101
|
Bottalico B, Larsson I, Brodszki J, Hernandez-Andrade E, Casslén B, Marsál K, Hansson SR. Norepinephrine Transporter (NET), Serotonin Transporter (SERT), Vesicular Monoamine Transporter (VMAT2) and Organic Cation Transporters (OCT1, 2 and EMT) in Human Placenta from Pre-eclamptic and Normotensive Pregnancies. Placenta 2004; 25:518-29. [PMID: 15135235 DOI: 10.1016/j.placenta.2003.10.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 11/16/2022]
Abstract
Pre-eclampsia is one of the most common causes of perinatal and maternal morbidity and mortality. High blood pressure and proteinuria are important clinical signs of pre-eclampsia. Sympathetic overactivity and elevated level of circulating vaso active substances, such as monoamines has been shown. Extracellular concentrations of monoamines are normally kept low by specific transporter proteins of which many are expressed in the placenta. In this study we used in situ hybridization and real-time PCR to study the gene expression of monoamine transporters, such as NET, SERT, VMAT2, EMT and OCT1/2, in normal as well as in pre-eclamptic placentae. We demonstrated high expression of NET mRNA in the trophoblast cells of the anchoring villi and a lower expression intensity in the chorionic villi. SERT mRNA was mainly detected in chorionic villi. VMAT2 mRNA was not detected in the central part of the placenta but was present in the spiral arteries of placenta bed biopsies, in cytokeratin positive cells. EMT mRNA was mainly detected in the intra lobular septa and together with OCT1 and OCT2 mRNAs also expressed in scattered cells of placental vessel adventitias. Moreover, quantitative analysis showed a significant lower expression of NET and EMT mRNAs in pre-eclamptic placentae as compared to the control group. A defective gene expression or function of these monoamines transporters might explain the elevated concentrations of monoamines in pre-eclamptic patients. Monoamine transporters may serve as a protective mechanism preventing vasoconstriction in the placental vascular bed and thereby securing a stable blood flow to the fetus.
Collapse
Affiliation(s)
- B Bottalico
- Department of Obstetrics and Gynecology, Lund University Hospital, Klinikgatan, 221 85, Lund, Scania, Sweden
| | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na(+)- and Cl(-)-dependent monoamine neurotransmitter transporters ( SLC6-family), high-affinity choline transporters ( SLC5-family), and high-affinity thiamine transporters ( SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Bayerischen Julius-Maximilians-Universität, Koellikerstr. 6, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
103
|
Uhl GR. Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 2004; 18 Suppl 7:S71-80. [PMID: 14531049 DOI: 10.1002/mds.10578] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We review the basic science of the dopamine transporter (DAT), a key neurotransmitter for locomotor control and reward systems, including those lost or deranged in Parkinson's disease (PD). Physiology, pharmaceutical features, expression, cDNA, protein structure/function relationships, and phosphorylation and regulation are discussed. The localization of DAT provides the best marker for the integrity of just the pre-synaptic dopaminergic systems that are most affected in PD. Its function is key for the actions of several toxins that provide some of the best current models for idiopathic parkinsonism, and its variation can clearly alter movement. The wealth of information about this interesting molecule that has been developed over the last 12 years has led to increased interest in DAT among workers interested in both normal and abnormal movement.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIDA-IRP, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
104
|
Abstract
The plasma membrane dopamine transporter (DAT) is found exclusively in dopamine neurones and seems to be the defining molecule of the dopamine neurone. It provides effective control over the intensity of dopamine-mediated signalling by recapturing the neurotransmitter released by presynaptic neurones. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) represent unique techniques for assessing in vivo DAT distribution in humans and offer reliable methods for studying nigrostriatal dopaminergic function in health and disease. The characteristics of different DAT radiotracers, the modifying influences of factors such as age, gender, smoking habit, and dopaminergic drugs on DAT transporters as well as their implication in evaluation of neuroimaging studies are discussed.
Collapse
Affiliation(s)
- Paola P Piccini
- MRC Clinical Sciences Centre, and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
105
|
Chen N, Rickey J, Berfield JL, Reith MEA. Aspartate 345 of the Dopamine Transporter Is Critical for Conformational Changes in Substrate Translocation and Cocaine Binding. J Biol Chem 2004; 279:5508-19. [PMID: 14660644 DOI: 10.1074/jbc.m306294200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study elucidated the role of aspartate 345, a residue conserved in the third intracellular loop of all Na+/Cl(-)-dependent neurotransmitter transporters, in conformational changes of the dopamine (DA) transporter. Asparagine substitution (D345N) resulted in near normal transporter expression on the cell surface but caused extremely low Vmax and Km values for DA uptake, converted the inhibitory effect of Zn2+ on DA uptake to a stimulatory one, and eliminated reverse transport. The cocaine-like inhibitor 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane or the selective DA transporter inhibitor GBR12935 bound to D345N with a normal affinity and still inhibited DA uptake potently. However, the mutation reduced the binding capacity of the surface transporter for these two inhibitors by 90% or more. Moreover, the binding activity of D345N can be significantly improved by Zn2+ but not by Na+. These results are consistent with a defect in reorientation of the substrate-binding site to the extracellular side, leading to a loss of the outward-facing conformational state where external DA binds to initiate uptake and the inhibitors bind to initiate uptake inhibition. Alanine or glutamate substitution produced a similar phenotype, suggesting that both the negative charge and the residue volume at position 345 are vital. Furthermore, in intact cells, cocaine potentiated the reaction of the membrane-impermeant sulfhydryl reagent methanethiosulfonate ethyltrimethylammonium with the extracellularly located endogenous cysteines of D345N but not those of wild type, and this potentiation was blocked upon K+ substitution for Na+. Thus, cocaine binding to D345N likely induces a different and Na(+)-dependent conformational change, which may contribute to its Na(+)-dependent uptake inhibitory activity.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
106
|
Abstract
Glutamate is an excitatory amino acid that acts as a major neurotransmitter throughout the brain. Although its neurotransmitter action has been evidenced by the identification of various receptor subtypes at synapses, a cellular mechanism by which this amino acid accumulates in synaptic vesicles has long been in doubt until the discovery in recent years of specific vesicular transporters. Three kinds of transporter isoforms have so far been cloned and their transport properties and distribution in the brain have been studied extensively. In contrast with the apparently similar ability of all transporter isoforms to highly selectively transport glutamate and their presence in synaptic vesicles, their regional distribution of gene expression and immunoreactivity in the rodent or human brain are surprisingly different from one another. This indicates that the glutamatergic neuron system of mammalian brains is substantially comprised of at least three different neuron subpopulations, each of which uses a unique transport system for the vesicular storage of glutamate. Thus, we now have highly useful and reliable tools for a comprehensive understanding of the glutamatergic neuron system in the brain from a new viewpoint different from that of other components, such as receptors. The scope of the present review is to provide an overview of the history and present status of the study of vesicular glutamate transporters and to highlight some unresolved issues requiring clarification for the progress of future brain function research.
Collapse
Affiliation(s)
- Setsuji Hisano
- Laboratory of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
107
|
Volz TJ, Kim M, Schenk JO. Covalent and noncovalent chemical modifications of arginine residues decrease dopamine transporter activity. Synapse 2004; 52:272-82. [PMID: 15103693 DOI: 10.1002/syn.20021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rotating disk electrode voltammetry was used to measure dopamine (DA) transport in rat striatum and in human embryonic kidney cells expressing the rat dopamine transporter (DAT). The goals of this study were to determine 1) if arginine (Arg) selective agents could alter DA transport, and 2) if DA analogs and DAT inhibitors could attenuate the effects of these agents on the DAT. Phenylglyoxal (PG), Hill coefficient 2.5, and other Arg selective agents decreased DA transport velocities. DA, Hill coefficient 1.0, and its analogs 3-hydroxyphenethylamine and 4-hydroxyphenethylamine attenuated the effects of PG on the DAT while phenethylamine did not. The tropane-based DAT inhibitors cocaine, WIN 35065-2, and WIN 35428 also attenuated the effects of PG. Benztropine, GBR 12935, and GBR 12909 did not. Thus, Arg residues are important for DAT activity and the results suggest that DA and cocaine both interact with Arg residues. Structure-activity studies suggest that DA interacts with Arg through its catechol hydroxyl groups and cocaine through the ester linkage attached to carbon 2 of the tropane ring. The results that 1). DA and cocaine may interact with the same functionally important Arg residue at the DAT, and 2). some members of the tropane and 1,4-dialkylpiperazine classes of DAT inhibitors may interact differently with DAT-derived Arg residue(s) furthers the notion that DAT activity sparing antagonists of cocaine can be designed.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
108
|
Uhl GR, Lin Z. The top 20 dopamine transporter mutants: structure–function relationships and cocaine actions. Eur J Pharmacol 2003; 479:71-82. [PMID: 14612139 DOI: 10.1016/j.ejphar.2003.08.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our laboratory and others elucidated the primary amino acid sequences of the dopamine transporter (DAT) by cloning its cDNA and genomic sequences more than 12 years ago. Motivations for this work included the ideas that cocaine's interactions with DAT accounted for its rewarding properties and that selective inhibitors of DAT/cocaine interactions might thus provide good anticocaine medications. Such ideas supported interest in the detailed structure-function relationships of cocaine/DAT interactions, and in the construction and characterization of extensive series of site-directed DAT mutants. We can now select the most interesting 20 cocaine-analog selective mutations of the more than 100 single- and multiple amino acid substitution mutations that we have characterized. These mutants selectively reduce the affinities of the mutant DATs for cocaine analogs, but (absolutely or relatively) spare their affinities for dopamine. Several themes relevant to cocaine/DAT interactions emerge from these mutants. First, such mutations are found in a number of different DAT domains. Secondly, many but not all of these mutations lie in groups, near each other and near the same faces of presumably helical DAT transmembrane domains. Third, most are also conserved in the serotonin transporter (SERT), a transporter that is now strongly implicated in cocaine reward based on data from knockout mice. We discuss the results from these "top 20" mutants in light of the strengths and limitations of current DAT models and data from other studies. Taken together, these studies appear to indicate direct or indirect participation of several specific portions of DAT in selective recognition of cocaine analogs. These studies provide a strong basis for redirected studies aimed at producing dopamine- and serotonin-sparing cocaine antagonists that would represent combined DAT/SERT disinhibitors.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIDA-IRP, NIH, 5500 Nathan Shock Drive, PO Box 5180, Baltimore, MD 21224, USA.
