101
|
Devi S, Rajakumara E, Ahmed N. Induction of Mincle by Helicobacter pylori and consequent anti-inflammatory signaling denote a bacterial survival strategy. Sci Rep 2015; 5:15049. [PMID: 26456705 PMCID: PMC4601021 DOI: 10.1038/srep15049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Evasion of innate immune recognition is one of the key strategies for persistence of Helicobacter pylori, by virtue of its ability to modulate or escape the host innate immune receptors and signaling pathways. C-type lectin receptors (CLRs) predominantly expressed by macrophages are pivotal in tailoring immune response against pathogens. The recognition of glyco or carbohydrate moieties by Mincle (Macrophage inducible C-type lectin) is emerging as a crucial element in anti-fungal and anti-mycobacterial immunity. Herein, we demonstrate the role of Mincle in modulation of innate immune response against H. pylori infection. Our results revealed an upregulated expression of Mincle which was independent of direct host cell contact. Upon computational modelling, Mincle was observed to interact with the Lewis antigens of H. pylori LPS and possibly activating an anti-inflammatory cytokine production, thereby maintaining a balance between pro- and anti-inflammatory cytokine production. Furthermore, siRNA mediated knockdown of Mincle in human macrophages resulted in up regulation of pro-inflammatory cytokines and consequent down regulation of anti-inflammatory cytokines. Collectively, our study demonstrates a novel mechanism employed by H. pylori to escape clearance by exploiting functional plasticity of Mincle to strike a balance between pro-and anti-inflammatory responses ensuring its persistence in the host.
Collapse
Affiliation(s)
- Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Yeddumailaram, Telangana, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
102
|
Kim A, Servetas SL, Kang J, Kim J, Jang S, Cha HJ, Lee WJ, Kim J, Romero-Gallo J, Peek RM, Merrell DS, Cha JH. Helicobacter pylori bab Paralog Distribution and Association with cagA, vacA, and homA/B Genotypes in American and South Korean Clinical Isolates. PLoS One 2015; 10:e0137078. [PMID: 26317221 PMCID: PMC4552749 DOI: 10.1371/journal.pone.0137078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori genetic variation is a crucial component of colonization and persistence within the inhospitable niche of the gastric mucosa. As such, numerous H. pylori genes have been shown to vary in terms of presence and genomic location within this pathogen. Among the variable factors, the Bab family of outer membrane proteins (OMPs) has been shown to differ within subsets of strains. To better understand genetic variation among the bab genes and to determine whether this variation differed among isolates obtained from different geographic locations, we characterized the distribution of the Bab family members in 80 American H. pylori clinical isolates (AH) and 80 South Korean H. pylori clinical isolates (KH). Overall, we identified 23 different bab genotypes (19 in AH and 11 in KH), but only 5 occurred in greater than 5 isolates. Regardless of strain origin, a strain in which locus A and locus B were both occupied by a bab gene was the most common (85%); locus C was only occupied in those isolates that carried bab paralog at locus A and B. While the babA/babB/- genotype predominated in the KH (78.8%), no single genotype could account for greater than 40% in the AH collection. In addition to basic genotyping, we also identified associations between bab genotype and well known virulence factors cagA and vacA. Specifically, significant associations between babA at locus A and the cagA EPIYA-ABD motif (P<0.0001) and the vacA s1/i1/m1 allele (P<0.0001) were identified. Log-linear modeling further revealed a three-way association between bab carried at locus A, vacA, and number of OMPs from the HOM family (P<0.002). En masse this study provides a detailed characterization of the bab genotypes from two distinct populations. Our analysis suggests greater variability in the AH, perhaps due to adaptation to a more diverse host population. Furthermore, when considering the presence or absence of both the bab and homA/B paralogs at their given loci and the vacA genotype, an association was observed. Our results highlight the multifactorial nature of H. pylori mediated disease and the importance of considering how the specific combinations of H. pylori virulence genes and their multiple interactions with the host will collectively impact disease progression.
Collapse
Affiliation(s)
- Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Stephanie L. Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, Maryland, 20814, United States of America
| | - Jieun Kang
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jinmoon Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ho Jin Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Wan Jin Lee
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - June Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Judith Romero-Gallo
- Departments of Cancer Biology and Medicine, Vanderbilt University, Nashville, Tennessee, 37240, United States of America
| | - Richard M. Peek
- Departments of Cancer Biology and Medicine, Vanderbilt University, Nashville, Tennessee, 37240, United States of America
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, Maryland, 20814, United States of America
- * E-mail: (DSM); (JHC)
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
- * E-mail: (DSM); (JHC)
| |
Collapse
|
103
|
Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH. Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. SCIENCE ADVANCES 2015; 1:e1500315. [PMID: 26601230 PMCID: PMC4643811 DOI: 10.1126/sciadv.1500315] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/03/2015] [Indexed: 05/09/2023]
Abstract
Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 μM] and neutral (K D of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.
Collapse
Affiliation(s)
- Naim Hage
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tina Howard
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| | - Chris Phillips
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Claire Brassington
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Ross Overman
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Paul Gellert
- Pharmaceutical Development, AstraZeneca R&D, Charter Way, Macclesfield, Cheshire SK10 2NA, UK
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - G. Sebastiaan Winkler
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Franco H. Falcone
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| |
Collapse
|
104
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
105
|
Hu D, Zhang F, Zhou J, Xu B, Zhang H, Qiang H, Ren S, Shan B, Yin C, Zhang Z, Wang X, Zhao C, Shi Z. The clearance effect of bovine anti-Helicobacter pylori antibody-containing milk in O blood group Helicobacter pylori-infected patients: a randomized double-blind clinical trial. J Transl Med 2015; 13:205. [PMID: 26123101 PMCID: PMC4484630 DOI: 10.1186/s12967-015-0558-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The failure in standard triple therapy has recently increased to high levels in China, primarily because of insufficient patient compliance, antimicrobial resistance, and high costs. Effective prevention and eradication of Helicobacter pylori (H. pylori) by artificial passive immunization with orally administered bovine antibodies in the milk has been demonstrated in many animal studies, but the clinical studies that are available have shown no H. pylori eradication. This study was to evaluate the efficacy and safety of orally administered bovine anti-H. pylori antibodies for the clearance of H. pylori infecting O blood group subpopulations. METHODS Two local epidemic H. pylori strains that were prevalent locally were screened and then used to immunize dairy cows. After confirmation of the presence of anti-H. pylori polyclonal antibodies in the milk by enzyme-linked immunosorbent assay, the milk was subsequently defatted and processed into sterile milk by pasteurization. This study was designed as a double-blind placebo-controlled randomized clinical trial. Our 61 H. pylori-infected O blood group subjects were assigned to two groups; 31 subjects were treated with bovine milk containing antibodies and 30 subjects with the placebo. The medication-based study was continued for 28 days. Subjects were followed up for 56 days. The effect was assessed by the C-14 urea breath test (UBT). SPSS 17.0 software for Windows was used to analyze the data. RESULTS Of the 61 subjects enrolled, 58 completed the protocol. One volunteer in the antibodies group and two volunteers in the control group dropped out. Of the 30 antibody-treated subjects, 13 became UBT negative, whereas none of the 30 of the placebo-treated subjects became UBT negative after the medication. Of 13 UBT negative patients, 3 became positive again at the end of the follow-up. Both intention to treat and per-protocol analysis indicated a significant difference in the clearance rate of infected patients between the groups treated with bovine antibody-containing milk and the placebo (P = 0.001, P < 0.05) and no significant difference in adverse effects (P > 0.05 all). CONCLUSIONS Bovine antibody-based oral immunotherapy appears to be safe and has a significant clearance effect on intragastric H. pylori that infects O blood group adults. TRIAL REGISTRATION ChiCTR-TRC-14005212.
