101
|
Abstract
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors that mediate various biological responses, including cell proliferation, survival, apoptosis, and differentiation. Among the members of the STAT family, accumulating evidence now indicates an important role for STAT1 in various forms of cell death. Depending upon stimuli or cell types, STAT1 can modulate a broad spectrum of cell death, comprising both apoptotic and non-apoptotic pathways. STAT1-dependent regulation of cell death is largely dependent on a transcriptional mechanism such as the activation of death-promoting genes. However, non-transcriptional mechanisms such as STAT1 interaction with TRADD, p53, or HDAC have been implicated in the regulation of cell death by STAT1. Furthermore, STAT1 itself is also subject to complex forms of regulation such as post-translational protein modification, which can critically affect STAT1 signaling and STAT1-dependent cell death. Given the reports showing that dysregulation of STAT1 signaling is associated with various pathological conditions, including the development of cancer, a better understanding of the mechanism underlying STAT1 regulation of cell death may lead to successful strategies for targeting STAT1 in such pathological settings.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
102
|
Strempel JM, Vercelli D. Functional Dissection Identifies a Conserved Noncoding Sequence-1 Core That Mediates IL13 and IL4 Transcriptional Enhancement. J Biol Chem 2007; 282:3738-46. [PMID: 17166845 DOI: 10.1074/jbc.m606615200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Conserved noncoding sequence (CNS)-1 has been shown to coordinately regulate the expression of the Th2 cytokine genes IL4, IL13, and IL5. We have used the interaction between CNS-1 and the human IL13 and IL4 promoters as a model to pursue the molecular mechanisms underlying CNS-1-dependent regulation of Th2 cytokine gene transcription. CNS-1 potently enhanced the activity of IL13 and IL4 promoter reporter vectors upon full T cell activation. Analysis of CNS-1 deletion mutants mapped enhancer activity to a short core (CNS-1-(270-337)) that contains three closely spaced cyclic AMP-responsive elements (CRE). CRE site 2 bound CRE-binding protein (CREB) and activating transcription factor (ATF)-2 in vitro and was essential for CNS-1-dependent up-regulation of IL13 transcription. Cotransfection of an IL13 reporter construct with expression vectors for wild type or mutant CREB and ATF-2 showed that CREB, but not ATF-2, regulates CNS-1 enhancer activity. Notably, chromatin immunoprecipitation analysis showed T cell activation recruits CREB and the coactivator CREB-binding protein (CBP)/p300 to the endogenous CNS-1. Moreover, CBP/p300 activity was essential for CNS-1-mediated enhancement of IL13 transcription. Collectively, these data define the region within CNS-1 responsible for enhancement of IL13 and IL4 transcription and suggest CREB/CBP-dependent mechanisms play an important role in facilitating Th2 cytokine gene expression in response to T cell receptor signaling.
Collapse
Affiliation(s)
- Jannine M Strempel
- Functional Genomics Laboratory, Arizona Respiratory Center, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
103
|
Naeem H, Cheng D, Zhao Q, Underhill C, Tini M, Bedford MT, Torchia J. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol 2007; 27:120-34. [PMID: 17043108 PMCID: PMC1800659 DOI: 10.1128/mcb.00815-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/18/2006] [Accepted: 10/05/2006] [Indexed: 01/03/2023] Open
Abstract
The transcriptional coactivator p/CIP(SRC-3/AIB1/ACTR/RAC3) binds liganded nuclear hormone receptors and facilitates transcription by directly recruiting accessory factors such as acetyltransferase CBP/p300 and the coactivator arginine methyltransferase CARM1. In the present study, we have established that recombinant p/CIP (p300/CBP interacting protein) is robustly methylated by CARM1 in vitro but not by other protein arginine methyltransferase family members. Metabolic labeling of MCF-7 breast cancer cells with S-adenosyl-L-[methyl-(3)H]methionine and immunoblotting using dimethyl arginine-specific antibodies demonstrated that p/CIP is specifically methylated in intact cells. In addition, methylation of full-length p/CIP is not supported by extracts derived from CARM1(-/-) mouse embryo fibroblasts, indicating that CARM1 is required for p/CIP methylation. Using mass spectrometry, we have identified three CARM1-dependent methylation sites located in a glutamine-rich region within the carboxy terminus of p/CIP which are conserved among all steroid receptor coactivator proteins. These results were confirmed by in vitro methylation of p/CIP using carboxy-terminal truncation mutants and synthetic peptides as substrates for CARM1. Analysis of methylation site mutants revealed that arginine methylation causes an increase in full-length p/CIP turnover as a result of enhanced degradation. Additionally, methylation negatively impacts transcription via a second mechanism by impairing the ability of p/CIP to associate with CBP. Collectively, our data highlight coactivator methylation as an important regulatory mechanism in hormonal signaling.
Collapse
Affiliation(s)
- Hina Naeem
- Cancer Research Laboratories, London Regional Cancer Program, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | | | |
Collapse
|
104
|
Zhang Z, Karam J, Frenkel E, Sagalowsky A, Hsieh JT. The application of epigenetic modifiers on the treatment of prostate and bladder cancer. Urol Oncol 2006; 24:152-60. [PMID: 16520279 DOI: 10.1016/j.urolonc.2005.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer and transitional cell carcinoma (TCC) of bladder are the 2 most common malignancies in the male adult urogenital system. Epigenetic gene silencing, particularly tumor suppressor genes, has become a new area of cancer research. Agents such as deoxyribonucleic acid methyltransferase inhibitors or histone deacetylase inhibitors are epigenetic modifiers that can restore gene expression and alter the malignant phenotype of cancer. They provide a new therapeutic avenue for prostate cancer and TCC. It is also likely that combination regimens using epigenetic modifiers with other classes of agents may have higher therapeutic efficacy for prostate cancer and TCC, especially metastatic and/or refractory cases. We review current knowledge of epigenetic event in prostate cancer and TCC, and discuss the possible clinical implications for these 2 diseases.
Collapse
Affiliation(s)
- Zhengwang Zhang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | | | | | | | | |
Collapse
|
105
|
Lim CP, Cao X. Structure, function, and regulation of STAT proteins. MOLECULAR BIOSYSTEMS 2006; 2:536-50. [PMID: 17216035 DOI: 10.1039/b606246f] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of proteins was first discovered in the 1990's as key proteins in cytokine signaling. Since then, the field has greatly advanced in the past 15 years, providing significant insight into the structure, function, and regulation of STATs. STATs are latent cytoplasmic transcription factors consisting of seven mammalian members. They are Tyr phosphorylated upon activation, a post-translational modification critical for dimerization, nuclear import, DNA binding, and transcriptional activation. In recent years, unphosphorylated STATs have also been observed to dimerize and drive transcription, albeit by yet an obscure mechanism. In addition, the function of cytoplasmic STATs is beginning to emerge. Here, we describe the structure, function, and regulation of both unphosphorylated and phosphorylated STATs. STAT isoforms from alternative splicing or proteolytic processing, and post-translational modifications affecting STAT activities are also discussed.
Collapse
Affiliation(s)
- Cheh Peng Lim
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Republic of Singapore
| | | |
Collapse
|
106
|
Ruault M, Pillus L. Chromatin-modifiying enzymes are essential when the Saccharomyces cerevisiae morphogenesis checkpoint is constitutively activated. Genetics 2006; 174:1135-49. [PMID: 16951088 PMCID: PMC1667082 DOI: 10.1534/genetics.106.059873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hsl7p plays a central role in the morphogenesis checkpoint triggered when yeast bud formation is impaired and is proposed to function as an arginine methyltransferase. HSL7 is also essential in the absence of the N-terminal tails of histones H3 or H4. The requirement for H3 and H4 tails may indicate a need for their post-translational modification to bypass the morphogenesis checkpoint. In support of this, the absence of the acetyltransferases Gcn5p or Esa1p, the deacetylase Rpd3p, or the lysine-methyltransferase Set1p resulted in death or extreme sickness in hslDelta mutants. These synthetic interactions involved both the activity of the chromatin-modifying enzymes and the complexes through which they act. Newly reported silencing phenotypes of hsl7Delta mirror those previously reported for gcn5Delta and rpd3Delta, thereby strengthening their functional links. In addition, synthetic interactions and silencing phenotypes were suppressed by inactivation of the morphogenesis checkpoint, either by SWE1 deletion or by preventing Cdc28p phosphorylation. A catalytically dead Hsl7p retained wild-type interactions, implying that modification of histone H3 or H4 N termini by Gcn5p, Esa1p, Rpd3p, and Set1p, but not by Hsl7p, was needed to bypass the morphogenesis checkpoint.
