101
|
Rahman S, Archana A, Jan AT, Dutta D, Shankar A, Kim J, Minakshi R. Molecular Insights Into the Relationship Between Autoimmune Thyroid Diseases and Breast Cancer: A Critical Perspective on Autoimmunity and ER Stress. Front Immunol 2019; 10:344. [PMID: 30881358 PMCID: PMC6405522 DOI: 10.3389/fimmu.2019.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, India
| | - Abhishek Shankar
- Department of Preventive Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| |
Collapse
|
102
|
Smith TJ. The insulin-like growth factor-I receptor and its role in thyroid-associated ophthalmopathy. Eye (Lond) 2019; 33:200-205. [PMID: 30385883 PMCID: PMC6367397 DOI: 10.1038/s41433-018-0265-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Thyroid-associated ophthalmopathy (TAO), an autoimmune component of Graves' disease, remains a disfiguring and potentially blinding condition. Here, the author reviews the role of insulin-like growth factor-I receptor pathway in TAO and how it might be therapeutically targeted. METHODS The recent literature is reviewed. RESULTS TAO involves reactivity of orbital connective tissues and their remodeling. While many of the details concerning the pathogenesis of TAO remain to be determined, several insights have come to light recently. Among them is the apparent involvement of IGF-IR. This receptor protein, a membrane-spanning tyrosine kinase receptor can form both physical and functional complexes with the thyrotropin receptor (TSHR). This is notable because TSHR is the established primary autoantigen in Graves' disease. IGF-IR activity is critical to signaling downstream from both IGF-IR and TSHR. In addition, antibodies against IGF-IR have been detected in patients with Graves' disease and in rodent models of TAO. Evidence has been put forward that these antibodies may act directly on IGF-IR, perhaps in some manner activating the receptor. These experimental observations have led to the development of a novel therapy for active TAO, utilizing a monoclonal anti-IGF-IR inhibitory antibody which had been produced originally as treatment for cancer. The agent, teprotumumab was recently evaluated in a clinical trial and found to be highly effective and relatively well-tolerated. It is currently undergoing assessment in a follow-up trial. CONCLUSIONS Should the current study yield similarly encouraging results, it is possible that teprotumumab will emerge as a paradigm-shifting medical therapy for TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
103
|
Smith TJ, Janssen JAMJL. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev 2019; 40:236-267. [PMID: 30215690 PMCID: PMC6338478 DOI: 10.1210/er.2018-00066] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a complex disease process presumed to emerge from autoimmunity occurring in the thyroid gland, most frequently in Graves disease (GD). It is disfiguring and potentially blinding, culminating in orbital tissue remodeling and disruption of function of structures adjacent to the eye. There are currently no medical therapies proven capable of altering the clinical outcome of TAO in randomized, placebo-controlled multicenter trials. The orbital fibroblast represents the central target for immune reactivity. Recent identification of fibroblasts that putatively originate in the bone marrow as monocyte progenitors provides a plausible explanation for why antigens, the expressions of which were once considered restricted to the thyroid, are detected in the TAO orbit. These cells, known as fibrocytes, express relatively high levels of functional TSH receptor (TSHR) through which they can be activated by TSH and the GD-specific pathogenic antibodies that underpin thyroid overactivity. Fibrocytes also express insulin-like growth factor I receptor (IGF-IR) with which TSHR forms a physical and functional signaling complex. Notably, inhibition of IGF-IR activity results in the attenuation of signaling initiated at either receptor. Some studies suggest that IGF-IR-activating antibodies are generated in GD, whereas others refute this concept. These observations served as the rationale for implementing a recently completed therapeutic trial of teprotumumab, a monoclonal inhibitory antibody targeting IGF-IR in TAO. Results of that trial in active, moderate to severe disease revealed dramatic and rapid reductions in disease activity and severity. The targeting of IGF-IR with specific biologic agents may represent a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
104
|
Wang F, Li H, Lou Y, Xie J, Cao D, Huang X. Insulin‑like growth factor I promotes adipogenesis in hemangioma stem cells from infantile hemangiomas. Mol Med Rep 2019; 19:2825-2830. [PMID: 30720075 DOI: 10.3892/mmr.2019.9895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
Infantile hemangiomas (IH) are the most common infantile neoplasms and are characterized by initial proliferation during infancy and subsequent spontaneous regression within the next 5‑10 years, frequently leaving fibrous fat residues. However, the specific mechanisms underlying the differentiation of hemangioma stem cells (HemSCs) into adipocytes are not clear. The purpose of the present study was to investigate the effect of insulin‑like growth factor I (IGF‑1) on HemSCs from patients with IH and to determine the signaling mechanisms involved. Treatment of HemSCs with IGF‑1 led to upregulation of the protein expression levels of peroxisome proliferator‑activated receptor‑γ (PPARγ). By contrast, inhibition of the IGF‑1 receptor (IGF‑1R) or phosphoinositide 3‑kinase (PI3K) activity decreased the expression of PPARγ, in addition to that of CCAAT/enhancer‑binding protein (C/EBP)α, C/EBPβ, and adiponectin. IGF‑1 upregulated the expression of phosphorylated RAC‑α serine/threonine‑protein kinase in IH cells, whereas a specific PI3K inhibitor or IGF‑1R antibody blocked this effect. These results indicated that IGF‑1 is a pro‑proliferative and pro‑lipogenic factor in IH HemSCs. Taken together, these findings indicated that IGF‑1 is able to upregulate PPARγ by activating the IGF‑1R and PI3K pathways, thereby accelerating lipogenesis and enhancing IH HemSC adipogenesis.
Collapse
Affiliation(s)
- Fan Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Honghong Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yin Lou
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juan Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xueying Huang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
105
|
Kwon HJ, Lee H, Choi GE, Kwon SJ, Song AY, Kim SJ, Choi WS, Hwang SH, Kim SC, Kim HS. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism. Front Immunol 2018; 9:2785. [PMID: 30546365 PMCID: PMC6279892 DOI: 10.3389/fimmu.2018.02785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ginsenosides are the principal active components of ginseng and are considered attractive candidates for combination cancer therapy because they can kill tumors and have favorable safety profiles. However, the overall benefit of ginsenosides remains unclear, particularly in cancer immunosurveillance, considering the controversial results showing repression or promotion of immune responses. Here we identify a potentiating role of ginsenoside F1 (G-F1) in cancer surveillance by natural killer (NK) cells. Among 15 different ginsenosides, G-F1 most potently enhanced NK cell cytotoxicity in response to diverse activating receptors and cancer cells. G-F1 also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma that rely on NK cell activity. G-F1-treated NK cells exhibited elevated cytotoxic potential such as upregulation of cytotoxic mediators and of activation signals upon stimulation. NK cell potentiation by G-F1 was antagonized by insulin-like growth factor (IGF)-1 blockade and recapitulated by IGF-1 treatment, suggesting the involvement of IGF-1. Thus, our results suggest that G-F1 enhances NK cell function and may have chemotherapeutic potential in NK cell-based immunotherapy. We anticipate our results to be a starting point for further comprehensive studies of ginsenosides in the immune cells mediating cancer surveillance and the development of putative therapeutics.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Heejae Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ah Young Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - So Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
106
|
Sirri R, Vitali M, Zambonelli P, Giannini G, Zappaterra M, Lo Fiego DP, Sami D, Davoli R. Effect of diets supplemented with linseed alone or combined with vitamin E and selenium or with plant extracts, on Longissimus thoracis transcriptome in growing-finishing Italian Large White pigs. J Anim Sci Biotechnol 2018; 9:81. [PMID: 30479765 PMCID: PMC6245756 DOI: 10.1186/s40104-018-0297-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background Supplementing farm animals diet with functional ingredients may improve the nutritional quality of meat products. Diet composition has been also demonstrated to influence the gene expression with effect on biological processes and pathways. However, the knowledge on the effect of nutrients at the molecular level is scant. In particular, studies on the effects of antioxidants and polyphenols dietary supplementation have been investigated mainly in rodents, and only scarcely in farm animals so far. RNA-Seq with next-generation sequencing is increasingly the method of choice for studying changes in the transcriptome and it has been recently employed also in pig nutrigenomics studies to identify diet-induced changes in gene expression. The present study aimed to investigate the effect of diets enriched with functional ingredients (linseed, vitamin E and plant extracts) on the transcriptome of pig Longissimus thoracis to elucidate the role of these compounds in influencing genes involved in muscle physiology and metabolism compared to a standard diet. Results Eight hundred ninety-three significant differentially expressed genes (DEGs) (FDR adjusted P-value ≤ 0.05) were detected by RNA-Seq analysis in the three diet comparisons (D2-D1, D3-D1, D4-D1). The functional analysis of DEGs showed that the diet enriched with n-3 PUFA from linseed (D2) mostly downregulated genes in pathways and biological processes (BPs) related to muscle development, contraction, and glycogen metabolism compared to the standard diet. The diet supplemented with linseed and vitamin E/Selenium (D3) showed to mostly downregulate genes linked to oxidative phosphorylation. Only few genes involved in extracellular matrix (ECM) organization were upregulated by the D3. Finally, the comparison D4-D1 showed that the diet supplemented with linseed and plant extracts (D4) upregulated the majority of genes compared to D1 that were involved in a complex network of pathways and BPs all connected by hub genes. In particular, IGF2 was a hub gene connecting protein metabolism, ECM organization, immune system and lipid biosynthesis pathways. Conclusion The supplementation of pig diet with n-3 PUFA from linseed, antioxidants and plant-derived polyphenols can influence the expression of a relevant number of genes in Longissimus thoracis muscle that are involved in a variety of biochemical pathways linked to muscle function and metabolism.