Collapse
Affiliation(s)
- Dailun Hu
- Clinical Department, The Research Section of Experimentation Teaching Center, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Feng Zhang
- The Institute of Cereal and Oil Crop, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, People's Republic of China.
| | - Jikun Zhou
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China.
| | - Baohong Xu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China.
| | - Hongying Zhang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China.
| | - Huiqin Qiang
- Shijiazhuang Center for Prevention and Control of Animal Diseases, Shijiazhuang, People's Republic of China.
| | - Shuguang Ren
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Baoen Shan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Changfu Yin
- Clinical Department, The Research Section of Experimentation Teaching Center, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Zhitao Zhang
- Clinical Department, The Research Section of Experimentation Teaching Center, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Xian Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China.
| | - Chuan Zhao
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China.
| | - Zhongli Shi
- Clinical Department, The Research Section of Experimentation Teaching Center, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
106
|
Characterization of moose intestinal glycosphingolipids. Glycoconj J 2015; 32:393-412. [PMID: 26104834 PMCID: PMC4515253 DOI: 10.1007/s10719-015-9604-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 11/04/2022]
Abstract
As a part of a systematic investigation of the species-specific expression of glycosphingolipids, acid and non-acid glycosphingolipids were isolated from three small intestines and one large intestine of the moose (Alces alces). The glycosphingolipids were characterized by binding of monoclonal antibodies, lectins and bacteria in chromatogram binding assays, and by mass spectrometry. The non-acid fractions were complex mixtures, and all had glycosphingolipids belonging to the lacto- and neolactoseries (lactotriaosylceramide, lactotetraosylceramide, neolactotetraosylceramide, Galα3-Lex hexaosylceramide, and lacto-neolactohexaosylceramide), globo-series (globotriaosylceramide and globotetraosylceramide), and isogloboseries (isoglobotriaosylceramide). Penta- and heptaglycosylceramides with terminal Galili determinants were also characterized. Furthermore, glycosphingolipids with terminal blood group O determinants (H triaosylceramide, H type 2 pentaosylceramide, H type 1 penta- and heptaosylceramide) were characterized in two of the moose small intestines, and in the one large intestine, while the third small intestine had glycosphingolipids with terminal blood group A determinants (A tetraosylceramide, A type 1 hexa- and octaosylceramide, A dodecaosylceramide). The acid glycosphingolipid fractions of moose small and large intestine contained sulfatide, and the gangliosides GM3, GD3, GD1a, GD1b, and also NeuGc and NeuAc variants of the Sda ganglioside and the sialyl-globopenta/SSEA-4 ganglioside. In humans, the NeuAc-globopenta/SSEA-4 ganglioside is a marker of embryonic and adult stem cells, and is also expressed in several human cancers. This is the first time sialyl-globopentaosylceramide/SSEA-4 has been characterized in a fully differentiated normal tissue, and also the first time NeuGc-globopentaosylceramide has been characterized.
Collapse
|
107
|
Park S, Kim GH, Park SH, Pai J, Rathwell D, Park JY, Kang YS, Shin I. Probing cell-surface carbohydrate binding proteins with dual-modal glycan-conjugated nanoparticles. J Am Chem Soc 2015; 137:5961-8. [PMID: 25939670 DOI: 10.1021/jacs.5b00592] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dual-modal fluorescent magnetic glyconanoparticles have been prepared and shown to be powerful in probing lectins displayed on pathogenic and mammalian cell surfaces. Blood group H1- and Le(b)-conjugated nanoparticles were found to bind to BabA displaying Helicobacter pylori, and Le(a)- and Le(b)-modified nanoparticles are both recognized by and internalized into DC-SIGN and SIGN-R1 expressing mammalian cells via lectin-mediated endocytosis. In addition, glyconanoparticles block adhesion of H. pylori to mammalian cells, suggesting that they can serve as inhibitors of infection of host cells by this pathogen. It has been also shown that owing to their magnetic properties, glyconanoparticles are useful tools to enrich lectin expressing cells. The combined results indicate that dual-modal glyconanoparticles are biocompatible and that they can be employed in lectin-associated biological studies and biomedical applications.
Collapse
Affiliation(s)
- Sungjin Park
- †Department of Chemistry, Yonsei University, Seoul 120-749 Korea
| | - Gun-Hee Kim
- †Department of Chemistry, Yonsei University, Seoul 120-749 Korea
| | - Seong-Hyun Park
- †Department of Chemistry, Yonsei University, Seoul 120-749 Korea
| | - Jaeyoung Pai
- †Department of Chemistry, Yonsei University, Seoul 120-749 Korea
| | - Dominea Rathwell
- †Department of Chemistry, Yonsei University, Seoul 120-749 Korea
| | - Jin-Yeon Park
- ‡Department of Veterinary Medicine, Department of Biomedical Science and Technology, Konkuk University, Seoul 143-701 Korea
| | - Young-Sun Kang
- ‡Department of Veterinary Medicine, Department of Biomedical Science and Technology, Konkuk University, Seoul 143-701 Korea
| | - Injae Shin
- †Department of Chemistry, Yonsei University, Seoul 120-749 Korea
| |
Collapse
|
108
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
109
|
Soto-Girón MJ, Ospina OE, Massey SE. Elevated levels of adaption in Helicobacter pylori genomes from Japan; a link to higher incidences of gastric cancer? EVOLUTION MEDICINE AND PUBLIC HEALTH 2015; 2015:88-105. [PMID: 25788149 PMCID: PMC4419197 DOI: 10.1093/emph/eov005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori is a bacterium that lives in the human stomach and is a major risk factor for gastric cancer and ulcers. H.pylori is host dependent and has been carried with human populations around the world after their departure from Africa. We wished to investigate how H.pylori has coevolved with its host during that time, focusing on strains from Japanese and European populations, given that gastric cancer incidence is high in Japanese populations, while low in European. A positive selection analysis of eight H.pylori genomes was conducted, using maximum likelihood based pairwise comparisons in order to maximize the number of strain-specific genes included in the study. Using the genic Ka/Ks ratio, comparisons of four Japanese H.pylori genomes suggests 25–34 genes under positive selection, while four European H.pylori genomes suggests 16–21 genes; few of the genes identified were in common between lineages. Of the identified genes which were annotated, 38% possessed homologs associated with pathogenicity and / or host adaptation, consistent with their involvement in a coevolutionary ‘arms race’ with the host. Given the efficacy of identifying host interaction factors de novo, in the absence of functionally annotated homologs our evolutionary approach may have value in identifying novel genes which H.pylori employs to interact with the human gut environment. In addition, the larger number of genes inferred as being under positive selection in Japanese strains compared to European implies a stronger overall adaptive pressure, potentially resulting from an elevated immune response which may be linked to increased inflammation, an initial stage in the development of gastric cancer.
Collapse
Affiliation(s)
- Maria Juliana Soto-Girón
- Bioinformatics Lab, Department of Biology, University of Puerto Rico - Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico
| | - Oscar E Ospina
- Bioinformatics Lab, Department of Biology, University of Puerto Rico - Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico
| | - Steven Edward Massey
- Bioinformatics Lab, Department of Biology, University of Puerto Rico - Rio Piedras, PO Box 23360, San Juan 00931, Puerto Rico
| |
Collapse
|
110
|
Analysis of a single Helicobacter pylori strain over a 10-year period in a primate model. Int J Med Microbiol 2015; 305:392-403. [PMID: 25804332 DOI: 10.1016/j.ijmm.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/30/2015] [Accepted: 03/01/2015] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori from different individuals exhibits substantial genetic diversity. However, the kinetics of bacterial diversification after infection with a single strain is poorly understood. We investigated evolution of H. pylori following long-term infection in the primate stomach; Rhesus macaques were infected with H. pylori strain USU101 and then followed for 10 years. H. pylori was regularly cultured from biopsies, and single colony isolates were analyzed. At 1-year, DNA fingerprinting showed that all output isolates were identical to the input strain; however, at 5-years, different H. pylori fingerprints were observed. Microarray-based comparative genomic hybridization revealed that long term persistence of USU101 in the macaque stomach was associated with specific whole gene changes. Further detailed investigation showed that levels of the BabA protein were dramatically reduced within weeks of infection. The molecular mechanisms behind this reduction were shown to include phase variation and gene loss via intragenomic rearrangement, suggesting strong selective pressure against BabA expression in the macaque model. Notably, although there is apparently strong selective pressure against babA, babA is required for establishment of infection in this model as a strain in which babA was deleted was unable to colonize experimentally infected macaques.
