101
|
Cherian S, Figueroa CR, Nair H. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4705-22. [PMID: 24994760 DOI: 10.1093/jxb/eru280] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
Collapse
Affiliation(s)
- Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Carlos R Figueroa
- Faculty of Forest Sciences and Biotechnology Center, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Helen Nair
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
102
|
Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA. Transcriptional control of fleshy fruit development and ripening. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4527-41. [PMID: 25080453 DOI: 10.1093/jxb/eru316] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on tomato. While aspects of fruit development are probably conserved throughout the angiosperms, including the model plant Arabidopsis thaliana, it is shown that the likely orthologues of Arabidopsis genes have distinct functions in fleshy fruits. The model for the study of fleshy fruit development is tomato, because of the availability of single gene mutants and transgenic knock-down lines. In other species, our knowledge is often incomplete or absent. Tomato fruit size and shape are co-determined by transcription factors acting during formation of the ovary. Other transcription factors play a role in fruit chloroplast formation, and upon ripening impact quality aspects such as secondary metabolite content. In tomato, the transcription factors NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and RIPENING INHIBITOR (MADS-RIN) in concert with ethylene signalling regulate ripening, possibly in response to a developmental switch. Additional components include TOMATO AGAMOUS-LIKE1 (TAGL1), APETALA2a (AP2a), and FRUITFULL (FUL1 and FUL2). The links between this highly connected regulatory network and downstream effectors modulating colour, texture, and flavour are still relatively poorly understood. Intertwined with this network is post-transcriptional regulation by fruit-expressed microRNAs targeting several of these transcription factors. This important developmental process is also governed by changes in DNA methylation levels and possibly chromatin remodelling.
Collapse
Affiliation(s)
- Rumyana Karlova
- Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands Laboratory of Molecular Biology, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Natalie Chapman
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Karine David
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University, 6700 ET Wageningen, The Netherlands Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
| | - Graham B Seymour
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Ruud A de Maagd
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands Chair group Bioinformatics, Wageningen University, 6700 ET Wageningen, The Netherlands
| |
Collapse
|
103
|
Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, Giuliano G, Regad F, Bouzayen M. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. THE NEW PHYTOLOGIST 2014; 203:206-18. [PMID: 24645853 DOI: 10.1111/nph.12771] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/09/2014] [Indexed: 05/22/2023]
Abstract
Fruit ripening involves a complex interplay between ethylene and ripening-associated transcriptional regulators. Ethylene Response Factors (ERFs) are downstream components of ethylene signaling, known to regulate the expression of ethylene-responsive genes. Although fruit ripening is an ethylene-regulated process, the role of ERFs remains poorly understood. The role of Sl-ERF.B3 in tomato (Solanum lycopersicum) fruit maturation and ripening is addressed here using a chimeric dominant repressor version (ERF.B3-SRDX). Over-expression of ERF.B3-SRDX results in a dramatic delay of the onset of ripening, enhanced climacteric ethylene production and fruit softening, and reduced pigment accumulation. Consistently, genes involved in ethylene biosynthesis and in softening are up-regulated and those of carotenoid biosynthesis are down-regulated. Moreover, the expression of ripening regulators, such as RIN, NOR, CNR and HB-1, is stimulated in ERF.B3-SRDX dominant repressor fruits and the expression pattern of a number of ERFs is severely altered. The data suggest the existence of a complex network enabling interconnection between ERF genes which may account for the pleiotropic alterations in fruit maturation and ripening. Overall, the study sheds new light on the role of Sl-ERF.B3 in the transcriptional network controlling the ripening process and uncovers a means towards uncoupling some of the main ripening-associated processes.
Collapse
Affiliation(s)
- Mingchun Liu
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, BP 32607, Castanet-Tolosan, F-31326, France; INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Du M, Li Y, Tian X, Duan L, Zhang M, Tan W, Xu D, Li Z. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One 2014; 9:e97652. [PMID: 24845465 PMCID: PMC4028243 DOI: 10.1371/journal.pone.0097652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/21/2014] [Indexed: 01/26/2023] Open
Abstract
Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ.
Collapse
Affiliation(s)
- Mingwei Du
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yi Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiming Tan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dongyong Xu
- Hebei Provincial Engineering Research Center of Cotton Seed, Hejian, Hebei, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
105
|
Van de Poel B, Bulens I, Hertog MLATM, Nicolai BM, Geeraerd AH. A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. THE NEW PHYTOLOGIST 2014; 202:952-963. [PMID: 24443955 DOI: 10.1111/nph.12685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
The gaseous plant hormone ethylene is involved in many physiological processes including climacteric fruit ripening, in which it is a key determinant of fruit quality. A detailed model that describes ethylene biochemistry dynamics is missing. Often, kinetic modeling is used to describe metabolic networks or signaling cascades, mostly ignoring the link with transcriptomic data. We have constructed an elegant kinetic model that describes the transfer of genetic information into abundance and metabolic activity of proteins for the entire ethylene biosynthesis pathway during fruit development and ripening of tomato (Solanum lycopersicum). Our model was calibrated against a vast amount of transcriptomic, proteomic and metabolic data and showed good descriptive qualities. Subsequently it was validated successfully against several ripening mutants previously described in the literature. The model was used as a predictive tool to evaluate novel and existing hypotheses regarding the regulation of ethylene biosynthesis. This bottom-up kinetic network model was used to indicate that a side-branch of the ethylene pathway, the formation of the dead-end product 1-(malonylamino)-1-aminocyclopropane-1-carboxylic acid (MACC), might have a strong effect on eventual ethylene production. Furthermore, our in silico analyses indicated potential (post-) translational regulation of the ethylene-forming enzyme ACC oxidase.
