101
|
Abstract
Among prostaglandins, Prostaglandin E2 (PGE2) (PGE2) is considered especially important for decidualization, ovulation, implantation and pregnancy. Four major PGE2 receptor subtypes, EP1, EP2, EP3, EP4, as well as peroxisome proliferator-activated receptors (PPARs), mediate various PGE2 effects via their coupling to distinct signaling pathways. This review summarizes up-to-date literatures on the role of prostaglandin E2 receptors in female reproduction, which could provide a broad perspective to guide further research in this field. PGE2 plays an indispensable role in decidualization, ovulation, implantation and pregnancy. However, the precise mechanism of Prostaglandin E2 (EP) receptors in the female reproductive system is still limited. More investigations should be performed on the mechanism of EP receptors in the pathological states, and the possibility of EP agonists or antagonists clinically used in improving reproductive disorders.
Collapse
|
102
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
103
|
Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular Biology of Prostanoids and Drug Discovery. Arterioscler Thromb Vasc Biol 2020; 40:1454-1463. [PMID: 32295420 DOI: 10.1161/atvbaha.119.313234] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostanoids are a group of bioactive lipids that are synthesized de novo from membrane phospholipid-released arachidonic acid and have diverse functions in normal physiology and disease. NSAIDs (non-steroidal anti-inflammatory drugs), which are among the most commonly used medications, ameliorate pain, fever, and inflammation by inhibiting COX (cyclooxygenase), which is the rate-limiting enzyme in the biosynthetic cascade of prostanoids. The use of NSAIDs selective for COX-2 inhibition increases the risk of a thrombotic event (eg, myocardial infarction and stroke). All NSAIDs are associated with an increased risk of heart failure. Substantial variation in clinical responses to aspirin exists and is associated with cardiovascular risk. Limited clinical studies suggest the involvement of prostanoids in vascular restenosis in patients who received angioplasty intervention. mPGES (microsomal PG [prostaglandin] E synthase)-1, an alternative target downstream of COX, has the potential to be therapeutically targeted for inflammatory disease, with diminished thrombotic risk relative to selective COX-2 inhibitors. mPGES-1-derived PGE2 critically regulates microcirculation via its receptor EP (receptor for prostanoid E) 4. This review summarizes the actions and associated mechanisms for modulating the biosynthesis of prostanoids in thrombosis, vascular remodeling, and ischemic heart disease as well as their therapeutic relevance.
Collapse
Affiliation(s)
- Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yuze Zhang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Ziyi Guo
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
104
|
Interferon-γ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118720. [PMID: 32302669 DOI: 10.1016/j.bbamcr.2020.118720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.
Collapse
|
105
|
Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol 2020; 31:597-606. [PMID: 30926983 DOI: 10.1093/intimm/dxz021] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1-4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.
Collapse
Affiliation(s)
- Kyoshiro Tsuge
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
106
|
Graubner FR, Tavares Pereira M, Boos A, Kowalewski MP. Canine decidualization in vitro: extracellular matrix modification, progesterone mediated effects and selective blocking of prostaglandin E2 receptors. J Reprod Dev 2020; 66:319-329. [PMID: 32201411 PMCID: PMC7470904 DOI: 10.1262/jrd.2019-157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recently, we established an in vitro model with immortalized dog uterine stromal (DUS) cells for investigations into canine-specific decidualization. Their capability to decidualize was assessed with cAMP and prostaglandin (PG) E2. Here, we show that the effects of PGE2 are mediated through both of the cAMP-mediating PGE2 receptors (PTGER2/4). Their functional inhibition suppressed gene expression of PRLR and PGR in DUS cells. We also assessed the effects of cAMP and PGE2 on selected extracellular matrix components and CX43, and showed that cAMP, but not PGE2, increases COL4, extracellular matrix protein 1 (ECM1) and CX43 protein levels during in vitro decidualization, indicating a mesenchymal-epithelial decidual transformation in these cells. Thus, although PGE2 is involved in decidualization, it does not appear to regulate extracellular matrix. Further, the role of progesterone (P4) during in vitro decidualization was addressed. P4 upregulated PRLR and PGR in DUS cells, but these effects were not influenced by PGE2; both P4 and PGE2 hormones appeared to act independently. P4 did not affect IGF1 expression, which was upregulated by PGE2, however, it suppressed expression of IGF2, also in the presence of PGE2. Similarly, P4 did not affect PGE2 synthase (PTGES), but in the presence of PGE2 it increased PTGER2 levels and, regardless of the presence of PGE2, suppressed expression of PTGER4. Our results indicate a reciprocal regulatory loop between PGE2 and P4 during canine in vitro decidualization: whereas P4 may be involved in regulating PGE2-mediated decidualization by regulating the availability of its receptors, PGE2 regulates PGR levels in a manner dependent on PTGER2 and -4.
Collapse
Affiliation(s)
- Felix R Graubner
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
107
|
Butler TA, Paul JW, Smith R. Non-conventional signalling in human myometrium by conventional pathways: looking back for a synergistic future. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
108
|
Pharmacology and perspectives in erectile dysfunction in man. Pharmacol Ther 2020; 208:107493. [PMID: 31991196 DOI: 10.1016/j.pharmthera.2020.107493] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
Penile erection is a perfect example of microcirculation modulated by psychological factors and hormonal status. It is the result of a complex neurovascular process that involves the integrative synchronized action of vascular endothelium; smooth muscle; and psychological, neuronal, and hormonal systems. Therefore, the fine coordination of these events is essential to maintain penile flaccidity or allow erection; an alteration of these events leads to erectile dysfunction (ED). ED is defined as the consistent or recurrent inability of a man to attain and/or maintain a penile erection sufficient for sexual activity. A great boost to this research field was given by commercialization of phosphodiesterase-5 (PDE5) inhibitors. Indeed, following the discovery of sildenafil, research on the mechanisms underlying penile erection has had an enormous boost, and many preclinical and clinical papers have been published in the last 10 years. This review is structured to provide an overview of the mediators and peripheral mechanism(s) involved in penile function in men, the drugs used in therapy, and the future prospective in the management of ED. Indeed, 30% of patients affected by ED are classified as "nonresponders," and there is still an unmet need for therapeutic alternatives. A flowchart suggesting the guidelines for ED evaluation and the ED pharmacological treatment is also provided.
Collapse
|
109
|
|
110
|
|
111
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
112
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
113
|
Oral administration of EP4-selective agonist KAG-308 suppresses mouse knee osteoarthritis development through reduction of chondrocyte hypertrophy and TNF secretion. Sci Rep 2019; 9:20329. [PMID: 31889132 PMCID: PMC6937271 DOI: 10.1038/s41598-019-56861-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is one of the world’s most common degenerative diseases, but there is no disease-modifying treatment available. Previous studies have shown that prostaglandin E2 (PGE2) and PGE2 receptor 4 (EP4) are involved in OA pathogenesis; however, their roles are not fully understood. Here, we examined the efficacy of oral administration of KAG-308, an EP4-selective agonist, in surgically induced mouse knee OA. Cartilage degeneration and synovitis were significantly inhibited by the KAG-308 treatment. Chondrocyte hypertrophy and expression of tumor necrosis factor alpha (TNF) and matrix metalloproteinase 13 (Mmp13) in the synovium were suppressed in the KAG-308-treated mice. In cultured chondrocytes, hypertrophic differentiation was inhibited by KAG-308 and intranuclear translocation of histone deacetylase 4 (Hdac4) was enhanced. In cultured synoviocytes, lipopolysaccharide (LPS)-induced expression of TNF and Mmp13 was also suppressed by KAG-308. KAG-308 was detected in the synovium and cartilage of orally treated mice. TNF secretion from the synovia of KAG-308-treated mice was significantly lower than control mice. Thus, we conclude that oral administration of KAG-308 suppresses OA development through suppression of chondrocyte hypertrophy and synovitis. KAG-308 may be a potent candidate for OA drug development.