Collapse
|
111
|
Duell EJ, Bonet C, Muñoz X, Lujan-Barroso L, Weiderpass E, Boutron-Ruault MC, Racine A, Severi G, Canzian F, Rizzato C, Boeing H, Overvad K, Tjønneland A, Argüelles M, Sánchez-Cantalejo E, Chamosa S, Huerta JM, Barricarte A, Khaw KT, Wareham N, Travis RC, Trichopoulou A, Trichopoulos D, Yiannakouris N, Palli D, Agnoli C, Tumino R, Naccarati A, Panico S, Bueno-de-Mesquita HB, Siersema PD, Peeters PHM, Ohlsson B, Lindkvist B, Johansson I, Ye W, Johansson M, Fenger C, Riboli E, Sala N, González CA. Variation at ABO histo-blood group and FUT loci and diffuse and intestinal gastric cancer risk in a European population. Int J Cancer 2015; 136:880-93. [PMID: 24947433 DOI: 10.1002/ijc.29034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
ABO blood serotype A is known to be associated with risk of gastric cancer (GC), but little is known how ABO alleles and the fucosyltransferase (FUT) enzymes and genes which are involved in Lewis antigen formation [and in Helicobacter pylori (H. pylori) binding and pathogenicity] may be related to GC risk in a European population. The authors conducted an investigation of 32 variants at ABO and FUT1-7 loci and GC risk in a case-control study of 365 cases and 1,284 controls nested within the EPIC cohort (the EPIC-Eurgast study). Four variants (including rs505922) in ABO, and allelic blood group A (AO+AA, odds ratio=1.84, 95%CI=1.20-2.80) were associated with diffuse-type GC; however, conditional models with other ABO variants indicated that the associations were largely due to allelic blood group A. One variant in FUT5 was also associated with diffuse-type GC, and four variants (and haplotypes) in FUT2 (Se), FUT3 (Le) and FUT6 with intestinal-type GC. Further, one variant in ABO, two in FUT3 and two in FUT6 were associated with H. pylori infection status in controls, and two of these (in FUT3 and FUT6) were weakly associated with intestinal-type GC risk. None of the individual variants surpassed a Bonferroni corrected p-value cutoff of 0.0016; however, after a gene-based permutation test, two loci [FUT3(Le)/FUT5/FUT6 and FUT2(Se)] were significantly associated with diffuse- and intestinal-type GC, respectively. Replication and functional studies are therefore recommended to clarify the role of ABO and FUT alleles in H. pylori infection and subtype-specific gastric carcinogenesis.
Collapse
Affiliation(s)
- Eric J Duell
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Joncquel Chevalier Curt M, Lecointe K, Mihalache A, Rossez Y, Gosset P, Léonard R, Robbe-Masselot C. Alteration or adaptation, the two roads for human gastric mucin glycosylation infected by Helicobacter pylori. Glycobiology 2015; 25:617-31. [DOI: 10.1093/glycob/cwv004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022] Open
|
113
|
|
114
|
Abstract
Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management.
Collapse
Affiliation(s)
- Elizabeth Robilotti
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
115
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
116
|
Kao CY, Sheu BS, Wu JJ. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 2014; 19:443-54. [PMID: 25109343 DOI: 10.1111/hel.12148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Motility mediated by the flagella of Helicobacter pylori has been shown to be required for normal colonization and is thought to be important for the bacteria to move toward the gastric mucus in niches adjacent to the epithelium. Barnard et al. showed that CsrA appears to be necessary for full motility and the ability to infect mice, but its mechanism of regulation is still unclear. METHODS Motility and cell adhesion ability were determined in wild-type, csrA mutant, and revertant J99 strains. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. The expression of two major flagellins, flaA/flaB, and the alternative sigma factor rpoN (σ(54)) were determined by real-time quantitative RT-PCR and Western blot. RESULTS The csrA mutant showed loss of motility and lower adhesion ability compared with the wild-type and revertant J99 strains. The csrA mutant was not flagellated. Transcription of flaA and flaB mRNA decreased to only 40% and 16%, respectively, in the csrA mutant compared with the wild-type J99 (p = .006 and <.0001, respectively), and Western blot analysis showed dramatically reduced FlaA/FlaB proteins in a csrA mutant. The disruption of csrA also decreased expression of rpoN to 48% in the csrA mutant, but the degradation rate of rpoN mRNA was not changed. CONCLUSION These results suggest that CsrA regulates H. pylori J99 flagella formation and thereby affects bacterial motility.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
117
|
Subedi S, Moonens K, Romão E, Lo A, Vandenbussche G, Bugaytsova J, Muyldermans S, Borén T, Remaut H. Expression, purification and X-ray crystallographic analysis of the Helicobacter pylori blood group antigen-binding adhesin BabA. Acta Crystallogr F Struct Biol Commun 2014; 70:1631-5. [PMID: 25484214 PMCID: PMC4259228 DOI: 10.1107/s2053230x14023188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a human pathogen that colonizes about 50% of the world's population, causing chronic gastritis, duodenal ulcers and even gastric cancer. A steady emergence of multiple antibiotic resistant strains poses an important public health threat and there is an urgent requirement for alternative therapeutics. The blood group antigen-binding adhesin BabA mediates the intimate attachment to the host mucosa and forms a major candidate for novel vaccine and drug development. Here, the recombinant expression and crystallization of a soluble BabA truncation (BabA(25-460)) corresponding to the predicted extracellular adhesin domain of the protein are reported. X-ray diffraction data for nanobody-stabilized BabA(25-460) were collected to 2.25 Å resolution from a crystal that belonged to space group P21, with unit-cell parameters a = 50.96, b = 131.41, c = 123.40 Å, α = 90.0, β = 94.8, γ = 90.0°, and which was predicted to contain two BabA(25-460)-nanobody complexes per asymmetric unit.
Collapse
Affiliation(s)
- Suresh Subedi
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kristof Moonens
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ema Romão
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alvin Lo
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Guy Vandenbussche
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Jeanna Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Serge Muyldermans
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Han Remaut
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
118
|
Rhee KH, Park JS, Cho MJ. Helicobacter pylori: bacterial strategy for incipient stage and persistent colonization in human gastric niches. Yonsei Med J 2014; 55:1453-66. [PMID: 25323880 PMCID: PMC4205683 DOI: 10.3349/ymj.2014.55.6.1453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (H. pylori) undergoes decades long colonization of the gastric mucosa of half the population in the world to produce acute and chronic gastritis at the beginning of infection, progressing to more severe disorders, including peptic ulcer disease and gastric cancer. Prolonged carriage of H. pylori is the most crucial factor for the pathogenesis of gastric maladies. Bacterial persistence in the gastric mucosa depends on bacterial factors as well as host factors. Herein, the host and bacterial components responsible for the incipient stages of H. pylori infection are reviewed and discussed. Bacterial adhesion and adaptation is presented to explain the persistence of H. pylori colonization in the gastric mucosa, in which bacterial evasion of host defense systems and genomic diversity are included.