Collapse
Affiliation(s)
- Bram Van de Poel
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Inge Bulens
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Maarten L A T M Hertog
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Bart M Nicolai
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Annemie H Geeraerd
- Division of MeBioS, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| |
Collapse
|
106
|
Fukuoka H, Sagawa T, Inoue Y, Takahashi H, Ishijima A. Direct Imaging of Intracellular Signaling Components That Regulate Bacterial Chemotaxis. Sci Signal 2014; 7:ra32. [DOI: 10.1126/scisignal.2004963] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
107
|
Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 2014; 46:270-8. [PMID: 24441736 DOI: 10.1038/ng.2877] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.
Collapse
Affiliation(s)
- Seungill Kim
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Minkyu Park
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Seon-In Yeom
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Yong-Min Kim
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Je Min Lee
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Hyun-Ah Lee
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Eunyoung Seo
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyeongchae Cheong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyongyong Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gir-Won Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sang-Keun Oh
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Chungyun Bae
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Saet-Byul Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hye-Young Lee
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Shin-Young Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Myung-Shin Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3] Vegetable Breeding Research Center, Seoul National University, Seoul, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hee-Bum Yang
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hee-Jin Jeong
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Won-Hee Kang
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Jin-Kyung Kwon
- Vegetable Breeding Research Center, Seoul National University, Seoul, Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - June-Sik Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Byung-Dong Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Oded Cohen
- Agricultural Research Organization, Institute of Plant Science, Volcani Center, Bet Dagan, Israel
| | - Ilan Paran
- Agricultural Research Organization, Institute of Plant Science, Volcani Center, Bet Dagan, Israel
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin, Korea
| | | | | | | | - Young Sam Seo
- Ginseng Resources Research Laboratory, Korea Ginseng Corporation, Daejeon, Korea
| | - Suk-Yoon Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyun A Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jeong Mee Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyun-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Korea
| | - Paul W Bosland
- 1] Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA. [2] Chile Pepper Institute, New Mexico State University, Las Cruces, New Mexico, USA
| | - Gregory Reeves
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yeisoo Yu
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, USA
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Beom-Seok Park
- Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Allen van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Woo Taek Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hee Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, Korea
| | - James J Giovannoni
- 1] US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, USA. [2] Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, New York, USA
| | - Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, New York, USA
| | - Sang-Jik Lee
- Biotechnology Institute, Nongwoo Bio, Yeoju, Korea
| | - Ryan W Kim
- Genome Center, University of California, Davis, Davis, California, USA
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Jong-Sung Lim
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Doil Choi
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
108
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
109
|
Veloso J, Prego C, Varela MM, Carballeira R, Bernal A, Merino F, Díaz J. Properties of capsaicinoids for the control of fungi and oomycetes pathogenic to pepper. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:177-185. [PMID: 23452049 DOI: 10.1111/j.1438-8677.2012.00717.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Capsaicinoids are pungent compounds found in pepper (Capsicum spp.) fruits. Capsaicin showed antimicrobial activity in plate assays against seven isolates of five species of fungi and nine isolates of two species of oomycetes. The general trend was that oomycetes were more inhibited than fungi. Assays of capsaicin biosynthetic precursors suggest that the lateral chain of capsaicinoids has more inhibitory activity than the phenolic part. In planta tests of capsaicinoids (capsaicin and N-vanillylnonanamide) applied to the roots demonstrated that these compounds conferred protection against the pathogenic fungus Verticillium dahliae and induced both chitinase activity and expression of several defence-related genes, such as CASC1, CACHI2 and CABGLU. N-Vanillylnonanamide infiltrated into cotyledons confers systemic protection to the upper leaves of pepper against the fungal pathogen Botrytis cinerea. In wild-type tomato plants such cotyledon infiltration has no protective effect, but is effective in the Never-ripe tomato mutant impaired in ethylene response. A similar effect was observed in tomato after salicylic acid infiltration.
Collapse
Affiliation(s)
- J Veloso
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - C Prego
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - M M Varela
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - R Carballeira
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - A Bernal
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - F Merino
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - J Díaz
- Depto. de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| |
Collapse
|
110
|
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. PLANT & CELL PHYSIOLOGY 2014; 55:119-35. [PMID: 24265273 DOI: 10.1093/pcp/pct162] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.
Collapse
Affiliation(s)
- Mingku Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | | | | | | | | | | | | |
Collapse
|
111
|
Gapper NE, Giovannoni JJ, Watkins CB. Understanding development and ripening of fruit crops in an 'omics' era. HORTICULTURE RESEARCH 2014; 1:14034. [PMID: 26504543 PMCID: PMC4596339 DOI: 10.1038/hortres.2014.34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 05/17/2023]
Abstract
Next generation sequencing has revolutionized plant biology. Not only has our understanding of plant metabolism advanced using model systems and modern chromatography, but application of 'omics'-based technology has been widely extended to non-model systems as costs have plummeted and efficiency increased. As a result, important fundamental questions relating to important horticultural crops are being answered, and novel approaches with application to industry are in progress. Here we review recent research advances on development and ripening of fruit crops, how next generation sequencing approaches are driving this advance and the emerging future landscape.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- mailto:
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- Plant, Soil, and Nutrition Laboratory, US Department of Agriculture/Agriculture Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|
112
|
Bergougnoux V. The history of tomato: From domestication to biopharming. Biotechnol Adv 2014; 32:170-89. [DOI: 10.1016/j.biotechadv.2013.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
|
113
|
Klie S, Osorio S, Tohge T, Drincovich MF, Fait A, Giovannoni JJ, Fernie AR, Nikoloski Z. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species. PLANT PHYSIOLOGY 2014; 164:55-68. [PMID: 24243932 PMCID: PMC3875825 DOI: 10.1104/pp.113.226142] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/13/2013] [Indexed: 05/18/2023]
Abstract
Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species.
