V, Florent I, Meissner M, Tardieux I. Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces. BMC Biol 2016; 14:97. [PMID: 27829452 PMCID: PMC5101828 DOI: 10.1186/s12915-016-0316-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/08/2016] [Indexed: 12/31/2022] Open
Abstract
Background The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. Results By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. Conclusions This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode of entry for intracellular microbes that shares early features of macropinocytosis. Given the harmful potential of the host cell compressive forces, we propose to consider host cell invasion by zoites as a balanced combination between host cell membrane dynamics and the Toxoplasma motor function. In this light, evolutionary shaping of myosin A with fast motor activity could have contributed to optimize the invasive potential of Toxoplasma tachyzoites and thereby their fitness. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0316-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Bichet
- Institute for Advanced Biosciences, Team Cell & Membrane Dynamics of Host-Parasite Interactions, INSERM U1209, 38000, Grenoble, France.,CNRS UMR5309, 38000, Grenoble, France.,Université Grenoble Alpes, 38000, Grenoble, France.,Institut Cochin, INSERM U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 75015, Paris, France
| | - Bastien Touquet
- Institute for Advanced Biosciences, Team Cell & Membrane Dynamics of Host-Parasite Interactions, INSERM U1209, 38000, Grenoble, France.,CNRS UMR5309, 38000, Grenoble, France.,Université Grenoble Alpes, 38000, Grenoble, France
| | - Virginie Gonzalez
- Institut Cochin, INSERM U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 75015, Paris, France
| | - Isabelle Florent
- Museum National d'Histoire Naturelle, CNRS UMR7245, Sorbonne Université, 75005, Paris, France
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Isabelle Tardieux
- Institute for Advanced Biosciences, Team Cell & Membrane Dynamics of Host-Parasite Interactions, INSERM U1209, 38000, Grenoble, France. .,CNRS UMR5309, 38000, Grenoble, France. .,Université Grenoble Alpes, 38000, Grenoble, France. .,Institut Cochin, INSERM U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 75015, Paris, France.
| |
Collapse
|
140
|
A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proc Natl Acad Sci U S A 2016; 113:E7464-E7473. [PMID: 27821733 DOI: 10.1073/pnas.1611024113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas.
Collapse
|
141
|
Ramírez-Santiago G, Robles-Valero J, Morlino G, Cruz-Adalia A, Pérez-Martínez M, Zaldivar A, Torres-Torresano M, Chichón FJ, Sorrentino A, Pereiro E, Carrascosa JL, Megías D, Sorzano COS, Sánchez-Madrid F, Veiga E. Clathrin regulates lymphocyte migration by driving actin accumulation at the cellular leading edge. Eur J Immunol 2016; 46:2376-2387. [PMID: 27405273 PMCID: PMC6485598 DOI: 10.1002/eji.201646291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
Lymphocyte migration, which is essential for effective immune responses, belongs to the so-called amoeboid migration. The lymphocyte migration is up to 100 times faster than between mesenchymal and epithelial cell types. Migrating lymphocytes are highly polarized in three well-defined structural and functional zones: uropod, medial zone, and leading edge (LE). The actiomyosin-dependent driving force moves forward the uropod, whereas massive actin rearrangements protruding the cell membrane are observed at the LE. These actin rearrangements resemble those observed at the immunological synapse driven by clathrin, a protein normally involved in endocytic processes. Here, we used cell lines as well as primary lymphocytes to demonstrate that clathrin and clathrin adaptors colocalize with actin at the LE of migrating lymphocytes, but not in other cellular zones that accumulate both clathrin and actin. Moreover, clathrin and clathrin adaptors, including Hrs, the clathrin adaptor for multivesicular bodies, drive local actin accumulation at the LE. Clathrin recruitment at the LE resulted necessary for a complete cell polarization and further lymphocyte migration in both 2D and 3D migration models. Therefore, clathrin, including the clathrin population associated to internal vesicles, controls lymphocyte migration by regulating actin rearrangements occurring at the LE.
Collapse
Affiliation(s)
- Guillermo Ramírez-Santiago
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain
| | - Javier Robles-Valero
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, Madrid, Spain
| | - Giulia Morlino
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, Madrid, Spain
| | - Aranzazu Cruz-Adalia
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain
| | | | - Airen Zaldivar
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
| | - Mónica Torres-Torresano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, Cerdanyola del Vallès, Barcelona, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, Cerdanyola del Vallès, Barcelona, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
- Unidad Asociada CNB (CSIC)-Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid, Spain
| | - Diego Megías
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Oscar S Sorzano
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
| | | | - Esteban Veiga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain.