Collapse
Affiliation(s)
- Kwang-Ho Rhee
- Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Jin-Sik Park
- Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Myung-Je Cho
- Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea.
| |
Collapse
|
119
|
Ansari SA, Khan A, Khan TA, Raza Y, Syed SA, Akhtar SS, Kazmi SU. Correlation of ABH blood group antigens secretion with Helicobacter pylori infection in Pakistani patients. Trop Med Int Health 2014; 20:115-9. [PMID: 25322664 DOI: 10.1111/tmi.12401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES A and B blood group antigens are fucosylated carbohydrate present on human erythrocytes and body secretions. Their presence in body secretions depends on the expression of a dominant allele of secretor gene FUT2 and is correlated with susceptibility to various infectious and non-infectious diseases. We investigated the correlation of blood group and ABH antigen secretion with Helicobacter pylori infection and gastroduodenal symptoms and analysed the distribution of babA gene among ABH secretors and non-secretors. METHODS Two hundred and ninety patients who underwent gastroduodenal endoscopy during 2011 to 2012 participated. Gastric biopsy, saliva and blood samples were obtained from every patient. Gastric biopsies were subjected to rapid urease test and PCR for the detection of H. pylori and babA gene. Blood grouping and ABH antigens secretions were determined by Lewis blood group phenotyping and haemagglutination inhibition test. RESULTS 50.34% of patients were ABH antigen secretors and 45.51% non-secretors. Distribution analysis of blood group revealed that 40 blood group B, 67 blood group A 20 blood group O and 19 blood group AB patients secreted ABH antigens in saliva. Fifty-six blood group O, 19 blood group B, 32 blood group A and 17 blood group AB patients were non-secretors. Gastroduodenal complaints were common among non-secretors. Sixty-two percent of patients with a combination of duodenal ulcer and gastro-oesophageal reflux and 54% of patients with gastritis were non-secretors. Of 290 samples, 31.02% were positive for H. pylori. Thirty percent of these tested positive for babA gene; the majority belonged to non-secretor blood group O. CONCLUSIONS Our results suggest that the infection of H. pylori is correlated with ABO blood groups and blood group antigens secretion in body fluids.
Collapse
Affiliation(s)
- Shazia Akbar Ansari
- Immunology and Infectious Diseases Research Laboratory, Department of Microbiology, University of Karachi, Karachi, Pakistan
| | | | | | | | | | | | | |
Collapse
|
120
|
Hu DY, Shao XX, Xu CL, Xia SL, Yu LQ, Jiang LJ, Jin J, Lin XQ, Jiang Y. Associations of FUT2 and FUT3 gene polymorphisms with Crohn's disease in Chinese patients. J Gastroenterol Hepatol 2014; 29:1778-85. [PMID: 24720527 DOI: 10.1111/jgh.12599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM FUT2 and FUT3 genes are responsible for the formation of histo-blood group antigens, which act as binding sites for some intestinal microbes. Several studies suggested that FUT2 gene might affect the intestinal microbiota composition and modulate innate immune responses. However, the effect of FUT2 polymorphisms on Crohn's disease (CD) is uncertain. Our study aimed to analyze associations of CD with FUT2 and FUT3 polymorphisms in Chinese population. METHODS A total of 273 CD patients and 479 controls were recruited. The genotypes of FUT2 (rs281377, rs1047781, and rs601338) and FUT3 (rs28362459, rs3745635, and rs3894326) were detected by SNaPshot analysis. RESULTS Compared with controls, homozygote TT of FUT2 (rs1047781) was significantly increased in CD patients (TT vs others; P = 0.002, odds ratio [OR] = 1.767, 95% confidence interval [CI] = 1.235-2.528). The haplotype TT formed with FUT2 (rs281377) and (rs1047781) was more prevalent in CD patients than in controls (48.9% vs 43.5%, P = 0.046). Mutant T allele and homozygote TT of FUT2 (rs1047781) were increased in colonic CD patients compared with controls (P < 0.001, OR = 1.843, 95% CI = 1.353-2.512; P < 0.001, OR = 2.607, 95% CI = 1.622-4.191, respectively). Although allele and genotypic distributions of FUT3 were not statistically different between CD patients and controls, mutant allele and genotype of FUT3 (rs28362459) and (rs3745635) were significantly discrepant in three subgroups of CD patients according to lesion locations (all P < 0.05). CONCLUSIONS Our study strongly implicates the polymorphic locus of FUT2 (rs1047781) in CD susceptibility in Chinese population. Mutations of FUT3 (rs28362459) and (rs3745635) might influence the lesion locations in CD patients.
Collapse
Affiliation(s)
- Ding-yuan Hu
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Otto M. Physical stress and bacterial colonization. FEMS Microbiol Rev 2014; 38:1250-70. [PMID: 25212723 DOI: 10.1111/1574-6976.12088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria--in particular gut and urinary tract pathogens--use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multilayered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
122
|
Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM. Disrupted human-pathogen co-evolution: a model for disease. Front Genet 2014; 5:290. [PMID: 25202324 PMCID: PMC4142859 DOI: 10.3389/fgene.2014.00290] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
A major goal in infectious disease research is to identify the human and pathogenic genetic variants that explain differences in microbial pathogenesis. However, neither pathogenic strain nor human genetic variation in isolation has proven adequate to explain the heterogeneity of disease pathology. We suggest that disrupted co-evolution between a pathogen and its human host can explain variation in disease outcomes, and that genome-by-genome interactions should therefore be incorporated into genetic models of disease caused by infectious agents. Genetic epidemiological studies that fail to take both the pathogen and host into account can lead to false and misleading conclusions about disease etiology. We discuss our model in the context of three pathogens, Helicobacter pylori, Mycobacterium tuberculosis and human papillomavirus, and generalize the conditions under which it may be applicable.
Collapse
Affiliation(s)
- Nuri Kodaman
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Rafal S Sobota
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Robertino Mera
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA
| |
Collapse
|
123
|
Etzold S, Juge N. Structural insights into bacterial recognition of intestinal mucins. Curr Opin Struct Biol 2014; 28:23-31. [PMID: 25106027 DOI: 10.1016/j.sbi.2014.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 01/06/2023]
Abstract
The mucosal layer covering our gut epithelium represents the first line of host defenses against the luminal content, while enabling contacts between the resident microbiota and the host. Mucus is mainly composed of mucins, large glycoproteins containing a protein core and a high number of O-linked oligosaccharides. Mucin glycans act as binding sites or carbon sources for the intestinal microbes, thereby functioning as a host-specific determinant affecting the microbiota composition and human health. Reflecting the structural diversity of mucin glycans and their prime location, commensal and pathogenic microbes have evolved a range of adhesins allowing their interaction with the host. However, despite the recognised importance of mucin glycans in modulating intestinal homeostasis, information on carbohydrate-binding proteins from gut bacteria is disparate. This review is focussed on recent structural insights into host-microbe interactions mediated by mucins.
Collapse
Affiliation(s)
- Sabrina Etzold
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093-0715, USA
| | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom.
| |
Collapse
|
124
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
125
|
Dunne C, Dolan B, Clyne M. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol 2014; 20:5610-24. [PMID: 24914320 PMCID: PMC4024769 DOI: 10.3748/wjg.v20.i19.5610] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/04/2013] [Accepted: 01/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.
Collapse
|
126
|
Rossez Y, Gosset P, Boneca IG, Magalhães A, Ecobichon C, Reis CA, Cieniewski-Bernard C, Joncquel Chevalier Curt M, Léonard R, Maes E, Sperandio B, Slomianny C, Sansonetti PJ, Michalski JC, Robbe-Masselot C. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis 2014; 210:1286-95. [PMID: 24755437 DOI: 10.1093/infdis/jiu239] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adhesion of Helicobacter pylori to the gastric mucosa is a necessary prerequisite for the pathogenesis of H. pylori-related diseases. In this study, we investigated the GalNAcβ1-4GlcNAc motif (also known as N,N'-diacetyllactosediamine [lacdiNAc]) carried by MUC5AC gastric mucins as the target for bacterial binding to the human gastric mucosa. The expression of LacdiNAc carried by gastric mucins was correlated with H. pylori localization, and all strains tested adhered significantly to this motif. Proteomic analysis and mutant construction allowed the identification of a yet uncharacterized bacterial adhesin, LabA, which specifically recognizes lacdiNAc. These findings unravel a target of adhesion for H. pylori in addition to moieties recognized by the well-characterized adhesins BabA and SabA. Localization of the LabA target, restricted to the gastric mucosa, suggests a plausible explanation for the tissue tropism of these bacteria. These results pave the way for the development of alternative strategies against H. pylori infection, using adherence inhibitors.