Collapse
Affiliation(s)
- Myriam Ruault
- Division of Biological Sciences, UCSD Moores Cancer Center, University of California, San Diego, California 92093-0347, USA
| | | |
Collapse
|
107
|
Hoffmann A, Barz T, Spengler D. Multitasking C2H2 zinc fingers link Zac DNA binding to coordinated regulation of p300-histone acetyltransferase activity. Mol Cell Biol 2006; 26:5544-57. [PMID: 16809786 PMCID: PMC1592709 DOI: 10.1128/mcb.02270-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Zac is a C(2)H(2) zinc finger protein that regulates apoptosis and cell cycle arrest through DNA binding and transactivation. The coactivator proteins p300/CBP enhance transactivation through their histone acetyltransferase (HAT) activity by modulating chromatin structure. Here, we show that p300 increases Zac transactivation in a strictly HAT-dependent manner. Whereas the classic recruitment model proposes that coactivation simply depends on the capacity of the activator to recruit the coactivator, we demonstrate that coordinated binding of Zac zinc fingers and C terminus to p300 regulates HAT function by increasing histone and acetyl coenzyme A affinities and catalytic activity. This concerted regulation of HAT function is mediated via the KIX and CH3 domains of p300 in an interdependent manner. Interestingly, Zac zinc fingers 6 and 7 simultaneously play key roles in DNA binding and p300 regulation. Our findings demonstrate, for the first time, that C(2)H(2) zinc fingers can link DNA binding to HAT signaling and suggest a dynamic role for DNA-binding proteins in the enzymatic control of transcription.
Collapse
Affiliation(s)
- Anke Hoffmann
- Molecular Neuroendocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, D-80804 Munich, Germany
| | | | | |
Collapse
|
108
|
Calestagne-Morelli A, Ausió J. Long-range histone acetylation: biological significance, structural implications, and mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:518-27. [PMID: 16936824 DOI: 10.1139/o06-067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomic characterization of various euchromatic regions in higher eukaryotes has revealed that domain-wide hyperacetylation (over several kb) occurs at a range of loci, including individual genes, gene family clusters, compound clusters, and more general clusters of unrelated genes. Patterns of long-range histone hyperacetylation are strictly conserved within each unique cellular system studied and they reflect biological variability in gene regulation. Domain-wide histone acetylation consists generally of nonuniform peaks of enriched hyperacetylation of specific core histones, histone isoforms, and (or) histone variants against a backdrop of nonspecific acetylation across the domain in question. Here we review the characteristics of long-range histone acetylation in some higher eukaryotes and draw special attention to recent literature on the multiple effects that histone hyperacetylation has on chromatin’s structural integrity and how they affect transcription. These include the thermal, ionic, cumulative, and isoform-specific (H4 K16) consequences of acetylation that result in a more dynamic core complex and chromatin fiber.
Collapse
Affiliation(s)
- Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 220, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
109
|
Liu PY, Hsieh TY, Chou WY, Huang SM. Modulation of glucocorticoid receptor-interacting protein 1 (GRIP1) transactivation and co-activation activities through its C-terminal repression and self-association domains. FEBS J 2006; 273:2172-83. [PMID: 16649994 DOI: 10.1111/j.1742-4658.2006.05231.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucocorticoid receptor-interacting protein 1 (GRIP1), a p160 family nuclear receptor co-activator, possesses at least two autonomous activation domains (AD1 and AD2) in the C-terminal region. AD1 activity appears to be mediated by CBP/p300, whereas AD2 activity is apparently mediated through co-activator-associated arginine methyltransferase 1 (CARM1). The mechanisms responsible for regulating the activities of AD1 and AD2 are not well understood. We provide evidence that the GRIP1 C-terminal region may be involved in regulating its own transactivation and nuclear receptor co-activation activities through primary self-association and a repression domain. We also compared the effects of the GRIP1 C terminus with those of other factors that functionally interact with the GRIP1 C terminus, such as CARM1. Based on our results, we propose a regulatory mechanism involving conformational changes to GRIP1 mediated through its intramolecular and intermolecular interactions, and through modulation of the effects of co-repressors on its repression domains. These are the first results to indicate that the structural components of GRIP1, especially those of the C terminus, might functionally modulate its putative transactivation activities and nuclear receptor co-activator functions.
Collapse
Affiliation(s)
- Pei-Yao Liu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
110
|
Kim Y, Sun Y, Chow C, Pommier YG, Simons SS. Effects of acetylation, polymerase phosphorylation, and DNA unwinding in glucocorticoid receptor transactivation. J Steroid Biochem Mol Biol 2006; 100:3-17. [PMID: 16723222 DOI: 10.1016/j.jsbmb.2006.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/02/2006] [Indexed: 11/29/2022]
Abstract
Varying the concentration of selected factors alters the induction properties of steroid receptors by changing the position of the dose-response curve (or the value for half-maximal induction=EC(50)) and the amount of partial agonist activity of antisteroids. We now describe a rudimentary mathematical model that predicts a simple Michaelis-Menten curve for the multi-step process of steroid-regulated gene induction. This model suggests that steps far downstream from receptor binding to steroid can influence the EC(50) of agonist-complexes and partial agonist activity of antagonist-complexes. We therefore asked whether inhibitors of three possible downstream steps can reverse the effects of increased concentrations of two factors: glucocorticoid receptors (GRs) and Ubc9. The downstream steps (with inhibitors in parentheses) are protein deacetylation (TSA and VPA), DNA unwinding (CPT), and CTD phosphorylation of RNA polymerase II (DRB and H8). None of the inhibitors mimic or prevent the effects of added GRs. However, inhibitors of DNA unwinding and CTD phosphorylation do reverse the effects of Ubc9 with high GR concentrations. These results support our earlier conclusion that different rate-limiting steps operate at low and high GR concentrations versus high GR with Ubc9. The present data also suggest that downstream steps can modulate the EC(50) of GR-mediated induction, thus both supporting the utility of our mathematical model and widening the field of biochemical processes that can modify the EC(50).
Collapse
Affiliation(s)
- Yuli Kim
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
111
|
Flajollet S, Lefebvre B, Rachez C, Lefebvre P. Distinct Roles of the Steroid Receptor Coactivator 1 and of MED1 in Retinoid-induced Transcription and Cellular Differentiation. J Biol Chem 2006; 281:20338-48. [PMID: 16723356 DOI: 10.1074/jbc.m603023200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid receptors (RARs) are the molecular relays of retinoid action on transcription, cellular differentiation and apoptosis. Transcriptional activation of retinoid-regulated promoters requires the dismissal of corepressors and the recruitment of coactivators to promoter-bound RAR. RARs recruit in vitro a plethora of coactivators whose actual contribution to retinoid-induced transcription is poorly characterized in vivo. Embryonal carcinoma P19 cells, which are highly sensitive to retinoids, were depleted from archetypical coactivators by RNAi. SRC1-deficient P19 cells showed severely compromised retinoid-induced responses, in agreement with the supposed role of SRC1 as a RAR coactivator. Unexpectedly, Med1/TRAP220/DRIP205-depleted cells exhibited an exacerbated response to retinoids, both in terms transcriptional responses and of cellular differentiation. Med1 depletion affected TFIIH and cdk9 detection at the prototypical retinoid-regulated RARbeta2 promoter, and favored a higher RNA polymerase II detection in transcribed regions of the RARbeta2 gene. Furthermore, the nature of the ligand impacted strongly on the ability of RARs to interact with a given coactivator and to activate transcription in intact cells. Thus RAR accomplishes transcriptional activation as a function of the ligand structure, by recruiting regulatory complexes which control distinct molecular events at retinoid-regulated promoters.
Collapse
|
112
|
Miao F, Li S, Chavez V, Lanting L, Natarajan R. Coactivator-Associated Arginine Methyltransferase-1 Enhances Nuclear Factor-κB-Mediated Gene Transcription through Methylation of Histone H3 at Arginine 17. Mol Endocrinol 2006; 20:1562-73. [PMID: 16497732 DOI: 10.1210/me.2005-0365] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Coactivator-associated arginine methyltransferase-1 (CARM1) is known to enhance transcriptional activation by nuclear receptors through interactions with the coactivators p160 and cAMP response element binding protein-binding protein (CBP) and methylation of histone H3 at arginine 17 (H3-R17). Here, we show that CARM1 can act as a coactivator for the transcription factor nuclear factor-kappaB (NF-kappaB) and enhance NF-kappaB activity in a CBP (p300)-dependent manner. This enhancement in 293T cells was abolished by cotransfection with a specific short hairpin RNA targeted to knockdown CARM1. Chromatin immunoprecipitation demonstrated CARM1 recruitment in vivo to the promoters of NF-kappaB p65-regulated genes along with CBP and steroid receptor coactivator-1. This was accompanied by an increase in histone H3-R17 methylation as well as H3-K9 and H3-K14 acetylation, and a decrease in H3-citrulline. Immunoprecipitation with anti-p65 antibody revealed that CARM1 physically interacts with NF-kappaB p65. Furthermore, we demonstrated the physiological significance by observing that similar events occurred when THP-1 monocytic cells were stimulated with TNF-alpha or with S100b, a ligand for the receptor of advanced glycation end products, both of which are associated with diabetic complications and also known inducers of NF-kappaB and inflammatory genes in monocytes. These results demonstrate that CARM1 participates in NF-kappaB-mediated transcription through H3-R17 methylation and support a nonnuclear receptor-associated function for CARM1. They also demonstrate for the first time that CARM1 occupancy, histone H3-R17 methylation, and citrullination are regulated at the promoters of inflammatory genes in monocytes, thereby suggesting a novel role for histone arginine modifications in inflammatory diseases.