| | | |
Collapse
|
109
|
Gulley JM, Zahniser NR. Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands. Eur J Pharmacol 2003; 479:139-52. [PMID: 14612145 DOI: 10.1016/j.ejphar.2003.08.064] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The extracellular actions of dopamine are terminated primarily through its binding to dopamine transporters and translocation back into dopamine neurons. The transporter thereby serves as an optimal target to regulate dopamine neurotransmission. Although acute pharmacological blockade of dopamine transporters is known to reversibly inhibit transporter function by preventing the binding of its endogenous substrate dopamine, it recently has become clear that dopamine transporter substrates, such as amphetamines, and blockers, such as cocaine, also have the ability to rapidly and persistently regulate transporter function after their direct pharmacological effect has subsided. Presynaptic receptor ligands can also regulate dopamine transporter function. This has been investigated most extensively for dopamine D2 receptors, but there is also evidence for regulation by gamma-aminobutyric acid (GABA) GABAB receptors, metabotropic glutamate, nicotinic acetylcholine, serotonin, sigma2- and kappa-opioid receptors. The focus of this review is the rapid, typically reversible, regulation of dopamine transporter velocity by substrates, blockers and presynaptic receptor ligands. The research discussed here suggests that a common mechanism through which these different classes of compounds regulate transporter activity is by altering the cell surface expression of dopamine transporters.
Collapse
Affiliation(s)
- Joshua M Gulley
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Campus Box C-236, 4200 E Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
110
|
Abstract
Advances have been made in characterizing the relationship between Na+ and the substrate permeation pathway in the dopamine transporter. This review covers the role of Na+ in co-transport with dopamine as well as in the recognition of dopamine. Apparent recognition depends on the preparation studied: it differs between intact cells heterologously expressing the dopamine transporter and membranes prepared from these cells. In our search for amino acid residues in the transporter involved in Na+ action, W84 and D313 were found to play a special role in cation interaction, with evidence for regulation of both Na+ and H+ sensitivity. Mutation of D313 to N appeared to decrease the affinity for the dopamine transporter in intact cells, not by altering recognition per se. A model is proposed in which access of dopamine, not recognition itself, is regulated by D313 and Na+. Thus, the role of external Na+ in intact cell preparations is to turn dopamine transporters to the externally facing form, allowing access of dopamine to its binding site.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Box 1649, Peoria, IL 61656-1649, USA
| | | |
Collapse
|
111
|
Wang W, Sonders MS, Ukairo OT, Scott H, Kloetzel MK, Surratt CK. Dissociation of high-affinity cocaine analog binding and dopamine uptake inhibition at the dopamine transporter. Mol Pharmacol 2003; 64:430-9. [PMID: 12869648 DOI: 10.1124/mol.64.2.430] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cocaine initiates its euphoric effects by binding to the dopamine transporter (DAT), blocking uptake of synaptic dopamine. It has been hypothesized that the DAT transmembrane aspartic acid residue D79 forms an ionic interaction with charged nitrogen atoms in both dopamine and cocaine. We examined the consequences of novel and previously studied mutations of the D79 residue on DAT uptake of [3H]dopamine, DAT binding of the cocaine analog [3H]WIN 35,428, and drug inhibition of each process, all under identical conditions. The rat D79E DAT mutation decreased dopamine uptake Vmax by 7-fold and decreased dopamine turnover by 4-fold. Wild-type DAT displayed near-perfect agreement in the uptake and binding inhibition potencies for substrates, but cocaine and other nonsubstrate inhibitor drugs were approximately 3-fold less potent in uptake than in binding assays. Apparent affinities for substrates were unaffected by the D79E mutation unless the catechol moiety was modified. Strikingly, potencies for nonsubstrate inhibitors in uptake and binding assays matched for D79E DAT, because of a 3-fold lowering of binding affinities relative to WT DAT. The present findings reveal a complex role for D79 in determining substrate specificity and high-affinity binding of DAT inhibitors. We propose that at least two discrete inhibitor-binding DAT conformations or populations exist and that the DAT conformation/population responsible for inhibitor high-affinity binding is less responsible for dopamine uptake. The findings may be extensible to other psychostimulants and antidepressants that display discrepancies between binding affinity and monoamine uptake inhibition potency and may be relevant to development of a long-sought "cocaine antagonist".
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
112
|
Kurosaki R, Muramatsu Y, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T. Role of dopamine transporter against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis 2003; 18:139-46. [PMID: 12822832 DOI: 10.1023/a:1023863003093] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the alterations of dopamine transporter (DAT)-immunopositive cells against MPTP neurotoxicity, in comparison with tyrosine hydroxylase (TH)-immunopositive neurons and glial fibrillary acidic protein (GFAP)-immunopositive cells. This study showed that DAT and TH immunoreactivity was decreased gradually in the striatum and substantia nigra of mice after MPTP treatment. The patterns of the intense TH-immunoreactive fibers and cell bodies were similar to those of DAT-immunoreactive fibers and cell bodies in the striatum and substantia nigra of mice after MPTP treatment. In contrast, GFAP immunoreactivity was increased gradually in the striatum and substantia nigra after MPTP treatment. In our double-labeled immunostaining with anti-DAT and anti-GFAP antibodies, DAT immunoreactivity was observed only in the nigral dopaminergic neurons, but not in the reactive astrocytes. The present results provide further evidence that the functional damage of DAT may precede dopaminergic neuronal death after MPTP treatment, although the decrease in the number of TH-immunopositive neurons was more pronounced than that in the number of DAT-immunopositive neurons. Furthermore, our findings demonstrate that MPTP can selectively injure the dopaminergic neurons which DAT proteins are predominantly distributed on the striatum and substantia nigra. The results provide beneficial information for MPTP-induced neurodegeneration of the nigrostriatal dopaminergic neuronal pathway.
Collapse
Affiliation(s)
- R Kurosaki
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Science and Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
113
|
Lin Z, Zhang PW, Zhu X, Melgari JM, Huff R, Spieldoch RL, Uhl GR. Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites. J Biol Chem 2003; 278:20162-70. [PMID: 12660249 DOI: 10.1074/jbc.m209584200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter (DAT) modulates dopamine neurotransmission and is a primary target for psychostimulant influences on locomotion and reward. Selective DAT expression by dopaminergic neurons has led to use of cocaine analog DAT radioligands to assess rates of progression of dopamine neuronal degeneration in Parkinson's disease. We have documented that DAT is a phosphoprotein that is regulated by phosphorylation through pathways that include protein kinase C cascades. We now extend this work using drugs selective for phosphatidylinositol 3-kinase (PI3K), protein kinase C, MEK1/2, p38 kinase, and Ca2+/calmodulin kinase II. We compare the drug effects on wild type DAT to the effects on 20 DAT mutants and a DAT deletion. PI3K and MEK1/2 modulators exert strong effects on DAT expression patterns and dopamine uptake Vmax. PKC principally modulates Vmax. Neither p38 nor Ca2+/calmodulin kinase II agents exert significant influences on wild type DAT. Several mutants and a DAT with an N-terminal deletion display alterations that interact with the effects of kinase modulators, especially S7A for PKC effects; T62A, S581A, and T612A for PI3K effects; and S12A and T595A mutants for MEK1/2 effects. 32P-Labeling studies confirm several of these effects of kinase pathway modulators on DAT phosphorylation. DAT expression and activities can be regulated by kinase cascades that require phosphoacceptor sites most concentrated in its N terminus. These results have a number of implications for DAT regulation and mandate caution in using DAT radioligand binding to infer changes in dopaminergic neuronal integrity after treatments that alter activities of these kinase pathways.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, NIDA-IRP, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Carroll FI. 2002 Medicinal Chemistry Division Award address: monoamine transporters and opioid receptors. Targets for addiction therapy. J Med Chem 2003; 46:1775-94. [PMID: 12723940 DOI: 10.1021/jm030092d] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- F Ivy Carroll
- Chemistry and Life Sciences Group, Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
115
|
Abstract
The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na(+)- and Cl(-)-dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.