Collapse
Affiliation(s)
- Yannick Rossez
- Univ Lille Nord de France USTL, UGSF, IFR 147 CNRS, UMR 8576
| | - Pierre Gosset
- Univ Lille Nord de France UCLille Groupe Hospitalier de l'Institut Catholique Lillois/Faculté Libre de Médecine, Lille Service d'Anatomie Pathologie
| | - Ivo G Boneca
- Institut Pasteur INSERM, Equipe Avenir, Groupe Biologie et génétique de la paroi bactérienne
| | - Ana Magalhães
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto
| | - Chantal Ecobichon
- Institut Pasteur INSERM, Equipe Avenir, Groupe Biologie et génétique de la paroi bactérienne
| | - Celso A Reis
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto Institute of Biomedical Sciences Abel Salazar and Medical Faculty of the University of Porto, Portugal
| | | | | | - Renaud Léonard
- Univ Lille Nord de France USTL, UGSF, IFR 147 CNRS, UMR 8576
| | - Emmanuel Maes
- Univ Lille Nord de France USTL, UGSF, IFR 147 CNRS, UMR 8576
| | - Brice Sperandio
- Unité de Pathogénie Microbienne Moléculaire et Unité INSERM 786, Institut Pasteur
| | - Christian Slomianny
- Univ Lille Nord de France Laboratoire de Physiologie Cellulaire, INSERM U 1003, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire et Unité INSERM 786, Institut Pasteur Chaire de Microbiologie et Maladies Infectieuses, Collège de France
| | | | | |
Collapse
|
127
|
Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori. Molecules 2014; 19:3696-717. [PMID: 24662083 PMCID: PMC6270890 DOI: 10.3390/molecules19033696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/15/2014] [Indexed: 12/30/2022] Open
Abstract
Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.
Collapse
|
128
|
Sakarya S, Gunay N. Saccharomyces boulardii expresses neuraminidase activity selective for α2,3-linked sialic acid that decreases Helicobacter pylori adhesion to host cells. APMIS 2014; 122:941-50. [PMID: 24628732 DOI: 10.1111/apm.12237] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a major causative agent of gastritis and peptic ulcer disease and is an established risk factor for gastric malignancy. Antibiotic combination therapy can eradicate H. pylori. As these same regimens can evoke adverse effects and resistance, new alternative therapies or adjunctive treatments are needed. A probiotic approach may provide a novel strategy for H. pylori treatment. In the current study, two probiotic bacteria, Lactobacillus acidophilus and Lactobacillus reuteri, and a probiotic yeast, Saccharomyces boulardii, were evaluated for their ability to influence H. pylori viability, adherence to gastric and duodenal cells, as well as the effect of S. boulardii on cell surface expression of sialic acid. Our results indicate that S. boulardii contains neuraminidase activity selective for α(2-3)-linked sialic acid. This neuraminidase activity removes surface α(2-3)-linked sialic acid, the ligand for the sialic acid-binding H. pylori adhesin, which in turn, inhibits H. pylori adherence to duodenal epithelial cells.
Collapse
Affiliation(s)
- Serhan Sakarya
- Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Adnan Menderes University, Aydin
| | | |
Collapse
|
129
|
Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 2014; 16:e5. [PMID: 24606759 DOI: 10.1017/erm.2014.2] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noroviruses (NoVs) and rotaviruses (RVs), the two most important causes of viral acute gastroenteritis, are found to recognise histo-blood group antigens (HBGAs) as receptors or ligands for attachment. Human HBGAs are highly polymorphic containing ABO, secretor and Lewis antigens. In addition, both NoVs and RVs are highly diverse in how they recognise these HBGAs. Structural analysis of the HBGA-binding interfaces of NoVs revealed a conserved central binding pocket (CBP) interacting with a common major binding saccharide (MaBS) of HBGAs and a variable surrounding region interacting with additional minor binding saccharides. The conserved CBP indicates a strong selection of NoVs by the host HBGAs, whereas the variable surrounding region explains the diverse recognition patterns of different HBGAs by NoVs and RVs as functional adaptations of the viruses to human HBGAs. Diverse recognition of HBGAs has also been found in bacterial pathogen Helicobacter pylori. Thus, exploratory research into whether such diverse recognitions also occur for other viral and bacterial pathogens that recognise HBGAs is warranted.
Collapse
|
130
|
Leontiadis GI, Nyrén O. Epidemiology of Helicobacter PyloriInfection, Peptic Ulcer Disease and Gastric Cancer. GI EPIDEMIOLOGY 2014:135-157. [DOI: 10.1002/9781118727072.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
131
|
H. pylori virulence factors: influence on immune system and pathology. Mediators Inflamm 2014; 2014:426309. [PMID: 24587595 PMCID: PMC3918698 DOI: 10.1155/2014/426309] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the most widespread chronic bacterial agent in humans and is well recognized for its association with ulcer disease and gastric cancer, with both representing major global health and socioeconomic issues. Given the high level of adaptation and the coevolution of this bacterium with its human host, a thorough and multidirectional view of the specific microbiological characteristics of this infection as well as the host physiology is needed in order to develop novel means of prevention of therapy. This review aims to pinpoint some of these potentially important angles, which have to be considered mutually when studying H. pylori's pathogenicity. The host's biological changes due to the virulence factors are a valuable pillar of H. pylori research as are the mechanisms by which bacteria provoke these changes. In this context, necessary adhesion molecules and significant virulence factors of H. pylori are discussed. Moreover, metabolism of the bacteria, one of the most important aspects for a better understanding of bacterial physiology and consequently possible therapeutic and prophylactic strategies, is addressed. On the other hand, we discuss the recent experimental proofs of the "hygiene hypothesis" in correlation with Helicobacter's infection, which adds another aspect of complexity to this infection.
Collapse
|
132
|
Wagner C, Barlag B, Gerlach RG, Deiwick J, Hensel M. TheSalmonella entericagiant adhesin SiiE binds to polarized epithelial cells in a lectin-like manner. Cell Microbiol 2014; 16:962-75. [DOI: 10.1111/cmi.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Carolin Wagner
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
| | - Britta Barlag
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | | - Jörg Deiwick
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | - Michael Hensel
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| |
Collapse
|
133
|
Messing J, Thöle C, Niehues M, Shevtsova A, Glocker E, Borén T, Hensel A. Antiadhesive properties of Abelmoschus esculentus (Okra) immature fruit extract against Helicobacter pylori adhesion. PLoS One 2014; 9:e84836. [PMID: 24416297 PMCID: PMC3887003 DOI: 10.1371/journal.pone.0084836] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/19/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Traditional Asian and African medicine use immature okra fruits (Abelmoschus esculentus) as mucilaginous food to combat gastritis. Its effectiveness is due to polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach tissue. The present study investigates the antiadhesive effect in mechanistic detail. METHODOLOGY A standardized aqueous fresh extract (Okra FE) from immature okra fruits was used for a quantitative in vitro adhesion assay with FITC-labled H. pylori J99, 2 clinical isolates, AGS cells, and fluorescence-activated cell sorting. Bacterial adhesins affected by FE were pinpointed using a dot-blot overlay assay with immobilized Lewis(b), sialyl-Lewis(a), H-1, laminin, and fibronectin. (125)I-radiolabeled Okra FE polymer served for binding studies to different H. pylori strains and interaction experiments with BabA and SabA. Iron nanoparticles with different coatings were used to investigate the influence of the charge-dependence of an interaction on the H. pylori surface. PRINCIPAL FINDINGS Okra FE dose-dependently (0.2 to 2 mg/mL) inhibited H. pylori binding to AGS cells. FE inhibited the adhesive binding of membrane proteins BabA, SabA, and HpA to its specific ligands. Radiolabeled compounds from FE bound non-specifically to different strains of H. pylori, as well as to BabA/SabA deficient mutants, indicating an interaction with a still-unknown membrane structure in the vicinity of the adhesins. The binding depended on the charge of the inhibitors. Okra FE did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. CONCLUSION Non-specific interactions between high molecular compounds from okra fruits and the H. pylori surface lead to strong antiadhesive effects.