Collapse
Affiliation(s)
- Feng Miao
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
113
|
Krämer OH, Baus D, Knauer SK, Stein S, Jäger E, Stauber RH, Grez M, Pfitzner E, Heinzel T. Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 2006; 20:473-85. [PMID: 16481475 PMCID: PMC1369049 DOI: 10.1101/gad.364306] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP. Remarkably both inhibitors of HDACs and the cytokine interferon alpha alter this equilibrium and induce Stat1 acetylation. The analysis of Stat1 mutants reveals Lys 410 and Lys 413 as acetylation sites. Experiments with Stat1 mutants mimicking either constitutively acetylated or nonacetylated states show that only acetylated Stat1 is able to interact with NF-kappaB p65. As a consequence, p65 DNA binding, nuclear localization, and expression of anti-apoptotic NF-kappaB target genes decrease. These findings show how the acetylation of Stat1 regulates NF-kappaB activity and thus ultimately apoptosis.
Collapse
|
114
|
Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC. Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci U S A 2006; 103:7264-9. [PMID: 16651533 PMCID: PMC1464331 DOI: 10.1073/pnas.0509808103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of the noncanonical NF-kappaB signaling pathway involved in the proteolytic processing of NF-kappaB p100 to p52 is tightly regulated, and overproduction of p52 leads to lymphocyte hyperplasia and transformation. We have demonstrated that active but not latent Stat3, expressed in many types of human cancers involved in cell proliferation and survival, induces p100 processing to p52 by activation of IKKalpha and subsequent phosphorylation of p100. The Stat3-mediated p100 processing to p52 requires activation of Stat3 by the acetyltransferase activity of cAMP-response element-binding protein (CREB)-binding protein (CBP)/p300. A mutant of Stat3 defective in acetylation blocked Stat3-mediated p100 processing to p52 and acted as a dominant negative in blocking the production of p52. Furthermore, overexpression of p52 protected cells from apoptotic cell death. Thus, activation of the processing of p100 to p52 by Stat3 may represent one of the common pathways used by cancer cells to survive and escape therapy.
Collapse
Affiliation(s)
- Nagalakshmi Nadiminty
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Wei Lou
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Soo Ok Lee
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Xin Lin
- Department of Molecular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Donald L. Trump
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Allen C. Gao
- *Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
- To whom correspondence should be addressed at:
Grace Cancer Drug Center, Departments of Medicine, Pharmacology, and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263. E-mail:
| |
Collapse
|
115
|
Goenka S, Boothby M. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc Natl Acad Sci U S A 2006; 103:4210-5. [PMID: 16537510 PMCID: PMC1449672 DOI: 10.1073/pnas.0506981103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms by which transcription is selectively activated and precisely controlled by signal transducer and activator of transcription (Stat) factors represent a central issue in cytokine-mediated cellular responses. Stat6 mediates responses to IL-4 and antagonizes Stat1 activated by IFN-gamma. We have discovered that Stat6 binds to collaborator of Stat6 (CoaSt6), a protein that lacks conventional coactivator motifs but contains three iterations of a domain found in the variant histone macroH2A. Although macroH2A participates in transcriptional silencing, the macro domains of CoaSt6 increased IL-4-induced gene expression. Moreover, CoaSt6 amplified Stat6-mediated but not IFN-gamma-induced gene expression, providing evidence of a selective coregulator of Stat-mediated gene transcription.
Collapse
Affiliation(s)
| | - Mark Boothby
- *Department of Microbiology and Immunology and
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2363
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
116
|
Abstract
Nuclear receptors are transcription factors that are essential in embryonic development, maintenance of differentiated cellular phenotypes, metabolism, and apoptosis. Dysfunction of nuclear receptor signaling leads to a wide spectra of proliferative, reproductive, and metabolic diseases, including cancers, infertility, obesity, and diabetes. In addition, many proteins have been identified as coregulators which can be recruited by DNA-binding nuclear receptors to affect transcriptional regulation. The cellular level of coregulators is crucial for nuclear receptor-mediated transcription and many coregulators have been shown to be targets for diverse intracellular signaling pathways and posttranslational modifications. This review provides a general overview of the roles and mechanism of action of nuclear receptors and their coregulators. Since progression of renal diseases is almost always associated with inflammatory processes and/or involve metabolic disorders of lipid and glucose, cell proliferation, hypertrophy, apoptosis, and hypertension, the importance of nuclear receptors and their coregulators in these contexts will be addressed.
Collapse
Affiliation(s)
- Xiong Z Ruan
- Centre for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom.
| | | | | | | |
Collapse
|
117
|
Yi P, Wu RC, Sandquist J, Wong J, Tsai SY, Tsai MJ, Means AR, O'Malley BW. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol Cell Biol 2005; 25:9687-99. [PMID: 16227615 PMCID: PMC1265806 DOI: 10.1128/mcb.25.21.9687-9699.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/04/2005] [Accepted: 08/04/2005] [Indexed: 12/27/2022] Open
Abstract
Steroid receptor coactivator 3 (SRC-3/AIB1) interacts with steroid receptors in a ligand-dependent manner to activate receptor-mediated transcription. A number of intracellular signaling pathways initiated by growth factors and hormones induce phosphorylation of SRC-3, regulating its function and contributing to its oncogenic potential. However, the range of mechanisms by which phosphorylation affects coactivator function remains largely undefined. We demonstrate here that peptidyl-prolyl isomerase 1 (Pin1), which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, interacts selectively with phosphorylated SRC-3. In addition, Pin1 and SRC-3 activate nuclear-receptor-regulated transcription synergistically. Depletion of Pin1 by small interfering RNA (siRNA) reduces hormone-dependent transcription from both transfected reporters and an endogenous steroid receptor target gene. We present evidence that Pin1 modulates interactions between SRC-3 and CBP/p300. The interaction is enhanced in vitro and in vivo by Pin1 and diminished when cellular Pin1 is reduced by siRNA or in stable Pin1-depleted cell lines. Depletion of Pin1 in MCF-7 human breast cancer cells reduces the endogenous estrogen-dependent recruitment of p300 to the promoters of estrogen receptor-dependent genes. Pin1 overexpression enhanced SRC-3 cellular turnover, and depletion of Pin1 stabilized SRC-3. Our results suggest that Pin1 functions as a transcriptional coactivator of nuclear receptors by modulating SRC-3 coactivator protein-protein complex formation and ultimately by also promoting the turnover of the activated SRC-3 oncoprotein.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Li XX, Lu J, Zhao YM, Huang BQ. Function of c-Fos-like and c-Jun-like proteins on trichostatin A-induced G2/M arrest in Physarum polycephalum. Acta Biochim Biophys Sin (Shanghai) 2005; 37:767-72. [PMID: 16270156 DOI: 10.1111/j.1745-7270.2005.00105.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The homologs of transcription factors c-Fos and c-Jun have been detected in slime mold Physarum polycephalum during progression of the synchronous cell cycle. Here we demonstrated that c-Fos-like and c-Jun-like proteins participated in G2/M transition by the regulation of the level of Cyclin B1 protein in P. polycephalum. The study of antibody neutralization revealed that interruption of the functions of c-Fos-like and c-Jun-like proteins resulted in G2/M transition arrest, implicating their functional roles in cell cycle control. When G2/M transition was blocked by histone deacetylase inhibitor trichostatin A, changes in c-Fos- and c-Jun-like protein levels, and hyperacetylation of c-Jun-like protein, were observed. The data suggest that in P. polycephalum, c-Fos- and c-Jun-like proteins may be the key factors in the regulation of histone acetylation-related G2/M transition, involving the coordinated expression and hyperacetylation of these proteins.
Collapse
Affiliation(s)
- Xiao-Xue Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | |
Collapse
|
119
|
Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 2005; 83:344-53. [PMID: 15959560 DOI: 10.1139/o05-041] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone proteins play structural and functional roles in all nuclear processes. They undergo different types of covalent modifications, defined in their ensemble as epigenetic because changes in DNA sequences are not involved. Histone acetylation emerges as a central switch that allows interconversion between permissive and repressive chromatin domains in terms of transcriptional competence. The mechanisms underlying the histone acetylation-dependent control of gene expression include a direct effect on the stability of nucleosomal arrays and the creation of docking sites for the binding of regulatory proteins. Histone acetyltransferases and deacetylases are, respectively, the enzymes devoted to the addition and removal of acetyl groups from lysine residues on the histone N-terminal tails. The enzymes exert fundamental roles in developmental processes and their deregulation has been linked to the progression of diverse human disorders, including cancer.