Collapse
Affiliation(s)
- Sebastian Klie
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | | | - Takayuki Tohge
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - María F. Drincovich
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - Aaron Fait
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - James J. Giovannoni
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - Alisdair R. Fernie
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - Zoran Nikoloski
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| |
Collapse
|
114
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
115
|
Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis 2013. [DOI: 10.1007/s13199-013-0251-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
116
|
Mi-1-mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. PLoS One 2013; 8:e63281. [PMID: 23717408 PMCID: PMC3662669 DOI: 10.1371/journal.pone.0063281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Root-knot nematodes, Meloidogyne spp., are important pests of tomato (Solanum lycopersicum) and resistance to the three most prevalent species of this genus, including Meloidogyne incognita, is mediated by the Mi-1 gene. Mi-1 encodes a nucleotide binding (NB) leucine-rich repeat (LRR) resistance (R) protein. Ethylene (ET) is required for the resistance mediated by a subset of NB-LRR proteins and its role in Mi-1-mediated nematode resistance has not been characterized. Infection of tomato roots with M. incognita differentially induces ET biosynthetic genes in both compatible and incompatible interactions. Analyzing the expression of members of the ET biosynthetic gene families ACC synthase (ACS) and ACC oxidase (ACO), in both compatible and incompatible interactions, shows differences in amplitude and temporal expression of both ACS and ACO genes in these two interactions. Since ET can promote both resistance and susceptibility against microbial pathogens in tomato, we investigated the role of ET in Mi-1-mediated resistance to M. incognita using both genetic and pharmacological approaches. Impairing ET biosynthesis or perception using virus-induced gene silencing (VIGS), the ET-insensitive Never ripe (Nr) mutant, or 1-methylcyclopropene (MCP) treatment, did not attenuate Mi-1-mediated resistance to M. incognita. However, Nr plants compromised in ET perception showed enhanced susceptibility to M. incognita indicating a role for ETR3 in basal resistance to root-knot nematodes.
Collapse
|
117
|
Frenkel C, Hartman TG. Decrease in fruit moisture content heralds and might launch the onset of ripening processes. J Food Sci 2013; 77:S365-76. [PMID: 23061891 DOI: 10.1111/j.1750-3841.2012.02910.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. PRACTICAL APPLICATION This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the onset of fruit ripening.
Collapse
Affiliation(s)
- Chaim Frenkel
- Department of Plant Biology and Pathology, Rutgers-the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
118
|
Fudali SL, Wang C, Williamson VM. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:75-86. [PMID: 22712507 DOI: 10.1094/mpmi-05-12-0107-r] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Infective juveniles of the root-knot nematode Meloidogyne hapla are attracted to the zone of elongation of roots where they invade the host but little is known about what directs the nematode to this region of the root. We found that Arabidopsis roots exposed to an ethylene (ET)-synthesis inhibitor attracted significantly more nematodes than control roots and that ET-overproducing mutants were less attractive. Arabidopsis seedlings with ET-insensitive mutations were generally more attractive whereas mutations resulting in constitutive signaling were less attractive. Roots of the ET-insensitive tomato mutant Never ripe (Nr) were also more attractive, indicating that ET signaling also modulated attraction of root-knot nematodes to this host. ET-insensitive mutants have longer roots due to reduced basipetal auxin transport. However, assessments of Arabidopsis mutants that differ in various aspects of the ET response suggest that components of the ET-signaling pathway directly affecting root length are not responsible for modulating root attractiveness and that other components of downstream signaling result in changes in levels of attractants or repellents for M. hapla. These signals may aid in directing this pathogen to an appropriate host and invasion site for completing its life cycle.
Collapse
Affiliation(s)
- Sylwia L Fudali
- Department of Nematology, University of California, Davis, USA
| | | | | |
Collapse
|
119
|
Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:637-50. [PMID: 23264518 PMCID: PMC3542053 DOI: 10.1093/jxb/ers360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three phytohormone molecules - ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) - play key roles in mediating disease response to necrotrophic fungal pathogens. This study investigated the roles of the ET, JA, and SA pathways as well as their crosstalk during the interaction between tomato (Solanum lycopersicum) plants and a necrotrophic fungal pathogen Alternaria alternata f. sp. lycopersici (AAL). Both the ET and JASMONIC ACID INSENSITIVE1 (JAI1) receptor-dependent JA signalling pathways are necessary for susceptibility, while SA response promotes resistance to AAL infection. In addition, the role of JA in susceptibility to AAL is partly dependent on ET biosynthesis and perception, while the SA pathway enhances resistance to AAL and antagonizes the ET response. Based on these results, it is proposed that ET, JA, and SA each on their own can influence the susceptibility of tomato to AAL. Furthermore, the functions of JA and SA in susceptibility to the pathogen are correlated with the enhanced or decreased action of ET, respectively. This study has revealed the functional relationship among the three key hormone pathways in tomato defence against AAL.
Collapse
Affiliation(s)
- Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- * These authors contributed equally to this work
| | - Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- * These authors contributed equally to this work
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jiansheng Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
120
|
Abstract
Ethylene (ET) is a gaseous phytohormone that participates in various plant physiological processes and essentially contributes to plant immunity. ET conducts its functions by regulating the expression of ET-responsive genes or in crosstalk with other hormones. Several recent studies have shown the significance of ET in the establishment and development of plant-microbe interactions. Therefore, it is not surprising that pathogens and mutualistic symbionts target ET synthesis or signaling to colonize plants. This review introduces the significance of ET metabolism in plant-microbe interactions, with an emphasis on its role in mutualistic symbioses.
Collapse
Affiliation(s)
- Behnam Khatabi
- Department of Entomology and Plant Pathology; University of Tennessee; Knoxville, TN USA
| | - Patrick Schäfer
- School of Life Sciences; University of Warwick; Coventry, UK
- Correspondence to: Patrick Schäfer,
| |
Collapse
|
121
|
Abstract
Arabidopsis has been used as a model system to study many aspects of plant growth and development. However, fruit senescence in Arabidopsis has been less investigated and the underlying molecular and hormonal (especially ethylene) regulatory mechanisms are not well understood. It is reported here that the Arabidopsis silique has characteristics of a climacteric fruit, and that AtNAP, a NAC family transcription factor gene whose expression is increased with the progression of silique senescence, plays an important role in its senescence. Silique senescence was delayed for 4-5 d in the atnap knockout mutant plants. The ethylene climacteric was delayed for 2 d in the atnap silique and the associated respiratory climacteric was suppressed. Exogenous ethylene stimulated respiration in the wild type, but not in the atnap mutant. The decoupling of the ethylene and respiratory climacterics in the atnap mutant suggests that AtNAP is required for ethylene stimulation of respiration. qPCR analyses revealed that the expression patterns of genes involved in ethylene biosynthesis, perception, and signalling, ACS2, ETR1, CTR1, EIN2, EIN3, and ERF1, were also altered in the atnap mutant. The effects of exogenous ABA, SA, 6-BA, and NAA on ethylene production and respiration in siliques of the wild type and atnap mutant were also investigated. A model involving ABA-AtNAP-controlled stomatal opening in regulating ethylene-stimulated respiration in fruit senescence is presented.