Collapse
|
114
|
Chiang N, Libreros S, Norris PC, de la Rosa X, Serhan CN. Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J Clin Invest 2019; 129:5294-5311. [PMID: 31657786 PMCID: PMC6877300 DOI: 10.1172/jci129448] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Resolution of acute inflammation is an active process orchestrated by endogenous mediators and mechanisms pivotal in host defense and homeostasis. The macrophage mediator in resolving inflammation, maresin 1 (MaR1), is a potent immunoresolvent, stimulating resolution of acute inflammation and organ protection. Using an unbiased screening of greater than 200 GPCRs, we identified MaR1 as a stereoselective activator for human leucine-rich repeat containing G protein-coupled receptor 6 (LGR6), expressed in phagocytes. MaR1 specificity for recombinant human LGR6 activation was established using reporter cells expressing LGR6 and functional impedance sensing. MaR1-specific binding to LGR6 was confirmed using 3H-labeled MaR1. With human and mouse phagocytes, MaR1 (0.01-10 nM) enhanced phagocytosis, efferocytosis, and phosphorylation of a panel of proteins including the ERK and cAMP response element-binding protein. These MaR1 actions were significantly amplified with LGR6 overexpression and diminished by gene silencing in phagocytes. Thus, we provide evidence for MaR1 as an endogenous activator of human LGR6 and a novel role of LGR6 in stimulating MaR1's key proresolving functions of phagocytes.
Collapse
|
115
|
Inhibitors of Eicosanoid Biosynthesis Reveal that Multiple Lipid Signaling Pathways Influence Malaria Parasite Survival in Anopheles gambiae. INSECTS 2019; 10:insects10100307. [PMID: 31547026 PMCID: PMC6835628 DOI: 10.3390/insects10100307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
Eicosanoids are bioactive signaling lipids derived from the oxidation of fatty acids that act as important regulators of immune homeostasis and inflammation. As a result, effective anti-inflammatory drugs have been widely used to reduce pain and inflammation which target key eicosanoid biosynthesis enzymes. Conserved from vertebrates to insects, the use of these eicosanoid pathway inhibitors offer opportunities to evaluate the roles of eicosanoids in less-characterized insect systems. In this study, we examine the potential roles of eicosanoids on malaria parasite survival in the mosquito Anopheles gambiae. Using Plasmodium oocyst numbers to evaluate parasite infection, general or specific inhibitors of eicosanoid biosynthesis pathways were evaluated. Following the administration of dexamethasone and indomethacin, respective inhibitors of phospholipid A2 (PLA2) and cyclooxygenase (COX), oocyst numbers were unaffected. However, inhibition of lipoxygenase (LOX) activity through the use of esculetin significantly increased oocyst survival. In contrast, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid (AUDA), an inhibitor of epoxide hydroxylase (EH), decreased oocyst numbers. These experiments were further validated through RNAi experiments to silence candidate genes homologous to EH in An. gambiae to confirm their contributions to Plasmodium development. Similar to the results of AUDA treatment, the silencing of EH significantly reduced oocyst numbers. These results imply that specific eicosanoids in An. gambiae can have either agonist or antagonistic roles on malaria parasite survival in the mosquito host.
Collapse
|
116
|
Roul D, Rozec B, Ferron M, Erfanian M, Persello A, Audigane L, Grabherr A, Erraud A, Merlet N, Guijarro D, Muramatsu I, Lauzier B, Gauthier C. β 1-Adrenergic cardiac contractility is increased during early endotoxemic shock: Involvement of cyclooxygenases. Life Sci 2019; 236:116865. [PMID: 31525428 DOI: 10.1016/j.lfs.2019.116865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS Endothelial dysfunction is one of the earliest symptoms in septic patients and plays an important role in the cardiovascular alterations. However, the endothelial mechanisms involved in the impaired sympathetic regulation of the cardiovascular system are not clear. This study aimed to determine the role of the endocardial endothelium (EE) in the cardiac β-adrenergic (β-AR) remodeling at the early phase of endotoxemic shock. MAIN METHODS Rats received either lipopolysaccharide (LPS) or saline (control) intravenously. Three hours later, β-AR cardiac contractility was evaluated on papillary muscles with or without a functional EE. KEY FINDINGS Isoproterenol-induced contractility was strongly increased in papillary muscles from LPS rats. A similar increase was observed with a β1-AR stimulation, whereas β2-AR and β3-AR produced similar contractility in control and LPS treatments. The removal of the EE did not modify β1-AR-induced contractility in controls, whereas it abolished the increased β1-AR response in LPS-treated muscles. In LPS-treated papillary muscle, the increased β1-AR-induced contractility was not modified by pretreatment with a NOS inhibitor or an endothelin receptor antagonist. Conversely, the increased β1-AR-induced contractility was abolished by indomethacin, a non-selective cyclooxygenase (COX) inhibitor, as well as by selective inhibitors of COX1 and COX2. An early treatment with indomethacin improved the survival of LPS rat. SIGNIFICANCE Our results suggest that the EE is involved in the increased cardiac β1-AR contractility in the early phase of endotoxemic shock. This effect is mediated through the activation of COX1 and COX2 and suggests these may be novel putative therapeutic targets during endotoxemic shock.
Collapse
Affiliation(s)
- David Roul
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Bertrand Rozec
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.