Collapse
Affiliation(s)
- Rubina Sirri
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Marika Vitali
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Paolo Zambonelli
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy.,2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Giulia Giannini
- 2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Martina Zappaterra
- 2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Domenico Pietro Lo Fiego
- 3Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola 2, I-42122 Reggio Emilia, Italy.,4Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1, I-42124 Reggio Emilia, Italy
| | - Dalal Sami
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy.,2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Roberta Davoli
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy.,2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| |
Collapse
|
107
|
Penney J, Li J. Protegrin 1 Enhances Innate Cellular Defense via the Insulin-Like Growth Factor 1 Receptor Pathway. Front Cell Infect Microbiol 2018; 8:331. [PMID: 30324092 PMCID: PMC6173103 DOI: 10.3389/fcimb.2018.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising area of research to help combat the ever-growing problem of antibiotic resistance. Protegrin-1 is an AMP from the cathelicidin family. It is produced naturally in pigs and its mature form (mPG-1) has potent bactericidal properties and a unique β-hairpin structure that separates it from most AMPs found in mice and humans. While the antibacterial properties of protegrin-1 are well established, the role it plays in immune modulation has yet to be investigated, and our current study sought to explore this alternate role and potential mechanism behind. We found that mPG-1 stimulated intestinal cell migration, this is accompanied with altered expression of genes associated with cell migration, in addition to increased expression of pro-inflammatory cytokines and immune-related factors. Further study suggested that mPG-1 activates insulin-like growth factor 1 receptor (IGF1R) and through this receptor it modulates immune activity as well as cell migration. Our study revealed a novel function of mPG-1, and its associated pathway, suggesting therapeutic potential of the antimicrobial peptide for infection and/or immune disorders, particularly ones affecting the gastrointestinal tract such as inflammatory bowel syndrome.
Collapse
Affiliation(s)
- Jenna Penney
- Department of Life Science and Engineering, Foshan University, Foshan Shi, China.,Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Life Science and Engineering, Foshan University, Foshan Shi, China.,Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
108
|
Smith TJ. Is there potential for the approval of monoclonal antibodies to treat thyroid-associated ophthalmopathy? Expert Opin Orphan Drugs 2018; 6:593-595. [PMID: 31662952 DOI: 10.1080/21678707.2018.1521268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Terry J Smith
- University of Michigan Ringgold standard institution - Ophthalmology and Visual Sciences, Ann Arbor, Michigan, USA
| |
Collapse
|
109
|
Allahmoradi E, Taghiloo S, Omrani-Nava V, Shobeir SS, Tehrani M, Ebrahimzadeh MA, Asgarian-Omran H. Anti-inflammatory effects of the Portulaca oleracea hydroalcholic extract on human peripheral blood mononuclear cells. Med J Islam Repub Iran 2018; 32:80. [PMID: 30643755 PMCID: PMC6325294 DOI: 10.14196/mjiri.32.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/24/2023] Open
Abstract
Background: Portulaca oleracea, known as Purslane, is an annual growing herb with wide distribution around the world and traditionally used to manage several diseases. Different therapeutic properties as an anti-fever agent as well as anti-inflammatory and analgesic effects have been attributed to P. oleracea. The aim of this study was to investigate the effects of P. oleracea aerial extract on production of pro- and anti-inflammatory cytokines by human peripheral blood mononuclear cells (PBMCs). Methods: Aerial parts of P. oleracea (stems and leaves) were collected and extracted by percolation using methanol. The optimal and non-cytotoxic dose of hydro-alcoholic extract for cell culture analysis was determined by MTT assay. To assess the antiinflammatory effects of P. oleracea, PBMCs obtained from 12 normal volunteers were cultured in RPMI complete medium and cotreated with E. coli lipopolysaccharide (LPS) and P. oleracea hydro-alcoholic extract. Following 18-hour incubation, culture supernatants were harvested for measurement of secreted TNF-α, IL-6 and IL-10 by ELISA. Statistical analyses were performed using the SPSS v.20, and data analyzed by Kolmogorov-Smirnov, Mann-Whitney U, Kruskal-Wallis and post Hoc tests. P-values<0.05 were considered significant. Results: The optimal non-cytotoxic concentration of P. oleracea aerial extract was defined as 100 μg/ml based on MTT viability assay. P. oleracea hydro-alcoholic extract significantly decreased the concentration of both pro-inflammatory cytokines TNF-α and IL-6 in LPS-stimulated PBMCs (p<0.001 and p<0.001, respectively). However, the concentration of IL-10 as an anti-inflammatory cytokine, did not show any statistically significant change (p=0.390). Conclusion: Our findings highlighted the potential anti-inflammatory properties of P. oleracea in herbal medicine. Future analysis on different constituents of total extract may confirm its therapeutic effects as a promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Esmaeil Allahmoradi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Versa Omrani-Nava
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeideh Sadat Shobeir
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
110
|
Liso A, Capitanio N, Gerli R, Conese M. From fever to immunity: A new role for IGFBP-6? J Cell Mol Med 2018; 22:4588-4596. [PMID: 30117676 PMCID: PMC6156343 DOI: 10.1111/jcmm.13738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Fever is a fundamental response to infection and a hallmark of inflammatory disease, which has been conserved and shaped through millions of years of natural selection. Although fever is able to stimulate both innate and adaptive immune responses, the very nature of all the molecular thermosensors, the timing and the detailed mechanisms translating a physical trigger into a fundamental biological response are incompletely understood. Here we discuss the consequence of hyperthermic stress in dendritic cells (DCs), and how the sole physical input is sensed as an alert stimulus triggering a complex transition in a very narrow temporal window. Importantly, we review recent findings demonstrating the significant and specific changes discovered in gene expression and in the metabolic phenotype associated with hyperthermia in DCs. Furthermore, we discuss the results that support a model based on a thermally induced autocrine signalling, which rewires and sets a metabolism checkpoint linked to immune activation of dendritic cells. Importantly, in this context, we highlight the novel regulatory functions discovered for IGFBP‐6 protein: induction of chemotaxis; capacity to increase oxidative burst and degranulation of neutrophils, ability to induce metabolic changes in DCs. Finally, we discuss the role of IGFBP‐6 in autoimmune disease and how novel mechanistic insights could lead to exploit thermal stress‐related mechanisms in the context of cancer therapy.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Roberto Gerli
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
111
|
Smith TJ. Challenges in Orphan Drug Development: Identification of Effective Therapy for Thyroid-Associated Ophthalmopathy. Annu Rev Pharmacol Toxicol 2018; 59:129-148. [PMID: 30044728 DOI: 10.1146/annurev-pharmtox-010617-052509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO), the ocular manifestation of Graves' disease, is a process in which orbital connective tissues and extraocular muscles undergo inflammation and remodeling. The condition seems to result from autoimmune responses to antigens shared by the thyroid and orbit. The thyrotropin receptor (TSHR), expressed at low levels in orbital tissues, is a leading candidate antigen. Recent evidence suggests that another protein, the insulin-like growth factor-I receptor (IGF-IR), is overexpressed in TAO, and antibodies against IGF-IR have been detected in patients with the disease. Furthermore, TSHR and IGF-IR form a physical and functional complex, and signaling initiated at TSHR requires IGF-IR activity. Identification of therapy for this rare disease has proven challenging and currently relies on nonspecific and inadequate agents, thus representing an important unmet need. A recently completed therapeutic trial suggests that inhibiting IGF-IR activity with a monoclonal antibody may be an effective and safe treatment for active TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA;
| |
Collapse
|
112
|
Mohyi M, Smith TJ. IGF1 receptor and thyroid-associated ophthalmopathy. J Mol Endocrinol 2018; 61:T29-T43. [PMID: 29273685 PMCID: PMC6561656 DOI: 10.1530/jme-17-0276] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a vexing and poorly understood autoimmune process involving the upper face and tissues surrounding the eyes. In TAO, the orbit can become inflamed and undergo substantial remodeling that is disfiguring and can lead to loss of vision. There are currently no approved medical therapies for TAO, the consequence of its uncertain pathogenic nature. It usually presents as a component of the syndrome known as Graves' disease where loss of immune tolerance to the thyrotropin receptor (TSHR) results in the generation of activating antibodies against that protein and hyperthyroidism. The role for TSHR and these antibodies in the development of TAO is considerably less well established. We have reported over the past 2 decades evidence that the insulin-like growth factorI receptor (IGF1R) may also participate in the pathogenesis of TAO. Activating antibodies against IGF1R have been detected in patients with GD. The actions of these antibodies initiate signaling in orbital fibroblasts from patients with the disease. Further, we have identified a functional and physical interaction between TSHR and IGF1R. Importantly, it appears that signaling initiated from either receptor can be attenuated by inhibiting the activity of IGF1R. These findings underpin the rationale for therapeutically targeting IGF1R in active TAO. A recently completed therapeutic trial of teprotumumab, a human IGF1R inhibiting antibody, in patients with moderate to severe, active TAO, indicates the potential effectiveness and safety of the drug. It is possible that other autoimmune diseases might also benefit from this treatment strategy.