Collapse
Affiliation(s)
- Loredana Verdone
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | |
Collapse
|
120
|
Kuwano Y, Kawahara T, Yamamoto H, Teshima-Kondo S, Tominaga K, Masuda K, Kishi K, Morita K, Rokutan K. Interferon-gamma activates transcription of NADPH oxidase 1 gene and upregulates production of superoxide anion by human large intestinal epithelial cells. Am J Physiol Cell Physiol 2005; 290:C433-43. [PMID: 16162660 DOI: 10.1152/ajpcell.00135.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NADPH oxidase 1 (Nox1), a homolog of gp91(phox), is dominantly expressed in large intestinal epithelium, and reactive oxygen species derived from Nox1 are suggested to serve a role in host defense. We report that interferon (IFN)-gamma, a crucial transactivator of the gp91(phox) gene, also stimulates expression of Nox1 mRNA and protein in large intestinal epithelium (T84 cells), leading to fourfold upregulation of superoxide anion (O(2)(-)) generation. Introduction of small interfering Nox1 RNA completely blocked this priming. We cloned the region from -4,831 to +195 bp of the human Nox1 gene. To reveal IFN-gamma-responsive cis elements, we performed transient expression assays using a reporter gene driven by serially truncated Nox1 promoters in T84 cells. IFN-gamma-responsive elements were located between -4.3 and -2.6 kb, and one gamma-activated sequence (GAS) element present at -3,818 to -3,810 bp exhibited this IFN-gamma-dependent promoter activity. IFN-gamma caused tyrosine phosphorylation of signal transducer and activator of transcription 1 (STAT1) and produced a protein-GAS complex that was recognized by anti-STAT1 antibody. The introduction of three-point mutation of GAS, which did not interact with STAT1, completely canceled the IFN-gamma-dependent promoter activity of the region from -4,831 to +195 bp. A Janus protein tyrosine kinase 2 inhibitor (AG490) blocked the IFN-gamma-stimulated tyrosine phosphorylation of STAT1, promoter activity of the -4,831 to +195 bp region, Nox1 mRNA expression, and O(2)(-) production, also suggesting a crucial role of STAT1 and GAS in the IFN-gamma-stimulated transcription of the Nox1 gene. Our results support a potential contribution of Nox1 to mucosal host defense and inflammation in the colon.
Collapse
Affiliation(s)
- Yuki Kuwano
- Department of Nutritional Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Furumatsu T, Tsuda M, Yoshida K, Taniguchi N, Ito T, Hashimoto M, Ito T, Asahara H. Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 2005; 280:35203-8. [PMID: 16109717 DOI: 10.1074/jbc.m502409200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin structure is a fundamental component of gene regulation, expression, and cellular differentiation. We have previously reported that the multifunctional coactivator p300 is a member of the Sox9 (Sry-type high mobility group box 9)-related transcriptional apparatus and activates Sox9-dependent transcription during chondrogenesis. However, the mechanism of synergy between Sox9 and p300 in chromatin-mediated transcription has not been elucidated. In the present study we investigated the activity of Sox9 and p300 on chromatinized templates in vitro. Recombinant Sox9 was shown to be associated with several transcriptional cofactors including p300. In vitro transcription assays revealed that p300 potentiated Sox9-dependent transcription on chromatinized DNA and, importantly, was associated with hyperacetylated histones. Consistent with these results, the histone deacetylase inhibitor trichostatin A stimulated the expression of Sox9-regulated cartilage matrix genes and induced histone acetylation around the enhancer region of the collagen alpha1 (II) gene in chondrocytes. These findings suggest that Sox9 interacts with chromatin and activates transcription via regulation of chromatin modification.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Martin PJ, Lardeux V, Lefebvre P. The proliferating cell nuclear antigen regulates retinoic acid receptor transcriptional activity through direct protein-protein interaction. Nucleic Acids Res 2005; 33:4311-21. [PMID: 16055921 PMCID: PMC1182168 DOI: 10.1093/nar/gki745] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Retinoic acid receptors (RARs) interact, in a ligand-dependent fashion, with many coregulators that participate in a wide spectrum of biological responses, ranging from embryonic development to cellular growth control. The transactivating function of these ligand-inducible transcription factors reside mainly, but not exclusively, in their ligand-binding domain (AF2), which recruits or dismiss coregulators in a ligand-dependent fashion. However, little is known about AF2-independent function(s) of RARs. We have isolated the proliferating cell nuclear antigen (PCNA) as a repressor of RAR transcriptional activity, able to interact with an AF2-crippled RAR. The N-terminus of PCNA interacts directly with the DNA-binding domain of RAR, and PCNA is recruited to a retinoid-regulated promoter in intact cells. This interaction affects the transcriptional response to retinoic acid in a promoter-specific manner, conferring an unanticipated role to PCNA in transcriptional regulation. Our findings also suggest a role for RAR as a factor coordinating DNA transcription and repair.
Collapse
Affiliation(s)
| | | | - Philippe Lefebvre
- To whom correspondence should be addressed. Tel: +33 3 20626876; Fax: +33 3 20 626884;
| |
Collapse
|
123
|
Jung SY, Malovannaya A, Wei J, O'Malley BW, Qin J. Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes. Mol Endocrinol 2005; 19:2451-65. [PMID: 16051665 DOI: 10.1210/me.2004-0476] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report our initial efforts in the analysis of endogenous nuclear receptor coactivator complexes as a research bridging strand of the Nuclear Receptor Signaling Atlas (NURSA) (www.NURSA.org). A proteomic approach is used to systematically isolate a variety of coactivator complexes using HeLa cells as a model cell line and to identify the coactivator-associated proteins with mass spectrometry. We have isolated and identified seven coactivator complexes including the p160 steroid receptor coactivator family, cAMP response element binding protein-binding protein, p300, coactivator of activating protein-1 and estrogen receptors, and E6 papillomavirus-associated protein. The newly identified coactivator-associated proteins provide unbiased clues and links for understanding of the endogenous hormone receptor coregulator network and its regulation. We hope that the electronic availability of these data to the general scientific community will facilitate generation and testing of new hypotheses to further our understanding of nuclear receptor signaling and coactivator functions.
Collapse
Affiliation(s)
- Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
124
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
125
|
Trus MR, Yang L, Suarez Saiz F, Bordeleau L, Jurisica I, Minden MD. The histone deacetylase inhibitor valproic acid alters sensitivity towards all trans retinoic acid in acute myeloblastic leukemia cells. Leukemia 2005; 19:1161-8. [PMID: 15902297 DOI: 10.1038/sj.leu.2403773] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute myeloblastic leukemia (AML) may be classified in a number of ways. Using the French American British classification, the M3 form of the disease or acute promyelocytic leukemia (APL) has been found to be sensitive in vitro and in vivo to the retinoid all trans retinoic acid (ATRA). The mechanism for this is by restoration of normal gene expression through the release of histone deacetylase complexes (HDACs). In contrast to APL, other forms of AML are either nonresponsive or show blunted responses to ATRA. We evaluated if the inhibitor of HDAC activity, valproic acid (VPA), could mimic or enhance retinoid sensitivity in the AML cell line, OCI/AML-2, and clinical samples derived from patients with AML. An Affymetrix GeneChip experiment demonstrated that VPA modulated the expression of numerous genes in OCI/AML-2 cells that were not affected by ATRA including p21, a retinoid responsive gene in APL. VPA induced p21 expression in OCI/AML-2 cells and the majority of the AML samples tested; this was associated with cell cycle arrest and apoptosis not seen with ATRA alone. The addition of ATRA to VPA accentuated many of these responses, supporting the potential beneficial combination of these drugs in the treatment of AML.
Collapse
Affiliation(s)
- M R Trus
- Department of Medical Biophysics, Princess Margaret Hospital/Ontario Cancer Institute University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
126
|
Mitchell TJ, John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology 2005; 114:301-12. [PMID: 15720432 PMCID: PMC1782085 DOI: 10.1111/j.1365-2567.2005.02091.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interaction of cytokines with their cognate receptors leads to the activation of latent transcription factors - the signal transducers and activators of transcription (STAT) proteins - whose biological activities ultimately regulate many critical aspects of cell growth, survival and differentiation. Dysregulation of the JAK-STAT pathway is frequently observed in many primary human tumours, reflecting the importance of this pathway in the maintenance of cellular integrity. Here we review the current progress in STAT structure and function, and the contribution of STAT signalling to the pathogenesis of T-cell lymphomas.