| | - Marine Ferron
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Leslie Audigane
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | - Nolwenn Merlet
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Damien Guijarro
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | | | | | |
Collapse
|
117
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
118
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
119
|
|
120
|
Shen L, Patel JA, Norel X, Moledina S, Whittle BJ, von Kessler K, Sista P, Clapp LH. Pharmacology of the single isomer, esuberaprost (beraprost-314d) on pulmonary vascular tone, IP receptors and human smooth muscle proliferation in pulmonary hypertension. Biochem Pharmacol 2019; 166:242-252. [DOI: 10.1016/j.bcp.2019.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
|
121
|
Hester A, Salzmann B, Rahmeh M, Kolben T, Czogalla B, Ditsch N, Mahner S, Jeschke U, Kolben TM. EP3 receptor antagonist L798,106 reduces proliferation and migration of SK-BR-3 breast cancer cells. Onco Targets Ther 2019; 12:6053-6068. [PMID: 31534346 PMCID: PMC6680222 DOI: 10.2147/ott.s204919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/11/2019] [Indexed: 01/02/2023] Open
Abstract
Purpose: COX-2 overexpression and elevated levels of prostaglandin E2 (PGE2) play an important role in breast cancer carcinogenesis. Recently, expression of the PGE2 receptor EP3 has been shown to be a positive prognostic factor in breast cancer. This study analyzes the functional aspects of targeting EP3 in breast cancer cell lines. Material and methods: EP3 and EP1 expressions were determined in five breast cancer cell lines on the mRNA- and the protein-level. The selected cell lines were subsequently stimulated for 24-72 hrs with 10-1,000 nM of PGE2, the EP1/EP3 agonist sulprostone and the EP3 antagonist L798,106. Cell proliferation was determined via BrdU-assay, migration via scratch assay, EP3, Gi-protein and p-ERK1/2 expressions via Western blot and cAMP concentrations via ELISA. The Mann-Whitney-U-test was used to test for statistical significance. Results: The cell lines T-47D (EP3 expression 77.7%) and SK-BR-3 (EP3 expression 48.7%) were chosen. EP3 antagonism reduced its expression on SK-BR-3 significantly, while no effect was observed on T-47D. The proliferation and migration of SK-BR-3 cells were significantly reduced due to treatment with the EP1/3 agonist, the EP3 antagonist or a combination of both. Neither agonism nor antagonism influenced cell proliferation or migration in T-47D. In SK-BR-3, EP3 antagonism showed a significant decrease in Gi-protein levels, an increase in cAMP levels, and no significant change in p-ERK1/2 expression. Conclusion: Antagonism of the EP3 receptor results in a reduced proliferation and migration of SK-BR-3 breast cancer cells, potentially mediated via a Gi-protein-cAMP pathway. The results suggest that EP3 plays a role in tumorigenesis. This is in accordance with the cell culture data of other gynecological tumors, but it is conflicting in so far, as positive EP3 expression is clinically a positive prognostic marker in breast cancer. Therefore, other factors may be important in explaining this contradiction.
Collapse
Affiliation(s)
- Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Barbara Salzmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
122
|
Woodward DF, Wang JW, Stamer WD, Lütjen-Drecoll E, Krauss AHP, Toris CB. Antiglaucoma EP 2 Agonists: A Long Road That Led Somewhere. J Ocul Pharmacol Ther 2019; 35:469-474. [PMID: 31329508 DOI: 10.1089/jop.2019.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For >2 decades, EP2 agonists have been the subject of antiglaucoma research and development by scientists in industry and academia around the world. The road has led to the recent approval of the first drug of this class. This article reviews the development of EP2 agonists from conception to clinical approval, discussing pharmacology, structure, biodistribution, therapeutics, and drug delivery. An extensive list of source references is provided for the reader's benefit.
Collapse
Affiliation(s)
- David F Woodward
- Department of Bioengineering, Imperial College London, London, United Kingdom.,JeniVision, Inc., Irvine, California
| | | | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | | | - Carol B Toris
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
123
|
Biringer RG. The Role of Eicosanoids in Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142560. [PMID: 31323750 PMCID: PMC6678666 DOI: 10.3390/ijerph16142560] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer's Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd., Bradenton, FL 34211, USA.
| |
Collapse
|
124
|
Petersen CH, Mahmood B, Badsted C, Dahlby T, Rasmussen HB, Hansen MB, Bindslev N. Possible predisposition for colorectal carcinogenesis due to altered gene expressions in normal appearing mucosa from patients with colorectal neoplasia. BMC Cancer 2019; 19:643. [PMID: 31253108 PMCID: PMC6599319 DOI: 10.1186/s12885-019-5833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background Investigations of colorectal carcinogenesis have mainly focused on examining neoplastic tissue. With our aim of identifying potentially cancer-predisposing molecular compositions, we chose a different approach by examining endoscopically normal appearing colonic mucosa of patients with and without colorectal neoplasia (CRN). Directed by this focus, we selected 18 genes that were previously found with altered expression in colorectal cancer affected mucosa. Methods Biopsies of colonic mucosa were sampled from 27 patients referred for colonoscopy on suspicion of colorectal disease. Of these, 14 patients had present or previous CRN and the remaining 13 patients served as controls. Using qPCR and Western blot technique, we investigated mRNA and protein expressions. Expressions were investigated for selected kinases in the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK), the phosphoinositide 3-kinase/Akt, and the Wnt/β-catenin pathways as well as for selected phosphatases and several entities associated with prostaglandin E2 (PGE2) signaling. Colonic mucosal contents of PGE2 and PGE2 metabolites were determined by use of ELISA. Results We found up-regulation of ERK1, ERK2, Akt1, Akt2, PLA2G4A, prostanoid receptor EP3 and phosphatase scaffold subunit PPP2R1B mRNA expression in normal appearing colonic mucosa of CRN patients compared to controls. Conclusion Present study supports that even normal appearing mucosa of CRN patients differs from that of non-CRN patients at a molecular level. Especially expression of ERK1 mRNA was increased (p = 0.007) in CRN group. ERK1 may therefore be considered a potential candidate gene as predictive biomarker for developing CRN. Further validation in larger cohorts are required to determine such predictive use in translational medicine and clinics.
Collapse
Affiliation(s)
| | - Badar Mahmood
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, Denmark
| | - Christoffer Badsted
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Tina Dahlby
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hanne Borger Rasmussen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Mark Berner Hansen
- Digestive Disease Center K, Bispebjerg Hospital, DK-2400, Copenhagen, Denmark
| | - Niels Bindslev
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
125
|
Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, Ono Y, Shinjo Y, Ishida S, Arang N, Kawakami K, Gutkind JS, Aoki J, Russell RB. Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell 2019; 177:1933-1947.e25. [PMID: 31160049 DOI: 10.1016/j.cell.2019.04.044] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
Abstract
Heterotrimetic G proteins consist of four subfamilies (Gs, Gi/o, Gq/11, and G12/13) that mediate signaling via G-protein-coupled receptors (GPCRs), principally by receptors binding Gα C termini. G-protein-coupling profiles govern GPCR-induced cellular responses, yet receptor sequence selectivity determinants remain elusive. Here, we systematically quantified ligand-induced interactions between 148 GPCRs and all 11 unique Gα subunit C termini. For each receptor, we probed chimeric Gα subunit activation via a transforming growth factor-α (TGF-α) shedding response in HEK293 cells lacking endogenous Gq/11 and G12/13 proteins, and complemented G-protein-coupling profiles through a NanoBiT-G-protein dissociation assay. Interrogation of the dataset identified sequence-based coupling specificity features, inside and outside the transmembrane domain, which we used to develop a coupling predictor that outperforms previous methods. We used the predictor to engineer designer GPCRs selectively coupled to G12. This dataset of fine-tuned signaling mechanisms for diverse GPCRs is a valuable resource for research in GPCR signaling.