Collapse
Affiliation(s)
- Michelle Mohyi
- Department of Ophthalmology and Visual SciencesUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Terry J Smith
- Department of Ophthalmology and Visual SciencesUniversity of Michigan, Ann Arbor, Michigan, USA
- Division of MetabolismEndocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
113
|
Vaiserman AM. Birth weight predicts aging trajectory: A hypothesis. Mech Ageing Dev 2018; 173:61-70. [PMID: 29626501 DOI: 10.1016/j.mad.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Increasing evidence suggests that risk for age-related disease and longevity can be programmed early in life. In human populations, convincing evidence has been accumulated indicating that intrauterine growth restriction (IUGR) resulting in low birth weight (<2.5 kg) followed by postnatal catch-up growth is associated with various aspects of metabolic syndrome, type 2 diabetes and cardiovascular disease in adulthood. Fetal macrosomia (birth weight > 4.5 kg), by contrast, is associated with high risk of non-diabetic obesity and cancers in later life. Developmental modification of epigenetic patterns is considered to be a central mechanism in determining such developmentally programmed phenotypes. Growth hormone/insulin-like growth factor (GH/IGF) axis is likely a key driver of these processes. In this review, evidence is discussed that suggests that different aging trajectories can be realized depending on developmentally programmed life-course dynamics of IGF-1. In this hypothetical scenario, IUGR-induced deficit of IGF-1 causes "diabetic" aging trajectory associated with various metabolic disorders in adulthood, while fetal macrosomia-induced excessive levels of IGF-1 lead to "cancerous" aging trajectory. If the above reasoning is correct, then both low and high birth weights are predictors of short life expectancy, while the normal birth weight is a predictor of "normal" aging and maximum longevity.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Institute of Gerontology NAMS of Ukraine, Vyshgorodskaya st. 67, Kiev 04114, Ukraine.
| |
Collapse
|
114
|
Systemic IGF-1 gene delivery by rAAV9 improves spontaneous autoimmune peripheral polyneuropathy (SAPP). Sci Rep 2018; 8:5408. [PMID: 29615658 PMCID: PMC5883061 DOI: 10.1038/s41598-018-23607-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 02/01/2023] Open
Abstract
Spontaneous autoimmune peripheral polyneuropathy (SAPP) is a mouse model of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) in non-obese diabetic (NOD) mice null for costimulatory molecule, B7-2 gene (B7-2−/−). SAPP is a chronic progressive and multifocal inflammatory and demyelinating polyneuropathy of spontaneous onset with secondary axonal degeneration. Insulin-like growth factor 1(IGF-1) is a pleiotropic factor with neuroprotective, regenerative, and anti-inflammatory effects with extensive experience in its preclinical and clinical use. Systemic delivery of recombinant adeno-associated virus serotype 9 (rAAV9) provides robust and widespread gene transfer to central and peripheral nervous systems making it suitable for gene delivery in neurological diseases. A significant proportion of patients with inflammatory neuropathies like CIDP do not respond to current clinical therapies and there is a need for new treatments. In this study, we examined the efficacy IGF-1 gene therapy by systemic delivery with rAAV9 in SAPP model. The rAAV9 construct also contained a reporter gene to monitor the surrogate expression of IGF-1. We found significant improvement in neuropathic disease after systemic delivery of rAAV9/IGF-1 gene at presymptomatic and symptomatic stages of SAPP model. These findings support that IGF-1 treatment (including gene therapy) is a viable therapeutic option in immune neuropathies such as CIDP.
Collapse
|
115
|
Rayes RF, Milette S, Fernandez MC, Ham B, Wang N, Bourdeau F, Perrino S, Yakar S, Brodt P. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency. Oncotarget 2018; 9:15691-15704. [PMID: 29644002 PMCID: PMC5884657 DOI: 10.18632/oncotarget.24593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.
Collapse
Affiliation(s)
- Roni F. Rayes
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Simon Milette
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Maria Celia Fernandez
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Boram Ham
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Ni Wang
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - France Bourdeau
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Stephanie Perrino
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Pnina Brodt
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Oncology, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
116
|
Rajendran P, Chen YF, Chen YF, Chung LC, Tamilselvi S, Shen CY, Day CH, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. The multifaceted link between inflammation and human diseases. J Cell Physiol 2018; 233:6458-6471. [PMID: 29323719 DOI: 10.1002/jcp.26479] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Increasing reports on epidemiological, diagnostic, and clinical studies suggest that dysfunction of the inflammatory reaction results in chronic illnesses such as cancer, arthritis, arteriosclerosis, neurological disorders, liver diseases, and renal disorders. Chronic inflammation might progress if injurious agent persists; however, more typically than not, the response is chronic from the start. Distinct to most changes in acute inflammation, chronic inflammation is characterized by the infiltration of damaged tissue by mononuclear cells like macrophages, lymphocytes, and plasma cells, in addition to tissue destruction and attempts to repair. Phagocytes are the key players in the chronic inflammatory response. However, the important drawback is the activation of pathological phagocytes, which might result from continued tissue damage and lead to harmful diseases. The longer the inflammation persists, the greater the chance for the establishment of human diseases. The aim of this review was to focus on advances in the understanding of chronic inflammation and to summarize the impact and involvement of inflammatory agents in certain human diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ya-Fang Chen
- Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, Taiwan.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
117
|
Waldron J, Raymond W, Ostli-Eilertsen G, Nossent J. Insulin-like growth factor-1 (IGF1) in systemic lupus erythematosus: relation to disease activity, organ damage and immunological findings. Lupus 2018; 27:963-970. [PMID: 29385899 DOI: 10.1177/0961203318756288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Insulin growth factor-1 (IGF1) activates cell proliferation pathways and inhibits apoptosis. IGF1 is involved in tumour growth and required for T-cell independent activation of B cells. Activated B cells and autoantibody production are a hallmark of systemic lupus erythematosus (SLE). To investigate the possible role of IGF1 in SLE, we studied IGF1 across clinical characteristics, immunological biomarkers, disease activity and organ damage in SLE patients. Method In a cross-sectional study, we collected clinical characteristics, medication, disease activity (SLEDAI-2K) and organ damage (SDI) for 94 SLE patients. Autoantibodies and cytokines were measured by ELISA, and levels of IGF1 and IGF binding protein 3 (IGFBP3) by chemiluminescence. Free IGF1 was estimated by the IGF1:IGFBP3 ratio. Healthy controls served as a comparator group. Results There was a significant age-related decline in IGF1, IGFBP3 and free IGF1 (IGF1:IGFBP3 ratio) that was similar in SLE patients and controls with very few outliers. Free IGF1 was inversely related to blood pressure (Rs -0.327, p < 0.01) and HbA1c (Rs -0.31, p < 0.01). Free IGF1 was higher in disease-modifying antirheumatic drug-treated patients ( p < 0.01), but there was no significant association between the IGF1 axis and autoantibody profiles, cytokine levels or SLEDAI-2K or SDI categories. IGF1 correlated inversely with BAFF level and B, natural killer and CD8 + cell counts. Conclusion Free IGF1 levels in SLE patients declined appropriately with age. IGF1 levels were not associated with disease activity, severity or autoantibody levels in SLE. Free IGF1 had positive metabolic effects in SLE and may play an indirect role in dampening the cellular immune response by downregulating B- and T-cell activity.
Collapse
Affiliation(s)
- J Waldron
- 1 Rheumatology Group, School of Medicine, The University of Western Australia, Perth, Australia
| | - W Raymond
- 1 Rheumatology Group, School of Medicine, The University of Western Australia, Perth, Australia
| | - G Ostli-Eilertsen
- 2 Inflammation Group, Department of Clinical Medicine, Arctic University, Tromsø, Norway
| | - J Nossent
- 1 Rheumatology Group, School of Medicine, The University of Western Australia, Perth, Australia.,3 Department of Rheumatology, Sir Charles Gairdner Hospital, Perth, Australia
| |
Collapse
|
118
|
Smith TJ. New advances in understanding thyroid-associated ophthalmopathy and the potential role for insulin-like growth factor-I receptor. F1000Res 2018; 7:134. [PMID: 29744034 PMCID: PMC5795270 DOI: 10.12688/f1000research.12787.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), a localized periocular manifestation of the autoimmune syndrome known as Graves’ disease, remains incompletely understood. Discussions of its pathogenesis are generally focused on the thyrotropin receptor, the proposed role for which is supported by substantial evidence. Considerations of any involvement of the insulin-like growth factor-I receptor (IGF-IR) in the disease are frequently contentious. In this brief, topically focused review, I have attempted to provide a balanced perspective based entirely on experimental results that either favor or refute involvement of IGF-IR in TAO. Discussion in this matter seems particularly timely since the currently available treatments of this disfiguring and potentially sight-threatening disease remain inadequate. Importantly, no medical therapy has thus far received approval from the US Food and Drug Administration. Results from a very recently published clinical trial assessing the safety and efficacy of teprotumumab, an inhibitory human anti–IGF-IR monoclonal antibody, in active, moderate to severe TAO are extremely encouraging. That double-masked, placebo-controlled study involved 88 patients and revealed unprecedented clinical responses in the improvement of proptosis and clinical activity as well as a favorable safety profile. Should those results prove reproducible in an ongoing phase III trial, therapeutic inhibition of IGF-IR could become the basis for paradigm-shifting treatment of this vexing disease.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
119
|
Abstract
Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
120
|
Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev 2018; 39:1-18. [DOI: 10.1016/j.cytogfr.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
121
|
Ding H, Wu T. Insulin-Like Growth Factor Binding Proteins in Autoimmune Diseases. Front Endocrinol (Lausanne) 2018; 9:499. [PMID: 30214426 PMCID: PMC6125368 DOI: 10.3389/fendo.2018.00499] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are a family of proteins binding to Insulin-like growth factors (IGFs), generally including IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, and IGFBP6. The biological functions of IGFBPs can be classified as IGFs-dependent actions and IGFs-independent effects. In this review, we will discuss the structure and function of various IGFBPs, particularly IGFBPs as potential emerging biomarkers and therapeutic targets in various autoimmune diseases, and the possible mechanisms by which IGFBPs act on the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Huihua Ding
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Tianfu Wu
| |
Collapse
|
122
|
Alzaid A, Kim JH, Devlin RH, Martin SAM, Macqueen DJ. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems. J Exp Biol 2018; 221:jeb.173146. [DOI: 10.1242/jeb.173146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon (Oncorhynchus kisutch) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation.