Collapse
Affiliation(s)
- Takashi Okuda
- Department of Neurochemistry, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
116
|
Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ. 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 2003; 85:358-67. [PMID: 12675912 DOI: 10.1046/j.1471-4159.2003.01686.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1-Methyl-4-phenylpyridinium (MPP+), the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces apoptosis in cerebellar granule neurons (CGNs). We have tested the hypothesis that organic cation transporter (OCT) 3 mediates the accumulation and, hence, the toxicity of MPP+ in CGNs. CGNs in primary culture express OCT3 but do not express mRNA for OCT1, OCT2 or the dopamine transporter. Cerebellar astrocytes are negative for OCT3 protein by immunocytochemistry. [3H]MPP+ accumulation by CGNs exhibits first-order kinetics, and a Kt value of 5.3 +/- 1.2 micro m and a Tmax of 0.32 +/- 0.02 pmol per min per 106 cells. [3H]MPP+ accumulation is inhibited by corticosterone, beta-estradiol and decynium 22 with Ki values of 0.25 micro m, 0.17 micro m and 4.0 nm respectively. [3H]MPP+ accumulation is also inhibited by desipramine, dopamine, serotonin and norepinephrine, but is not affected by carnitine (10 mm), mazindol (9 micro m) or GBR 12909 (1 micro m). MPP+-induced caspase-3-like activation and cell death are prevented by pretreatment with 5 micro mbeta-estradiol. In contrast, the neurotoxic effects of rotenone are unaffected by beta-estradiol. Interestingly, GBR 12909 protects CGNs from both MPP+ and rotenone toxicity. In summary, CGNs accumulate MPP+ in manner that is consistent with uptake via OCT3 and the presence of this protein in CGNs explains their sensitivity to MPP+ toxicity.
Collapse
Affiliation(s)
- Tiesong Shang
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
117
|
Gallant P, Malutan T, McLean H, Verellen L, Caveney S, Donly C. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:664-74. [PMID: 12581206 DOI: 10.1046/j.1432-1033.2003.03417.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA was cloned from the cabbage looper Trichoplusia ni based on similarity to other cloned dopamine transporters (DATs). The total nucleotide sequence is 3.8 kb in length and contains an open reading frame for a protein of 612 amino acids. The predicted moth DAT protein (TrnDAT) has greatest amino acid sequence identity with Drosophila melanogasterDAT (73%) and Caenorhabditis elegansDAT (51%). TrnDAT shares only 45% amino acid sequence identity with an octopamine transporter (TrnOAT) cloned recently from this moth. The functional properties of TrnDAT and TrnOAT were compared through transient heterologous expression in Sf9 cells. Both transporters have similar transport affinities for DA (Km 2.43 and 2.16 micro m, respectively). However, the competitive substrates octopamine and tyramine are more potent blockers of [3H]dopamine (DA) uptake by TrnOAT than by TrnDAT. D-Amphetamine is a strong inhibitor and l-norepinephrine a weak inhibitor of both transporters. TrnDAT-mediated DA uptake is approximately 100-fold more sensitive to selective blockers of vertebrate transporters of dopamine and norepinephrine, such as nisoxetine, nomifensine and dibenzazepine antidepressants, than TrnOAT-mediated DA uptake. TrnOAT is 10-fold less sensitive to cocaine than TrnDAT. None of the 15 monoamine uptake blockers tested was TrnOAT-selective. In situ hybridization shows that TrnDAT and TrnOAT transcripts are expressed by different sets of neurons in caterpillar brain and ventral nerve cord. These results show that the caterpillar CNS contains both a phenolamine transporter and a catecholamine transporter whereas in the three invertebrates whose genomes have been completely sequenced only a dopamine-selective transporter is found.
Collapse
Affiliation(s)
- Pamela Gallant
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
118
|
Schousboe A. Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 2003; 28:347-52. [PMID: 12608708 DOI: 10.1023/a:1022397704922] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The functional activity in the brain is primarily composed of an interplay between excitation and inhibition. In any given region the output is based upon a complex processing of incoming signals that require both excitatory and inhibitory units. Moreover, these units must be regulated and balanced such that an integrated and finely tuned response is generated. In each of these units or synapses the activity depends on biosynthesis, release, receptor interaction, and inactivation of the neurotransmitter in question; thus, it is easily understood that each of these processes needs to be highly regulated and controlled. It is interesting to note that in case of the most prevailing neurotransmitters, glutamate and GABA, which mediate excitation and inhibition, respectively, the inactivation process is primarily maintained by highly efficient, high-affinity transport systems capable of maintaining transmembrane concentration gradients of these amino acids of 10(4)-10(5)-fold. The demonstration of the presence of transporters for glutamate and GABA in both neuronal and astrocytic elements naturally raises the question of the functional importance of the astrocytes in the regulation of the level of the neurotransmitters in the synaptic cleft and hence for the activity of excitatory and inhibitory neurotransmission. Obviously, this discussion has important implications for the understanding of the role of astrocytes in disease states in which imbalances between excitation and inhibition are a triggering factor, for example, epilepsy and neurodegeneration.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
119
|
Pan T, Fei J, Zhou X, Jankovic J, Le W. Effects of green tea polyphenols on dopamine uptake and on MPP+ -induced dopamine neuron injury. Life Sci 2003; 72:1073-83. [PMID: 12495785 DOI: 10.1016/s0024-3205(02)02347-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As antioxidants, polyphenols are considered to be potentially useful in preventing chronic diseases in man, including Parkinson's disease (PD), a disease involving dopamine (DA) neurons. Our studies have demonstrated that polyphenols extracted from green tea (GT) can inhibit the uptake of 3H-dopamine (3H-DA) and 1-methyl-4-phenylpyridinium (MPP(+)) by DA transporters (DAT) and partially protect embryonic rat mesencephalic dopaminergic (DAergic) neurons from MPP(+)-induced injury. The inhibitory effects of GT polyphenols on 3H-DA uptake were determined in DAT-pCDNA3-transfected Chinese Hamster Ovary (DAT-CHO) cells and in striatal synaptosomes of C57BL/6 mice in vitro and in vivo. The inhibitory effects on 3H-MPP(+) uptake were determined in primary cultures of embryonic rat mesencephalic DAergic cells. Inhibition of uptake for both 3H-DA and 3H-MPP(+) was dose-dependent in the presence of polyphenols. Incubation with 50 microM MPP(+) resulted in a significant loss of tyrosine-hydroxylase (TH)-positive cells in the primary embryonic mesencephalic cultures, while pretreatment with polyphenols (10 to 30 microg/ml) or mazindol (10 microM), a classical DAT inhibitor, significantly attenuated MPP(+)-induced loss of TH-positive cells. These results suggest that GT polyphenols have inhibitory effects on DAT, through which they block MPP(+) uptake and protect DAergic neurons against MPP(+)-induced injury.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
120
|
Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003; 4:13-25. [PMID: 12511858 DOI: 10.1038/nrn1008] [Citation(s) in RCA: 666] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gonzalo E Torres
- Howard Hughes Medical Institute, Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
121
|
Meltzer PC, Liu S, Blanchette H, Blundell P, Madras BK. Design and synthesis of an irreversible dopamine-sparing cocaine antagonist. Bioorg Med Chem 2002; 10:3583-91. [PMID: 12213473 DOI: 10.1016/s0968-0896(02)00244-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cocaine is a powerful reinforcer and stimulant that binds to specific recognition sites associated with monoamine transporters in the mammalian brain. The search for a functional antagonist to the addictive properties of cocaine has focused on the discovery of a molecule that can inhibit cocaine binding to the dopamine transporter (DAT) but continue to allow dopamine transport by the DAT. No such dopamine-sparing cocaine antagonist has been reported and it is becoming evident that dopamine-sparing antagonism of the pharmacological effects of cocaine by a classical antagonist may not be possible. Herein we present a new concept for the design of dopamine-sparing cocaine antagonists. A unique approach is utilized to deliver an inhibitor that binds irreversibly to the DAT, then cleaves and leaves behind a small fragment attached to the DAT that blocks access by cocaine but permits dopamine transport. The design of these compounds takes advantage of a cysteinyl sulfhydryl group in the DAT. This group is hypothesized to attack the incoming inhibitor and lead to selective inhibition of the cocaine binding site while sparing dopamine transport. This concept of a mechanism based irreversible dopamine-sparing cocaine antagonist has now been demonstrated to be viable and, as example, the unsaturated 6 showed inhibition of cocaine (63%) at the DAT after 24h incubation, while at that point considerably less inhibition of dopamine is manifested (23%). In contrast, the epoxide 7 showed a greater inhibition of dopamine reuptake than cocaine binding at 24h (68% versus 18%).