Collapse
Affiliation(s)
- Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; Advanced Research & Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan; Advanced Research & Development Programs for Medical Innovation (LEAP), AMED, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | | - Gurdeep Singh
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Takayuki Kishi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Akiharu Uwamizu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yuji Shinjo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Satoru Ishida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Nadia Arang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; Advanced Research & Development Programs for Medical Innovation (LEAP), AMED, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
126
|
Wang TA, Teo CF, Åkerblom M, Chen C, Tynan-La Fontaine M, Greiner VJ, Diaz A, McManus MT, Jan YN, Jan LY. Thermoregulation via Temperature-Dependent PGD 2 Production in Mouse Preoptic Area. Neuron 2019; 103:309-322.e7. [PMID: 31151773 DOI: 10.1016/j.neuron.2019.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
Body temperature control is essential for survival. In mammals, thermoregulation is mediated by the preoptic area of anterior hypothalamus (POA), with ∼30% of its neurons sensitive to brain temperature change. It is still unknown whether and how these temperature-sensitive neurons are involved in thermoregulation, because for eight decades they have only been identified via electrophysiological recording. By combining single-cell RNA-seq with whole-cell patch-clamp recordings, we identified Ptgds as a genetic marker for temperature-sensitive POA neurons. Then, we demonstrated these neurons' role in thermoregulation via chemogenetics. Given that Ptgds encodes the enzyme that synthesizes prostaglandin D2 (PGD2), we further explored its role in thermoregulation. Our study revealed that rising temperature of POA alters the activity of Ptgds-expressing neurons so as to increase PGD2 production. PGD2 activates its receptor DP1 and excites downstream neurons in the ventral medial preoptic area (vMPO) that mediates body temperature decrease, a negative feedback loop for thermoregulation.
Collapse
Affiliation(s)
- Tongfei A Wang
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chin Fen Teo
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Malin Åkerblom
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Chen
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marena Tynan-La Fontaine
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanille Juliette Greiner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
127
|
Iwasaki R, Tsuge K, Kishimoto K, Hayashi Y, Iwaana T, Hohjoh H, Inazumi T, Kawahara A, Tsuchiya S, Sugimoto Y. Essential role of prostaglandin E 2 and the EP3 receptor in lymphatic vessel development during zebrafish embryogenesis. Sci Rep 2019; 9:7650. [PMID: 31114004 PMCID: PMC6529442 DOI: 10.1038/s41598-019-44095-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Lymphatic endothelial cells arise from the venous endothelial cells in embryonic lymphatic development. However, the molecular mechanisms remain to be elucidated. We here report that prostaglandin (PG) E2 plays essential roles in the embryonic lymphatic development through the EP3 receptor, one of the PGE2 receptors. Knockdown of the EP3 receptor or inhibition of cyclooxygenases (COX; rate-limiting enzymes for PG synthesis) impaired lymphatic development by perturbing lymphatic specification during zebrafish development. These impairments by COX inhibition were recovered by treatment with sulprostone (EP1/3 agonist). Knockdown of the EP3 receptor further demonstrated its requirement in the expression of sex determining region Y-box 18 (sox18) and nuclear receptor subfamily 2, group F, member 2 (nr2f2), essential factors of the lymphatic specification. The EP3 receptor was expressed in the posterior cardinal vein (region of embryonic lymphatic development) and the adjacent intermediate cell mass (ICM) during the lymphatic specification. COX1 was expressed in the region more upstream of the posterior cardinal vein relative to the EP3 receptor, and the COX1-selective inhibitor impaired the lymphatic specification. On the other hand, two COX2 subtypes did not show distinct sites of expression around the region of expression of the EP3 receptor. Finally, we generated EP3-deficient zebrafish, which also showed defect in lymphatic specification and development. Thus, we demonstrated that COX1-derived PGE2-EP3 pathway is required for embryonic lymphatic development by upregulating the expression of key factors for the lymphatic specification.
Collapse
Affiliation(s)
- Ryo Iwasaki
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Kyoshiro Tsuge
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Koichiro Kishimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Yuta Hayashi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Takuya Iwaana
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Hirofumi Hohjoh
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Tokyo, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan. .,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Tokyo, Japan.
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, 862-0973, Kumamoto, Japan. .,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Tokyo, Japan.
| |
Collapse
|
128
|
Cabassi A, Tedeschi S, Perlini S, Verzicco I, Volpi R, Gonzi G, Canale SD. Non-steroidal anti-inflammatory drug effects on renal and cardiovascular function: from physiology to clinical practice. Eur J Prev Cardiol 2019; 27:850-867. [PMID: 31088130 DOI: 10.1177/2047487319848105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive or inappropriate use of non-steroidal anti-inflammatory drugs can affect cardiovascular and renal function. Non-steroidal anti-inflammatory drugs, both non-selective and selective cyclooxygenase 2 inhibitors, are among the most widely used drugs, especially in the elderly, with multiple comorbidities. Exposition to a polypharmacy burden represents a favourable substrate for the onset of non-steroidal anti-inflammatory drug-induced deleterious effects. Cardiovascular and renal issues concerning the occurrence of myocardial infarction, atrial fibrillation, heart failure and arterial hypertension, as well as acute or chronic kidney damage, become critical for clinicians in their daily practice. We discuss current available knowledge regarding prostanoid physiology in vascular, cardiac and renal systems, pointing out potential negative non-steroidal anti-inflammatory drug-related issues in clinical practice.
Collapse
Affiliation(s)
| | - Stefano Tedeschi
- Cardiorenal Research Unit, University of Parma, Parma, Italy.,Cardiology Unit, Ospedale Vaio, Vaio-Fidenza, Parma, Italy
| | - Stefano Perlini
- Unità di Medicina Interna, Università di Pavia, Vaio-Fidenza, Parma, Italy
| | | | - Riccardo Volpi
- Cardiorenal Research Unit, University of Parma, Parma, Italy
| | - Gianluca Gonzi
- Cardiology Unit, Azienda Ospedaliera-Universitaria di Parma, Italy
| | | |
Collapse
|
129
|
Li T, Liu B, Mao W, Gao R, Wu J, Deng Y, Shen Y, Liu K, Cao J. Prostaglandin E 2 promotes nitric oxide synthase 2, platelet-activating factor receptor, and matrix metalloproteinase-2 expression in Escherichia coli-challenged ex vivo endometrial explants via the prostaglandin E 2 receptor 4/protein kinase a signaling pathway. Theriogenology 2019; 134:65-73. [PMID: 31136957 DOI: 10.1016/j.theriogenology.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/27/2022]
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator involved in the pathogenesis of several chronic inflammatory conditions, including endometritis. Previous studies have shown that PGE2 accumulates in Escherichia coli-challenged ex vivo endometrial explants, increasing the expression of pro-inflammatory factors and aggravating tissue damage; these alterations are linked to key enzymes involved in the synthesis of PGE2, including cyclooxygenases-2 (COX-2) and microsomal PGES-1 (mPGES-1). In this study, we aimed to investigate whether administration of PGE2 modulated the activities of nitric oxide synthase 2 (NOS2), platelet-activating factor receptor (PAFR), and matrix metalloproteinase (MMP)-2 in E. coli-challenged ex vivo bovine endometrial explants. Our findings showed that COX-2 and mPGES-1 inhibitors significantly reduced NOS2, PAFR, and MMP-2 expression in the E. coli-challenged ex vivo endometrial explants. In addition, NOS2, PAFR, and MMP-2 expression levels were strongly increased in response to treatment with 15-prostaglandin dehydrogenase inhibitors in the E. coli-challenged ex vivo endometrial explants. However, these stimulatory effects could be blocked by PGE2 receptor 4 (EP4) and protein kinase A (PKA) inhibitors. Overall, these findings show that pathogenic PGE2 upregulated NOS2, PAFR, and MMP-2 expression, which may enhance inflammatory damage via the EP4/PKA signaling pathway in E. coli-challenged ex vivo endometrial explants.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yang Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China.