Collapse
Affiliation(s)
- Abdullah Alzaid
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia, V7V 1N6, Canada
- Current address: Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Korea
| | - Robert H. Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia, V7V 1N6, Canada
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
123
|
Ateya AI, Hussein MS, Ghanem HM, Saleh RM, El-Domany WB, Elseady YY. Expression profiles of immunity and reproductive genes during transition period in Holstein cattle. Reprod Domest Anim 2017; 53:352-358. [PMID: 29164710 DOI: 10.1111/rda.13112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
Abstract
The transition period is a critical time for dairy cows as the animal is subjected to the physiological stress accompanying parturition. Immunosuppression and health status were examined during this period in 80 Holstein cows. Blood samples were taken from each cow 3, 2 and 1 week before and after calving, and at calving (0 day). RNA was extracted and subjected to real-time PCR to determine mRNA levels for the immune-related genes TLR 2, 4, 6, 7 and β-defensin 5 in addition to the reproduction-related genes prolactin and IGF-I. Results showed significant up-regulation of pro-inflammatory-selected genes, TLR 4, 6 7 and β-defensin 5 at the third-week post-calving; however, earlier periods had lower expression of such genes. In contrast, the immunosuppression biomarker TLR2 gene was up-regulated at calving and 1 week after parturition and then down-regulated again at second and third week. Prolactin and IGF-I genes expression levels were significantly and gradually increased mainly post-partum. This research highlights that the expression patterns of TLRs, BNBD5, PRL and IGF-I could be biomarkers to follow up immune and reproductive status of dairy cow at peri-parturient period to predict the most susceptible risk time for disease incidence and to build up management protocol.
Collapse
Affiliation(s)
- A I Ateya
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - M S Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - H M Ghanem
- Department of Animal Husbandry and Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - R M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - W B El-Domany
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Y Y Elseady
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
124
|
Increased cutaneous miR-let-7d expression correlates with small nerve fiber pathology in patients with fibromyalgia syndrome. Pain 2017; 157:2493-2503. [PMID: 27429177 DOI: 10.1097/j.pain.0000000000000668] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibromyalgia syndrome (FMS) is a chronic widespread pain condition probably comprising subgroups with different underlying pathomechanisms. There is increasing evidence for small nerve fiber impairment in subgroups of patients with FMS. MicroRNAs (miRNAs) regulate molecular factors determining nerve de- and re-generation. We investigated whether systemic and cutaneous miRNA expression in patients with FMS is related to small nerve fiber pathology. We confirmed previous findings of disturbed small fiber function and reduced intraepidermal nerve fiber density in subgroups of patients with FMS. We found 51 aberrantly expressed miRNAs in white blood cells of patients with FMS, of which miR-let-7d correlated with reduced small nerve fiber density in patients with FMS. Furthermore, we demonstrated miR-let-7d and its downstream target insulin-like growth factor-1 receptor as being aberrantly expressed in skin of patients with FMS with small nerve fiber impairment. Our study gives further evidence of small nerve fiber pathology in FMS subgroups and provides a missing link in the pathomechanism that may lead to small fiber loss in subgroups of patients with FMS.
Collapse
|
125
|
Silva P, Nelson C, Driver J, Thatcher W, Chebel R. Effect of recombinant bovine somatotropin on leukocyte mRNA expression for genes related to cell energy metabolism, cytokine production, phagocytosis, oxidative burst, and adaptive immunity. J Dairy Sci 2017; 100:8471-8483. [DOI: 10.3168/jds.2016-12106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/18/2017] [Indexed: 01/25/2023]
|
126
|
Steinhoff G, Nesteruk J, Wolfien M, Große J, Ruch U, Vasudevan P, Müller P. Stem cells and heart disease - Brake or accelerator? Adv Drug Deliv Rev 2017; 120:2-24. [PMID: 29054357 DOI: 10.1016/j.addr.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
After two decades of intensive research and attempts of clinical translation, stem cell based therapies for cardiac diseases are not getting closer to clinical success. This review tries to unravel the obstacles and focuses on underlying mechanisms as the target for regenerative therapies. At present, the principal outcome in clinical therapy does not reflect experimental evidence. It seems that the scientific obstacle is a lack of integration of knowledge from tissue repair and disease mechanisms. Recent insights from clinical trials delineate mechanisms of stem cell dysfunction and gene defects in repair mechanisms as cause of atherosclerosis and heart disease. These findings require a redirection of current practice of stem cell therapy and a reset using more detailed analysis of stem cell function interfering with disease mechanisms. To accelerate scientific development the authors suggest intensifying unified computational data analysis and shared data knowledge by using open-access data platforms.
Collapse
Affiliation(s)
- Gustav Steinhoff
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Julia Nesteruk
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Markus Wolfien
- University Rostock, Institute of Computer Science, Department of Systems Biology and Bioinformatics, Ulmenstraße 69, 18057 Rostock, Germany.
| | - Jana Große
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Ulrike Ruch
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Praveen Vasudevan
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Paula Müller
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| |
Collapse
|
127
|
|
128
|
Armani A, Berry A, Cirulli F, Caprio M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte. FASEB J 2017; 31:4240-4255. [PMID: 28705812 DOI: 10.1096/fj.201601125rrr] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) is defined as a cluster of 3 or more metabolic and cardiovascular risk factors and represents a serious problem for public health. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for the development of these metabolic derangements, collectively referred as to MetS. In particular, increased visceral and ectopic fat deposition play a major role in the development of insulin resistance and MetS. A large body of evidence demonstrates that aging and MetS share several metabolic alterations. Of importance, molecular pathways that regulate lifespan affect key processes of adipose tissue physiology, and transgenic mouse models with adipose-specific alterations in these pathways show derangements of adipose tissue and other metabolic features of MetS, which highlights a causal link between dysfunctional adipose tissue and deleterious effects on whole-body homeostasis. This review analyzes adipose tissue-specific dysfunctions, including metabolic alterations that are related to aging, that have a significant impact on the development of MetS.-Armani, A., Berry, A., Cirulli, F., Caprio, M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte.