Collapse
|
122
|
Kulkarni SS, Newman AH, Houlihan WJ. Three-dimensional quantitative structure-activity relationships of mazindol analogues at the dopamine transporter. J Med Chem 2002; 45:4119-27. [PMID: 12213055 DOI: 10.1021/jm0102093] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on a series of mazindol analogues using the comparative molecular field analysis (CoMFA) method with their corresponding binding affinities for the displacement of [(3)H]WIN 35 428 from rat caudate putamen tissue. The cross-validated CoMFA models were derived from a training set of 50 compounds, and the predictive ability of the resulting CoMFA models was evaluated against a test set of 21 compounds. A set of alignment rules was derived to superimpose these compounds onto a template structure, mazindol (1). These CoMFA models yielded significant cross-validated r(2)(cv) values. Inclusion of additional descriptors did not improve the significance of the CoMFA models; thus, steric and electrostatic fields are the relevant descriptors for these compounds. The best QSAR model was selected on the basis of the predictive ability of the activity on the external test set of compounds. The analysis of coefficient contour maps provided further insight into the binding interactions of mazindol analogues with the DAT. The aromatic rings C and D are involved in hydrophobic interactions in which ring D may bind in a large hydrophobic groove. The relative orientation of these two rings is also important for high binding affinity to the DAT.
Collapse
Affiliation(s)
- Santosh S Kulkarni
- Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program/NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
123
|
The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci 2002. [PMID: 12177201 DOI: 10.1523/jneurosci.22-16-07045.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na+/Cl--dependent dopamine transporter (DAT) is critical in terminating dopaminergic transmission by removing the transmitter away from the synapse. Several lines of evidence suggest that transporter-interacting proteins may play a role in DAT function and regulation. In this report, using the yeast two-hybrid system, we have identified a novel interaction between DAT and the multiple Lin-11, Isl-1, and Mec-3 (LIM) domain-containing adaptor protein Hic-5. This association involves the N-terminal portion of the intracellular tail of DAT and the LIM region of Hic-5. In human embryonic kidney 293 cells, Hic-5 colocalizes with DAT at polarized sites and reduces DAT uptake activity through a mechanism involving a decrease in the cell-surface levels of the transporter. A fragment of Hic-5 containing the LIM domains is sufficient to bind DAT but lacks the ability to inhibit transporter activity. In addition, the LIM fragment prevents the effect of the full-length Hic-5 on DAT localization and function. In the brain, Hic-5 protein is expressed in the cerebral cortex, hippocampus, hypothalamus, cerebellum, and striatum, suggesting a role for this protein in the nervous system. The association of the endogenous Hic-5 and DAT proteins was confirmed biochemically by coimmunoprecipitation from brain striatal extracts. Moreover, immunostaining of rat midbrain neurons in culture revealed a presynaptic colocalization of Hic-5 and DAT. Because Hic-5 has been shown to interact with several signaling molecules, including the nonreceptor protein tyrosine kinases focal adhesion kinase and Fyn, this raises the possibility that this adaptor protein may link DAT to intracellular signaling pathways.
Collapse
|
124
|
Newman AH, Kulkarni S. Probes for the dopamine transporter: new leads toward a cocaine-abuse therapeutic--A focus on analogues of benztropine and rimcazole. Med Res Rev 2002; 22:429-64. [PMID: 12210554 DOI: 10.1002/med.10014] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an attempt to discover a cocaine-abuse pharmacotherapeutic, extensive investigation has been directed toward elucidating the molecular mechanisms underlying the reinforcing effects of this psychostimulant drug. The results of these studies have been consistent with the inhibition of dopamine uptake, at the dopamine transporter (DAT), which results in a rapid and excessive accumulation of extracellular dopamine in the synapse as being the mechanism primarily responsible for the locomotor stimulant actions of cocaine. Nevertheless, investigation of the serotonin (SERT) and norepinephrine (NET) transporters, as well as other receptor systems, with which cocaine either directly or indirectly interacts, has suggested that the DAT is not solely responsible for the reinforcing effects of cocaine. In an attempt to further elucidate the roles of these systems in the reinforcing effects of cocaine, selective molecular probes, in the form of drug molecules, have been designed, synthesized, and characterized. Many of these compounds bind potently and selectively to the DAT, block dopamine reuptake, and are behaviorally cocaine-like in animal models of psychostimulant abuse. However, there have been exceptions noted in several classes of dopamine uptake inhibitors that demonstrate behavioral profiles that are distinctive from cocaine. Structure-activity relationships between chemically diverse dopamine uptake inhibitors have suggested that different binding interactions, at the molecular level on the DAT, as well as divergent actions at the other monoamine transporters may be related to the differing pharmacological actions of these compounds, in vivo. These studies suggest that novel dopamine uptake inhibitors, which are structurally and pharmacologically distinct from cocaine, may be developed as potential cocaine-abuse therapeutics.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse--Intramural Research Program, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
125
|
Yatin SM, Miller GM, Norton C, Madras BK. Dopamine transporter-dependent induction of C-Fos in HEK cells. Synapse 2002; 45:52-65. [PMID: 12112414 DOI: 10.1002/syn.10084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The psychostimulants cocaine and amphetamine increase expression of the immediate early gene (IEG) c-fos indirectly, via D1 dopamine receptor activation. To determine whether dopamine transporter substrates and inhibitors can affect c-Fos expression directly, we investigated their effects on c-Fos protein and c-fos mRNA in HEK-293 (HEK) cells transfected with the human dopamine transporter (hDAT). In untransfected HEK cells, methylphenidate and cocaine produced a small but statistically significant increase in c-Fos, whereas dopamine and amphetamine did not. In hDAT cells, DAT substrates (dopamine, amphetamine) increased c-Fos immunoreactivity 6- and 3-fold (respectively). The DAT inhibitors cocaine, methylphenidate, and bupropion also increased c-Fos approximately 3-fold in hDAT cells. If coincubated with dopamine, the inhibitors attenuated dopamine-induced c-Fos in hDAT cells. The magnitude of c-fos mRNA induction by substrates and inhibitors paralleled induction of c-Fos protein immunoreactivity. The results indicate that substrates or inhibitors of the DAT can trigger induction of IEG expression in the absence of D1 dopamine receptor. For substrates, IEG induction is DAT-dependent, but for certain DAT inhibitors the cellular response can be elicited in the absence of the DAT in HEK cells. Oxidative stress may partly, but not fully, account for the DA-induced c-Fos induction as an inhibitor of oxidative stress Trolox C, attenuated DA-induced c-Fos induction. Protein kinase C (PKC) may also partially account for c-Fos induction as a specific inhibitor of PKC Bisindolylmaleimide I (BIS) attenuated DA-induced c-Fos by 50%. DAT substrate and inhibitor effects on IEGs, other fos-related antigens, and possible mechanisms that contribute to c-Fos induction warrant investigation in presynaptic neurons as a potential contribution to the long-term effects of psychostimulants.
Collapse
Affiliation(s)
- Servet M Yatin
- Harvard Medical School, New England Regional Primate Research Center, Southborough, Massachusetts 01772-9102, USA
| | | | | | | |
Collapse
|
126
|
Miller GM, Madras BK. Polymorphisms in the 3'-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7:44-55. [PMID: 11803445 DOI: 10.1038/sj.mp.4000921] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 03/02/2001] [Accepted: 03/05/2001] [Indexed: 01/25/2023]
Abstract
Dopamine transporter (DAT) levels vary in normal subjects and deviate from the normal range in pathological states. We investigated mechanisms by which the DAT gene may influence DAT protein expression. As the 3'-untranslated region (3'-UTR) of the DAT gene varies with regard to length and single nucleotide polymorphisms (SNPs), we addressed whether the 3'-UTR of sequence-defined DAT alleles can differentially affect the level of reporter gene expression in vitro. We first established that within individual rhesus monkeys, two alleles of the DAT gene were expressed in the substantia nigra. We then transfected HEK-293 cells with HSV-TK- and SV40-driven luciferase expression vectors harboring downstream DAT 3'-UTR segments of alleles containing polymorphisms of length (human: 9 or 10 repeat units) or SNPs within alleles of fixed length (human: DraI-sensitive (DraI+) vs. DraI-insensitive (DraI-) 10-repeat alleles; rhesus monkey: Bst1107I-sensitive (Bst+) vs. Bst1107I-insensitive (Bst-) 12-repeat alleles). Vectors containing the 3'-UTR segment of a human DAT allele containing nine tandem repeat units resulted in significantly higher levels of luciferase production than analogous vectors containing 10 tandem repeat units. Depending on the promoter used, vectors containing the human or monkey 3'-UTR segments that differed on the basis of an SNP resulted in increases or decreases in luciferase gene expression. This report provides experimental evidence that variability in the length or the sequence of the 3'-UTR of the DAT gene may influence levels of DAT protein in the brain.
Collapse
Affiliation(s)
- G M Miller
- Harvard Medical School, Division of Neurochemistry, New England Regional Primate Research Center, One Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | |
Collapse
|
127
|
Uhl GR, Hall FS, Sora I. Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 2002; 7:21-6. [PMID: 11803442 DOI: 10.1038/sj.mp.4000964] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Accepted: 06/27/2001] [Indexed: 11/10/2022]
Abstract
Recent evidence enriches our understanding of the molecular sites of action of cocaine reward and locomotor stimulation. Dopamine transporter blockade by cocaine appears a sufficient explanation for cocaine-induced locomotion. Variation in DAT appears to cause differences in locomotion without drug stimulation. However, previously-held views that DAT blockade was the sole site for cocaine reward have been replaced by a richer picture of multitransporter involvement with the rewarding and aversive actions of cocaine. These new insights, derived from studies of knockout mice with simultaneous deletions and/or blockade of multiple transporters, provide a novel model for the rewarding action of this heavily-abused substance and implicate multiple monoamine systems in cocaine's hedonic activities.