| |
Collapse
|
130
|
Buisseret B, Guillemot-Legris O, Muccioli GG, Alhouayek M. Prostaglandin D2-glycerol ester decreases carrageenan-induced inflammation and hyperalgesia in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:609-618. [DOI: 10.1016/j.bbalip.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/19/2022]
|
131
|
Zhu L, Xu C, Huo X, Hao H, Wan Q, Chen H, Zhang X, Breyer RM, Huang Y, Cao X, Liu DP, FitzGerald GA, Wang M. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat Commun 2019; 10:1888. [PMID: 31015404 PMCID: PMC6478873 DOI: 10.1038/s41467-019-09492-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
The use of nonsteroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX)-1 and COX-2, increases heart failure risk. It is unknown whether microsomal (m) prostaglandin (PG) E synthase (S)-1, a target downstream of COX, regulates myocardial (M) ischemia/reperfusion (I/R) injury, a key determinant of heart failure. Here we report that COX-1 and mPGES-1 mediate production of substantial amounts of PGE2 and confer cardiac protection in MI/R. Deletion of mPges-1 impairs cardiac microvascular perfusion and increases inflammatory cell infiltration in mouse MI/R. Consistently, mPges-1 deletion depresses the arteriolar dilatory response to I/R in vivo and to acetylcholine ex vivo, and enhances leukocyte-endothelial cell interaction, which is mediated via PGE receptor-4 (EP4). Furthermore, endothelium-restricted Ep4 deletion impairs microcirculation, and exacerbates MI/R injury, irrespective of EP4 agonism. Treatment with misoprostol, a clinically available PGE analogue, improves microcirculation and reduces MI/R injury. Thus, mPGES-1, a key microcirculation protector, constrains MI/R injury and this beneficial effect is partially mediated via endothelial EP4. The use of nonsteroidal anti-inflammatory drugs inhibiting COX-1/2 is associated with an increased risk of heart failure. Here the authors show that mPGES-1, a therapeutic target downstream of COX enzymes, protects from cardiac ischemia/reperfusion injury, limiting leukocyte-endothelial interactions and preserving microvascular perfusion partly via the endothelial EP4 receptor.
Collapse
Affiliation(s)
- Liyuan Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xingyu Huo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Huifeng Hao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases and Department of Physiology, Tianjin Medical University, Tianjin, 300070, China
| | - Richard M Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuetao Cao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - De-Pei Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. .,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
132
|
Tóth AD, Schell R, Lévay M, Vettel C, Theis P, Haslinger C, Alban F, Werhahn S, Frischbier L, Krebs-Haupenthal J, Thomas D, Gröne HJ, Avkiran M, Katus HA, Wieland T, Backs J. Inflammation leads through PGE/EP 3 signaling to HDAC5/MEF2-dependent transcription in cardiac myocytes. EMBO Mol Med 2019; 10:emmm.201708536. [PMID: 29907596 PMCID: PMC6034133 DOI: 10.15252/emmm.201708536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The myocyte enhancer factor 2 (MEF2) regulates transcription in cardiac myocytes and adverse remodeling of adult hearts. Activators of G protein-coupled receptors (GPCRs) have been reported to activate MEF2, but a comprehensive analysis of GPCR activators that regulate MEF2 has to our knowledge not been performed. Here, we tested several GPCR agonists regarding their ability to activate a MEF2 reporter in neonatal rat ventricular myocytes. The inflammatory mediator prostaglandin E2 (PGE2) strongly activated MEF2. Using pharmacological and protein-based inhibitors, we demonstrated that PGE2 regulates MEF2 via the EP3 receptor, the βγ subunit of Gi/o protein and two concomitantly activated downstream pathways. The first consists of Tiam1, Rac1, and its effector p21-activated kinase 2, the second of protein kinase D. Both pathways converge on and inactivate histone deacetylase 5 (HDAC5) and thereby de-repress MEF2. In vivo, endotoxemia in MEF2-reporter mice induced upregulation of PGE2 and MEF2 activation. Our findings provide an unexpected new link between inflammation and cardiac remodeling by de-repression of MEF2 through HDAC5 inactivation, which has potential implications for new strategies to treat inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- András D Tóth
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Richard Schell
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Magdolna Lévay
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Theis
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Clemens Haslinger
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Felix Alban
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Stefanie Werhahn
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Lina Frischbier
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Jutta Krebs-Haupenthal
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Metin Avkiran
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Hugo A Katus
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Wieland
- DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.,Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| |
Collapse
|
133
|
Feng W, Ma C, Gao G, Wang H, Sui Y, Xu W, Liu W, Han W, Li H. Elevated expression of EP4 in human decidua is associated with delayed embryo expulsion during medical abortion by promoting decidual cell proliferation. J Matern Fetal Neonatal Med 2019; 34:41-48. [PMID: 30810415 DOI: 10.1080/14767058.2019.1587405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Mifepristone in conjunction with misoprostol, is widely used in China as an effective medical abortifacient. However, a small proportion of women experience the unpleasant side effects of prolonged vaginal bleeding caused by delayed embryo expulsion. The aims of this study were to determine whether the expression levels of prostanoid receptors in human decidua are associated with delayed embryo expulsion in mifepristone-misoprostol induced an early medical abortion.Methods: Discharged decidua tissues were collected from females undergoing an artificial abortion (AA) (n = 28), females with early embryo expulsion during a medical abortion (EEMA) (n = 20) and delayed embryo expulsion in medical abortion (DEMA) (n = 30). The expression levels of prostanoid receptors in human decidua were assessed with immunohistochemistry and real-time PCR methods. Further, the RNAi method was used to silence prostanoid receptors 4 (EP4) in the primary decidual cells and human endometrial adenocarcinoma cell line Ishikawa cells in vitro and cell cycle analysis of these cells was performed.Results: All five prostanoid receptors (EP1-4, FP) were observed in human early pregnancy decidua. The protein and mRNA expression level of EP4 in the DEMA group were all significantly higher than that in the EEMA group. EP4 silence induced G1/S arrest of primary decidual cells and Ishikawa cells in vitro.Conclusions: Elevated expression level of EP4 in human decidua was significantly associated with delayed embryo expulsion in early medical abortion by promoting decidual cell proliferation. Detailed studies on the nature of roles EP4 plays in human decidua will help us to develop more effective prevention and noninvasive intervention approaches for delayed embryo expulsion during a medical abortion.