Collapse
Affiliation(s)
- Jutta Messing
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Christian Thöle
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Michael Niehues
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Anna Shevtsova
- Umeå University, Medical Biochemistry and Biophysics, Umeå, Sweden
| | - Erik Glocker
- University Hospital Freiburg, Reference Centre for Helicobacter pylori, Department of Medical Microbiology and Hygiene, Freiburg, Germany
| | - Thomas Borén
- Umeå University, Medical Biochemistry and Biophysics, Umeå, Sweden
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| |
Collapse
|
134
|
He C, Chen M, Liu J, Yuan Y. Host genetic factors respond to pathogenic step-specific virulence factors of Helicobacter pylori in gastric carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 759:14-26. [PMID: 24076409 DOI: 10.1016/j.mrrev.2013.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
The interindividual differences in risk of Helicobacter pylori (H. pylori)-associated gastric cancer involve significant heterogeneities of both host genetics and H. pylori strains. Several recent studies proposed a distinct sequence for H. pylori exerting its virulence in the host stomach: (i) adhering to and colonizing the surface of gastric epithelial cells, (ii) evading and attenuating the host defense, and (iii) invading and damaging the gastric mucosa. This review focuses on several key issues that still need to be clarified, such as which virulence factors of H. pylori are involved in the three pathogenic steps, which host genes respond to the step-specific virulence factors, and whether and/or how the corresponding host genetic variations influence the risk of gastric carcinogenesis. Urease, BabA and SabA in the adhesion-step, PGN and LPS in the immune evasion-step, and CagA, VacA and Tipα in the mucosal damage-step were documented to play an important role in step-specific pathogenicity of H. pylori infection. There is evidence further supporting a role of potentially functional polymorphisms of host genes directly responding to these pathogenic step-specific virulence factors in the susceptibility of gastric carcinogenesis, especially for urease-interacting HLA class II genes, BabA-interacting MUC1, PGN-interacting NOD1, LPS-interacting TLR4, and CagA-interacting PTPN11 and CDH1. With the continuous improvement of understanding the genetic profile of H. pylori-associated gastric carcinogenesis, a person at increased risk for gastric cancer may benefit from several aspects of efforts: (i) prevent H. pylori infection with a vaccine targeting certain step-specific virulence factor; (ii) eradicate H. pylori infection by blocking step-specific psychopathological characteristics of virulence factors; and (iii) adjust host physiological function to resist the carcinogenic role of step-specific virulence factors or interrupt the cellular signal transduction of the interplay between H. pylori and host in each pathogenic step, especially for the subjects with precancerous lesions in the stomach.
Collapse
Affiliation(s)
- Caiyun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
135
|
Ito Y, Vela JL, Matsumura F, Hoshino H, Tyznik A, Lee H, Girardi E, Zajonc DM, Liddington R, Kobayashi M, Bao X, Bugaytsova J, Borén T, Jin R, Zong Y, Seeberger PH, Nakayama J, Kronenberg M, Fukuda M. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS One 2013; 8:e78191. [PMID: 24312443 PMCID: PMC3846475 DOI: 10.1371/journal.pone.0078191] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.
Collapse
Affiliation(s)
- Yuki Ito
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jose Luis Vela
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Fumiko Matsumura
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hitomi Hoshino
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Aaron Tyznik
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Heeseob Lee
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Enrico Girardi
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Dirk M. Zajonc
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Robert Liddington
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Xingfeng Bao
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeanna Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rongsheng Jin
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yinong Zong
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Peter H. Seeberger
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
| | - Minoru Fukuda
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
136
|
Pinho SS, Carvalho S, Marcos-Pinto R, Magalhães A, Oliveira C, Gu J, Dinis-Ribeiro M, Carneiro F, Seruca R, Reis CA. Gastric cancer: adding glycosylation to the equation. Trends Mol Med 2013; 19:664-76. [DOI: 10.1016/j.molmed.2013.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 12/17/2022]
|
137
|
Parreira P, Magalhães A, Reis C, Borén T, Leckband D, Martins M. Bioengineered surfaces promote specific protein-glycan mediated binding of the gastric pathogen Helicobacter pylori. Acta Biomater 2013; 9:8885-93. [PMID: 23831721 DOI: 10.1016/j.actbio.2013.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori colonizes the gastric mucosa of half of the worlds population and persistent infection is related with an increase in the risk of gastric cancer. Adhesion of H. pylori to the gastric epithelium, which is essential for infection, is mediated by bacterial adhesin proteins that recognize specific glycan structures (Gly-R) expressed in the gastric mucosa. The blood group antigen binding adhesin (BabA) recognizes difucosylated antigens such as Lewis B (Leb), while the sialic acid binding adhesin (SabA) recognizes sialylated glycoproteins and glycolipids, such as sialyl-Lewis x (sLex). This work aimed to investigate whether these Gly-Rs (Leb and sLex) can attract and specifically bind H. pylori after immobilization on synthetic surfaces (self-assembled monolayers (SAMs) of alkanethiols on gold). Functional bacterial adhesion assays for (Gly-R)-SAMs were performed using H. pylori strains with different adhesin protein profiles. The results demonstrate that H. pylori binding to surfaces occurs via interaction between its adhesins and cognate (Gly-R)-SAMs and bound H. pylori maintains its characteristic rod-shaped morphology only during conditions of specific adhesin-glycan binding. These results offer new insights into innovative strategies against H. pylori infection based on the scavenging of bacteria from the stomach using specific H. pylori chelating biomaterials.
Collapse
|
138
|
Posselt G, Backert S, Wessler S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 2013; 11:77. [PMID: 24099599 PMCID: PMC3851490 DOI: 10.1186/1478-811x-11-77] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) can lead to severe gastric diseases ranging from chronic gastritis and ulceration to neoplastic changes in the stomach. Development and progress of H. pylori-associated disorders are determined by multifarious bacterial factors. Many of them interact directly with host cells or require specific receptors, while others enter the host cytoplasm to derail cellular functions. Several adhesins (e.g. BabA, SabA, AlpA/B, or OipA) establish close contact with the gastric epithelium as an important first step in persistent colonization. Soluble H. pylori factors (e.g. urease, VacA, or HtrA) have been suggested to alter cell survival and intercellular adhesions. Via a type IV secretion system (T4SS), H. pylori also translocates the effector cytotoxin-associated gene A (CagA) and peptidoglycan directly into the host cytoplasm, where cancer- and inflammation-associated signal transduction pathways can be deregulated. Through these manifold possibilities of interaction with host cells, H. pylori interferes with the complex signal transduction networks in its host and mediates a multi-step pathogenesis.