Collapse
Affiliation(s)
- Tracey J Mitchell
- Skin Tumour Unit, St John's Institute of Dermatology, King's College LondonLondon, UK
| | - Susan John
- Peter Gorer Department of Immunobiology, Programme in Infection and Immunity, King's College LondonLondon, UK
| |
Collapse
|
127
|
Qi C, Zhu YT, Chang J, Yeldandi AV, Rao MS, Zhu YJ. Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun 2005; 328:393-8. [PMID: 15694360 DOI: 10.1016/j.bbrc.2004.12.187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Indexed: 10/26/2022]
Abstract
Breast cancer amplified sequence 2 (BCAS2) was initially identified as a gene that was overexpressed and amplified in some breast cancer cell lines. It was later found to be a component of the spliceosome. Here, we identified BCAS2 as an estrogen receptor (ER) alpha interacting protein by yeast two-hybrid screening. In addition to ER alpha, BCAS2 also interacted with ER beta, TR beta, PR, and PPAR gamma in a ligand-independent way. Transient transfection assays revealed that overexpression of BCAS2 enhanced while inhibition of BCAS2 expression attenuated the estrogen receptor-mediated transcription. BCAS2 potentiated the activation function-2 (AF-2) activity of ER alpha but had no effect on the AF-1 activity. This study suggested that BCAS2 might play an important role in breast cancer development by increasing the estrogen receptor's function.
Collapse
Affiliation(s)
- Chao Qi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
128
|
Yousefi B, Jingu H, Ohta M, Umezu M, Koibuchi N. Postnatal changes of steroid receptor coactivator-1 immunoreactivity in rat cerebellar cortex. Thyroid 2005; 15:314-9. [PMID: 15876152 DOI: 10.1089/thy.2005.15.314] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Steroid receptor coactivator-1 (SRC-1) interacts with nuclear hormone receptors (NRs) to mediate their action in a ligand-dependent manner. Among such ligands, thyroid hormone (TH) is particularly crucial for brain development. The expression of many TH target genes is regulated by TH only for a limited critical period, although TH receptor (TR) expression is not greatly altered after such period. To alter TH sensitivity, other factors may be involved. We thus examined the changes in SRC-1 expression during postnatal development in the rat cerebellum by immunohistochemistry and Western blotting. Strong SRC-1 immunoreactivity (IR) was constantly seen in Purkinje cell from postnatal days (P) 2 to P30. SRC-1 IR was also constantly observed in the internal granule cell layer. However, it was negative in the external granule cell layer at P2 and P7, whereas a weak IR was detected in the premigratory zone at P15. SRC-1 IR was detected in the molecular layer after P15. These results indicate that although TR is almost ubiquitously expressed in the developing cerebellum, the TH sensitivity could vary in each subset of cells. By Western blotting, SRC-1 protein level was greatest at P15, at which time TH action may be obvious. Taken together, the differential expression of SRC-1 may be crucial in mediating TH action during cerebellar development.
Collapse
Affiliation(s)
- Behnaz Yousefi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | | | |
Collapse
|
129
|
Oetjen E, Thoms KM, Laufer Y, Pape D, Blume R, Li P, Knepel W. The immunosuppressive drugs cyclosporin A and tacrolimus inhibit membrane depolarization-induced CREB transcriptional activity at the coactivator level. Br J Pharmacol 2005; 144:982-93. [PMID: 15711594 PMCID: PMC1576078 DOI: 10.1038/sj.bjp.0706127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/22/2004] [Accepted: 12/01/2004] [Indexed: 11/09/2022] Open
Abstract
Cyclosporin A and tacrolimus are clinically important immunosuppressive drugs directly targeting the transcription factor nuclear factor of activated T cells (NFAT). Through inhibition of calcineurin phosphatase activity they block the dephosphorylation and thus activation of NFAT. Cyclosporin A and tacrolimus also inhibit other calcineurin-dependent transcription factors including the ubiquitously expressed cAMP response element-binding protein (CREB). Membrane depolarization by phosphorylating CREB on Ser119 leads to the recruitment of its coactivator CREB-binding protein (CBP) that stimulates initiation of transcription. It was unknown at what step in CREB-mediated transcription cyclosporin A and tacrolimus interfere. In transient transfection experiments, using GAL4-CREB fusion proteins and a pancreatic islet beta-cell line, cyclosporin A inhibited depolarization-induced activation of CREB proteins which carried various deletions or mutations throughout their sequence providing no evidence for the existence of a distinct CREB domain conferring cyclosporin A sensitivity. In a mammalian two-hybrid assay, cyclosporin A did not inhibit Ser119-dependent interaction of CREB with its coactivator CBP. Using GAL4-CBP fusion proteins, cyclosporin A inhibited depolarization-induced CBP activity, with cyclosporin A-sensitive domains mapped to both the N- (aa 1-451) and C-terminal (aa 2040-2305) ends of CBP. The depolarization-induced transcriptional activity of the CBP C-terminus was enhanced by overexpression of calcineurin and was inhibited by cyclosporin A and tacrolimus in a concentration-dependent manner with IC50 values (10 and 1 nM, respectively) consistent with their known IC50 values for inhibition of calcineurin. These data suggest that, in contrast to NFAT, cyclosporin A and tacrolimus inhibit CREB transcriptional activity at the coactivator level.
Collapse
Affiliation(s)
- Elke Oetjen
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Kai-Martin Thoms
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Yvonne Laufer
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Daniela Pape
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Roland Blume
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Pingfeng Li
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| | - Willhart Knepel
- Department of Molecular Pharmacology, University of Göttingen, D-37099 Göttingen, Germany
| |
Collapse
|
130
|
Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol 2005; 94:383-94. [PMID: 15876404 DOI: 10.1016/j.jsbmb.2004.12.046] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 12/30/2004] [Indexed: 01/02/2023]
Abstract
The glucocorticoid receptor (GR) belongs to the superfamily of ligand-activated transcription factors, the nuclear hormone receptors. Like other members of the family, the GR possesses a modular structure consisting of three major domains-the N-terminal (NTD), DNA binding (DBD), and ligand binding (LBD). Although the structures of independently expressed GR DBD and LBD are known, the structures of the NTD and of full-length GR are lacking. Both DBD and LBD possess overall globular structures. Not much is known about the structure of the NTD, which contains the powerful AF1/tau1/enh2 transactivation region. Several studies have shown that AF1 region is mostly unstructured and that it can acquire folded functional conformation under certain potentially physiological conditions, namely in the presence of osmolytes, when the GR DBD is bound to glucocorticoid response element (GRE), and when AF1 binds other transcription factor proteins. These conditions are discussed here. The functions of the GR will be fully understood only when its working three-dimensional structure is known. Based on the available data, we propose a model to explain data which are not adequately accounted for in the classical models of GR action. In this review, we summarize and discuss current information on the structure of the GR in the context of its functional aspects, such as protein:DNA and protein:protein interactions. Because of the close similarities in modular organization among the members of the nuclear hormone receptors, the principles discussed here for the GR should be applicable to many other receptors in the family as well.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1068, USA
| | | |
Collapse
|
131
|
Zhao H, Nakajima R, Kunimoto H, Sasaki T, Kojima H, Nakajima K. Region 752-761 of STAT3 is critical for SRC-1 recruitment and Ser727 phosphorylation. Biochem Biophys Res Commun 2005; 325:541-8. [PMID: 15530426 DOI: 10.1016/j.bbrc.2004.10.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 10/26/2022]
Abstract
STAT3 regulates many target genes in response to cytokines and growth factors. To study the mechanisms of STAT3-dependent transcription, we established several cell lines in which HepG2-STAT3-knockdown cells were reconstituted with a variety of STAT3 mutants. Using these cell lines, we found that truncated STAT3(1-750), but not STAT3(1-761), could not recruit SRC-1/NcoA-1 and was not phosphorylated on Ser727. Furthermore, mutation of STAT3 L755 and F757 to alanines caused the loss of STAT3-dependent SRC-1 recruitment, leaving Ser727 phosphorylation intact. Consistent with this, the STAT3-L755A/F757A mutant showed no increase in acetylated histone H3 at Lys14 and a decreased level of RNA polymerase II recruited to the target gene promoter, although p300 recruitment and histone H4 acetylation were intact. This mutant also lost responsiveness to co-expressed SRC-1. Thus, the conserved STAT3 region from 752 to 761, called STAT3 CR2, plays critical roles in STAT3-dependent transcription by recruiting SRC-1 and allowing Ser727 phosphorylation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Immunology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
132
|
Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005; 307:269-73. [PMID: 15653507 DOI: 10.1126/science.1105166] [Citation(s) in RCA: 608] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upon cytokine treatment, members of the signal transducers and activators of transcription (STAT) family of proteins are phosphorylated on tyrosine and serine sites within the carboxyl-terminal region in cells. We show that in response to cytokine treatment, Stat3 is also acetylated on a single lysine residue, Lys685. Histone acetyltransferase p300-mediated Stat3 acetylation on Lys685 was reversible by type I histone deacetylase (HDAC). Use of a prostate cancer cell line (PC3) that lacks Stat3 and PC3 cells expressing wild-type Stat3 or a Stat3 mutant containing a Lys685-to-Arg substitution revealed that Lys685 acetylation was critical for Stat3 to form stable dimers required for cytokine-stimulated DNA binding and transcriptional regulation, to enhance transcription of cell growth-related genes, and to promote cell cycle progression in response to treatment with oncostatin M.