Collapse
Affiliation(s)
- Wenhua Feng
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Chao Ma
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Guoqiang Gao
- Tengzhou Central People's Hospital, Tengzhou, China
| | - Hong Wang
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yang Sui
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Xu
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Liu
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Weitian Han
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Hongtu Li
- Key Laboratory of Reproductive Health and Medical Genetics, National Health and Family Planning Commission, Liaoning Province Research Institute of Family Planning, China Medical University, Shenyang, China
| |
Collapse
|
134
|
Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini YM, Bourgois-Mochel A, Yuan W, Kimber M, Qi Y, Wang Q, Wannemuehler M, Ellinwood NM, Snella E, Martin M, Skala M, Meyerholz D, Estes M, Fernandez-Zapico ME, Jergens AE, Mochel JP, Allenspach K. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol 2019; 17:33. [PMID: 30975131 PMCID: PMC6460554 DOI: 10.1186/s12915-019-0652-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background Large animal models, such as the dog, are increasingly being used for studying diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between commonly used animal models, such as rodents, and humans, and expand the translational potential of the dog model, we developed a three-dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures. Results Organoids were derived from tissue of more than 40 healthy dogs and dogs with GI conditions, including inflammatory bowel disease (IBD) and intestinal carcinomas. Adult intestinal stem cells (ISC) were isolated from whole jejunal tissue as well as endoscopically obtained duodenal, ileal, and colonic biopsy samples using an optimized culture protocol. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization, and transmission electron microscopy, to determine the extent to which they recapitulated the in vivo tissue characteristics. Physiological relevance of the enteroid system was defined using functional assays such as optical metabolic imaging (OMI), the cystic fibrosis transmembrane conductance regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research. We have furthermore created a collection of cryopreserved organoids to facilitate future research. Conclusions We establish the canine GI organoid systems as a model to study naturally occurring intestinal diseases in dogs and humans, and that can be used for toxicology studies, for analysis of host-pathogen interactions, and for other translational applications. Electronic supplementary material The online version of this article (10.1186/s12915-019-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lawrance Chandra
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | | | - Dawn Kingsbury
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Todd Atherly
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | | | | | - Wang Yuan
- Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Michael Kimber
- Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Yijun Qi
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Qun Wang
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | - Melissa Skala
- Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - David Meyerholz
- Division of Comparative Pathology, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Mary Estes
- Baylor College of Medicine, Houston, TX, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Albert E Jergens
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | | | - Karin Allenspach
- Departments of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA.
| |
Collapse
|
135
|
Woodward DF, Wang JW, Ni M, Bauer AJ, Poloso NJ. In Vivo Choroidal Neovascularization and Macrophage Studies Provide Further Evidence for a Broad Role of Prostacyclin in Angiogenesis. J Ocul Pharmacol Ther 2019; 35:98-105. [DOI: 10.1089/jop.2018.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- David F. Woodward
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Jenny W. Wang
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Ming Ni
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Alex J. Bauer
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Neil J. Poloso
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| |
Collapse
|
136
|
Mukherjee S, Sheng W, Michkov A, Sriarm K, Sun R, Dvorkin-Gheva A, Insel PA, Janssen LJ. Prostaglandin E 2 inhibits profibrotic function of human pulmonary fibroblasts by disrupting Ca 2+ signaling. Am J Physiol Lung Cell Mol Physiol 2019; 316:L810-L821. [PMID: 30758990 DOI: 10.1152/ajplung.00403.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have shown that calcium (Ca2+) oscillations in human pulmonary fibroblasts (HPFs) contribute to profibrotic effects of transforming growth factor-β (TGF-β) and that disruption of these oscillations blunts features of pulmonary fibrosis. Prostaglandin E2 (PGE2) exerts antifibrotic effects in the lung, but the mechanisms for this action are not well defined. We thus sought to explore interactions between PGE2 and the profibrotic agent TGF-β in pulmonary fibroblasts (PFs) isolated from patients with or without idiopathic pulmonary fibrosis (IPF). PGE2 inhibited TGF-β-promoted [Ca2+] oscillations and prevented the activation of Akt and Ca2+/calmodulin-dependent protein kinase-II (CaMK-II) but did not prevent activation of Smad-2 or ERK. PGE2 also eliminated TGF-β-stimulated expression of collagen A1, fibronectin, and α-smooth muscle actin and reduced stress fiber formation in the HPFs. RNA sequencing revealed that HPFs preferentially express EP2 receptors relative to other prostanoid receptor subtypes: EP2 expression is ~10-fold higher than that of EP4 receptors; EP1 and EP3 receptors are barely detectable; and EP2-receptor expression is ~3.5-fold lower in PFs from IPF patients than in normal HPFs. The inhibitory effects of PGE2 on synthetic function and stress fiber formation were blocked by selective EP2 or EP4 antagonists and mimicked by selective EP2 or EP4 agonists, the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin, all of which elevate cellular cAMP concentrations. We conclude that PGE2, likely predominantly via EP2 receptors, interferes with Ca2+ signaling, CaMK-II activation, and Akt activation in IPF-HPFs and HPFs treated with TGF-β. Moreover, a decreased expression of EP2 receptors in pulmonary fibroblasts from IPF patients may contribute to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Wei Sheng
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Alexander Michkov
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Krishna Sriarm
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Rui Sun
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
137
|
Audet M, Stevens RC. Emerging structural biology of lipid G protein-coupled receptors. Protein Sci 2019; 28:292-304. [PMID: 30239054 PMCID: PMC6319753 DOI: 10.1002/pro.3509] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023]
Abstract
The first crystal structure of a G protein-coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light-induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high-resolution structure of the adrenaline binding β2 -adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high-resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand-binding and ligand-mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid-binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.
Collapse
Affiliation(s)
- Martin Audet
- Departments of Biological Sciences and ChemistryBridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesCalifornia90089
| | - Raymond C. Stevens
- Departments of Biological Sciences and ChemistryBridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesCalifornia90089
| |
Collapse
|
138
|
Bäurle S, Nagel J, Peters O, Bräuer N, ter Laak A, Preusse C, Rottmann A, Heldmann D, Bothe U, Blume T, Zorn L, Walter D, Zollner TM, Steinmeyer A, Langer G. Identification of a Benzimidazolecarboxylic Acid Derivative (BAY 1316957) as a Potent and Selective Human Prostaglandin E2 Receptor Subtype 4 (hEP4-R) Antagonist for the Treatment of Endometriosis. J Med Chem 2019; 62:2541-2563. [DOI: 10.1021/acs.jmedchem.8b01862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Bäurle
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Jens Nagel
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Olaf Peters
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Nico Bräuer
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Antonius ter Laak
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Cornelia Preusse
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Antje Rottmann
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Dieter Heldmann
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Ulrich Bothe
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Thorsten Blume
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Ludwig Zorn
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Daryl Walter
- Evotec (UK) Ltd., 112-114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Thomas M. Zollner
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Andreas Steinmeyer
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| | - Gernot Langer
- Bayer AG, Research & Development, Pharmaceuticals, Müllerstrasse 178, 13353 Berlin, Germany
| |
Collapse
|
139
|
Coleman RA, Woodrooffe AJ, Clark KL, Toris CB, Fan S, Wang JW, Woodward DF. The affinity, intrinsic activity and selectivity of a structurally novel EP 2 receptor agonist at human prostanoid receptors. Br J Pharmacol 2019; 176:687-698. [PMID: 30341781 PMCID: PMC6365485 DOI: 10.1111/bph.14525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostanoid EP2 receptor agonists exhibit several activities including ocular hypotension, tocolysis and anti-inflammatory activity. This report describes the affinity and selectivity of a structurally novel, non-prostanoid EP2 receptor agonist, PGN-9856, and its therapeutic potential. EXPERIMENTAL APPROACH The pharmacology of a series of non-prostanoid EP2 receptor agonists was determined according to functional and radioligand binding studies, mostly using human recombinant prostanoid receptor transfectants. The selectivity of PGN-9856, as the preferred compound, was subsequently determined by using a diverse variety of non-prostanoid target proteins. The therapeutic potential of PGN-9856 was addressed by determining its activity in relevant primate cell, tissue and disease models. KEY RESULTS PGN-9856 was a selective and high affinity (pKi ≥ 8.3) ligand at human recombinant EP2 receptors. In addition to high affinity binding, it was a potent and full EP2 receptor agonist with a high level of selectivity at EP1 , EP3 , EP4 , DP, FP, IP and TP receptors. In cells overexpressing human recombinant EP2 receptors, PGN-9856 displayed a potency (pEC50 ≥ 8.5) and a maximal response (increase in cAMP) comparable to that of the endogenous agonist PGE2 . PGN-9856 exhibited no appreciable affinity (up 10 μM) for a range of 53 other receptors, ion channels and enzymes. Finally, PGN-9856 exhibited tocolytic, anti-inflammatory and long-acting ocular hypotensive properties consistent with its potent EP2 receptor agonist properties. CONCLUSIONS AND IMPLICATIONS PGN-9856 is a potent, selective and efficacious prostanoid EP2 receptor agonist with diverse potential therapeutic applications: tocolytic, anti-inflammatory and notably anti-glaucoma.