Collapse
Affiliation(s)
- G R Uhl
- Molecular Neurobiology Branch, NIDA-IRP, NIH, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
128
|
Benedetti P, Mannhold R, Cruciani G, Pastor M. GBR compounds and mepyramines as cocaine abuse therapeutics: chemometric studies on selectivity using grid independent descriptors (GRIND). J Med Chem 2002; 45:1577-84. [PMID: 11931612 DOI: 10.1021/jm011007+] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is one of the most widely abused drugs in the industrial world. Substantial evidence has accumulated that the dopamine transporter (DAT) is a key target for cocaine regarding its reinforcing effects. This work describes the application of chemometric methods to a data set of 54 N(1)-benzhydryl-oxy-alkyl-N(4)-phenyl-alk(en)yl-piperazines (GBR compounds) and chemically related mepyramines as putative candidates in cocaine abuse therapy. The aim of the study is to gain insight into the structural requirements that determine the affinity of the data set molecules to the DAT and the serotonin transporter (SERT) as well as their inhibitory potency on dopamine uptake. The compounds in the dataset are described using the recently developed GRID independent descriptors (GRIND), which allow one to obtain fast three-dimensional quantitative structure-activity relationship models without the need of aligning and superimposing the structures; the results are interpreted in a convenient pharmacophoric-like fashion. In the first part of the work, the selectivity of the database molecules for DAT binding vs dopamine reuptake inhibition is investigated. In the second part, the selectivity of the compounds for DAT binding vs SERT binding is studied. In both cases, significant models are obtained, which define the structural features responsible for the respective selectivity profiles. Moreover, the information has potential interest for the design of new derivatives with improved selectivity.
Collapse
Affiliation(s)
- Paolo Benedetti
- Dipartimento di Chimica, Laboratorio di Chemiometria, Università di Perugia, Via Elce di Sotto, 10, I-06123 Perugia, Italy
| | | | | | | |
Collapse
|
129
|
Page G, Chalon S, Emond P, Maloteaux JM, Hermans E. Pharmacological characterisation of (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)nortropane (PE2I) binding to the rat neuronal dopamine transporter expressed in COS cells. Neurochem Int 2002; 40:105-13. [PMID: 11738476 DOI: 10.1016/s0197-0186(01)00086-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of (E)-N-(3-iodoprop-2-enyl)-2beta-Carbomethoxy-3beta-(4'-methylphenyl) nortropane (PE2I) with the rat neuronal dopamine transporter (DAT) was studied in transfected COS cells by measuring its ability to inhibit DA uptake and by measuring its affinity in radioligand binding experiments. Saturable [3H]DA uptake was measured in COS cells transiently transfected with the cDNA sequence encoding the rat DAT. Pharmacological characterisation of this uptake revealed functional properties with a V(max) value of 45.05+/-2.62 pmol/mg protein per min and a K(m) value of 2.86+/-0.28 microM. The specific [3H]DA uptake was fully inhibited by 1 microM PE2I. Concentration response curves revealed the high potency of PE2I in inhibiting DA uptake (pEC(50) value of 8.70+/-0.33), 25 times higher than that observed for the reference DAT inhibitor, GBR 12935. On crude homogenates from transfected COS cells, PE2I displaced the specific binding of [3H]GBR 12935 with a pK(i) value of 7.73+/-0.13. Accordingly, [125I]PE2I was found to specifically recognise a single binding site population which is almost completely displaced by GBR 12935 and nomifensine. Saturation experiments revealed the high affinity of [125I]PE2I (K(D) value of 3.8+/-0.63 nM) that correlates with the high potency of PE2I in inhibiting the [3H]DA uptake. This contrasts with the results obtained with GBR 12935 for which a discrepancy was found between its high affinity in binding assays (K(D) value of 0.43+/-0.04 nM) and its rather low potency in functional assays (pEC(50) value of 7.30+/-0.05). A relatively high level of [3H]GBR 12935 binding was detected in non transfected COS cells. Such nomifensine resistant binding is attributed to the interaction of GBR 12935 with cytochrome P-450 as it was displaced by cis-(Z)-flupentixol (an inhibitor of cytochrome P-450). Such interaction was not observed using PE2I. Taken together, these data demonstrate that PE2I was a highly potent inhibitor of cloned DAT compared with GBR 12935 and provided a useful tool for further investigations in cells transfected with cDNA encoding the DAT.
Collapse
Affiliation(s)
- Guylène Page
- Laboratoire de Pharmacologie Expérimentale (FARL), Université catholique de Louvain 54.10, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
130
|
Hisano S, Nogami H. Transporters in the neurohypophysial neuroendocrine system, with special reference to vesicular glutamate transporters (BNPI and DNPI): a review. Microsc Res Tech 2002; 56:122-31. [PMID: 11810715 DOI: 10.1002/jemt.10014] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in gene technology have helped to identify novel proteins and allowed study of their distribution and functions in the mammalian brain. One class of these proteins is that of transporters, which exist in plasma and organellar membranes of neurons and other cells to move substances selectively across membranes. These transporters can be categorized further into subclasses by their structural property, substrate selectivity, and site of action. Some of them have been identified in the hypothalamus, which is the only brain site where a neural signal is converted to a humoral one, namely, a hormone for a target organ. This unique neural mechanism has long attracted attention as the neuroendocrine system, part of which has been extensively studied as the hypothalamic-neurohypophysial system involved in secretion of vasopressin and oxytocin. However, transporters in this system have been less well studied. A morphological examination of novel transporters would give us cues to a better understanding of the neuronal organization and function of the system. In this review, we first summarize recent findings on expression of transporter gene and immunoreactivity in the hypothalamus. In the second part, we explain our observations on two vesicular glutamate (inorganic phosphate) transporters (BNPI and DNPI) in the supraoptic and paraventricular nuclei and neurohypophysis. Further study of these and other transporters will provide a basis on which to reevaluate the organization and function of the hypothalamic-neurohypophysial system.
Collapse
Affiliation(s)
- Setsuji Hisano
- Laboratory of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan.
| | | |
Collapse
|
131
|
Paczkowski FA, Bryan-Lluka LJ. Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:32-42. [PMID: 11744160 DOI: 10.1016/s0169-328x(01)00295-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K(m) and V(max) for uptake of the substrates, [3H]norepinephrine, [3H]MPP(+) and [3H]dopamine, the K(D) and B(max) for [3H]nisoxetine binding and the K(i) of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [3H]norepinephrine uptake. The K(m) values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower V(max) than NET for substrate uptake. The mutations at position 271 caused an increase in the K(i) or K(D) values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function.
Collapse
Affiliation(s)
- F A Paczkowski
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, 4072, Queensland, Brisbane, Australia
| | | |
Collapse
|
132
|
Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA. Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 2001; 112:119-33. [PMID: 11716947 DOI: 10.1016/s0165-0270(01)00459-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantifying mechanisms underlying extracellular signaling by the neurotransmitter dopamine (DA) is a difficult task, particularly in the complex extracellular microenvironment of the intact brain. In this study, two methods for evaluating release and uptake from DA dynamics monitored by real-time voltammetry are described. Both are based on a neurochemical model characterizing electrically evoked levels of DA as a balance between these opposing mechanisms. The theoretical basis of what is called here nonlinear regression and single curve analyses is given. Fitting simulated data tests the reliability of the methods. The two analyses are also compared with an experimental data set describing the effects of pharmacologically inhibiting the DA transporter in the caudate-putamen (CP) and nucleus accumbens (NAc). The results indicate that nonlinear regression and single curve analyses are suitable for quantifying release and uptake mechanisms underlying DA neurotransmission. Additionally, the most important experimental finding of this technical study was the independent confirmation of high affinity (approximately 0.2 microM) DA uptake in the intact striatum.
Collapse
Affiliation(s)
- Q Wu
- Department of Biological Sciences, Cellular and Integrative Physiology Section, Illinois State University, 244 SLB, Normal, IL 61790, USA
| | | | | | | | | |
Collapse
|
133
|
Gu HH, Wu X, Giros B, Caron MG, Caplan MJ, Rudnick G. The NH(2)-terminus of norepinephrine transporter contains a basolateral localization signal for epithelial cells. Mol Biol Cell 2001; 12:3797-807. [PMID: 11739781 PMCID: PMC60756 DOI: 10.1091/mbc.12.12.3797] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
When expressed in epithelial cells, dopamine transporter (DAT) was detected predominantly in the apical plasma membrane, whereas norepinephrine transporter (NET) was found in the basolateral membrane, despite 67% overall amino acid sequence identity. To identify possible localization signals responsible for this difference, DAT-NET chimeras were expressed in MDCK cells and localized by immunocytochemistry and transport assays. The results suggested that localization of these transporters in MDCK cells depends on their highly divergent NH(2)-terminal regions. Deletion of the first 58 amino acids of DAT (preceding TM1) did not change its apical localization. However, the replacement of that region with corresponding sequence from NET resulted in localization of the chimeric protein to the basolateral membrane, suggesting that the NH(2)-terminus of NET, which contains two dileucine motifs, contains a basolateral localization signal. Mutation of these leucines to alanines in the context of a basolaterally localized NET/DAT chimera restored transporter localization to the apical membrane, indicating that the dileucine motifs are critical to the basolateral localization signal embodied within the NET NH(2)-terminal region. However, the same mutation in the context of wild-type NET did not disrupt basolateral localization, indicating the presence of additional signals in NET directing its basolateral localization within the plasma membrane.