Collapse
Affiliation(s)
- Xiaohong Kou
- Department of Horticulture, Cornell University, Ithaca, New York 14853–5904, USA
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | | | - Su-Sheng Gan
- Department of Horticulture, Cornell University, Ithaca, New York 14853–5904, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
122
|
Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5751-61. [PMID: 22945939 PMCID: PMC3467294 DOI: 10.1093/jxb/ers224] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Jia Wei
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
- Present address: Institution of Sericulture, Zhejiang Academy of Agricultural Sciences,Hangzhou, 310021,PR China.
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
123
|
Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. PLANT PHYSIOLOGY 2012; 160:488-97. [PMID: 22797658 PMCID: PMC3440222 DOI: 10.1104/pp.112.202820] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 05/18/2023]
Abstract
Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states.
Collapse
|
124
|
Xu F, Yuan S, Zhang DW, Lv X, Lin HH. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5705-16. [PMID: 22915749 PMCID: PMC3444281 DOI: 10.1093/jxb/ers226] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato.
Collapse
Affiliation(s)
- Fei Xu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Shu Yuan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- These authors contributed equally to this work
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan UniversityChengdu 610064China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan UniversityChengdu 610065China
| |
Collapse
|
125
|
Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 56:79-96. [PMID: 22609458 DOI: 10.1016/j.plaphy.2012.04.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/13/2012] [Indexed: 05/21/2023]
Abstract
In order to further address the modulation of signaling pathways of stress responses and their relation to hormones, we used the ethylene-insensitive Never ripe (Nr) and the auxin-insensitive diageotropica (dgt) tomato mutants. The two mutants and the control Micro-Tom (MT) cultivar were grown over a 40-day period in the presence of Cd (0.2 mM CdCl₂ and 1 mM CdCl₂). Lipid peroxidation, leaf chlorophyll, proline content, Cd content and antioxidant enzyme activities in roots, leaves and fruits were determined. The overall results indicated that the MT genotype had the most pronounced Cd damage effects while Nr and dgt genotypes might withstand or avoid stress imposed by Cd. This fact may be attributed, at least in part, to the fact that the known auxin-stimulated ethylene production is comprised in dgt plants. Conversely, the Nr genotype was more affected by the Cd imposed stress than dgt, which may be explained by the fact that Nr retains a partial sensitivity to ethylene. These results add further information that should help unraveling the relative importance of ethylene in regulating the cell responses to stressful conditions.
Collapse
Affiliation(s)
- Priscila L Gratão
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista "Júlio de Mesquita Filho"-UNESP, 14884-900 Jaboticabal, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
126
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
127
|
Zhang W, Zhou X, Wen CK. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4151-64. [PMID: 22451723 PMCID: PMC3398448 DOI: 10.1093/jxb/ers098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 05/20/2023]
Abstract
Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed.
Collapse
|
128
|
Monteiro CC, Rolão MB, Franco MR, Peters LP, Cia MC, Capaldi FR, Carvalho RF, Gratão PL, Rossi ML, Martinelli AP, Peres LE, Azevedo RA. Biochemical and histological characterization of tomato mutants. ACTA ACUST UNITED AC 2012; 84:573-85. [DOI: 10.1590/s0001-37652012005000022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
Abstract
Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H2O2) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.
Collapse
|
129
|
Fukuoka H, Inoue Y, Ishijima A. Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system. Biophysics (Nagoya-shi) 2012; 8:59-66. [PMID: 27857608 PMCID: PMC5070452 DOI: 10.2142/biophysics.8.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/29/2012] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli cells swim toward a favorable environment by chemotaxis. The chemotaxis system regulates the swimming behavior of the bacteria by controlling the rotational direction of their flagellar motors. Extracellular stimuli sensed by chemoreceptors are transduced to an intracellular signal molecule, phosphorylated CheY (CheY-P), that switches the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) or from CW to CCW. Many studies have focused on identifying the proteins involved in the chemotaxis system, and findings on the structures and intracellular localizations of these proteins have largely elucidated the molecular pathway. On the other hand, quantitative evaluations of the chemotaxis system, including the process of intracellular signaling by the propagation of CheY-P and the rotational switching of flagellar motor by binding of CheY-P molecules, are still uncertain. For instance, scientific consensus has held that the flagellar motors of an E. coli cell switch rotational direction asynchronously. However, recent work shows that the rotational switching of any two different motors on a single E. coli cell is highly coordinated; a sub-second switching delay between motors is clearly correlated with the relative distance of each motor from the chemoreceptor patch located at one pole of the cell. In this review of previous studies and our recent findings, we discuss the regulatory mechanism of the multiple flagellar motors on an individual E. coli cell and the intracellular signaling process that can be inferred from this coordinated switching.