Collapse
Affiliation(s)
| | | | | | - C B Toris
- University of Nebraska Medical Center, Omaha, NE, USA
| | - S Fan
- University of Nebraska Medical Center, Omaha, NE, USA
| | - J W Wang
- JeniVision Inc., Irvine, CA, USA
| | | |
Collapse
|
140
|
Fillion D, Devost D, Sleno R, Inoue A, Hébert TE. Asymmetric Recruitment of β-Arrestin1/2 by the Angiotensin II Type I and Prostaglandin F2α Receptor Dimer. Front Endocrinol (Lausanne) 2019; 10:162. [PMID: 30936850 PMCID: PMC6431625 DOI: 10.3389/fendo.2019.00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Initially identified as monomers, G protein-coupled receptors (GPCRs) can also form functional homo- and heterodimers that act as distinct signaling hubs for cellular signal integration. We previously found that the angiotensin II (Ang II) type 1 receptor (AT1R) and the prostaglandin F2α (PGF2α) receptor (FP), both important in the control of smooth muscle contractility, form such a functional heterodimeric complex in HEK 293 and vascular smooth muscle cells. Here, we hypothesize that both Ang II- and PGF2α-induced activation of the AT1R/FP dimer, or the parent receptors alone, differentially regulate signaling by distinct patterns of β-arrestin recruitment. Using BRET-based biosensors, we assessed the recruitment kinetics of β-arrestin1/2 to the AT1R/FP dimer, or the parent receptors alone, when stimulated by either Ang II or PGF2α. Using cell lines with CRISPR/Cas9-mediated gene deletion, we also examined the role of G proteins in such recruitment. We observed that Ang II induced a rapid, robust, and sustained recruitment of β-arrestin1/2 to AT1R and, to a lesser extent, the heterodimer, as expected, since AT1R is a strong recruiter of both β-arrestin subtypes. However, PGF2α did not induce such recruitment to FP alone, although it did when the AT1R is present as a heterodimer. β-arrestins were likely recruited to the AT1R partner of the dimer. Gαq, Gα11, Gα12, and Gα13 were all involved to some extent in PGF2α-induced β-arrestin1/2 recruitment to the dimer as their combined absence abrogated the response, and their separate re-expression was sufficient to partially restore it. Taken together, our data sheds light on a new mechanism whereby PGF2α specifically recruits and signals through β-arrestin but only in the context of the AT1R/FP dimer, suggesting that this may be a new allosteric signaling entity.
Collapse
Affiliation(s)
- Dany Fillion
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- *Correspondence: Terence E. Hébert
| |
Collapse
|
141
|
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019; 176:93-109. [PMID: 30276789 PMCID: PMC6284336 DOI: 10.1111/bph.14507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Schepens Eye Research Institute/Massachusetts Eye and Ear & Department of ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| | - Samer Abdulmoneim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| |
Collapse
|
142
|
Audet M, White KL, Breton B, Zarzycka B, Han GW, Lu Y, Gati C, Batyuk A, Popov P, Velasquez J, Manahan D, Hu H, Weierstall U, Liu W, Shui W, Katritch V, Cherezov V, Hanson MA, Stevens RC. Crystal structure of misoprostol bound to the labor inducer prostaglandin E 2 receptor. Nat Chem Biol 2019; 15:11-17. [PMID: 30510194 PMCID: PMC6289721 DOI: 10.1038/s41589-018-0160-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
Abstract
Misoprostol is a life-saving drug in many developing countries for women at risk of post-partum hemorrhaging owing to its affordability, stability, ease of administration and clinical efficacy. However, misoprostol lacks receptor and tissue selectivities, and thus its use is accompanied by a number of serious side effects. The development of pharmacological agents combining the advantages of misoprostol with improved selectivity is hindered by the absence of atomic details of misoprostol action in labor induction. Here, we present the 2.5 Å resolution crystal structure of misoprostol free-acid form bound to the myometrium labor-inducing prostaglandin E2 receptor 3 (EP3). The active state structure reveals a completely enclosed binding pocket containing a structured water molecule that coordinates misoprostol's ring structure. Modeling of selective agonists in the EP3 structure reveals rationales for selectivity. These findings will provide the basis for the next generation of uterotonic drugs that will be suitable for administration in low resource settings.
Collapse
Affiliation(s)
- Martin Audet
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kate L. White
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Billy Breton
- Domain Therapeutics NA Inc., Frederick-Banting Road, Montreal H4S 1Z9, Canada
| | - Barbara Zarzycka
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Yan Lu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cornelius Gati
- Linac Coherent Light Source, SLAC, National Accelerator Laboratory, Menlo Park, California 94025, USA,Stanford University, Department of Structural Biology, Palo Alto, California 94305, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC, National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Petr Popov
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Jeffrey Velasquez
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - David Manahan
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Hao Hu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Uwe Weierstall
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Vsevolod Katritch
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Vadim Cherezov
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | | | - Raymond C. Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA,Correspondence:
| |
Collapse
|
143
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
144
|
Chiang N, Barnaeva E, Hu X, Marugan J, Southall N, Ferrer M, Serhan CN. Identification of Chemotype Agonists for Human Resolvin D1 Receptor DRV1 with Pro-Resolving Functions. Cell Chem Biol 2018; 26:244-254.e4. [PMID: 30554914 DOI: 10.1016/j.chembiol.2018.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Resolution of acute inflammation is governed, in part, by specialized pro-resolving mediators, including lipoxins, resolvins, protectins, and maresins. Among them, resolvin D1 (RvD1) exhibits potent pro-resolving functions via activating human resolvin D1 receptor (DRV1/GPR32). RvD1 is a complex molecule that requires challenging organic synthesis, diminishing its potential as a therapeutic. Therefore, we implemented a high-throughput screening of small-molecule libraries and identified several chemotypes that activated recombinant DRV1, represented by NCGC00120943 (C1A), NCGC00135472 (C2A), pMPPF, and pMPPI. These chemotypes also elicited rapid impedance changes in cells overexpressing recombinant DRV1. With human macrophages, they each stimulated phagocytosis of serum-treated zymosan at concentrations comparable with that of RvD1, the endogenous DRV1 ligand. In addition, macrophage phagocytosis of live E. coli was significantly increased by these chemotypes in DRV1-transfected macrophages, compared with mock-transfected cells. Taken together, these chemotypes identified by unbiased screens act as RvD1 mimetics, exhibiting pro-resolving functions via interacting with human DRV1.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road BTM 3-016, Boston, MA 02115, USA.