Collapse
Affiliation(s)
- H H Gu
- Department of Pharmacology, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
134
|
Chen YK, Liu RS, Huang WS, Wey SP, Ting G, Liu JC, Shen YY, Wan FJ. The role of dopamine transporter imaging agent [99mTc]TRODAT-1 in hemi-parkinsonism rat brain. Nucl Med Biol 2001; 28:923-8. [PMID: 11711311 DOI: 10.1016/s0969-8051(01)00255-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study aims to investigate the relationship between the determination of dopamine level by high performance liquid chromatography (HPLC) with electrochemical detection (ECD) and the detection of dopamine transporter (DAT) counts using autoradiography with DAT image agent [99mTc]TRODAT-1. For striatal lesions, pretreatment of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle shows that autoradiogaphic labeling of striatum region is reduced to near-background level. Using HPLC with ECD, unilateral 6-OHDA treatment is associated with significant (p < 0. 0002) reductions of dopamine levels. For the striatum of the 6-OHDA-lesioned side, dopamine content and DAT counts are reduced to 97% and 90%, respectively. Thus, our observation indicates a potential of using [99mTc]TRODAT-1 for the evaluation of animal DAT.
Collapse
Affiliation(s)
- Y K Chen
- Graduate Institute of Medical Science, National Defense Medical Center, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Liu Z, Zhang J, Fei J, Guo L. A novel mechanism of dopamine neurotoxicity involving the peripheral extracellular and the plasma membrane dopamine transporter. Neuroreport 2001; 12:3293-7. [PMID: 11711873 DOI: 10.1097/00001756-200110290-00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chinese hamster ovary cells stably expressing a rat dopamine transporter (designated D8 cells) and neuroblastoma SK-N-SH cells were used as two model systems to study dopamine neurotoxicity. Within 24 h, 1-10 mM dopamine induced D8 cells into apoptosis while 20-200 microM dopamine induced SK-N-SH cells into cell death. The viability of both cell types decreased in a dose-dependent manner. However, the dopamine uptake activity of D8 cells at 10 mM was not significantly higher than the uptake at 100 microM, suggesting that it was not the high concentration of intracellular dopamine that induced D8 cells into apoptosis, but rather dopamine found in the extracellular space. Furthermore, cocaine, an inhibitor of dopamine uptake, could not block cell death induced by dopamine. Forskolin, an agonist of protein kinase A (PKA), stimulated dopamine uptake in D8 cells and blocked apoptosis induced by the drug. These results suggest that the dopamine transporter mediates a dopamine-dependant apoptotic signal transduction pathway that is independent of dopamine uptake into the cell.
Collapse
Affiliation(s)
- Z Liu
- Shanghai Institutes of Biological Sciences, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | | | | | | |
Collapse
|
136
|
Deransart C, Landwehrmeyer GB, Feuerstein TJ, Lücking CH. Up-regulation of D3 dopaminergic receptor mRNA in the core of the nucleus accumbens accompanies the development of seizures in a genetic model of absence-epilepsy in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 94:166-77. [PMID: 11597777 DOI: 10.1016/s0169-328x(01)00240-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal ganglia system is thought to play a key role in the control of absence-seizures and there is ample evidence that epileptic seizures modify brain dopamine function. We recently reported that local injections of dopamine D1 or D2 agonists in the core of the nucleus accumbens suppressed absence-seizures in a spontaneous, genetic rodent model of absence-epilepsy whereas injections of D1 or D2 antagonists had aggravating effects. These findings raised the possibility that the dopaminergic system may be altered in absence-epilepsy prone rats. Therefore, we studied by in situ hybridization histochemistry the expression of pre- and postsynaptic components of the dopaminergic system in this strain of rats. When compared to non-epileptic control rats, epileptic rats displayed no change in the expression of mRNAs coding for the neuronal dopaminergic markers (tyrosine hydroxylase, membraneous and vesicular dopamine transporters). In addition, there was no difference between the two strains concerning the expression of the dopamine receptor transcripts D1, D2 and D5. In adult absence-epilepsy prone rat with an overt epileptic phenotype, however, an elevated level of D3 mRNA expression was observed in neurons of the core of the nucleus accumbens (+23% increase in silver grain density compared to non-epileptic control rats). D3 transcripts were not increased in juvenile epileptic rats without seizures. These findings suggests that up-regulation of D3 receptor mRNA is part of the epileptic phenotype in absence-epilepsy prone rats. Its localization in the core of the nucleus accumbens bears close resemblance to the dopamine-sensitive antiepileptic sites in ventral striatum and further support the involvement of ventral structures of the basal ganglia system in the control of absence-seizures.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Dopamine/physiology
- Epilepsy, Absence/genetics
- Epilepsy, Absence/physiopathology
- Gene Expression
- In Situ Hybridization
- Neurons/physiology
- Nucleus Accumbens/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Rats, Mutant Strains
- Receptors, Dopamine/genetics
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D3
- Receptors, Dopamine D5
- Up-Regulation/physiology
Collapse
Affiliation(s)
- C Deransart
- Klinikum der Albert-Ludwigs-Universität, Neurozentrum, Sektion Klinische Neuropharmakologie, Breisacherstrasse 64, D-79106, Freiburg im Breisgau, Germany.
| | | | | | | |
Collapse
|
137
|
Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl- -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 2001; 92:21-55. [PMID: 11750035 DOI: 10.1016/s0163-7258(01)00158-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Na+/Cl- -dependent neurotransmitter transporters, which constitute a gene superfamily, are crucial for limiting neurotransmitter activity. Thus, it is critical to understand their regulation. This review focuses primarily on the norepinephrine transporter, the dopamine transporter, the serotonin transporter, and the gamma-aminobutyric acid transporter GAT1. Chronic administration of drugs that alter neurotransmitter release or inhibit transporter activity can produce persistent compensatory changes in brain transporter number and activity. However, regulation has not been universally observed. Transient alterations in norepinephrine transporter, dopamine transporter, serotonin transporter, and GAT1 function and/or number occur in response to more acute manipulations, including membrane potential changes, substrate exposure, ethanol exposure, and presynaptic receptor activation/inhibition. In many cases, acute regulation has been shown to result from a rapid redistribution of the transporter between the cell surface and intracellular sites. Second messenger systems involved in this rapid regulation include protein kinases and phosphatases, of which protein kinase C has been the best characterized. These signaling systems share the common characteristic of altering maximal transport velocity and/or cell surface expression, consistent with regulation of transporter trafficking. Although less well characterized, arachidonic acid, reactive oxygen species, and nitric oxide also alter transporter function. In addition to post-translational modifications, cytoskeleton interactions and transporter oligomerization regulate transporter activity and trafficking. Furthermore, promoter regions involved in transporter transcriptional regulation have begun to be identified. Together, these findings suggest that Na+/Cl- -dependent neurotransmitter transporters are regulated both long-term and in a more dynamic manner, thereby providing several distinct mechanisms for altering synaptic neurotransmitter concentrations and neurotransmission.
Collapse
Affiliation(s)
- N R Zahniser
- Department of Pharmacology, C-236, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
138
|
|
139
|
Liu Z, Wang Y, Zhao W, Ding J, Mei Z, Guo L, Cui D, Fei J. Peptide derived from insulin with regulatory activity of dopamine transporter. Neuropharmacology 2001; 41:464-71. [PMID: 11543766 DOI: 10.1016/s0028-3908(01)00092-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A nonapeptide derived from the C terminus of the insulin B chain, H(2)N-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Ala-COOH, was found to strongly inhibit dopamine (DA) uptake by rat dopamine transporter (DAT) stably expressed in CHO cells (designated D8 cells). The kinetic experiments on D8 cells gave a curve typical of competitive inhibition with an IC(50)=6.9 microM. This inhibitory effect was also confirmed by experiments on striatal synaptosomes. The rat administered with the nonapeptide unilaterally into substantia nigra showed dose-dependent velocity and duration of the round movement contralateral to the nonapeptide-injected side. In addition, the nonapeptide dose-dependently reduced the binding of the tritium-labeled cocaine analog (-)-2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (WIN35,428) to DAT of D8 cells, which suggests that the nonapeptide may inhibit the transport activity of DAT in the way as cocaine does. Meanwhile, the peptide DOI (insulin with 8 amino acid residues deleted at the C terminus of the B chain) shows a significantly stimulating effect on DAT uptake activity in D8 cells. So insulin is proposed as a kind of neuropeptide precursor in the brain and insulin-derived peptides may be involved in the process of regulating the DA system, and these peptides may be developed into new medicines for disorders concerning the DA system such as Parkinson's disease and cocaine addiction.