Collapse
Affiliation(s)
- Gernot Posselt
- Division of Molecular Biology, Department of Microbiology, Paris-Lodron University, Salzburg, Austria.
| | | | | |
Collapse
|
139
|
Maldonado-Contreras A, Mane SP, Zhang XS, Pericchi L, Alarcón T, Contreras M, Linz B, Blaser MJ, Domínguez-Bello MG. Phylogeographic evidence of cognate recognition site patterns and transformation efficiency differences in H. pylori: theory of strain dominance. BMC Microbiol 2013; 13:211. [PMID: 24050390 PMCID: PMC3849833 DOI: 10.1186/1471-2180-13-211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Helicobacter pylori has diverged in parallel to its human host, leading to distinct phylogeographic populations. Recent evidence suggests that in the current human mixing in Latin America, European H. pylori (hpEurope) are increasingly dominant at the expense of Amerindian haplotypes (hspAmerind). This phenomenon might occur via DNA recombination, modulated by restriction-modification systems (RMS), in which differences in cognate recognition sites (CRS) and in active methylases will determine direction and frequency of gene flow. We hypothesized that genomes from hspAmerind strains that evolved from a small founder population have lost CRS for RMS and active methylases, promoting hpEurope's DNA invasion. We determined the observed and expected frequencies of CRS for RMS in DNA from 7 H. pylori whole genomes and 110 multilocus sequences. We also measured the number of active methylases by resistance to in vitro digestion by 16 restriction enzymes of genomic DNA from 9 hpEurope and 9 hspAmerind strains, and determined the direction of DNA uptake in co-culture experiments of hspAmerind and hpEurope strains. RESULTS Most of the CRS were underrepresented with consistency between whole genomes and multilocus sequences. Although neither the frequency of CRS nor the number of active methylases differ among the bacterial populations (average 8.6 ± 2.6), hspAmerind strains had a restriction profile distinct from that in hpEurope strains, with 15 recognition sites accounting for the differences. Amerindians strains also exhibited higher transformation rates than European strains, and were more susceptible to be subverted by larger DNA hpEurope-fragments than vice versa. CONCLUSIONS The geographical variation in the pattern of CRS provides evidence for ancestral differences in RMS representation and function, and the transformation findings support the hypothesis of Europeanization of the Amerindian strains in Latin America via DNA recombination.
Collapse
|
140
|
The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. BIOLOGY 2013; 2:1110-34. [PMID: 24833057 PMCID: PMC3960876 DOI: 10.3390/biology2031110] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1) colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2) evasion from the human immune system and (3) efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence.
Collapse
|
141
|
Aryana K, Keramati MR, Zakavi SR, Sadeghian MH, Akbari H. Association of Helicobacter pylori infection with the Lewis and ABO blood groups in dyspeptic patients. Niger Med J 2013; 54:196-9. [PMID: 23901182 PMCID: PMC3719247 DOI: 10.4103/0300-1652.114583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Helicobacter pylori infection is a basic risk factor for chronic gastritis, and gastric carcinoma. Based on some studies, the reason is binding of H. pylori to H and Leb antigens in gastric mucosa. However, some other findings have not determined any association between the infection and these antigens. Because of this controversy and the fact that H. pylori infection and gastric adenocarcinoma are common diseases in Iran, the assessment of the association of H. pylori infection with these blood groups could be valuable. Materials and Methods: In a cross sectional study on 135 adult dyspeptic patients in Mashhad, Iran, from 2009 to 2010, H. pylori infection was evaluated by using the Heliprobe 14C-urea breath test and the ABO and Lewis blood group antigens were determined by the tube method. Association between the Lewis and ABO phenotypes with H. pylori infection were analysed by Fisher's exact test. A P ≤ 0.05 was considered to be significant. Results: 68 (50.4%) patients were positive for H. pylori infection. The frequencies of the ABO, Lewis and secretion phenotypes were not significant in the infected and non-infected patients. We also did not find a significant association between Lea and Leb antigens and this infection. Conclusion: We could not establish a significant association between the Lewis, ABO and secretion phenotypes with H. pylori infection. Diversity of sequences of blood group antigen b-binding adhesion (babA gene) of H. pylori may be a reason why our findings are different from other studies in other geographic areas.
Collapse
Affiliation(s)
- Kamran Aryana
- Department of Nuclear Medicine, Nuclear Medicine Research Center, Mashhad, Iran ; Department of Hematopathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
142
|
Ségurel L, Gao Z, Przeworski M. Ancestry runs deeper than blood: the evolutionary history of ABO points to cryptic variation of functional importance. Bioessays 2013; 35:862-7. [PMID: 23836453 PMCID: PMC4034584 DOI: 10.1002/bies.201300030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ABO histo-blood group, first discovered over a century ago, is found not only in humans but also in many other primate species, with the same genetic variants maintained for at least 20 million years. Polymorphisms in ABO have been associated with susceptibility to a large number of human diseases, from gastric cancers to immune or artery diseases, but the adaptive phenotypes to which the polymorphism contributes remain unclear. We suggest that variation in ABO has been maintained by frequency-dependent or fluctuating selection pressures, potentially arising from co-evolution with gut pathogens. We further hypothesize that the histo-blood group labels A, B, AB, and O do not offer a full description of variants maintained by natural selection, implying that there are unrecognized, functionally important, antigens beyond the ABO group in humans and other primates.
Collapse
Affiliation(s)
- Laure Ségurel
- Department of Human Genetics, University of Chicago, Chicago, IL, USA; Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
143
|
Zhang H, Zhang S, Tao G, Zhang Y, Mulloy B, Zhan X, Chai W. Typing of blood-group antigens on neutral oligosaccharides by negative-ion electrospray ionization tandem mass spectrometry. Anal Chem 2013; 85:5940-9. [PMID: 23692402 PMCID: PMC3856363 DOI: 10.1021/ac400700e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood-group antigens, such as those containing fucose and bearing the ABO(H)- and Lewis-type determinants expressed on the carbohydrate chains of glycoproteins and glycolipids, and also on unconjugated free oligosaccharides in human milk and other secretions, are associated with various biological functions. We have previously shown the utility of negative-ion electrospay ionization tandem mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) for typing of Lewis (Le) determinants, for example, Le(a), Le(x), Le(b), and Le(y) on neutral and sialylated oligosaccharide chains. In the present report, we extended the strategy to characterization of blood-group A-, B-, and H-determinants on type 1 and type 2 and also on type 4 globoside chains to provide a high sensitivity method for typing of all the major blood-group antigens, including the A, B, H, Le(a), Le(x), Le(b), and Le(y) determinants, present in oligosaccharides. Using the principles established, we identified two minor unknown oligosaccharide components present in the products of enzymatic synthesis by bacterial fermentation. We also demonstrated that the unique fragmentations derived from the D- and (0,2)A-type cleavages observed in ESI-CID-MS/MS, which are important for assigning blood-group and chain types, only occur under the negative-ion conditions for reducing sugars but not for reduced alditols or under positive-ion conditions.
Collapse
Affiliation(s)
- Hongtao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuang Zhang
- Testing and Analysis Centre, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guanjun Tao
- Testing and Analysis Centre, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yibing Zhang
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Barbara Mulloy
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Xiaobei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wengang Chai
- Glycosciences Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
144
|
Sethu P, Putty K, Lian Y, Kalia A. Connecting Microbial Population Genetics with Microbial Pathogenesis. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A bacterial species typically includes heterogeneous collections of genetically diverse isolates. How genetic diversity within bacterial populations influences the clinical outcome of infection remains mostly indeterminate. In part, this is due to a lack of technologies that can enable contemporaneous systems-level interrogation of host-pathogen interaction using multiple, genetically diverse bacterial strains. This chapter presents a prototype microfluidic cell array (MCA) that allows simultaneous elucidation of molecular events during infection of human cells in a semi-automated fashion. It shows that infection of human cells with up to sixteen genetically diverse bacterial isolates can be studied simultaneously. The versatility of MCAs is enhanced by incorporation of a gradient generator that allows interrogation of host-pathogen interaction under four different concentrations of any given environmental variable at the same time. Availability of high throughput MCAs should foster studies that can determine how differences in bacterial gene pools and concentration-dependent environmental variables affect the outcome of host-pathogen interaction.