Collapse
Affiliation(s)
- Andrea Armani
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy; .,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
129
|
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, Sukhatme VP. Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci Rep 2017; 7:4537. [PMID: 28674429 PMCID: PMC5495754 DOI: 10.1038/s41598-017-04626-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
In this study we have tested the efficacy of citrate therapy in various cancer models. We found that citrate administration inhibited A549 lung cancer growth and additional benefit accrued in combination with cisplatin. Interestingly, citrate regressed Ras-driven lung tumors. Further studies indicated that citrate induced tumor cell differentiation. Additionally, citrate treated tumor samples showed significantly higher infiltrating T-cells and increased blood levels of numerous cytokines. Moreover, we found that citrate inhibited IGF-1R phosphorylation. In vitro studies suggested that citrate treatment inhibited AKT phosphorylation, activated PTEN and increased expression of p-eIF2a. We also found that p-eIF2a was decreased when PTEN was depleted. These data suggest that citrate acts on the IGF-1R-AKT-PTEN-eIF2a pathway. Additionally, metabolic profiling suggested that both glycolysis and the tricarboxylic acid cycle were suppressed in a similar manner in vitro in tumor cells and in vivo but only in tumor tissue. We reproduced many of these observations in an inducible Her2/Neu-driven breast cancer model and in syngeneic pancreatic tumor (Pan02) xenografts. Our data suggests that citrate can inhibit tumor growth in diverse tumor types and via multiple mechanisms. Dietary supplementation with citrate may be beneficial as a cancer therapy.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Pankaj Seth
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Kun Guo
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.,Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Ichi Hanai
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Zaheed Husain
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Vikas P Sukhatme
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
130
|
Pandey A, Sahu AR, Wani SA, Saxena S, Kanchan S, Sah V, Rajak KK, Khanduri A, Sahoo AP, Tiwari AK, Mishra B, Muthuchelvan D, Mishra BP, Singh RK, Gandham RK. Modulation of Host miRNAs Transcriptome in Lung and Spleen of Peste des Petits Ruminants Virus Infected Sheep and Goats. Front Microbiol 2017; 8:1146. [PMID: 28694795 PMCID: PMC5483481 DOI: 10.3389/fmicb.2017.01146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious viral disease, characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia, primarily affecting sheep and goats. Reports suggested variable host response in goats and sheep and this host response vis-a-vis the expression of microRNAs (miRNAs) has not been investigated. Here, miRNAs were sequenced and proteomics data were generated to identify the role of differentially expressed miRNA (DEmiRNA) in PPR virus (PPRV) infected lung and spleen tissues of sheep and goats. In lungs, 67 and 37 DEmiRNAs have been identified in goats and sheep, respectively. Similarly, in spleen, 50 and 56 DEmiRNAs were identified in goats and sheep, respectively. A total of 20 and 11 miRNAs were found to be common differentially expressed in both the species in PPRV infected spleen and lung, respectively. Six DEmiRNAs—miR-21-3p, miR-1246, miR-27a-5p, miR-760-3p, miR-320a, and miR-363 were selected based on their role in viral infections, apoptosis, and fold change. The target prediction analysis of these six selected DEmiRNAs from the proteome data generated, revealed involvement of more number of genes in lung and spleen of goats than in sheep. On gene ontology analysis of host target genes these DEmiRNAs were found to regulate several immune response signaling pathways. It was observed that the pathways viz. T cell receptor signaling, Rap1 signaling, Toll-like receptor signaling, and B cell receptor signaling governed by DEmiRNAs were more perturbed in goats than in sheep. The data suggests that PPRV-induced miR-21-3p, miR-320a, and miR-363 might act cooperatively to enhance viral pathogenesis in the lung and spleen of sheep by downregulating several immune response genes. The study gives an important insight into the molecular pathogenesis of PPR by identifying that the PPRV—Izatnagar/94 isolate elicits a strong host response in goats than in sheep.
Collapse
Affiliation(s)
- Aruna Pandey
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Amit R Sahu
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Sajad A Wani
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Shikha Saxena
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Sonam Kanchan
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Vaishali Sah
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Kaushal K Rajak
- Division of Biological Products, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Alok Khanduri
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Aditya P Sahoo
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Ashok K Tiwari
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Bina Mishra
- Division of Biological Products, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - D Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, NainitalIndia
| | - Bishnu P Mishra
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Raj K Singh
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| | - Ravi K Gandham
- Computational Biology and Genomics Facility Lab, Division of Veterinary Biotechnology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, BareillyIndia
| |
Collapse
|
131
|
Hosokawa K, Kajigaya S, Keyvanfar K, Qiao W, Xie Y, Townsley DM, Feng X, Young NS. T Cell Transcriptomes from Paroxysmal Nocturnal Hemoglobinuria Patients Reveal Novel Signaling Pathways. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28630090 DOI: 10.4049/jimmunol.1601299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disorder originating from hematopoietic stem cells and is a life-threating disease characterized by intravascular hemolysis, bone marrow (BM) failure, and venous thrombosis. The etiology of PNH is a somatic mutation in the phosphatidylinositol glycan class A gene (PIG-A) on the X chromosome, which blocks synthesis of the glycolipid moiety and causes deficiency in GPI-anchored proteins. PNH is closely related to aplastic anemia, in which T cells mediate destruction of BM. To identify aberrant molecular mechanisms involved in immune targeting of hematopoietic stem cells in BM, we applied RNA-seq to examine the transcriptome of T cell subsets (CD4+ naive, CD4+ memory, CD8+ naive, and CD8+ memory) from PNH patients and healthy control subjects. Differentially expressed gene analysis in four different T cell subsets from PNH and healthy control subjects showed distinct transcriptional profiles, depending on the T cell subsets. By pathway analysis, we identified novel signaling pathways in T cell subsets from PNH, including increased gene expression involved in TNFR, IGF1, NOTCH, AP-1, and ATF2 pathways. Dysregulation of several candidate genes (JUN, TNFAIP3, TOB1, GIMAP4, GIMAP6, TRMT112, NR4A2, CD69, and TNFSF8) was validated by quantitative real-time RT-PCR and flow cytometry. We have demonstrated molecular signatures associated with positive and negative regulators in T cells, suggesting novel pathophysiologic mechanisms in PNH. These pathways may be targets for new strategies to modulate T cell immune responses in BM failure.
Collapse
Affiliation(s)
- Kohei Hosokawa
- Cell Biology Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Sachiko Kajigaya
- Cell Biology Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Keyvan Keyvanfar
- Cell Biology Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Wangmin Qiao
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yanling Xie
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Danielle M Townsley
- Cell Biology Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Xingmin Feng
- Cell Biology Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Neal S Young
- Cell Biology Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
132
|
Di Cerbo A, Pezzuto F, Di Cerbo A. Growth hormone and insulin-like growth factor 1 affect the severity of Graves' disease. Endocrinol Diabetes Metab Case Rep 2017; 2017:17-0061. [PMID: 28620496 PMCID: PMC5467652 DOI: 10.1530/edm-17-0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/10/2017] [Indexed: 01/14/2023] Open
Abstract
Graves' disease, the most common form of hyperthyroidism in iodine-replete countries, is associated with the presence of immunoglobulins G (IgGs) that are responsible for thyroid growth and hyperfunction. In this article, we report the unusual case of a patient with acromegaly and a severe form of Graves' disease. Here, we address the issue concerning the role of growth hormone (GH) and insulin-like growth factor 1 (IGF1) in influencing thyroid function. Severity of Graves' disease is exacerbated by coexistent acromegaly and both activity indexes and symptoms and signs of Graves' disease improve after the surgical remission of acromegaly. We also discuss by which signaling pathways GH and IGF1 may play an integrating role in regulating the function of the immune system in Graves' disease and synergize the stimulatory activity of Graves' IgGs. LEARNING POINTS Clinical observations have demonstrated an increased prevalence of euthyroid and hyperthyroid goiters in patients with acromegaly.The coexistence of acromegaly and Graves' disease is a very unusual event, the prevalence being <1%.Previous in vitro studies have showed that IGF1 synergizes the TSH-induced thyroid cell growth-activating pathways independent of TSH/cAMP/PKA cascade.We report the first case of a severe form of Graves' disease associated with acromegaly and show that surgical remission of acromegaly leads to a better control of symptoms of Graves' disease.
Collapse
Affiliation(s)
- Alfredo Di Cerbo
- Endocrinology, ‘Casa Sollievo della Sofferenza’, IRCCS, San Giovanni Rotondo, FoggiaItaly
| | - Federica Pezzuto
- Department of Medical, Oral and Biotechnological Sciences, Dental School, University ‘G. d’Annunzio’ of Chieti-Pescara, ChietiItaly
| | - Alessandro Di Cerbo
- Department of Medical, Oral and Biotechnological Sciences, Dental School, University ‘G. d’Annunzio’ of Chieti-Pescara, ChietiItaly
| |
Collapse
|
133
|
Erlandsson MC, Töyrä Silfverswärd S, Nadali M, Turkkila M, Svensson MND, Jonsson IM, Andersson KME, Bokarewa MI. IGF-1R signalling contributes to IL-6 production and T cell dependent inflammation in rheumatoid arthritis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2158-2170. [PMID: 28583713 DOI: 10.1016/j.bbadis.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Signalling through insulin-like growth factor 1 receptor (IGF-1R) is essential for cell survival, but may turn pathogenic in uncontrolled tissue growth in tumours. In rheumatoid arthritis (RA), the IGF-1R signalling is activated and supports expansion of the inflamed synovia. AIM In the present study, we assess if disruption of IGF-1R signalling resolves arthritis. MATERIAL AND METHODS Clinical associations of IGF-1R expression in leukocytes of the peripheral blood were studied in 84 RA patients. Consequences of the IGF-1R signalling inhibition for arthritis were studied in mBSA immunised Balb/c mice treated with NT157 compound promoting degradation of insulin receptor substrates. RESULTS In RA patients, high expression of IGF-1R in leukocytes was associated with systemic inflammation as verified by higher expression of NF-kB, serum levels of IL6 and erythrocyte sedimentation rate, and higher pain perception. Additionally, phosphorylated IGF-1R and STAT3 enriched T cells infiltrate in RA synovia. Treatment with NT157 inhibited the phosphorylation of IGF-1R and STAT3 in synovia, and alleviated arthritis and joint damage in mice. It also reduced expression of IGF-1R and despaired ERK and Akt signalling in spleen T cells. This limited IL-6 production, changed RoRgt/FoxP3 balance and IL17 levels. CONCLUSION IGF-1R signalling contributes to T cell dependent inflammation in arthritis. Inhibition of IGF-1R on the level of insulin receptor substrates alleviates arthritis by restricting IL6-dependent formation of Th17 cells and may open for new treatment strategies in RA.