| |
Collapse
|
145
|
Gómez GI, Falcon RV, Maturana CJ, Labra VC, Salgado N, Rojas CA, Oyarzun JE, Cerpa W, Quintanilla RA, Orellana JA. Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Front Cell Neurosci 2018; 12:472. [PMID: 30564103 PMCID: PMC6288256 DOI: 10.3389/fncel.2018.00472] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
A mounting body of evidence indicates that adolescents are specially more susceptible to alcohol influence than adults. However, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity and recently, the opening of hemichannels and pannexons has been found to participate in both processes. Here, we evaluated whether adolescent rats exposed to ethanol exhibit changes in the activity of astrocyte hemichannels and pannexons in the hippocampus, as well as alterations in astrocyte arborization and cytokine levels. Adolescent rats were subjected to ethanol (3.0 g/kg) for two successive days at 48-h periods over 14 days. The opening of hemichannels and pannexons was examined in hippocampal slices by dye uptake, whereas hippocampal cytokine levels and astroglial arborization were determined by ELISA and Sholl analysis, respectively. We found that adolescent ethanol exposure increased the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in astrocytes. Blockade of p38 mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS) and cyclooxygenases (COXs), as well as chelation of intracellular Ca2+, drastically reduced the ethanol-induced channel opening in astrocytes. Importantly, ethanol-induced Cx43 hemichannel and Panx1 channel activity was correlated with increased levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 in the hippocampus, as well as with profound alterations in astrocyte arbor complexity. Thus, we propose that uncontrolled opening of astrocyte hemichannels and pannexons may contribute not only to the glial dysfunction and neurotoxicity caused by adolescent alcohol consumption, but also to the pathogenesis of alcohol use disorders in the adulthood.
Collapse
Affiliation(s)
- Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Romina V Falcon
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola J Maturana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Salgado
- Unidad de Microscopía Avanzada Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Consuelo A Rojas
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzun
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
146
|
Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat Chem Biol 2018; 15:27-33. [DOI: 10.1038/s41589-018-0170-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023]
|
147
|
Crystal structure of the endogenous agonist-bound prostanoid receptor EP3. Nat Chem Biol 2018; 15:8-10. [DOI: 10.1038/s41589-018-0171-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022]
|
148
|
Seira N, Yamagata K, Fukushima K, Araki Y, Kurata N, Yanagisawa N, Mashimo M, Nakamura H, Regan JW, Murayama T, Fujino H. Cellular density-dependent increases in HIF-1α compete with c-Myc to down-regulate human EP4 receptor promoter activity through Sp-1-binding region. Pharmacol Res Perspect 2018; 6:e00441. [PMID: 30455960 PMCID: PMC6230926 DOI: 10.1002/prp2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 12/23/2022] Open
Abstract
The up-regulated expression of E-type prostanoid (EP) 4 receptors has been implicated in carcinogenesis; however, the expression of EP4 receptors has also been reported to be weaker in tumor tissues than in normal tissues. Indeed, EP4 receptors have been suggested to play a role in the maintenance of colorectal homeostasis. This study aimed to examine the underlying mechanisms/reasons for why inconsistent findings have been reported regarding EP4 receptor expression levels in homeostasis and carcinogenesis by focusing on cellular densities. Thus, the human colon cancer HCA-7 cells, which retain some functional features of normal epithelia, and luciferase reporter genes containing wild-type or mutated EP4 receptor promoters were used for elucidating the cellular density-dependent mechanisms about the regulation of EP4 receptor expression. In silico analysis was also utilized for confirming the relevance of the findings with respect to colon cancer development. We here demonstrated that the expression of EP4 receptors was up-regulated by c-Myc by binding to Sp-1 under low cellular density conditions, but was down-regulated under high cellular density conditions via the increase in the expression levels of HIF-1α protein, which may pull out c-Myc and Sp-1 from DNA-binding. The tightly regulated EP4 receptor expression mechanism may be a critical system for maintaining homeostasis in normal colorectal epithelial cells. Therefore, once the system is altered, possibly due to the transient overexpression of EP4 receptors, it may result in aberrant cellular proliferation and transformation to cancerous phenotypes. However, at the point, EP4 receptors themselves and their mediated homeostasis would be no longer required.
Collapse
Affiliation(s)
- Naofumi Seira
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Kazuyuki Yamagata
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Keijo Fukushima
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yumi Araki
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Naoki Kurata
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Naoki Yanagisawa
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Masato Mashimo
- Laboratory of PharmacologyFaculty of Pharmaceutical SciencesDoshisha Women's College of Liberal ArtsKyotanabe, KyotoJapan
| | - Hiroyuki Nakamura
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - John W. Regan
- Department of Pharmacology & ToxicologyCollege of PharmacyThe University of ArizonaTucsonArizona
| | - Toshihiko Murayama
- Laboratory of Chemical PharmacologyGraduate School of Pharmaceutical SciencesChiba UniversityChuo‐ku ChibaJapan
| | - Hiromichi Fujino
- Department of Pharmacology for Life SciencesGraduate School of Pharmaceutical Sciences & Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
149
|
Sala A, Proschak E, Steinhilber D, Rovati GE. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem Pharmacol 2018; 158:161-173. [DOI: 10.1016/j.bcp.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
150
|
Jeong JW, Park C, Cha HJ, Hong SH, Park SH, Kim GY, Kim WJ, Kim CH, Song KS, Choi YH. Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4. BMB Rep 2018. [PMID: 30269738 PMCID: PMC6235086 DOI: 10.5483/bmbrep.2018.51.10.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostaglandin E2 (PGE2), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because PGE2 functions by signaling through PGE2 receptors (EPs), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting EPs. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibiting the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinase (MMP)-9 as well as the down-regulation of COX-2 expression and PGE2 production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the EP4 antagonist AH23848 prevented LPS-induced MMP-9 expression and cell invasion in HCT116 cells. However, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, Busan 47340, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Woo Jean Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea
| | - Cheol Hong Kim
- Department of Pediatrics, Sungkyunkwan University Samsung Changwon Hospital, Changwon 51353, Korea
| | - Kyoung Seob Song
- Department of Physiology, Kosin University College of Medicine, Busan 49267, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| |
Collapse
|