Collapse
Affiliation(s)
- Z Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institute of Biology Science, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Syringas M, Janin F, Giros B, Costentin J, Bonnet JJ. Involvement of the NH2 terminal domain of catecholamine transporters in the Na(2+) and Cl(-)-dependence of a [3H]-dopamine uptake. Br J Pharmacol 2001; 133:387-94. [PMID: 11375255 PMCID: PMC1572801 DOI: 10.1038/sj.bjp.0704097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ionic dependence of the [3H]-dopamine uptake was studied in transfected cells expressing the human neuronal transporter for dopamine (hDAT) or noradrenaline (hNET), and chimeric transporters resulting from the symmetrical exchange of the region from the NH2 terminal through the first two transmembrane domains (cassette I). Chimera A is formed by hDAT comprising cassette I from hNET, whereas chimera B corresponds to the reverse construct. The appearance or the intensity of a Cl(-)-independent component of transport was linked to the presence of the COOH terminal part of hNET in both monoclonal and polyclonal Ltk(-) cells (Cl(-) substituted by isethionate and NO3(-), respectively), and in transiently transfected COS-7 cells. Cassette I was also involved in the Cl(-)-dependence because the transport activity of polyclonal Ltk(-) cells expressing A was partly Cl(-)-independent and because Ltk(-) cells expressing transporters containing cassette I of hDAT displayed higher K(mCl)- values than cells expressing the reverse constructs. In monoclonal Ltk(-) cell lines, K(mNa)+ values and biphasic vs monophasic dependence upon Na(+) concentrations differentiate transporters containing cassette I of hNET from those containing cassette I of hDAT. In COS-7 cells, the exchange of cassette I produced a significant change in Hill number values. In Na(+)-dependence studies, exchange of the COOH terminal part significantly modified Hill number values in both Ltk(-) and COS-7 cells. Hill number values close to two were found for hNET and hDAT when sucrose was used as substitute for NaCl. The NH2 terminal part of the transporters bears some of the differences in the Na(+) and Cl(-)-dependence of the uptake that are observed between hDAT and hNET. Present results also support a role of the COOH terminal part in the ionic dependence.
Collapse
Affiliation(s)
- Maria Syringas
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | - François Janin
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Bruno Giros
- INSERM U513, 8 av. du Général Sarrail, 94000 Créteil, France
| | - Jean Costentin
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Jean-Jacques Bonnet
- UMR C.N.R.S. 6036, IFRMP 23, U.F.R. de Médecine & Pharmacie, 22 Boulevard Gambetta, 76000 Rouen, France
- Author for correspondence:
| |
Collapse
|
141
|
Eisenhofer G. The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 2001; 91:35-62. [PMID: 11707293 DOI: 10.1016/s0163-7258(01)00144-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Catecholamines are translocated across plasma membranes by transporters that belong to two large families with mainly neuronal or extraneuronal locations. In mammals, neuronal uptake of catecholamines involves the dopamine transporter (DAT) at dopaminergic neurons and the norepinephrine transporter (NET) at noradrenergic neurons. Extraneuronal uptake of catecholamines is mediated by organic cation transporters (OCTs), including the classic corticosterone-sensitive extraneuronal monoamine transporter. Catecholamine transporters function as part of uptake and metabolizing systems primarily responsible for inactivation of transmitter released by neurons. Additionally, the neuronal catecholamine transporters, recycle catecholamines for rerelease, thereby reducing requirements for transmitter synthesis. In a broader sense, catecholamine transporters function as part of integrated systems where catecholamine synthesis, release, uptake, and metabolism are regulated in a coordinated fashion in response to the demands placed on the system. Location is also important to function. Neuronal transporters are essential for rapid termination of the signal in neuronal-effector organ transmission, whereas non-neuronal transporters are more important for limiting the spread of the signal and for clearance of catecholamines from the bloodstream. Besides their presynaptic locations, NET and DAT are also present at several extraneuronal locations, including syncytiotrophoblasts of the placenta and endothelial cells of the lung (NET), stomach and pancreas (DAT). The extraneuronal monoamine transporter shows a broad tissue distribution, whereas the other two non-neuronal catecholamine transporters (OCT1 and OCT2) are mainly localized to the liver, kidney, and intestine. Altered function of peripheral catecholamine transporters may be involved in disturbances of the autonomic nervous system, such as occurs in congestive heart failure and hypernoradrenergic hypertension. Peripheral catecholamine transporters provide important targets for clinical imaging of sympathetic nerves and diagnostic localization and treatment of neuroendocrine tumors, such as neuroblastomas and pheochromocytomas.
Collapse
Affiliation(s)
- G Eisenhofer
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, Building 10, Room 6N 252, National Institutes of Health, 10 Center Drive, MSC 1620, Bethesda, MD 20892-1620, USA.
| |
Collapse
|
142
|
Methamphetamine-induced rapid and reversible changes in dopamine transporter function: an in vitro model. J Neurosci 2001. [PMID: 11160413 DOI: 10.1523/jneurosci.21-04-01413.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This laboratory has demonstrated that a single methamphetamine (METH) injection rapidly and reversibly decreases the activity of the dopamine transporter (DAT), as assessed ex vivo in synaptosomes prepared from treated rats. This decrease does not occur because of residual drug introduced by the original injection or nor is it associated with a change in binding of the DAT ligand WIN35428. The purpose of this study was to elucidate the mechanism or mechanisms of this METH effect by determining whether direct application of this stimulant to synaptosomes causes changes in DAT similar to those observed ex vivo. Similar to the ex vivo effect, incubation of striatal synaptosomes with METH decreased DAT activity, but not WIN35428 binding: the effect on activity was not eliminated by repeated washing of synaptosomes. Also, as observed ex vivo, incubation with 3,4-methylenedioxymethamphetamine, but not cocaine or methylphenidate, caused a METH-like reduction in DAT function. The rapid and reversible METH-induced diminution in DAT activity did not occur because of a change in membrane potential, as assessed in vitro and ex vivo by [(3)H]tetraphenylphosphonium accumulation. However, the METH-related decline in DAT function may be attributed to phosphorylation because NPC15437, a protein kinase C inhibitor, attenuated the METH-induced decline in DAT function. Similarities between previously reported effects ex vivo of a single METH injection on serotonin and norepinephrine transporter function and effects of direct METH application in vitro were also found. Together, these data demonstrate that the in vitro incubation model mimics the rapid and reversible effects observed after a single METH injection.
Collapse
|
143
|
Abstract
Cocaine is a widely abused psychostimulant. Its direct actions include inhibition of dopamine, serotonin, and norepinephrine reuptake into presynaptic nerve terminals, thereby potentiating the actions of these transmitters in the synapse. A variety of studies have demonstrated that cocaine can also have profound effects on the endogenous opioid system. Compelling evidence points to the importance of mu opioid receptors in human cocaine addiction and craving. Animal studies support these findings and demonstrate that chronic cocaine administration can result in alterations in opioid receptor expression and function as measured by changes in critical signal transduction pathways. This chapter reviews studies on the regulation of opioid receptors as the result of exposure to cocaine.
Collapse
Affiliation(s)
- E M Unterwald
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
144
|
Chang MY, Lee SH, Kim JH, Lee KH, Kim YS, Son H, Lee YS. Protein kinase C-mediated functional regulation of dopamine transporter is not achieved by direct phosphorylation of the dopamine transporter protein. J Neurochem 2001; 77:754-61. [PMID: 11331404 DOI: 10.1046/j.1471-4159.2001.00284.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopaminergic neurotransmission is terminated by the action of the presynaptic dopamine transporter (DAT). It mediates Na(+)/Cl(-) -dependent re-uptake of extracellular dopamine (DA) into the cell, and is regarded as a major regulatory mechanism for synaptic transmission. Previous works have documented that protein kinase C (PKC) activator or inhibitor alters DA uptake by DAT, suggesting that PKC phosphorylation plays an important regulatory mechanism in DAT function. Based on the existence of consensus amino acid sequences for PKC phosphorylation, it has been postulated that PKC regulation of DAT is mediated by the direct phosphorylation of DAT protein. In this study, we try to discover whether the functional regulation of DAT by PKC is due to direct phosphorylation of DAT. The PKC null mutant hDAT, where all putative PKC phosphorylation sites are eliminated, has been constructed by the replacement of serine/threonine residues with glycines. The mutation itself showed no effect on the functional activities of DAT. The DA uptake activity of PKC null mutant was equivalent to those of wild-type hDAT (80-110% of wild-type). Phorbol ester activation of PKC inhibited DA uptake of wild-type hDAT by 35%, and staurosphorine blocked the effect of phorbol ester on DA uptake. The same phenomena was observed in PKC null mutant DAT, although no significant phosphorylation was observed by PKC activation. Confocal microscopic analysis using EGFP-fused DAT revealed that the activation of PKC by phorbol ester elicited fluorescent DAT to be internalized into the intracellular space both in wild-type and PKC null mutant DAT in a similar way. These results suggest that PKC-mediated regulation of DAT function is achieved in an indirect manner, such as phosphorylation of a mediator protein or activation of a clathrin-mediated pathway.