Collapse
Affiliation(s)
- Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Mitra Nadali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 12, 41346 Gothenburg, Sweden
| | - Minna Turkkila
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Ing-Marie Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30 Gothenburg, Sweden; Rheumatology Clinic, Sahlgrenska University Hospital, Gröna Stråket 12, 41346 Gothenburg, Sweden.
| |
Collapse
|
134
|
Mallol C, Casana E, Jimenez V, Casellas A, Haurigot V, Jambrina C, Sacristan V, Morró M, Agudo J, Vilà L, Bosch F. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6:664-680. [PMID: 28702323 PMCID: PMC5485311 DOI: 10.1016/j.molmet.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Methods Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28–30 weeks. Results In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Conclusions Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans. Local pancreatic IGF1 expression prevents spontaneous autoimmune diabetes. Protection achieved after one-time local administration of IGF1-encoding AAV vectors. Efficacious in animals treated early or once autoimmunity is already established. Protection through maintenance of β-cell mass and endogenous insulin secretion. Treatment leads to reduced infiltration and expression of immunity genes in islets.
Collapse
Affiliation(s)
- Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Meritxell Morró
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| |
Collapse
|
135
|
Smith TJ, Kahaly GJ, Ezra DG, Fleming JC, Dailey RA, Tang RA, Harris GJ, Antonelli A, Salvi M, Goldberg RA, Gigantelli JW, Couch SM, Shriver EM, Hayek BR, Hink EM, Woodward RM, Gabriel K, Magni G, Douglas RS. Teprotumumab for Thyroid-Associated Ophthalmopathy. N Engl J Med 2017; 376:1748-1761. [PMID: 28467880 PMCID: PMC5718164 DOI: 10.1056/nejmoa1614949] [Citation(s) in RCA: 467] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Thyroid-associated ophthalmopathy, a condition commonly associated with Graves' disease, remains inadequately treated. Current medical therapies, which primarily consist of glucocorticoids, have limited efficacy and present safety concerns. Inhibition of the insulin-like growth factor I receptor (IGF-IR) is a new therapeutic strategy to attenuate the underlying autoimmune pathogenesis of ophthalmopathy. METHODS We conducted a multicenter, double-masked, randomized, placebo-controlled trial to determine the efficacy and safety of teprotumumab, a human monoclonal antibody inhibitor of IGF-IR, in patients with active, moderate-to-severe ophthalmopathy. A total of 88 patients were randomly assigned to receive placebo or active drug administered intravenously once every 3 weeks for a total of eight infusions. The primary end point was the response in the study eye. This response was defined as a reduction of 2 points or more in the Clinical Activity Score (scores range from 0 to 7, with a score of ≥3 indicating active thyroid-associated ophthalmopathy) and a reduction of 2 mm or more in proptosis at week 24. Secondary end points, measured as continuous variables, included proptosis, the Clinical Activity Score, and results on the Graves' ophthalmopathy-specific quality-of-life questionnaire. Adverse events were assessed. RESULTS In the intention-to-treat population, 29 of 42 patients who received teprotumumab (69%), as compared with 9 of 45 patients who received placebo (20%), had a response at week 24 (P<0.001). Therapeutic effects were rapid; at week 6, a total of 18 of 42 patients in the teprotumumab group (43%) and 2 of 45 patients in the placebo group (4%) had a response (P<0.001). Differences between the groups increased at subsequent time points. The only drug-related adverse event was hyperglycemia in patients with diabetes; this event was controlled by adjusting medication for diabetes. CONCLUSIONS In patients with active ophthalmopathy, teprotumumab was more effective than placebo in reducing proptosis and the Clinical Activity Score. (Funded by River Vision Development and others; ClinicalTrials.gov number, NCT01868997 .).
Collapse
Affiliation(s)
- Terry J Smith
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - George J Kahaly
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Daniel G Ezra
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - James C Fleming
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Roger A Dailey
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Rosa A Tang
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Gerald J Harris
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Alessandro Antonelli
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Mario Salvi
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Robert A Goldberg
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - James W Gigantelli
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Steven M Couch
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Erin M Shriver
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Brent R Hayek
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Eric M Hink
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Richard M Woodward
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Kathleen Gabriel
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Guido Magni
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| | - Raymond S Douglas
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center (T.J.S., R.S.D.), and the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; the Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany (G.J.K.); Moorfields Eye Hospital, London (D.G.E.); the University of Tennessee Health Science Center, Memphis (J.C.F.); the Oculofacial Plastic Surgery Division, Oregon Health and Science University, Portland (R.A.D.); Eye Wellness Center, Neuro-Ophthalmology of Texas, Houston (R.A.T.); the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee (G.J.H.); the Department of Clinical and Experimental Medicine, University of Pisa, Pisa (A.A.), and the Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda, University of Milan, Milan (M.S.) - both in Italy; the Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles (R.A.G.); the University of Nebraska Medical Center, Omaha (J.W.G.); Barnes-Jewish Hospital, Washington University, St. Louis (S.M.C.); the Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City (E.M.S.); the Department of Ophthalmology, Emory University, Atlanta (B.R.H.); the Department of Ophthalmology, University of Colorado, Aurora (E.M.H.); and River Vision Development, New York (R.M.W., K.G., G.M.)
| |
Collapse
|
136
|
Zheng J, Zhao M, Li J, Lou G, Yuan Y, Bu S, Xi Y. Obesity-associated digestive cancers: A review of mechanisms and interventions. Tumour Biol 2017; 39:1010428317695020. [PMID: 28351315 DOI: 10.1177/1010428317695020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prevalence of obesity has steadily increased over the past few decades. Previous studies suggest that obesity is an oncogenic factor and that over 20% of all cancers are obesity-related. Among such cancers, digestive system malignancies (including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, liver, and pancreas) are reported most frequently. While the 5-year survival rates of cancers of the breast and prostate are 90%, that rate is only 45% for digestive cancers. In this review, the mechanisms of obesity-associated digestive cancers are discussed, with an emphasis on obesity-related gene mutations, insulin and insulin-like growth factor signaling pathways, chronic inflammation, and altered adipokine levels. Evidence that these factors often function interdependently rather than independently in carcinogenesis is presented. Recommended interventions that may reduce the burden of obesity-associated digestive cancers, such as participation in physical activity, diet modulation, and calorie restriction, are also described.
Collapse
Affiliation(s)
- Jiachen Zheng
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Ming Zhao
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Jiahui Li
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Guoying Lou
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yanyan Yuan
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Shizhong Bu
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Yang Xi
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
137
|
Abstract
INTRODUCTION Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.
Collapse
Affiliation(s)
- Terry Smith
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
138
|
Lara-Diaz VJ, Castilla-Cortazar I, Martín-Estal I, García-Magariño M, Aguirre GA, Puche JE, de la Garza RG, Morales LA, Muñoz U. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture. J Physiol Biochem 2017; 73:245-258. [PMID: 28124277 PMCID: PMC5399066 DOI: 10.1007/s13105-016-0545-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1+/-, and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.
Collapse
Affiliation(s)
- V J Lara-Diaz
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - I Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico. .,Fundacion de Investigacion HM Hospitales, Madrid, Spain.
| | - I Martín-Estal
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - M García-Magariño
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - G A Aguirre
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - J E Puche
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | - R G de la Garza
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - L A Morales
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - U Muñoz
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
139
|
Budzinska M, Owczarz M, Pawlik-Pachucka E, Roszkowska-Gancarz M, Slusarczyk P, Puzianowska-Kuznicka M. miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans. BMC Geriatr 2016; 16:200. [PMID: 27903254 PMCID: PMC5131432 DOI: 10.1186/s12877-016-0379-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/25/2016] [Indexed: 02/08/2023] Open
Abstract
Background In mammals, the IGF-1 pathway affects the phenotype of aging. Since the function of the immune system is modulated by IGF-1, it is plausible that immunosenescence might in part result from altered control by this pathway. We therefore examined whether the expression of IGF-1R, FOXO1, and FOXO3a in peripheral blood mononuclear cells (PBMC) changes with age and if this might be due to changes in the expression of select miRNAs. Methods The expression of IGF-1R, FOXO1, FOXO3a, as well as of miR-9, miR-96, miR-99a, miR-132, miR-145, and miR-182 was examined in PBMC of young (27.8 ± 3.7 years), elderly (65.6 ± 3.4 years), and long-lived (94.0 ± 3.7 years) Polish Caucasians using real-time PCR. mRNA/miRNA interactions were studied in HEK 293 cells using luciferase-expressing pmirGLO reporter vector. Results The median expression of IGF-1R decreased with age (p < 0.000001), as did the expression of FOXO1 (p < 0.000001), while the expression of FOXO3a remained stable. We also found an age-associated increase of the median expression of miR-96 (p = 0.002), miR-145 (p = 0.024) and miR-9 (p = 0.026), decrease of the expression of miR-99a (p = 0.037), and no changes regarding miR-132 and miR-182. Functional studies revealed that miR-96 and miR-182 interacted with human IGF-1R mRNA, and that miR-145 and miR-132 interacted with human FOXO1 mRNA. Conclusions The age-associated higher expression of miR-96 and miR-145 might contribute to the lower expression of IGF-1R while the higher expression of miR-96, miR-145 and miR-9 might contribute to the lower expression of FOXO1 in peripheral blood mononuclear cells of aging humans. Sustained expression/function of FOXO3a but not of the other two genes might be important for the maintenance of the immune system function in these individuals.