Collapse
Affiliation(s)
- Hajime Fukuoka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Yuichi Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Akihiko Ishijima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
130
|
Cruz-Hernández A, Paredes-lópez O. Fruit Quality: New Insights for Biotechnology. Crit Rev Food Sci Nutr 2012; 52:272-89. [DOI: 10.1080/10408398.2010.499844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
131
|
Abstract
Tomato ripening is a highly coordinated developmental process that coincides with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids, and volatile compounds that increase attraction to animals. A combination of molecular tools and ripening-affected mutants has permitted researchers to establish a framework for the control of ripening. Tomato is a climacteric fruit, with an absolute requirement for the phytohormone ethylene to ripen. This dependence upon ethylene has established tomato fruit ripening as a model system for study of regulation of its synthesis and perception. In addition, several important ripening mutants, including rin, nor, and Cnr, have provided novel insights into the control of ripening processes. Here, we describe how ethylene and the transcription factors associated with the ripening process fit together into a network controlling ripening.
Collapse
Affiliation(s)
- Harry J Klee
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
132
|
Yang T, Peng H, Whitaker BD, Conway WS. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC PLANT BIOLOGY 2012; 12:19. [PMID: 22330838 PMCID: PMC3292969 DOI: 10.1186/1471-2229-12-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/13/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. RESULTS Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. CONCLUSIONS This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.
Collapse
Affiliation(s)
- Tianbao Yang
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| | - Hui Peng
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| | - Bruce D Whitaker
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| | - William S Conway
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| |
Collapse
|
133
|
Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Brès C, Rothan C, Mizoguchi T, Ezura H. Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. PLANT & CELL PHYSIOLOGY 2011; 52:1994-2005. [PMID: 21965606 PMCID: PMC3212723 DOI: 10.1093/pcp/pcr134] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/26/2011] [Indexed: 05/19/2023]
Abstract
To accelerate functional genomic research in tomato, we developed a Micro-Tom TILLING (Targeting Induced Local Lesions In Genomes) platform. DNA pools were constructed from 3,052 ethyl methanesulfonate (EMS) mutant lines treated with 0.5 or 1.0% EMS. The mutation frequency was calculated by screening 10 genes. The 0.5% EMS population had a mild mutation frequency of one mutation per 1,710 kb, whereas the 1.0% EMS population had a frequency of one mutation per 737 kb, a frequency suitable for producing an allelic series of mutations in the target genes. The overall mutation frequency was one mutation per 1,237 kb, which affected an average of three alleles per kilobase screened. To assess whether a Micro-Tom TILLING platform could be used for efficient mutant isolation, six ethylene receptor genes in tomato (SlETR1-SlETR6) were screened. Two allelic mutants of SlETR1 (Sletr1-1 and Sletr1-2) that resulted in reduced ethylene responses were identified, indicating that our Micro-Tom TILLING platform provides a powerful tool for the rapid detection of mutations in an EMS mutant library. This work provides a practical and publicly accessible tool for the study of fruit biology and for obtaining novel genetic material that can be used to improve important agronomic traits in tomato.
Collapse
Affiliation(s)
- Yoshihiro Okabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Erika Asamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Takeshi Saito
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Chiaki Matsukura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Cécile Brès
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Tsuyoshi Mizoguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan
- *Corresponding author: E-mail, ; Fax, +81-29-853-7734
| |
Collapse
|
134
|
Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q. The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5405-18. [PMID: 21865178 PMCID: PMC3223041 DOI: 10.1093/jxb/err217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
135
|
Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, Fei Z, Giovannoni JJ, Fernie AR. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. PLANT PHYSIOLOGY 2011; 157:405-25. [PMID: 21795583 PMCID: PMC3165888 DOI: 10.1104/pp.111.175463] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/24/2011] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model to study fleshy fruit development and ripening. Tomato ripening is regulated independently and cooperatively by ethylene and transcription factors, including nonripening (NOR) and ripening-inhibitor (RIN). Mutations of NOR, RIN, and the ethylene receptor Never-ripe (Nr), which block ethylene perception and inhibit ripening, have proven to be great tools for advancing our understanding of the developmental programs regulating ripening. In this study, we present systems analysis of nor, rin, and Nr at the transcriptomic, proteomic, and metabolomic levels during development and ripening. Metabolic profiling marked shifts in the abundance of metabolites of primary metabolism, which lead to decreases in metabolic activity during ripening. When combined with transcriptomic and proteomic data, several aspects of the regulation of metabolism during ripening were revealed. First, correlations between the expression levels of a transcript and the abundance of its corresponding protein were infrequently observed during early ripening, suggesting that posttranscriptional regulatory mechanisms play an important role in these stages; however, this correlation was much greater in later stages. Second, we observed very strong correlation between ripening-associated transcripts and specific metabolite groups, such as organic acids, sugars, and cell wall-related metabolites, underlining the importance of these metabolic pathways during fruit ripening. These results further revealed multiple ethylene-associated events during tomato ripening, providing new insights into the molecular biology of ethylene-mediated ripening regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., M.L., M.I.Z., T.T., B.U., A.R.F.); Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center (R.A., Z.F., J.J.G.) and Department of Plant Biology (C.M.B.D., G.L.-C., J.K.C.R.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
136
|
Terasawa S, Fukuoka H, Inoue Y, Sagawa T, Takahashi H, Ishijima A. Coordinated reversal of flagellar motors on a single Escherichia coli cell. Biophys J 2011; 100:2193-200. [PMID: 21539787 DOI: 10.1016/j.bpj.2011.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022] Open
Abstract
An Escherichia coli cell transduces extracellular stimuli sensed by chemoreceptors to the state of an intracellular signal molecule, which regulates the switching of the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) and from CW back to CCW. Here, we performed high-speed imaging of flagellar motor rotation and show that the switching of two different motors on a cell is controlled coordinatedly by an intracellular signal protein, phosphorylated CheY (CheY-P). The switching is highly coordinated with a subsecond delay between motors in clear correlation with the distance of each motor from the chemoreceptor patch localized at a cell pole, which would be explained by the diffusive motion of CheY-P molecules in the cell. The coordinated switching becomes disordered by the expression of a constitutively active CheY mutant that mimics the CW-rotation stimulating function. The coordinated switching requires CheZ, which is the phosphatase for CheY-P. Our results suggest that a transient increase and decrease in the concentration of CheY-P caused by a spontaneous burst of its production by the chemoreceptor patch followed by its dephosphorylation by CheZ, which is probably a wavelike propagation in a subsecond timescale, triggers and regulates the coordinated switching of flagellar motors.