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain.
| |
Collapse
|
142
|
Quan H, Hur YH, Xin C, Kim JM, Choi JI, Kim MY, Bae HB. Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway. Int Immunopharmacol 2016; 39:328-334. [DOI: 10.1016/j.intimp.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/26/2022]
|
143
|
Pan M, Xu X, Chen Y, Jin T. Identification of a Chemoattractant G-Protein-Coupled Receptor for Folic Acid that Controls Both Chemotaxis and Phagocytosis. Dev Cell 2016; 36:428-39. [PMID: 26906738 DOI: 10.1016/j.devcel.2016.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/09/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic phagocytes search and destroy invading microorganisms via chemotaxis and phagocytosis. The social amoeba Dictyostelium discoideum is a professional phagocyte that chases bacteria through chemotaxis and engulfs them as food via phagocytosis. G-protein-coupled receptors (GPCRs) are known for detecting chemoattractants and directing cell migration, but their roles in phagocytosis are not clear. Here, we developed a quantitative phosphoproteomic technique to discover signaling components. Using this approach, we discovered the long sought after folic acid receptor, fAR1, in D. discoideum. We showed that the seven-transmembrane receptor fAR1 is required for folic acid-mediated signaling events. Significantly, we discovered that fAR1 is essential for both chemotaxis and phagocytosis of bacteria, thereby representing a chemoattractant GPCR that mediates not only chasing but also ingesting bacteria. We revealed that a phagocyte is able to internalize particles via a chemoattractant-mediated engulfment process. We propose that mammalian phagocytes may also use this mechanism to engulf and ingest bacterial pathogens.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA.
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
144
|
Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: Implications for bacterial infection. Int J Biochem Cell Biol 2016; 78:206-216. [PMID: 27345261 DOI: 10.1016/j.biocel.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022]
Abstract
Phagocytosis and the subsequent destruction of invading pathogens by macrophages are indispensable steps in host immune responses to microbial infections. Low-power laser irradiation (LPLI) has been found to exert photobiological effects on immune responses, but the signaling mechanisms underlying this photobiomodulation of phagocytosis remains largely unknown. Here, we demonstrated for the first time that LPLI enhanced the phagocytic activity of macrophages by stimulating the activation of Rac1. The overexpression of constitutively activated Rac1 clearly enhanced LPLI-induced phagocytosis, whereas the overexpression of dominant negative Rac1 exerted the opposite effect. The phosphorylation of cofilin was involved in the effects of LPLI on phagocytosis, which was regulated by the membrane translocation and activation of Rac1. Furthermore, the photoactivation of Rac1 was dependent on the Src/PI3K/Vav1 pathway. The inhibition of the Src/PI3K pathway significantly suppressed LPLI-induced actin polymerization and phagocytosis enhancement. Additionally, LPLI-treated mice exhibited increased survival and a decreased organ bacterial load when challenged with Listeria monocytogenes, indicating that LPLI enhanced macrophage phagocytosis in vivo. These findings highlight the important roles of the Src/PI3K/Vav1/Rac1/cofilin pathway in regulating macrophage phagocytosis and provide a potential strategy for treating phagocytic deficiency via LPLI.
Collapse
|
145
|
Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach. Mol Immunol 2016; 75:188-99. [PMID: 27318565 DOI: 10.1016/j.molimm.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination.