Collapse
Affiliation(s)
- Monika Budzinska
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland.,Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Eliza Pawlik-Pachucka
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland.,Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Malgorzata Roszkowska-Gancarz
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Przemyslaw Slusarczyk
- PolSenior Project, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Monika Puzianowska-Kuznicka
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland. .,Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
140
|
Han CZ, Juncadella IJ, Kinchen JM, Buckley MW, Klibanov AL, Dryden K, Onengut-Gumuscu S, Erdbrügger U, Turner SD, Shim YM, Tung KS, Ravichandran KS. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature 2016; 539:570-574. [PMID: 27820945 PMCID: PMC5799085 DOI: 10.1038/nature20141] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.
Collapse
Affiliation(s)
- Claudia Z Han
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Ignacio J Juncadella
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jason M Kinchen
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Monica W Buckley
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Alexander L Klibanov
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Suna Onengut-Gumuscu
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia 22903, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Uta Erdbrügger
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Stephen D Turner
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yun M Shim
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kenneth S Tung
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kodi S Ravichandran
- The Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
141
|
Castilla-Cortázar I, Rodríguez De Ita J, Martín-Estal I, Castorena F, Aguirre GA, García de la Garza R, Elizondo MI. Clinical and molecular diagnosis of a cartilage-hair hypoplasia with IGF-1 deficiency. Am J Med Genet A 2016; 173:537-540. [PMID: 27862957 PMCID: PMC6586044 DOI: 10.1002/ajmg.a.38052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/27/2016] [Indexed: 01/20/2023]
Abstract
Cartilage-hair hypoplasia syndrome (CHH) is a rare autosomal recessive condition characterized by metaphyseal chondrodysplasia and characteristic hair, together with a myriad of other symptoms, being most common immunodeficiency and gastrointestinal complications. A 15-year-old Mexican male initially diagnosed with Hirschsprung disease and posterior immunodeficiency, presents to our department for genetic and complementary evaluation for suspected CHH. Physical, biochemical, and genetic studies confirmed CHH together with IGF-1 deficiency. For this reason, we propose IGF-1 replacement therapy for its well-known actions on hematopoiesis, immune function and maturation, and metabolism. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico.,Fundacion para la Investigacion, HM Hospitales, Madrid, Spain
| | | | - Irene Martín-Estal
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| | - Fabiola Castorena
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| | - Gabriel A Aguirre
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| | | | - Martha I Elizondo
- Escuela Nacional de Medicina, CITES, Tecnologico de Monterrey, Monterey, Neuvo Leon, Mexico
| |
Collapse
|
142
|
Youness RA, Rahmoon MA, Assal RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 2016; 34:128-140. [PMID: 27388576 DOI: 10.1080/08977194.2016.1200571] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
In this study, an impaired natural killer (NK) cell cytolytic activity in 135 hepatocellular carcinoma (HCC) patients parallel to a reduced expression level of insulin-like growth factor (IGF)-1 in NK cells of HCC patients has been revealed. Ectopic expression of miR-486-5p, a direct upstream regulator of IGF-1, restored the endogenous level of IGF-1 in NK cells of HCC patients, thus augmenting its cytolytic activity against Huh7 cells in an opposite manner to the IGF-1 siRNAs. Unorthodoxly, over-expression of miR-486-5p in target hepatocytes resulted in the repression of IGF-1, suppression of Huh7 cells proliferation and viability in a similar pattern to the IGF-1 siRNAs. Therefore, this study highlights a potential role of IGF-1 in modulating cytolytic potential of NK cells of HCC patients. miR-486-5p acts in a cell-specific manner, differentially modulating IGF-1 expression in NK cells and their target hepatocytes with a contemporary inhibitory impact on HCC progression.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- a Department of Pharmaceutical Biology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Mai Atef Rahmoon
- a Department of Pharmaceutical Biology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Reem Amr Assal
- b Department of Pharmacology and Toxicology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Asmaa Ibrahim Gomaa
- c Department of Hepatology , National Liver Institute, Menoufiya University , Shebin El-Kom , Egypt
| | - Mohamed Tarif Hamza
- d Department of Clinical Pathology , Ain Shams University , Cairo , Egypt , and
| | - Imam Waked
- c Department of Hepatology , National Liver Institute, Menoufiya University , Shebin El-Kom , Egypt
| | - Hend Mohamed El Tayebi
- b Department of Pharmacology and Toxicology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | | |
Collapse
|
143
|
Liao Y, Lei J, Liu M, Lin W, Hong D, Tuo Y, Jiang MH, Xia H, Wang M, Huang W, Xiang AP. Mesenchymal Stromal Cells Mitigate Experimental Colitis via Insulin-like Growth Factor Binding Protein 7-mediated Immunosuppression. Mol Ther 2016; 24:1860-1872. [PMID: 27397633 DOI: 10.1038/mt.2016.140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have shown great potential for treating inflammatory bowel disease, which is ameliorated through paracrine cross talk between MSCs and T-cells. Members of the insulin-like growth factor binding protein (IGFBP) family have important immunomodulatory functions in MSCs, but the underlying mechanisms behind these functions have not yet been clearly elucidated. In this study, we investigate whether MSC-produced IGFBP7 is involved in immune modulation using a mouse experimental colitis model. Gene expression profiling revealed that IGFBP7 was highly expressed in MSCs. Consistent with this findings, IGFBP7 knockdown in MSCs significantly decreased their immunomodulatory properties, decreasing the antiproliferative functions of MSCs against T-cells, while also having an effect on the proinflammatory cytokine production of the T-cells. Furthermore, in the mouse experimental colitis model, MSC-derived IGFBP7 ameliorated the clinical and histopathological severity of induced colonic inflammation and also restored the injured gastrointestinal mucosal tissues. In conclusion, IGFBP7 contributes significantly to MSC-mediated immune modulation, as is shown by the ability of IGFBP7 knockdown in MSCs to restore proliferation and cytokine production in T-cells. These results suggest that IGFBP7 may act as a novel MSC-secreted immunomodulatory factor.
Collapse
Affiliation(s)
- Yan Liao
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junxia Lei
- Department of Experimental Physiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Muyun Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongxi Hong
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ying Tuo
- Department of Histopathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei Hua Jiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Huimin Xia
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Maosheng Wang
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, China
| | - Weijun Huang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Andy Peng Xiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
144
|
Alzaid A, Castro R, Wang T, Secombes CJ, Boudinot P, Macqueen DJ, Martin SAM. Cross Talk Between Growth and Immunity: Coupling of the IGF Axis to Conserved Cytokine Pathways in Rainbow Trout. Endocrinology 2016; 157:1942-55. [PMID: 27035654 DOI: 10.1210/en.2015-2024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although disease and infection is associated with attenuated growth, the molecular pathways involved are poorly characterized. We postulated that the IGF axis, a central governor of vertebrate growth, is repressed during infection to promote resource reallocation towards immunity. This hypothesis was tested in rainbow trout (Oncorhynchus mykiss) challenged by Aeromonas salmonicida (AS), a Gram-negative bacterial pathogen, or viral hemorrhagic septicemia virus (VHSv) at hatch, first feeding, and 3 weeks after first feeding. Quantitative transcriptional profiling was performed for genes encoding both IGF hormones, 19 salmonid IGF binding proteins (IGFBPs) and a panel of marker genes for growth and immune status. There were major differences in the developmental response of the IGF axis to AS and VHSv, with the VHSv challenge causing strong down-regulation of many genes. Despite this, IGFBP-1A1 and IGFBP-6A2 subtypes, each negative regulators of IGF signaling, were highly induced by AS and VHSv in striking correlation with host defense genes regulated by cytokine pathways. Follow-up experiments demonstrated a highly significant coregulation of IGFBP-1A1 and IGFBP-6A2 with proinflammatory cytokine genes in primary immune tissues (spleen and head kidney) when trout were challenged by a different Gram-negative bacterium, Yersinia ruckeri. Based on our findings, we propose a model where certain IGFBP subtypes are directly regulated by cytokine signaling pathways, allowing immediate modulation of growth and/or immune system phenotypes according to the level of activation of immunity. Our findings provide new and comprehensive insights into cross talk between conserved pathways regulating teleost growth, development, and immunity.
Collapse
Affiliation(s)
- Abdullah Alzaid
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Rosario Castro
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Tiehui Wang
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Pierre Boudinot
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences (A.A., T.W., C.J.S., D.J.M., S.A.M.M.), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and Virologie et Immunologie Moléculaires (R.C., P.B.), Institut National de la Recherche Agronomique, F-78352 Jouy-en-Josas, France
| |
Collapse
|
145
|
Endocrine and Local IGF-I in the Bony Fish Immune System. BIOLOGY 2016; 5:biology5010009. [PMID: 26821056 PMCID: PMC4810166 DOI: 10.3390/biology5010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.
