101
|
Debebe BJ, Boelen L, Lee JC, Thio CL, Astemborski J, Kirk G, Khakoo SI, Donfield SM, Goedert JJ, Asquith B. Identifying the immune interactions underlying HLA class I disease associations. eLife 2020; 9:54558. [PMID: 32238263 PMCID: PMC7253178 DOI: 10.7554/elife.54558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Variation in the risk and severity of many autoimmune diseases, malignancies and infections is strongly associated with polymorphisms at the HLA class I loci. These genetic associations provide a powerful opportunity for understanding the etiology of human disease. HLA class I associations are often interpreted in the light of 'protective' or 'detrimental' CD8+ T cell responses which are restricted by the host HLA class I allotype. However, given the diverse receptors which are bound by HLA class I molecules, alternative interpretations are possible. As well as binding T cell receptors on CD8+ T cells, HLA class I molecules are important ligands for inhibitory and activating killer immunoglobulin-like receptors (KIRs) which are found on natural killer cells and some T cells; for the CD94:NKG2 family of receptors also expressed mainly by NK cells and for leukocyte immunoglobulin-like receptors (LILRs) on myeloid cells. The aim of this study is to develop an immunogenetic approach for identifying and quantifying the relative contribution of different receptor-ligand interactions to a given HLA class I disease association and then to use this approach to investigate the immune interactions underlying HLA class I disease associations in three viral infections: Human T cell Leukemia Virus type 1, Human Immunodeficiency Virus type 1 and Hepatitis C Virus as well as in the inflammatory condition Crohn's disease.
Collapse
Affiliation(s)
- Bisrat J Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lies Boelen
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - James C Lee
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | -
- Johns Hopkins University, Baltimore, United States.,Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chloe L Thio
- Johns Hopkins University, Baltimore, United States
| | | | - Gregory Kirk
- Johns Hopkins University, Baltimore, United States
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, United States
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
102
|
Jin JH, Huang HH, Zhou MJ, Li J, Hu W, Huang L, Xu Z, Tu B, Yang G, Shi M, Jiao YM, Fan X, Song JW, Zhang JY, Zhang C, Wang FS. Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition. Cell Mol Immunol 2020; 17:1257-1265. [PMID: 32210395 DOI: 10.1038/s41423-020-0408-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.
Collapse
Affiliation(s)
- Jie-Hua Jin
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Wei Hu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Guang Yang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
103
|
Arora J, Pierini F, McLaren PJ, Carrington M, Fellay J, Lenz TL. HLA Heterozygote Advantage against HIV-1 Is Driven by Quantitative and Qualitative Differences in HLA Allele-Specific Peptide Presentation. Mol Biol Evol 2020; 37:639-650. [PMID: 31651980 PMCID: PMC7038656 DOI: 10.1093/molbev/msz249] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathogen-mediated balancing selection is regarded as a key driver of host immunogenetic diversity. A hallmark for balancing selection in humans is the heterozygote advantage at genes of the human leukocyte antigen (HLA), resulting in improved HIV-1 control. However, the actual mechanism of the observed heterozygote advantage is still elusive. HLA heterozygotes may present a broader array of antigenic viral peptides to immune cells, possibly resulting in a more efficient cytotoxic T-cell response. Alternatively, heterozygosity may simply increase the chance to carry the most protective HLA alleles, as individual HLA alleles are known to differ substantially in their association with HIV-1 control. Here, we used data from 6,311 HIV-1-infected individuals to explore the relative contribution of quantitative and qualitative aspects of peptide presentation in HLA heterozygote advantage against HIV. Screening the entire HIV-1 proteome, we observed that heterozygous individuals exhibited a broader array of HIV-1 peptides presented by their HLA class I alleles. In addition, viral load was negatively correlated with the breadth of the HIV-1 peptide repertoire bound by an individual's HLA variants, particularly at HLA-B. This suggests that heterozygote advantage at HLA-B is at least in part mediated by quantitative peptide presentation. We also observed higher HIV-1 sequence diversity among HLA-B heterozygous individuals, suggesting stronger evolutionary pressure from HLA heterozygosity. However, HLA heterozygotes were also more likely to carry certain HLA alleles, including the highly protective HLA-B*57:01 variant, indicating that HLA heterozygote advantage ultimately results from a combination of quantitative and qualitative effects in antigen presentation.
Collapse
Affiliation(s)
- Jatin Arora
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul J McLaren
- JC Wilt Infectious Diseases Research Center, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
104
|
Gartner MJ, Roche M, Churchill MJ, Gorry PR, Flynn JK. Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine 2020; 53:102682. [PMID: 32114391 PMCID: PMC7047180 DOI: 10.1016/j.ebiom.2020.102682] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is the most prevalent form of HIV-1 globally, accounting for approximately 50% of infections worldwide. C-HIV is the predominant and near-exclusive subtype in the low resource regions of India and Southern Africa. Given the vast diversity of HIV-1 subtypes, it is curious as to why C-HIV constitutes such a large proportion of global infections. This enriched prevalence may be due to phenotypic differences between C-HIV isolates and other viral strains that permit enhanced transmission efficiency or, pathogenicity, or might due to the socio-demographics of the regions where C-HIV is endemic. Here, we compare the mechanisms of C-HIV pathogenesis to less prominent HIV-1 subtypes, including viral genetic and phenotypic characteristics, and host genetic variability, to understand whether evolutionary factors drove C-HIV to predominance.