Collapse
Affiliation(s)
- Zheng-Long Yuan
- Department of Surgery, Brown University Medical School-Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
133
|
Wu HY, Hamamori Y, Xu J, Chang SC, Saluna T, Chang MF, O'Malley BW, Kedes L. Nuclear Hormone Receptor Coregulator GRIP1 Suppresses, whereas SRC1A and p/CIP Coactivate, by Domain-specific Binding of MyoD. J Biol Chem 2005; 280:3129-37. [PMID: 15563453 DOI: 10.1074/jbc.m412560200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p160 coregulators were initially identified as nuclear hormone receptor coactivators. In this study, functional data demonstrate that members of the three p160 families can have opposing roles in regulating gene expression by the same transcription factor. Both SRC1A and p/CIP function as coactivators for MyoD-mediated transcription whereas GRIP1 acts negatively as a (co)repressor. SRC1A and p/CIP predominantly interact with distinct sites on the NH2-terminal activation domain of MyoD. GRIP1 binds to both these regions but it alone, and neither SRC1A nor p/CIP, also interacts with specific sites on MyoD that are critical for the binding of the essential MyoD coactivator, p300. This suggests that competition by GRIP1 for SRC1A, p/CIP, and p300 binding sites on a transcription factor may regulate the activity of the factor.
Collapse
Affiliation(s)
- Hung-Yi Wu
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Wang R, Cherukuri P, Luo J. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 2005; 280:11528-34. [PMID: 15649887 DOI: 10.1074/jbc.m413930200] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Signal transducers and activators of transcription (Stat) belong to a family of latent cytoplasmic factors that can be activated by tyrosine phosphorylation by members of the Jak tyrosine kinase family in response to a variety of cytokines and growth factors. Activated Stats form dimers and translocate into nucleus to induce expression of critical genes essential for normal cellular events. Here we report for the first time that Stat3 can be modified by acetylation both in vivo and in vitro. A major site of Stat3 that is acetylated by its coactivator, p300/CREB-binding protein (CBP), resides in the C-terminal transcriptional activation domain at lysine 685. Furthermore, the acetylation of Stat3 can stimulate its sequence-specific DNA binding ability and transactivation activity. Inhibition of histone deacetylase activity in cells results in increased Stat3 nuclear localization. These observations clearly indicate a novel mechanism for Stat3 activation in mammalian cells.
Collapse
Affiliation(s)
- Rui Wang
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
135
|
Huang W, Zhao S, Ammanamanchi S, Brattain M, Venkatasubbarao K, Freeman JW. Trichostatin A induces transforming growth factor beta type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J Biol Chem 2005; 280:10047-54. [PMID: 15647279 DOI: 10.1074/jbc.m408680200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor beta type II receptor (TbetaRII) is a tumor suppressor gene that can be transcriptionally silenced by histone deacetylases (HDACs) in cancer cells. In this report, we demonstrated the mechanism by which trichostatin A (TSA), an inhibitor of HDAC, induces the expression of TbetaRII in human pancreatic cancer cell lines by modulating the transcriptional components that bind a specific DNA region of the TbetaRII promoter. This region of the TbetaRII promoter possesses Sp1 and NF-Y binding sites in close proximity (located at -102 and -83, respectively). Treatment of cells with TSA activates the TbetaRII promoter in a time-dependent manner through the recruitment of p300 and PCAF into a Sp1.NF-Y.HDAC complex that binds this DNA element. The recruitment of p300 and PCAF into the complex is associated with a concomitant acetylation of Sp1 and an overall decrease in the amount of HDAC associated with the complex. Transient overexpression of p300 or PCAF potentiated TSA-induced TbetaRII promoter activity. The effect of PCAF was dependent on its histone acetyltransferase activity, whereas that of p300 was independent. Stable transfection of PCAF caused an increase in TbetaRII mRNA expression, the association of PCAF with TbetaRII promoter, and the acetylation of Sp1. Taken together, these results showed that TSA treatment of pancreatic cancer cells leads to transcriptional activation of the TbetaRII promoter through modulation of the components of a Sp1.NF-Y.p300.PCAF.HDAC-1 multiprotein complex. Moreover, the interaction of NF-Y with the Sp1-associated complex may further explain why this specific Sp1 site mediates transcriptional responsiveness to TSA.
Collapse
Affiliation(s)
- Weiqi Huang
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
136
|
Litterst CM, Kliem S, Lodrini M, Pfitzner E. Coactivators in Gene Regulation by STAT5. VITAMINS & HORMONES 2005; 70:359-86. [PMID: 15727811 DOI: 10.1016/s0083-6729(05)70012-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of transcription factors that relay the effect of diverse cytokines, hormones, and growth factors by regulating the transcription of distinct target genes. This function is emphasized by its crucial role in the development of the mammary gland and the hematopoietic system. Cytokine receptor-associated Janus kinases (JAKs) induce dimerization, nuclear translocation, and DNA binding through tyrosine phosphorylation of STAT5. STAT5 regulates the expression of cytokine target genes by binding to gamma interferon-activated sequence (GAS) motifs. Transcriptional activation requires the contact of STAT5 to coactivators and components of the transcription machinery. Another important point in transcriptional activation is the cooperation with other transcription factors that bind in close vicinity to the target gene promoters and enhancers. Their concerted action can result in an enhanced binding to the promoters or in cooperative recruitment of coactivators. In addition, cross-talk with other signaling pathways as well as secondary modifications of STAT5 have been described to affect transactivation function.
Collapse
Affiliation(s)
- Claudia M Litterst
- Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
137
|
Ruas JL, Poellinger L, Pereira T. Role of CBP in regulating HIF-1-mediated activation of transcription. J Cell Sci 2004; 118:301-11. [PMID: 15615775 DOI: 10.1242/jcs.01617] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hypoxia-inducible factor-1 (HIF-1) is a key regulator of oxygen homeostasis in the cell. We have previously shown that HIF-1alpha and the transcriptional coactivator CBP colocalize in accumulation foci within the nucleus of hypoxic cells. In our further exploration of the hypoxia-dependent regulation of HIF-1alpha function by transcriptional coactivators we observed that coexpression of SRC-1 (another important coactivator of the hypoxia response) and HIF-1alpha did not change the individual characteristic nuclear distribution patterns. Colocalization of both these proteins proved to be mediated by CBP. Biochemical assays showed that depletion of CBP from cell extracts abrogated interaction between SRC-1 and HIF-1alpha. Thus, in contrast to the current model for the assembly of complexes between nuclear hormone receptors and coactivators, the present data suggest that it is CBP that recruits SRC-1 to HIF-1alpha in hypoxic cells. We also observed that CBP, HIF-1alpha/Arnt and HIF-1alpha/CBP accumulation foci partially overlap with the hyperphosphorylated form of RNA polymerase II, and that CBP had a stabilizing effect on the formation of the complex between HIF-1alpha and its DNA-binding partner, Arnt. In conclusion, CBP plays an important role as a mediator of HIF-1alpha/Arnt/CBP/SRC-1 complex formation, coordinating the temporally and hierarchically regulated intranuclear traffic of HIF-1alpha and associated cofactors in signal transduction in hypoxic cells.
Collapse
Affiliation(s)
- Jorge L Ruas
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
138
|
Drdová B, Vachtenheim J. A role for p21 (WAF1) in the cAMP-dependent differentiation of F9 teratocarcinoma cells into parietal endoderm. Exp Cell Res 2004; 304:293-304. [PMID: 15707594 DOI: 10.1016/j.yexcr.2004.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Revised: 10/12/2004] [Accepted: 10/30/2004] [Indexed: 11/24/2022]
Abstract
Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin, a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.