Collapse
|
146
|
Bretou M, Kumari A, Malbec O, Moreau HD, Obino D, Pierobon P, Randrian V, Sáez PJ, Lennon-Duménil AM. Dynamics of the membrane-cytoskeleton interface in MHC class II-restricted antigen presentation. Immunol Rev 2016; 272:39-51. [DOI: 10.1111/imr.12429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marine Bretou
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Anita Kumari
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Odile Malbec
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Hélène D. Moreau
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Dorian Obino
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Paolo Pierobon
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Violaine Randrian
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Pablo J. Sáez
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | | |
Collapse
|
147
|
Liepelt A, Naarmann-de Vries IS, Simons N, Eichelbaum K, Föhr S, Archer SK, Castello A, Usadel B, Krijgsveld J, Preiss T, Marx G, Hentze MW, Ostareck DH, Ostareck-Lederer A. Identification of RNA-binding Proteins in Macrophages by Interactome Capture. Mol Cell Proteomics 2016; 15:2699-714. [PMID: 27281784 DOI: 10.1074/mcp.m115.056564] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Pathogen components, such as lipopolysaccharides of Gram-negative bacteria that activate Toll-like receptor 4, induce mitogen activated protein kinases and NFκB through different downstream pathways to stimulate pro- and anti-inflammatory cytokine expression. Importantly, post-transcriptional control of the expression of Toll-like receptor 4 downstream signaling molecules contributes to the tight regulation of inflammatory cytokine synthesis in macrophages. Emerging evidence highlights the role of RNA-binding proteins (RBPs) in the post-transcriptional control of the innate immune response. To systematically identify macrophage RBPs and their response to LPS stimulation, we employed RNA interactome capture in LPS-induced and untreated murine RAW 264.7 macrophages. This combines RBP-crosslinking to RNA, cell lysis, oligo(dT) capture of polyadenylated RNAs and mass spectrometry analysis of associated proteins. Our data revealed 402 proteins of the macrophage RNA interactome including 91 previously not annotated as RBPs. A comparison with published RNA interactomes classified 32 RBPs uniquely identified in RAW 264.7 macrophages. Of these, 19 proteins are linked to biochemical activities not directly related to RNA. From this group, we validated the HSP90 cochaperone P23 that was demonstrated to exhibit cytosolic prostaglandin E2 synthase 3 (PTGES3) activity, and the hematopoietic cell-specific LYN substrate 1 (HCLS1 or HS1), a hematopoietic cell-specific adapter molecule, as novel macrophage RBPs. Our study expands the mammalian RBP repertoire, and identifies macrophage RBPs that respond to LPS. These RBPs are prime candidates for the post-transcriptional regulation and execution of LPS-induced signaling pathways and the innate immune response. Macrophage RBP data have been deposited to ProteomeXchange with identifier PXD002890.
Collapse
Affiliation(s)
- Anke Liepelt
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Isabel S Naarmann-de Vries
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Nadine Simons
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Katrin Eichelbaum
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Sophia Föhr
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Stuart K Archer
- ¶EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Garran Rd, Acton (Canberra) ACT 2601, Australia
| | - Alfredo Castello
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Björn Usadel
- ‖Institute of Biology I, RWTH Aachen, Worringer Weg 2, 52074 Aachen, Germany
| | - Jeroen Krijgsveld
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Thomas Preiss
- ¶EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Garran Rd, Acton (Canberra) ACT 2601, Australia; **Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Gernot Marx
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Matthias W Hentze
- §European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Dirk H Ostareck
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| | - Antje Ostareck-Lederer
- From the ‡Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| |
Collapse
|
148
|
Davidson AJ, Wood W. Unravelling the Actin Cytoskeleton: A New Competitive Edge? Trends Cell Biol 2016; 26:569-576. [PMID: 27133808 PMCID: PMC4961066 DOI: 10.1016/j.tcb.2016.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Abstract
Dynamic rearrangements in the actin cytoskeleton underlie a wide range of cell behaviours, which in turn contribute to many aspects of human health including embryogenesis, cancer metastasis, wound healing, and inflammation. Precise control of the actin cytoskeleton requires the coordinated activity of a diverse set of different actin regulators. However, our current understanding of the actin cytoskeleton has focused on how individual actin regulatory pathways function in isolation from one another. Recently, competition has emerged as a means by which different actin assembly factors can influence each other's activity at the cellular level. Here such findings will be used to explore the possibility that competition within the actin cytoskeleton confers cellular plasticity and the ability to prioritise multiple conflicting stimuli. Cells maintain a dynamic actin cytoskeleton by carefully balancing the activities of a diverse collection of actin regulators. Recent findings suggest that key actin assembly factors limit one another through competition over a finite pool of G-actin. Increasing or decreasing cellular G-actin influences the type of F-actin network generated. The actin monomer binding protein profilin is responsible for proportioning how much G-actin is available to each assembly factor. Cytoskeletal competition appears universally conserved from yeast to human. Competition ensures cytoskeletal homeostasis and integration/coordination between the different actin regulatory pathways to support dynamic cell behaviour.
Collapse
Affiliation(s)
- Andrew J Davidson
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, Biomedical Science Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, Biomedical Science Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
149
|
Shimo T, Matsumoto K, Takabatake K, Aoyama E, Takebe Y, Ibaragi S, Okui T, Kurio N, Takada H, Obata K, Pang P, Iwamoto M, Nagatsuka H, Sasaki A. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction. PLoS One 2016; 11:e0151731. [PMID: 27007126 PMCID: PMC4805186 DOI: 10.1371/journal.pone.0151731] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 03/03/2016] [Indexed: 01/28/2023] Open
Abstract
Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
- * E-mail:
| | - Kenichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Yuichiro Takebe
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Naito Kurio
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Hiroyuki Takada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Pai Pang
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
150
|
Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors. BIOLOGY 2016; 5:biology5010013. [PMID: 27005670 PMCID: PMC4810170 DOI: 10.3390/biology5010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
Abstract
Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique biochemical signaling networks.
Collapse
|