Collapse
Affiliation(s)
- M Y Chang
- Departments of Biochemistry and Physiology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
145
|
Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI, Staudinger J, Caron MG. Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 2001; 30:121-34. [PMID: 11343649 DOI: 10.1016/s0896-6273(01)00267-7] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PDZ domain-containing proteins play an important role in the targeting and localization of synaptic membrane proteins. Here, we report an interaction between the PDZ domain-containing protein PICK1 and monoamine neurotransmitter transporters in vitro and in vivo. In dopaminergic neurons, PICK1 colocalizes with the dopamine transporter (DAT) and forms a stable protein complex. Coexpression of PICK1 with DAT in mammalian cells and neurons in culture results in colocalization of the two proteins in a cluster pattern and an enhancement of DAT uptake activity through an increase in the number of plasma membrane DAT. Deletion of the PDZ binding site at the carboxyl terminus of DAT abolishes its association with PICK1 and impairs the localization of the transporter in neurons. These findings indicate a role for PDZ-mediated protein interactions in the localization, expression, and function of monoamine transporters.
Collapse
Affiliation(s)
- G E Torres
- Howard Hughes Medical Institute, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Roubert C, Cox PJ, Bruss M, Hamon M, Bönisch H, Giros B. Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J Biol Chem 2001; 276:8254-60. [PMID: 11092898 DOI: 10.1074/jbc.m009798200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The norepinephrine (NET) and dopamine (DAT) transporters are highly homologous proteins, displaying many pharmacological similarities. Both transport dopamine with higher affinity than norepinephrine and are targets for the psychostimulants cocaine and amphetamine. However, they strikingly contrast in their affinities for tricyclic antidepressants (TCA). Previous studies, based on chimeric proteins between DAT and NET suggest that domains ranging from putative transmembrane domain (TMD) 5 to 8 are involved in the high affinity binding of TCA to NET. We substituted 24 amino acids within this region in the human NET with their counterparts in the human DAT, resulting in 22 different mutants. Mutations of residues located in extra- or intracytoplasmic loops have no effect on binding affinity of neither TCA nor cocaine. Three point mutations in TMD6 (F316C), -7 (V356S), and -8 (G400L) induced a loss of TCA binding affinity of 8-, 5-, and 4-fold, respectively, without affecting the affinity of cocaine. The triple mutation F316C/V356S/G400L produced a 40-fold shift in desipramine affinity. These three residues are strongly conserved in all TCA-sensitive transporters cloned in mammalian and nonmammalian species. A strong shift in TCA affinity (IC(50)) was also observed for double mutants F316C/D336T (35-fold) and S399P/G400L (80-fold for nortriptyline and 1000-fold for desipramine). Reverse mutations P401S/L402G in hDAT did not elicit any gain in TCA affinities, whereas C318F and S358V resulted in a 3- and 10-fold increase in affinity, respectively. Our results clearly indicate that two residues located in TMD6 and -7 of hNET may play an important role in TCA interaction and that a critical region in TMD8 is likely to be involved in the tertiary structure allowing the high affinity binding of TCA.
Collapse
Affiliation(s)
- C Roubert
- INSERM U-513, Neurobiologie et Psychiatrie, Faculté de Médecine de Créteil, 8, rue du Général Sarrail, F-94000 Créteil, France
| | | | | | | | | | | |
Collapse
|
147
|
Page G, Peeters M, Najimi M, Maloteaux JM, Hermans E. Modulation of the neuronal dopamine transporter activity by the metabotropic glutamate receptor mGluR5 in rat striatal synaptosomes through phosphorylation mediated processes. J Neurochem 2001; 76:1282-90. [PMID: 11238713 DOI: 10.1046/j.1471-4159.2001.00179.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is considerable evidence that the activity of the neuronal dopamine transporter (DAT) is dynamically regulated and a putative implication of its phosphorylation in this process has been proposed. However, there is little information available regarding the nature of physiological stimuli that contribute to the endogenous control of the DAT function. Based on the close relationship between glutamatergic and dopaminergic systems in the striatum, we investigated the modulation of the DAT activity by metabotropic glutamate receptors (mGluRs). Short-term incubations of rat striatal synaptosomes with micromolar concentrations of the group I mGluR selective agonist (S)-3,5-dihydroxyphenylglycine were found to significantly decrease the DAT capacity and efficiency. This alteration was completely prevented by a highly selective mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). The effect of (S)-3,5-dihydroxyphenylglycine was also inhibited by staurosporine and by selective inhibitors of protein kinase C and calcium calmodulin-dependent protein kinase II. Co-application of okadaic acid prolonged the transient effect of the agonist, supporting a critical role for phosphorylation in the modulation of the DAT activity by mGluRs. In conclusion, we propose that striatal mGluR5 contribute to the control of the DAT activity through concomitant activation of both protein kinase C and calcium calmodulin-dependent protein kinase II.
Collapse
Affiliation(s)
- G Page
- Laboratoire de Pharmacologie Expérimentale (FARL), Université Catholique de Louvain 54.10, Brussels, Belgium
| | | | | | | | | |
Collapse
|
148
|
Pickel VM. Extrasynaptic distribution of monoamine transporters and receptors. PROGRESS IN BRAIN RESEARCH 2001; 125:267-76. [PMID: 11098663 DOI: 10.1016/s0079-6123(00)25016-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
149
|
Miller GM, Yatin SM, De La Garza R, Goulet M, Madras BK. Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:124-43. [PMID: 11223167 DOI: 10.1016/s0169-328x(00)00288-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used RT-PCR to clone monoamine transporters from Macaca mulatta, Macaca fasicularis and Saimiri sciureus (dopamine transporter; DAT) and Macaca mulatta (norepinephrine transporter; NET and serotonin transporter; SERT). Monkey DAT, NET and SERT proteins were >98% homologous to human and, when expressed in HEK-293 cells, displayed drug affinities and uptake kinetics that were highly correlated with monkey brain or human monoamine transporters. In contrast to reports of other species, we discovered double (leucine for phenylalanine 143 and arginine for glutamine 509; Variant I) and single (proline for leucine 355; Variant II) amino acid variants of DAT. Variant I displayed dopamine transport kinetics and binding affinities for various DAT blockers (including cocaine) versus [3H] CFT (WIN 35, 428) that were identical to wild-type DAT (n=7 drugs; r(2)=0.991). However, we detected a six-fold difference in the affinity of cocaine versus [3H] cocaine between Variant I (IC(50): 488+/-102 nM, SEM, n=3) and wild-type DAT (IC(50): 79+/-8.2 nM, n=3, P<0.05). Variant II was localized intracellularly in HEK-293 cells, as detected by confocal microscopy, and had very low levels of binding and dopamine transport. Also discovered was a novel exon 5 splice variant of NET that displayed very low levels of transport and did not bind cocaine. With NetPhos analysis, we detected a number of highly conserved putative phosphorylation sites on extracellular as well as intracellular loops of the DAT, NET, and SERT, which may be functional for internalized transporters. The homology and functional similarity of human and monkey monoamine transporters further support the value of primates in investigating the role of monoamine transporters in substance abuse mechanisms, neuropsychiatric disorders and development of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- G M Miller
- Harvard Medical School, Division of Neurochemistry, New England Regional Primate Research Center, One Pine Hill Drive, 01772, Southborough, MA, USA
| | | | | | | | | |
Collapse
|
150
|
Drandarevski N, Marburger A, Walther D, Reum T, Uh G, Morgenstern R. Dopaminergic mRNA expression in the intact substantia nigra of unilaterally 6-OHDA-lesioned and grafted rats: an in situ hybridization study. J Neural Transm (Vienna) 2001; 108:141-51. [PMID: 11314769 DOI: 10.1007/s007020170084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was performed to investigate the influence of intrastriatal fetal mesencephalic grafts on dopaminergic mRNA expression in the non-lesioned substantia nigra pars compacta of unilaterally 6-hydroxydopamine-lesioned rats. The expression of dopamine transporter mRNA, synaptic vesicular monoamine transporter mRNA and tyrosine hydroxylase mRNA was assessed in adjacent cryostat sections using in situ hybridization. Rotational behavior induced by apomorphine and amphetamine as well as hybridization of striatal sections cut at the grafting coordinates were used to prove the functional recovery and the presence of grafted cells, respectively. After grafting, the number of rotations was decreased and hybridization signals overlying cells in the grafted striatum were detected. Mean grain densities overlying labeled neurons in the substantia nigra pars compacta of grafted rats were compared to those of shamgrafted rats and revealed differential expression of dopamine transporter mRNA, whereas synaptic vesicular monoamine transporter mRNA and tyrosine hydroxylase mRNA expression showed no difference. The results will be discussed in relation to previous in vitro and in vivo studies suggesting a reduction of functional dopamine transporter molecules in the contralateral striatum.
Collapse
Affiliation(s)
- N Drandarevski
- Institute of Pharmacology and Toxicology, Medical Faculty Charité, Humboldt University Berlin, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|