Collapse
Affiliation(s)
- Shun Terasawa
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
137
|
Lewis DR, Negi S, Sukumar P, Muday GK. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 2011; 138:3485-95. [PMID: 21771812 DOI: 10.1242/dev.065102] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used genetic and molecular approaches to identify mechanisms by which the gaseous plant hormone ethylene reduces lateral root formation and enhances polar transport of the hormone auxin. Arabidopsis thaliana mutants, aux1, lax3, pin3 and pin7, which are defective in auxin influx and efflux proteins, were less sensitive to the inhibition of lateral root formation and stimulation of auxin transport following treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). By contrast, pin2 and abcb19 mutants exhibited wild-type ACC responses. ACC and indole-3-acetic acid (IAA) increased the abundance of transcripts encoding auxin transport proteins in an ETR1 and EIN2 (ethylene signaling)-dependent and TIR1 (auxin receptor)-dependent fashion, respectively. The effects of ACC on these transcripts and on lateral root development were still present in the tir1 mutant, suggesting independent signaling networks. ACC increased auxin-induced gene expression in the root apex, but decreased expression in regions where lateral roots form and reduced free IAA in whole roots. The ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) had opposite effects on auxin-dependent gene expression. These results suggest that ACC affects root development by altering auxin distribution. PIN3- and PIN7-GFP fluorescence was increased or decreased after ACC or AVG treatment, respectively, consistent with the role of PIN3 and PIN7 in ACC-elevated transport. ACC treatment abolished a localized depletion of fluorescence of PIN3- and PIN7-GFP, normally found below the site of primordia formation. These results suggest that ACC treatment increased PIN3 and PIN7 expression, resulting in elevated auxin transport, which prevented the localized accumulation of auxin needed to drive lateral root formation.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
138
|
Santisree P, Nongmaithem S, Vasuki H, Sreelakshmi Y, Ivanchenko MG, Sharma R. Tomato root penetration in soil requires a coaction between ethylene and auxin signaling. PLANT PHYSIOLOGY 2011; 156:1424-38. [PMID: 21571667 PMCID: PMC3135914 DOI: 10.1104/pp.111.177014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/10/2011] [Indexed: 05/21/2023]
Abstract
During seed germination, emerging roots display positive gravitropism and penetrate into the soil for nutrition and anchorage. Tomato (Solanum lycopersicum) seeds germinated in the presence of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, failed to insert roots into Soilrite and grew in the air, forming loops. Time-lapse video imaging showed that 1-MCP-grown root tips retained positive gravitropism and made contact with the surface of Soilrite but failed to penetrate into the Soilrite. Time-course studies revealed that the effect of 1-MCP was most prominent when seed imbibition and germination were carried out in the continual presence of 1-MCP. Conversely, 1-MCP was ineffective when applied postgermination after penetration of roots in the Soilrite. Furthermore, treatment with 1-MCP caused a reduction in DR5::β-glucuronidase auxin-reporter activity and modified the expression of SlIAA3 and SlIAA9 transcripts, indicating interference with auxin signaling. The reduced ethylene perception mutant, Never-ripe, displayed decreased ability for root penetration, and the enhanced polar auxin transport mutant, polycotyledon, showed a nearly normal root penetration in the presence of 1-MCP, which could be reversed by application of auxin transport inhibitors. Our results indicate that during tomato seed germination, a coaction between ethylene and auxin is required for root penetration into the soil.
Collapse
|
139
|
Carvalho RF, Campos ML, Pino LE, Crestana SL, Zsögön A, Lima JE, Benedito VA, Peres LEP. Convergence of developmental mutants into a single tomato model system: 'Micro-Tom' as an effective toolkit for plant development research. PLANT METHODS 2011; 7:18. [PMID: 21714900 PMCID: PMC3146949 DOI: 10.1186/1746-4811-7-18] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/29/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. RESULTS We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. CONCLUSIONS The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Collapse
Affiliation(s)
- Rogério F Carvalho
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Marcelo L Campos
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Lilian E Pino
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
- Center for Nuclear Energy in Agriculture (CENA), USP, Av. Centenário, 303, CEP 13400-970 Piracicaba, SP, Brazil
| | - Simone L Crestana
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Agustin Zsögön
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| | - Joni E Lima
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
- Center for Nuclear Energy in Agriculture (CENA), USP, Av. Centenário, 303, CEP 13400-970 Piracicaba, SP, Brazil
| | - Vagner A Benedito
- Genetics and Developmental Biology Program, Plant and Soil Sciences Division, West Virginia University, 2090 Agricultural Sciences Building, Morgantown, WV 26506, USA
| | - Lázaro EP Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP) - Av. Pádua Dias, 11, CP 09, CEP 13418-900 Piracicaba - SP, Brazil
| |
Collapse
|
140
|
Tranbarger TJ, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. PLANT PHYSIOLOGY 2011; 156:564-84. [PMID: 21487046 PMCID: PMC3177259 DOI: 10.1104/pp.111.175141] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/12/2011] [Indexed: 05/17/2023]
Abstract
Fruit provide essential nutrients and vitamins for the human diet. Not only is the lipid-rich fleshy mesocarp tissue of the oil palm (Elaeis guineensis) fruit the main source of edible oil for the world, but it is also the richest dietary source of provitamin A. This study examines the transcriptional basis of these two outstanding metabolic characters in the oil palm mesocarp. Morphological, cellular, biochemical, and hormonal features defined key phases of mesocarp development. A 454 pyrosequencing-derived transcriptome was then assembled for the developmental phases preceding and during maturation and ripening, when high rates of lipid and carotenoid biosynthesis occur. A total of 2,629 contigs with differential representation revealed coordination of metabolic and regulatory components. Further analysis focused on the fatty acid and triacylglycerol assembly pathways and during carotenogenesis. Notably, a contig similar to the Arabidopsis (Arabidopsis thaliana) seed oil transcription factor WRINKLED1 was identified with a transcript profile coordinated with those of several fatty acid biosynthetic genes and the high rates of lipid accumulation, suggesting some common regulatory features between seeds and fruits. We also focused on transcriptional regulatory networks of the fruit, in particular those related to ethylene transcriptional and GLOBOSA/PISTILLATA-like proteins in the mesocarp and a central role for ethylene-coordinated transcriptional regulation of type VII ethylene response factors during ripening. Our results suggest that divergence has occurred in the regulatory components in this monocot fruit compared with those identified in the dicot tomato (Solanum lycopersicum) fleshy fruit model.