Collapse
|
146
|
Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 2016; 14:3. [PMID: 26733412 PMCID: PMC4702316 DOI: 10.1186/s12967-015-0762-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/26/2015] [Indexed: 02/06/2023] Open
Abstract
Consistent evidence associates IGF-1 deficiency and metabolic syndrome. In this review, we will focus on the metabolic effects of IGF-1, the concept of metabolic syndrome and its clinical manifestations (impaired lipid profile, insulin resistance, increased glucose levels, obesity, and cardiovascular disease), discussing whether IGF-1 replacement therapy could be a beneficial strategy for these patients. The search plan was made in Medline for Pubmed with the following mesh terms: IGF-1 and "metabolism, carbohydrate, lipids, proteins, amino acids, metabolic syndrome, cardiovascular disease, diabetes" between the years 1963-2015. The search includes animal and human protocols. In this review we discuss the relevant actions of IGF-1 on metabolism and the implication of IGF-1 deficiency in the establishment of metabolic syndrome. Multiple studies (in vitro and in vivo) demonstrate the association between IGF-1 deficit and deregulated lipid metabolism, cardiovascular disease, diabetes, and an altered metabolic profile of diabetic patients. Based on the available data we propose IGF-1 as a key hormone in the pathophysiology of metabolic syndrome; due to its implications in the metabolism of carbohydrates and lipids. Previous data demonstrates how IGF-1 can be an effective option in the treatment of this worldwide increasing condition. It has to distinguished that the replacement therapy should be only undertaken to restore the physiological levels, never to exceed physiological ranges.
Collapse
Affiliation(s)
- G A Aguirre
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - J Rodríguez De Ita
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - R G de la Garza
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - I Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| |
Collapse
|
147
|
Smith TJ, Janssen JAMJL. Building the Case for Insulin-Like Growth Factor Receptor-I Involvement in Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2016; 7:167. [PMID: 28096798 PMCID: PMC5206614 DOI: 10.3389/fendo.2016.00167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of orbital Graves' disease (GD), a process known as thyroid-associated ophthalmopathy (TAO), remains incompletely understood. The thyrotropin receptor (TSHR) represents the central autoantigen involved in GD and has been proposed as the thyroid antigen shared with the orbit that could explain the infiltration of immune cells into tissues surrounding the eye. Another cell surface protein, insulin-like growth factor-I receptor (IGF-IR), has recently been proposed as a second antigen that participates in TAO by virtue of its interactions with anti-IGF-IR antibodies generated in GD, its apparent physical and functional complex formation with TSHR, and its necessary involvement in TSHR post-receptor signaling. The proposal that IGF-IR is involved in TAO has provoked substantial debate. Furthermore, several studies from different laboratory groups, each using different experimental models, have yielded conflicting results. In this article, we attempt to summarize the biological characteristics of IGF-IR and TSHR. We also review the evidence supporting and refuting the postulate that IGF-IR is a self-antigen in GD and that it plays a potentially important role in TAO. The putative involvement of IGF-IR in disease pathogenesis carries substantial clinical implications. Specifically, blocking this receptor with monoclonal antibodies can dramatically attenuate the induction by TSH and pathogenic antibodies generated in GD of proinflammatory genes in cultured orbital fibroblasts and fibrocytes. These cell types appear critical to the development of TAO. These observations have led to the conduct of a now-completed multicenter therapeutic trial of a fully human monoclonal anti-IGF-IR blocking antibody in moderate to severe, active TAO.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
- *Correspondence: Terry J. Smith,
| | - Joseph A. M. J. L. Janssen
- Department of Internal Medicine, Erasmus Medical Center, Division of Endocrinology, Rotterdam, Netherlands
| |
Collapse
|
148
|
Atkins SJ, Lentz SI, Fernando R, Smith TJ. Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution. Endocrinology 2015; 156:4731-40. [PMID: 26389690 PMCID: PMC4655214 DOI: 10.1210/en.2015-1464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A relationship between the actions of TSH and IGF-1 was first recognized several decades ago. The close physical and functional associations between their respective receptors (TSHR and IGF-1R) has been described more recently in thyroid epithelium and human orbital fibroblasts as has the noncanonical behavior of IGF-1R. Here we report studies conducted in lung fibroblasts from female wild-type C57/B6 (TSHR(+/+)) mice and their littermates in which TSHR has been knocked out (TSHR(-/-)). Flow cytometric analysis revealed that cell surface IGF-1R levels are substantially lower in TSHR(-/-) fibroblasts compared with TSHR(+/+) fibroblasts. Confocal immunofluorescence microscopy revealed similar divergence with regard to both cytoplasmic and nuclear IGF-1R. Western blot analysis demonstrated both intact IGF-1R and receptor fragments in both cellular compartments. In contrast, IGF-1R mRNA levels were similar in fibroblasts from mice without and with intact TSHR expression. IGF-1 treatment of TSHR(+/+) fibroblasts resulted in reduced nuclear and cytoplasmic staining for IGF-1Rα, whereas it enhanced the nuclear signal in TSHR(-/-) cells. In contrast, IGF-1 enhanced cytoplasmic IGF-1Rβ in TSHR(-/-) fibroblasts while increasing the nuclear signal in TSHR(+/+) cells. These findings indicate the intimate relationship between TSHR and IGF-1R found earlier in human orbital fibroblasts also exists in mouse lung fibroblasts. Furthermore, the presence of TSHR in these fibroblasts influenced not only the levels of IGF-1R protein but also its subcellular distribution and response to IGF-1. They suggest that the mouse might serve as a suitable model for delineating the molecular mechanisms overarching these two receptors.
Collapse
Affiliation(s)
- Stephen J Atkins
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Stephen I Lentz
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
149
|
Abstract
Environmental, genetic, and immune factors are at play in the development of the variable clinical manifestations of Graves' ophthalmopathy (GO). Among the environmental contributions, smoking is the risk factor most consistently linked to the development or worsening of the disease. The close temporal relationship between the diagnoses of Graves' hyperthyroidism and GO have long suggested that these 2 autoimmune conditions may share pathophysiologic features. The finding that the thyrotropin receptor (TSHR) is expressed in orbital fibroblasts, the target cells in GO, supported the notion of a common autoantigen. Both cellular and humeral immunity directed against TSHR expressed on orbital fibroblasts likely initiate the disease process. Activation of helper T cells recognizing TSHR peptides and ligation of TSHR by TRAb lead to the secretion of inflammatory cytokines and chemokines, and enhanced hyaluronic acid (HA) production and adipogenesis. The resulting connective tissue remodeling results in varying degrees extraocular muscle enlargement and orbital fat expansion. A subset of orbital fibroblasts express CD34, are bone-marrow derived, and circulate as fibrocytes that infiltrate connective tissues at sites of injury or inflammation. As these express high levels of TSHR and are capable of producing copious cytokines and chemokines, they may represent an orbital fibroblast population that plays a central role in GO development. In addition to TSHR, orbital fibroblasts from patients with GO express high levels of IGF-1R. Recent studies suggest that these receptors engage in cross-talk induced by TSHR ligation to synergistically enhance TSHR signaling, HA production, and the secretion of inflammatory mediators.
Collapse
Affiliation(s)
- R S Bahn
- Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
150
|
Kawa MP, Stecewicz I, Piecyk K, Pius-Sadowska E, Paczkowska E, Rogińska D, Sobuś A, Łuczkowska K, Gawrych E, Petriczko E, Walczak M, Machaliński B. Effects of growth hormone therapeutic supplementation on hematopoietic stem/progenitor cells in children with growth hormone deficiency: focus on proliferation and differentiation capabilities. Endocrine 2015; 50:162-75. [PMID: 25920498 PMCID: PMC4546702 DOI: 10.1007/s12020-015-0591-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/30/2015] [Indexed: 11/04/2022]
Abstract
We investigated the direct effects of growth hormone (GH) replacement therapy (GH-RT) on hematopoiesis in children with GH deficiency (GHD) with the special emphasis on proliferation and cell cycle regulation. Peripheral blood (PB) was collected from sixty control individuals and forty GHD children before GH-RT and in 3rd and 6th month of GH-RT to measure hematological parameters and isolate CD34(+)-enriched hematopoietic progenitor cells (HPCs). Selected parameters of PB were analyzed by hematological analyzer. Moreover, collected HPCs were used to analyze GH receptor (GHR) and IGF1 expression, clonogenicity, and cell cycle activity. Finally, global gene expression profile of collected HPCs was analyzed using genome-wide RNA microarrays. GHD resulted in a decrease in several hematological parameters related to RBCs and significantly diminished clonogenicity of erythroid progenies. In contrast, GH-RT stimulated increases in clonogenic growth of erythroid lineage and RBC counts as well as significant up-regulation of cell cycle-propagating genes, including MAP2K1, cyclins D1/E1, PCNA, and IGF1. Likewise, GH-RT significantly modified GHR expression in isolated HPCs and augmented systemic IGF1 levels. Global gene expression analysis revealed significantly higher expression of genes associated with cell cycle, proliferation, and differentiation in HPCs from GH-treated subjects. (i) GH-RT significantly augments cell cycle progression in HPCs and increases clonogenicity of erythroid progenitors; (ii) GHR expression in HPCs is modulated by GH status; (iii) molecular mechanisms by which GH influences hematopoiesis might provide a basis for designing therapeutic interventions for hematological complications related to GHD.
Collapse
Affiliation(s)
- M. P. Kawa
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - I. Stecewicz
- />Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - K. Piecyk
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - E. Pius-Sadowska
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - E. Paczkowska
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - D. Rogińska
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - A. Sobuś
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - K. Łuczkowska
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - E. Gawrych
- />Department of Pediatric and Oncological Surgery, Pomeranian Medical University, Szczecin, Poland
| | - E. Petriczko
- />Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - M. Walczak
- />Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - B. Machaliński
- />Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|