Collapse
Affiliation(s)
- Blanka Drdová
- Laboratory of Molecular Biology, University Hospital, Clinic of Pneumology, 3rd Faculty of Medicine, Budinova 2, 18000 Prague 8-Bulovka, Czech Republic
| | | |
Collapse
|
139
|
Yin N, Wang D, Zhang H, Yi X, Sun X, Shi B, Wu H, Wu G, Wang X, Shang Y. Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res 2004; 64:5870-5. [PMID: 15313931 DOI: 10.1158/0008-5472.can-04-0655] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is a risk factor for breast cancer in postmenopausal women. Leptin, an adipocyte-derived cytokine, elicits proliferative effects in some cell types and potentially stimulates the growth of mammary epithelium. Here we show that leptin induced time- and dose-dependent signal transducer and activator of transcription 3 (STAT3) phosphorylation and extracellular signal-regulated kinase (ERK) 1/2 kinase activation in breast carcinoma cells. Blocking STAT3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation of MCF-7 cells, whereas blocking ERK1/2 activation by a specific ERK1/2 kinase inhibitor, U0126, did not result in any significant changes in leptin-induced cell proliferation. Our experiments also showed that one member of the p160 family of steroid receptor coactivators, steroid receptor coactivator (SRC)-1, but not glucocorticoid receptor interacting protein 1 (GRIP1) or amplified in breast cancer 1 (AIB1), also functioned in gene transactivation in response to leptin treatment. Glutathione S-transferase pull-down experiments showed that SRC-1 physically interacted with the activation domain of STAT3 and that chromatin immunoprecipitation experiments detected the occupancy of SRC-1, but not GRIP1 or AIB1, on the promoter of STAT3 target genes. Our experiments collectively showed that SRC-1 is involved in STAT3 signaling pathway that is implicated in leptin-stimulated cell growth.
Collapse
Affiliation(s)
- Na Yin
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Kalkhoven E. CBP and p300: HATs for different occasions. Biochem Pharmacol 2004; 68:1145-55. [PMID: 15313412 DOI: 10.1016/j.bcp.2004.03.045] [Citation(s) in RCA: 370] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/30/2004] [Indexed: 11/25/2022]
Abstract
The transcriptional coactivators CREB binding protein (CBP) and p300 are key regulators of RNA polymerase II-mediated transcription. Genetic alterations in the genes encoding these regulatory proteins and their functional inactivation have been linked to human disease. Findings in patients, knockout mice and cell-based studies indicate that the ability of these multidomain proteins to acetylate histones and other proteins is critical for many biological processes. Furthermore, despite their high degree of homology, accumulating evidence indicates that CBP and p300 are not completely redundant but also have unique roles in vivo. Recent studies suggest that these functional differences could be due to differential association with other proteins or differences in substrate specificity between these acetyltransferases. Inactivation of the acetyltransferase function of either CBP or p300 in various experimental systems will no doubt teach us more about the specific biological roles of these proteins. Given the wide range of human diseases in which CBP and/or p300 have been implicated, understanding the mechanisms that regulate their activity in vivo could help to develop novel approaches for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA, The Netherlands.
| |
Collapse
|
141
|
Kim SW, Hong SJ, Kim KM, Ho SC, So EC, Harney JW, Larsen PR. A novel cell type-specific mechanism for thyroid hormone-dependent negative regulation of the human type 1 deiodinase gene. Mol Endocrinol 2004; 18:2924-36. [PMID: 15331760 DOI: 10.1210/me.2004-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have identified a cell type-specific, negative thyroid hormone-responsive element in the human type 1 iodothyronine deiodinase (hdio1) gene. This fragment, termed a JEG response element, bound tightly to a JEG-cell nuclear protein [JEG cell-specific transcription factor (JTF)] also present in placenta but not in COS-7, HeLa, or human embryonic kidney-293 cells. In JEG-3 cells, three copies of the JEG response element conferred a more than 40-fold transcriptional stimulation to the heterologous rat GH promoter which was further increased 2-fold by apo-thyroid hormone receptor (TR) and reduced 3-fold by T(3). Dimethyl sulfide footprinting showed overlapping contact sites for the high-affinity interaction of JTF and low-affinity binding of TR-retinoid X receptor. Expression of the same construct was unaffected by TR or T(3) in COS cells, indicating JTF was required for negative regulation by T(3)-TR. Mutations of the critical thyroid hormone responsive element binding P box amino acids EG to GS in TRalpha1 or TRbeta2 eliminated the apo-TR and T(3)-TR effects. These studies identify a novel mechanism for cell type-specific, promoter-independent negative regulation by T(3).
Collapse
Affiliation(s)
- Sung-Woo Kim
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
142
|
Kiefer HLB, Hanley TM, Marcello JE, Karthik AG, Viglianti GA. Retinoic acid inhibition of chromatin remodeling at the human immunodeficiency virus type 1 promoter. Uncoupling of histone acetylation and chromatin remodeling. J Biol Chem 2004; 279:43604-13. [PMID: 15299018 DOI: 10.1074/jbc.m408069200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans retinoic acid (RA) represses HIV-1 transcription and replication in cultured monocytic cells and in primary monocyte-derived macrophages. Here we examine the role of histone acetylation and chromatin remodeling in RA-mediated repression. RA pretreatment of latently infected U1 promonocytes inhibits HIV-1 expression in response to the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA). TSA is thought to activate HIV-1 transcription by inducing histone hyperacetylation within a regulatory nucleosome, nuc-1, positioned immediately downstream from the transcription start site. Acetylation of nuc-1 is thought to be a critical step in activation that precedes nuc-1 remodeling and, subsequently, transcriptional initiation. Here we demonstrate that TSA treatment induces H3 and H4 hyperacetylation and nuc-1 remodeling. Although RA pretreatment inhibits nuc-1 remodeling and HIV-1 transcription, it has no effect on histone acetylation. This suggests that acetylation and remodeling are not obligatorily coupled. We also show that growth of U1 cells in retinoid-deficient medium induces nuc-1 remodeling and HIV-1 expression but does not induce histone hyperacetylation. These findings suggest that remodeling, not histone hyperacetylation, is the limiting step in transcriptional activation in these cells. Together, these data suggest that RA signaling maintains the chromatin structure of the HIV-1 promoter in a transcriptionally non-permissive state that may contribute to the establishment of latency in monocyte/macrophages.
Collapse
Affiliation(s)
- Heather L B Kiefer
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
143
|
Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004; 42:961-72. [PMID: 15207240 PMCID: PMC8048715 DOI: 10.1016/j.neuron.2004.06.002] [Citation(s) in RCA: 629] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 05/21/2004] [Accepted: 06/07/2004] [Indexed: 11/18/2022]
Abstract
The stabilization of learned information into long-term memories requires new gene expression. CREB binding protein (CBP) is a coactivator of transcription that can be independently regulated in neurons. CBP functions both as a platform for recruiting other required components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. To dissect the chromatin remodeling versus platform function of CBP or the developmental versus adult role of this gene, we generated transgenic mice that express CBP in which HAT activity is eliminated. Acquisition of new information and short-term memory is spared in these mice, while the stabilization of short-term memory into long-term memory is impaired. The behavioral phenotype is due to an acute requirement for CBP HAT activity in the adult as it is rescued by both suppression of transgene expression or by administration of the histone deacetylase inhibitor Trichostatin A (TSA) in adult animals.
Collapse
Affiliation(s)
- Edward Korzus
- Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive 0986, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
144
|
Austenaa LMI, Carlsen H, Ertesvag A, Alexander G, Blomhoff HK, Blomhoff R. Vitamin A status significantly alters nuclear factor-kappaB activity assessed by in vivo imaging. FASEB J 2004; 18:1255-7. [PMID: 15180954 DOI: 10.1096/fj.03-1098fje] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our study aimed to investigate, in vivo, the relationship between vitamin A status and NF-kappaB activity, a transcription factor central in regulating inflammatory and immune responses. We used a novel transgenic murine NF-kappaB-luciferase reporter model that enabled molecular imaging of NF-kappaB activity in live mice via an intensified image-capture apparatus. Whole-body luminescence, which reflects overall NF-kappaB activity, was elevated 2.2-fold in vitamin A-deficient (VAD) mice compared with control mice. Specifically, NF-kappaB activity in VAD mice was increased 1.8-fold in the lymph nodes and 1.4-fold in the thymus and, NF-kappaB induction in UVB radiation-exposed skin was also enhanced in VAD mice compared with control mice. The administration of all-trans retinoic acid to VAD mice resulted in a transient reduction in NF-kappaB activity and, conversely, a single dose of the RAR-pan-antagonist, AGN 194310, administered to control mice, led to a marked, transient induction of whole-body luminescence. Our results suggest that vitamin A status, and vitamin A itself, affects NF-kappaB activity in vivo and that the elevated NF-kappaB activity in VAD may be a mechanism underlying some of the features of VAD syndrome.