Collapse
Affiliation(s)
- Timothy J Tranbarger
- Institut de Recherche pour le Développement, UMR Diversité et Adaptation et Développement des Plantes, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. THE PLANT CELL 2011; 23:923-41. [PMID: 21398570 PMCID: PMC3082273 DOI: 10.1105/tpc.110.081273] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/14/2011] [Accepted: 02/18/2011] [Indexed: 05/18/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA2a (AP2a) transcription factor regulates fruit ripening via regulation of ethylene biosynthesis and signaling. RNA interference (RNAi)-mediated repression of AP2a resulted in alterations in fruit shape, orange ripe fruits, and altered carotenoid accumulation. Microarray expression analyses of the ripe AP2 RNAi fruits showed altered expression of genes involved in various metabolic pathways, such as the phenylpropanoid and carotenoid pathways, as well as in hormone synthesis and perception. Genes involved in chromoplast differentiation and other ripening-associated processes were also differentially expressed, but softening and ethylene biosynthesis occurred in the transgenic plants. Ripening regulators RIPENING-INHIBITOR, NON-RIPENING, and COLORLESS NON-RIPENING (CNR) function upstream of AP2a and positively regulate its expression. In the pericarp of AP2 RNAi fruits, mRNA levels of CNR were elevated, indicating that AP2a and CNR are part of a negative feedback loop in the regulation of ripening. Moreover, we demonstrated that CNR binds to the promoter of AP2a in vitro.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands
| | - Faye M. Rosin
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
| | | | - Violeta Parapunova
- Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands
| | - Phuc T. Do
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Charles Baxter
- Syngenta Seeds, Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Gerco C. Angenent
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
142
|
Dahmani-Mardas F, Troadec C, Boualem A, Lévêque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 2010; 5:e15776. [PMID: 21209891 PMCID: PMC3012703 DOI: 10.1371/journal.pone.0015776] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. Methodology/Principal Findings To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. Conclusions/Significance We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.
Collapse
Affiliation(s)
- Fatima Dahmani-Mardas
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Christelle Troadec
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Adnane Boualem
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Sylvie Lévêque
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Aldoss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Catherine Dogimont
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
143
|
Giménez E, Pineda B, Capel J, Antón MT, Atarés A, Pérez-Martín F, García-Sogo B, Angosto T, Moreno V, Lozano R. Functional analysis of the Arlequin mutant corroborates the essential role of the Arlequin/TAGL1 gene during reproductive development of tomato. PLoS One 2010; 5:e14427. [PMID: 21203447 PMCID: PMC3009712 DOI: 10.1371/journal.pone.0014427] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 12/06/2010] [Indexed: 02/04/2023] Open
Abstract
Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flower and fruit ripening. Sepals were converted into fleshy organs which ripened as normal fruit organs and fruits displayed altered ripening features. Molecular characterization of the tagged gene demonstrated that it corresponded to the previously reported tomato Agamous-like 1 (TAGL1) gene, the tomato ortholog of shatterproof MADS-box genes of Arabidopsis thaliana, and that the Alq mutation promoted a gain-of-function phenotype caused by the ectopic expression of TAGL1. Ectopic overexpression of TAGL1 resulted in homeotic alterations affecting floral organ identity that were similar to but stronger than those observed in Alq mutant plants. Interestingly, TAGL1 RNAi plants yielded tomato fruits which were unable to ripen. They displayed a yellow-orange color and stiffness appearance which are in accordance with reduced lycopene and ethylene levels, respectively. Moreover, pericarp cells of TAGL1 RNAi fruits showed altered cellular and structural properties which correlated to both decreased expression of genes regulating cell division and lignin biosynthesis. Over-expression of TAGL1 is able to rescue the non-ripening phenotype of rin and nor mutants, which is mediated by the transcriptional activation of several ripening genes. Our results demonstrated that TAGL1 participates in the genetic control of flower and fruit development of tomato plants. Furthermore, gene silencing and over-expression experiments demonstrated that the fruit ripening process requires the regulatory activity of TAGL1. Therefore, TAGL1 could act as a linking factor connecting successive stages of reproductive development, from flower development to fruit maturation, allowing this complex process to be carried out successfully.