Collapse
|
145
|
Kuo KC, Kuo HC, Huang LT, Lin CS, Yang SN. The clinical implications of ABO blood groups in Pseudomonas aeruginosa sepsis in children. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 46:109-14. [DOI: 10.1016/j.jmii.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 10/27/2011] [Accepted: 01/02/2012] [Indexed: 10/28/2022]
|
146
|
Fenner L, Egger M, Bodmer T, Furrer H, Ballif M, Battegay M, Helbling P, Fehr J, Gsponer T, Rieder HL, Zwahlen M, Hoffmann M, Bernasconi E, Cavassini M, Calmy A, Dolina M, Frei R, Janssens JP, Borrell S, Stucki D, Schrenzel J, Böttger EC, Gagneux S, for the Swiss HIV Cohort and Molecular Epidemiology of Tuberculosis Study Groups. HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLoS Genet 2013; 9:e1003318. [PMID: 23505379 PMCID: PMC3591267 DOI: 10.1371/journal.pgen.1003318] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022] Open
Abstract
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV–infected and HIV–negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV–infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host–pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21–infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5–19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5–20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV–infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection. Human tuberculosis (TB) caused by Mycobacterium tuberculosis kills 1.5 million people each year. M. tuberculosis has been affecting humans for millennia, suggesting that different strain lineages may be adapted to specific human populations. The combination of a particular strain lineage and its corresponding patient population can be classified as sympatric (e.g. Euro-American lineage in Europeans) or allopatric (e.g. East-Asian lineage in Europeans). We hypothesized that infection with the human immunodeficiency virus (HIV), which impairs the human immune system, will interfere with this host–pathogen relationship. We performed a nation-wide molecular-epidemiological study of HIV–infected and HIV–negative TB patients between 2000 and 2008 in Switzerland. We found that HIV infection was associated with the less adapted allopatric lineages among patients born in Europe, and this was not explained by social or other patient factors such as increased social mixing in HIV–infected individuals. Strikingly, the association between HIV infection and less adapted M. tuberculosis lineages was stronger in patients with more pronounced immunodeficiency. Our observation was replicated in a second independent panel of M. tuberculosis strains collected during a population-based study in the Canton of Bern. In summary, our study provides evidence that the sympatric host–pathogen relationship in TB is disrupted by HIV infection.
Collapse
Affiliation(s)
- Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Thomas Bodmer
- Mycobacteriology Unit, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Marie Ballif
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Peter Helbling
- Division of Communicable Diseases, Federal Office of Public Health, Bern, Switzerland
| | - Jan Fehr
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Gsponer
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Hans L. Rieder
- Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
- The Union, Paris, France
| | - Marcel Zwahlen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ospedale Regionale Lugano, Lugano, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
| | - Marisa Dolina
- Cantonal Institute of Microbiology, Bellinzona, Switzerland
| | - Reno Frei
- Department of Clinical Microbiology, University Hospital of Basel, Basel, Switzerland
| | | | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - David Stucki
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques Schrenzel
- Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, National Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | | |
Collapse
|
147
|
Pathogen-driven selection in the human genome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:204240. [PMID: 23533945 PMCID: PMC3603197 DOI: 10.1155/2013/204240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Collapse
|
148
|
Rizzato C, Kato I, Plummer M, Muñoz N, Stein A, Jan van Doorn L, Franceschi S, Canzian F. Risk of advanced gastric precancerous lesions in Helicobacter pylori infected subjects is influenced by ABO blood group and cagA status. Int J Cancer 2013; 133:315-22. [PMID: 23319424 DOI: 10.1002/ijc.28019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
Abstract
A higher incidence of stomach cancer in ABO blood type A individuals than in those with blood type O has been known for a long time. We studied this association in relation to Helicobacter pylori (Hp) of different cagA status. For our study, we used baseline gastric histopathology data and DNAs from frozen gastric biopsies of 2,077 subjects enrolled in a chemoprevention trial for gastric precancerous lesions in Venezuela. We analyzed six single nucleotide polymorphisms in the ABO gene, and we assessed the presence of the Hp cagA gene. Odds ratios (ORs) for risk of advanced precancerous gastric lesions were calculated using individuals with normal gastric epithelium or non-atrophic gastritis as a reference. Among individuals carrying a cagA negative Hp infection or no Hp infection, those with blood type A had a lower risk of intestinal metaplasia (IM) and dysplasia than those with blood type O (OR=0.60; 95% CI 0.38-0.94). In carriers of cagA positive Hp strains, individuals with blood type A had a higher risk of IM or dysplasia than those with blood type O (OR=1.42, 95% CI 1.09-1.86) and a higher risk if compared to subjects carrying cagA negative strain and non-A blood group (OR=3.82, 95% CI=2.80-5.20). The interaction between Hp cagA status and blood type was statistically significant (p=0.0006). We showed that SNPs in the ABO gene, predictive of ABO blood groups, are associated with risk of advanced precancerous gastric lesions in individuals infected with Hp, but the assessment of the risk is strictly dependent on cagA status.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Glycobiome: bacteria and mucus at the epithelial interface. Best Pract Res Clin Gastroenterol 2013; 27:25-38. [PMID: 23768550 DOI: 10.1016/j.bpg.2013.03.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 02/06/2023]
Abstract
The human gastrointestinal tract is colonised with a dense and diverse microbial community, that is an important player in human health and physiology. Close to the epithelial cells the mucosal microbiota is separated from the host with a thin lining of host derived glycans, including the cell surface glycocalyx and the extracellular secreted mucus. The mucosa-associated microbial composition differs from the luminal content and could be particularly important for nutrient exchange, communication with the host, development of the immune system, and resistance against invading pathogens. The mucosa-associated microbiota has adapted to the glycan rich environment by the production of mucus-degrading enzymes and mucus-binding extracellular proteins, and include mucus-degrading specialists such as Akkermansia muciniphila and Bacteroides thetaiotaomicron. This review is focussed on the host-microbe interactions within the glycan landscape at the epithelial interface and considers the spatial organisation and composition of the mucosa-associated microbiota in health and disease.
Collapse
|
150
|
Duncan SS, Valk PL, McClain MS, Shaffer CL, Metcalf JA, Bordenstein SR, Cover TL. Comparative genomic analysis of East Asian and non-Asian Helicobacter pylori strains identifies rapidly evolving genes. PLoS One 2013; 8:e55120. [PMID: 23383074 PMCID: PMC3561388 DOI: 10.1371/journal.pone.0055120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/19/2012] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is a risk factor for the development of gastric adenocarcinoma, a disease that has a high incidence in East Asia. Genes that are highly divergent in East Asian H. pylori strains compared to non-Asian strains are predicted to encode proteins that differ in functional activity and could represent novel determinants of virulence. To identify such proteins, we undertook a comparative analysis of sixteen H. pylori genomes, selected equally from strains classified as East Asian or non-Asian. As expected, the deduced sequences of two known virulence determinants (CagA and VacA) are highly divergent, with 77% and 87% mean amino acid sequence identities between East Asian and non-Asian groups, respectively. In total, we identified 57 protein sequences that are highly divergent between East Asian and non-Asian strains, but relatively conserved within East Asian strains. The most highly represented functional groups are hypothetical proteins, cell envelope proteins and proteins involved in DNA metabolism. Among the divergent genes with known or predicted functions, population genetic analyses indicate that 86% exhibit evidence of positive selection. McDonald-Kreitman tests further indicate that about one third of these highly divergent genes, including cagA and vacA, are under diversifying selection. We conclude that, similar to cagA and vacA, most of the divergent genes identified in this study evolved under positive selection, and represent candidate factors that may account for the disproportionately high incidence of gastric cancer associated with East Asian H. pylori strains. Moreover, these divergent genes represent robust biomarkers that can be used to differentiate East Asian and non-Asian H. pylori strains.
Collapse
Affiliation(s)
- Stacy S. Duncan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pieter L. Valk
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Carrie L. Shaffer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jason A. Metcalf
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (SRB); (TLC)
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail: (SRB); (TLC)
| |
Collapse
|