Collapse
Affiliation(s)
- Liv M I Austenaa
- Department of Nutrition, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
145
|
Louie MC, Zou JX, Rabinovich A, Chen HW. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 2004; 24:5157-71. [PMID: 15169882 PMCID: PMC419858 DOI: 10.1128/mcb.24.12.5157-5171.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/03/2004] [Accepted: 03/24/2004] [Indexed: 01/30/2023] Open
Abstract
Overexpression or amplification of ACTR (also named AIB1, RAC3, p/CIP, TRAM-1, and SRC-3), a member of the p160 family of coactivators for nuclear hormone receptors, has been frequently detected in multiple types of human tumors, including breast cancer. However, its role in cancer cell proliferation and the underlying mechanism are unclear. Here, we show that overexpression of ACTR not only enhances estrogen-stimulated cell proliferation but also, more strikingly, completely negates the cell cycle arrest effect by tamoxifen and pure antiestrogens. Unexpectedly, we found that ACTR directly interacts, through its N-terminal domain, with E2F1 and is recruited to E2F target gene promoters. Elevation of ACTR in quiescent cells strongly stimulates the transcription of a subset of E2F-responsive genes that are associated with the G(1)/S transition. We also demonstrated, by adenovirus vector-mediated RNA interference, that ACTR is required for E2F1-mediated gene expression and the proliferation of estrogen receptor (ER)-negative breast cancer cells. Moreover, the ability of elevated ACTR to promote estrogen-independent cell proliferation depends on the function of E2F1 and the association between ACTR and E2F1, but not ER. Thus, our results reveal an essential role of ACTR in control of breast cancer cell proliferation and implicate the ACTR-E2F1 pathway as a novel mechanism in antiestrogen resistance.
Collapse
Affiliation(s)
- Maggie C Louie
- Department of Biological Chemistry, School of Medicine, UCD Cancer Center/Basic Science, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
146
|
Nguyên TLA, Calomme C, Wijmeersch G, Nizet S, Veithen E, Portetelle D, de Launoit Y, Burny A, Van Lint C. Deacetylase inhibitors and the viral transactivator TaxBLV synergistically activate bovine leukemia virus gene expression via a cAMP-responsive element- and cAMP-responsive element-binding protein-dependent mechanism. J Biol Chem 2004; 279:35025-36. [PMID: 15163662 DOI: 10.1074/jbc.m404081200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient bovine leukemia virus (BLV) transcription requires the virus-encoded transactivator Tax(BLV), which acts through three Tax(BLV)-responsive elements located in the 5' long terminal repeat. It has been proposed that the binding of the CRE-binding protein (CREB) and the activating transcription factor (ATF) to the three imperfect cAMP-responsive elements (CREs) located in each Tax(BLV)-responsive element mediates Tax(BLV) transactivation. Here we demonstrated that deacetylase inhibitors (HDACis) synergistically enhanced the transcriptional activation of the BLV promoter by Tax(BLV) in a CRE-dependent manner. Tax(BLV) was acetylated in vivo at its N(alpha) terminus but not at internal lysine residues. Rather, HDACi potentiation of Tax(BLV) transactivation was mediated by an HDACi indirect action that requires new protein synthesis. Mechanistically, using a dominant-negative form of CREB, we showed that Tax(BLV) and HDACi synergistically activated BLV gene expression via a CREB-dependent mechanism. Moreover, electrophoretic mobility shift assay and Western blot experiments revealed that HDACi increased the in vitro DNA binding activity of CREB/ATF but did not alter CREB/ATF intranuclear presence. Remarkably, chromatin immunoprecipitation assays demonstrated that HDACi treatment increased the level of CREB bound to the BLV promoter in vivo. Our results together suggest that an increase in CREB/ATF occupancy of the viral CREs in response to HDACi potentiates Tax(BLV) transactivation of the BLV promoter.
Collapse
Affiliation(s)
- Thi Liên-Anh Nguyên
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Bu H, Kashireddy P, Chang J, Zhu YT, Zhang Z, Zheng W, Rao SM, Zhu YJ. ERBP, a novel estrogen receptor binding protein enhancing the activity of estrogen receptor. Biochem Biophys Res Commun 2004; 317:54-9. [PMID: 15047147 DOI: 10.1016/j.bbrc.2004.02.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Indexed: 01/12/2023]
Abstract
To understand the mechanism by which estrogen receptor (ER) activates transcription in a tissue specific fashion, we isolated ERalpha binding protein (ERBP) by performing yeast two-hybrid screening with human mammary gland cDNA library. ERBP is a nuclear protein and its mRNA is ubiquitously expressed. The in vitro interaction of ERBP with ERalpha was demonstrated by GST pull-down assay and this interaction was enhanced by estrogen. In addition, ERBP also bound to PPARgamma, RXRalpha, and ERbeta. ERBP interacted with the DNA binding domain and the hinge region of ERalpha. There are two ERalpha binding regions on ERBP. The binding of ERBP region at C-terminus to ERalpha is increased by estrogen while the binding of ERBP region at N-terminus is not affected by estrogen. The interaction of ERBP with ERalpha was further confirmed in vivo by immunoprecipitation. Transient transfection experiment demonstrated that ERBP enhanced the transcriptional activity of ERalpha.
Collapse
Affiliation(s)
- Hengfu Bu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Paul BD, Shi YB. Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis. Cell Res 2004; 13:459-64. [PMID: 14728802 DOI: 10.1038/sj.cr.7290188] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-1/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels. These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.
Collapse
Affiliation(s)
- Bindu D Paul
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bldg., Bethesda, MD 20892, USA
| | | |
Collapse
|
149
|
Takamura K, Nasuhara Y, Kobayashi M, Betsuyaku T, Tanino Y, Kinoshita I, Yamaguchi E, Matsukura S, Schleimer RP, Nishimura M. Retinoic acid inhibits interleukin-4-induced eotaxin production in a human bronchial epithelial cell line. Am J Physiol Lung Cell Mol Physiol 2004; 286:L777-85. [PMID: 14660485 DOI: 10.1152/ajplung.00289.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Retinoic acid (RA) is known to accelerate wound healing and induce cell differentiation. All- trans RA (ATRA) exerts its effect by binding retinoic acid receptors, which are members of the nuclear receptor family. We investigated whether RA can alter expression of eotaxin, a potent eosinophil chemoattractant that is regulated by the transcription factors signal transducer and activator of transcription 6 (STAT6) and NF-κB. We examined the effects of RA on eotaxin expression in a human bronchial epithelial cell line BEAS-2B. ATRA and its stereodimer 9- cis retinoic acid (9- cis RA) inhibited IL-4-induced release of eotaxin at 10-6M by 78.0 and 52.0%, respectively ( P < 0.05). ATRA and 9- cis RA also significantly inhibited IL-4-induced eotaxin mRNA expression at 10-6M by 52.3 and 53.5%, respectively ( P < 0.05). In contrast, neither ATRA nor 9- cis RA had any effects on TNF-α-induced eotaxin production. In transfection studies using eotaxin promoter luciferase plasmids, the inhibitory effect of ATRA on IL-4-induced eotaxin production was confirmed at the transcriptional level. Interestingly, ATRA had no effects on IL-4-induced tyrosine phosphorylation, nuclear translocation, or DNA binding activity of STAT6. Activating protein-1 was not involved in ATRA-mediated transrepression of eotaxin with IL-4 stimulation. The mechanism of the inhibitory effect of ATRA on IL-4-induced eotaxin production in human bronchial epithelial cells has not been elucidated but does not appear to be due to an effect on STAT6 activation. These findings raise the possibility that RA may reduce eosinophilic airway inflammation, one of the prominent pathological features of allergic diseases such as bronchial asthma.
Collapse
Affiliation(s)
- Kei Takamura
- 1st Dept. of Medicine, Hokkaido Univ. School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E, Becker S. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol 2004; 336:319-29. [PMID: 14757047 DOI: 10.1016/j.jmb.2003.12.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Signal transducer and activator of transcription 6 (STAT6) regulates transcriptional activation in response to interleukin-4 (IL-4) by direct interaction with coactivators. The CREB-binding protein (p300/CBP) and the nuclear coactivator 1 (NCoA-1), a member of the p160/steroid receptor coactivator family, bind independently to specific regions of the STAT6 transactivation domain and act as coactivators. The interaction between STAT6 and NCoA-1 is mediated by an LXXLL motif in the transactivation domain of STAT6. To define the mechanism of coactivator recognition, we determined the crystal structure of the NCoA-1 PAS-B domain in complex with the STAT6 LXXLL motif. The amphipathic, alpha-helical STAT6 LXXLL motif binds mostly through specific hydrophobic interactions to NCoA-1. A single amino acid of the NCoA-1 PAS-B domain establishes hydrophilic interactions with the STAT6 peptide. STAT6 interacts only with the PAS-B domain of NCoA-1 but not with the homologous regions of NCoA-2 and NCoA-3. The residues involved in binding the STAT6 peptide are strongly conserved between the different NCoA family members. Therefore surface complementarity between the hydrophobic faces of the STAT6 fragment and of the NCoA-1 PAS-B domain almost exclusively defines the binding specificity between the two proteins.
Collapse
Affiliation(s)
- Adelia Razeto
- Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|