Collapse
Affiliation(s)
- Estela Giménez
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almeria, Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Juan Capel
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almeria, Almería, Spain
| | - María Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Fernando Pérez-Martín
- Departamento de Biología Vegetal y Ecología, E. Politécnica Superior, Universidad de Almería, Almería, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Trinidad Angosto
- Departamento de Biología Vegetal y Ecología, E. Politécnica Superior, Universidad de Almería, Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Rafael Lozano
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almeria, Almería, Spain
- * E-mail:
| |
Collapse
|
144
|
Sun L, Zhang M, Ren J, Qi J, Zhang G, Leng P. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC PLANT BIOLOGY 2010; 10:257. [PMID: 21092180 PMCID: PMC3095336 DOI: 10.1186/1471-2229-10-257] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/22/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The ripening of grape berry is generally regulated by abscisic acid (ABA), and has no relationship with ethylene function. However, functional interaction and synergism between ABA and ethylene during the beginning of grape berry ripening (véraison) has been found recently. RESULTS The expressions of VvNCED1 encoding 9-cis-epoxycarotenoid dioxygenase (NCED) and VvGT encoding ABA glucosyltransferase were all increased rapidly at the stage of véraison and reached the highest level at 9th week after full bloom. However, VvCYP1 encoding ABA 8'-hydroxylase and VvβG1 encoding berry β-glucosidase are different, whose expression peak appeared at the 10th week after full bloom and in especial VvβG1 remained at a high level till harvest. The VvACO1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, the VvETR2 (ethylene response 2) and VvCTR1 (constitutive triple response 1) had a transient expression peak at pre-véraison, while the VvEIN4 (ethylene insensitive 4) expression gradually increased from the véraison to one week before harvest stage. The above mentioned changes happened again in the berry after harvest. At one week before véraison, double block treatment with NiCl2 plus 1-methylcyclopropene (1-MCP) not only inhibited the release of ethylene and the expression of related genes but also suppressed the transcription of VvNCED1 and the synthesis of ABA which all might result in inhibiting the fruit ripening onset. Treatment with ABA could relieve the double block and restore fruit ripening course. However, after harvest, double block treatment with NiCl2 plus 1-MCP could not suppress the transcription of VvNCED1 and the accumulation of ABA, and also could not inhibit the start of fruit senescence. CONCLUSION The trace endogenous ethylene induces the transcription of VvNCED1 and then the generation of ABA followed. Both ethylene and ABA are likely to be important and their interplaying may be required to start the process of berry ripening. When the level of ABA reached the peak value, part of it will be stored in the form of ABA-GE. While after harvest, abiotic stresses principally (such as dehydration, harvest shock) could induce the transcription of VvNCED1 and the accumulation of ABA, thus starting the process of fruit senescence.
Collapse
Affiliation(s)
- Liang Sun
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, PR China
| | - Mei Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, PR China
| | - Jie Ren
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, PR China
| | - Jianxun Qi
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, PR China
| | - Guojun Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, PR China
| | - Ping Leng
- College of Agronomy and Biotechnology, China Agricultural University, Yuanmingyuan West Road, Beijing, PR China
| |
Collapse
|
145
|
Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei Z, Giovannoni J. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC PLANT BIOLOGY 2010; 10:229. [PMID: 20973957 PMCID: PMC3095317 DOI: 10.1186/1471-2229-10-229] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/25/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. RESULTS To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. CONCLUSION Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.
Collapse
Affiliation(s)
- Fabrizio Costa
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
- IASMA Research and Innovation Centre, Foundation Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Rob Alba
- Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, New York, 14853, USA
| | - Henk Schouten
- Plant Breeding, Wageningen-UR, Droevendaalsesteeg 1,6700 AA Wageningen, The Netherlands
| | - Valeria Soglio
- Dept. of Biomolecular Sciences and Biotechnology, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Luca Gianfranceschi
- Dept. of Biomolecular Sciences and Biotechnology, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Sara Serra
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Stefano Musacchi
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Silviero Sansavini
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Guglielmo Costa
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, New York, 14853, USA
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, 14853, USA
| | - James Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, New York, 14853, USA
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, 14853, USA
| |
Collapse
|
146
|
Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, Bouzayen M, Pech JC. Chromoplast differentiation: current status and perspectives. PLANT & CELL PHYSIOLOGY 2010; 51:1601-11. [PMID: 20801922 DOI: 10.1093/pcp/pcq136] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chromoplasts are carotenoid-accumulating plastids conferring color to many flowers and fruits as well as to some tubers and roots. Chromoplast differentiation proceeds from preexisting plastids, most often chloroplasts. One of the most prominent changes is remodeling of the internal membrane system associated with the formation of carotenoid-accumulating structures. During the differentiation process the plastid genome is essentially stable and transcriptional activity is restricted. The buildup of the chromoplast for specific metabolic characteristics is essentially dependent upon the transcriptional activity of the nucleus. Important progress has been made in terms of mediation of the chloroplast-to-chromoplast transition with the discovery of the crucial role of the Or gene. In this article we review recent developments in the structural, biochemical and molecular aspects of chromoplast differentiation and also consider the reverse differentiation of chromoplasts into chloroplast-like structures during the regreening process occurring in some fruit. Future perspectives toward a full understanding of chromoplast differentiation include in-depth knowledge of the changes occurring in the plastidial proteome during chromoplastogenesis, elucidation of the role of hormones and the search for signals that govern the dialog between the nuclear and the chromoplastic genome.
Collapse
Affiliation(s)
- Isabel Egea
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 2010; 5:e11313. [PMID: 20593023 PMCID: PMC2892489 DOI: 10.1371/journal.pone.0011313] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study.
Collapse
Affiliation(s)
- Florence Piron
- Unité de Recherche en Génomique Végétale, UMR INRA-CNRS-Uni. EVRY, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc Natl Acad Sci U S A 2010; 107:2413-8. [PMID: 20133661 PMCID: PMC2823905 DOI: 10.1073/pnas.0909329107] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.
Collapse
Affiliation(s)
| | | | - T. N. Prabha
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | | | - Asis Datta
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
149
|
van Zanten M, Basten Snoek L, van Eck-Stouten E, Proveniers MCG, Torii KU, Voesenek LACJ, Peeters AJM, Millenaar FF. Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:83-95. [PMID: 19796369 DOI: 10.1111/j.1365-313x.2009.04035.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA, controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity.
Collapse
Affiliation(s)
- Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Negi S, Sukumar P, Liu X, Cohen JD, Muday GK. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:3-15. [PMID: 19793078 DOI: 10.1111/j.1365-313x.2009.04027.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato (Solanum lycopersicum) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening -Nr (Never ripe), gr (green ripe), nor (non ripening), and rin (ripening inhibitor) - have enhanced lateral root formation. In contrast, the epi (epinastic) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene-auxin crosstalk.
Collapse
Affiliation(s)
- Sangeeta Negi
- Department of Biology, Wake Forest University, Room 226 Winston Hall, Box 7325, Winston-Salem, NC 27109, USA
| | | | | | | | | |
Collapse
|