Collapse
Affiliation(s)
- Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Melissa J Churchill
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| | - Paul R Gorry
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Jacqueline K Flynn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia.
| |
Collapse
|
105
|
Pierini F, Lenz TL. Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Mol Biol Evol 2020; 35:2145-2158. [PMID: 29893875 PMCID: PMC6106954 DOI: 10.1093/molbev/msy116] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The highly polymorphic genes of the major histocompatibility complex (MHC) play a key role in adaptive immunity. Divergent allele advantage, a mechanism of balancing selection, is proposed to contribute to their exceptional polymorphism. It assumes that MHC genotypes with more divergent alleles allow for broader antigen-presentation to immune effector cells, by that increasing immunocompetence. However, the direct correlation between pairwise sequence divergence and the corresponding repertoire of bound peptides has not been studied systematically across different MHC genes. Here, we investigated this relationship for five key classical human MHC genes (human leukocyte antigen; HLA-A, -B, -C, -DRB1, and -DQB1), using allele-specific computational binding prediction to 118,097 peptides derived from a broad range of human pathogens. For all five human MHC genes, the genetic distance between two alleles of a heterozygous genotype was positively correlated with the total number of peptides bound by these two alleles. In accordance with the major antigen-presentation pathway of MHC class I molecules, HLA-B and HLA-C alleles showed particularly strong correlations for peptides derived from intracellular pathogens. Intriguingly, this bias coincides with distinct protein compositions between intra- and extracellular pathogens, possibly suggesting adaptation of MHC I molecules to present specifically intracellular peptides. Eventually, we observed significant positive correlations between an allele’s average divergence and its population frequency. Overall, our results support the divergent allele advantage as a meaningful quantitative mechanism through which pathogen-mediated selection leads to the evolution of MHC diversity.
Collapse
Affiliation(s)
- Federica Pierini
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
106
|
Abstract
Apolipoprotein A-I binding protein (AIBP) is a recently identified innate anti-inflammatory factor. Here, we show that AIBP inhibited HIV replication by targeting lipid rafts and reducing virus-cell fusion. Importantly, AIBP selectively reduced levels of rafts on cells stimulated by an inflammatory stimulus or treated with extracellular vesicles containing HIV-1 protein Nef without affecting rafts on nonactivated cells. Accordingly, fusion of monocyte-derived macrophages with HIV was sensitive to AIBP only in the presence of Nef. Silencing of endogenous AIBP significantly upregulated HIV-1 replication. Interestingly, HIV-1 replication in cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, was not inhibited by AIBP. These results suggest that AIBP is an innate anti-HIV factor that targets virus-cell fusion. Apolipoprotein A-I binding protein (AIBP) is a protein involved in regulation of lipid rafts and cholesterol efflux. AIBP has been suggested to function as a protective factor under several sets of pathological conditions associated with increased abundance of lipid rafts, such as atherosclerosis and acute lung injury. Here, we show that exogenously added AIBP reduced the abundance of lipid rafts and inhibited HIV replication in vitro as well as in HIV-infected humanized mice, whereas knockdown of endogenous AIBP increased HIV replication. Endogenous AIBP was much more abundant in activated T cells than in monocyte-derived macrophages (MDMs), and exogenous AIBP was much less effective in T cells than in MDMs. AIBP inhibited virus-cell fusion, specifically targeting cells with lipid rafts mobilized by cell activation or Nef-containing exosomes. MDM-HIV fusion was sensitive to AIBP only in the presence of Nef provided by the virus or exosomes. Peripheral blood mononuclear cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, bound less AIBP than cells from donors with other HLA genotypes and were not protected by AIBP from rapid HIV-1 replication. These results provide the first evidence for the role of Nef exosomes in regulating HIV-cell fusion by modifying lipid rafts and suggest that AIBP is an innate factor that restricts HIV replication by targeting lipid rafts.
Collapse
|
107
|
Donyavi T, Bokharaei-Salim F, Nahand JS, Garshasbi S, Esghaei M, Sadeghi M, Jamshidi S, Khanaliha K. Evaluation of CCR5-Δ32 mutation among individuals with high risk behaviors, neonates born to HIV-1 infected mothers, HIV-1 infected individuals, and healthy people in an Iranian population. J Med Virol 2020; 92:1158-1164. [PMID: 31854469 DOI: 10.1002/jmv.25658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/07/2022]
Abstract
One of the important genetic factors related to resistance to HIV-1 infection is the presence of the C-C chemokine receptor type 5 delta 32 (CCR5-Δ32) homozygous genotype (Δ32/Δ32). The aim of this study was to evaluate the CCR5-Δ32 mutation among individuals with high-risk behaviors, neonates born to HIV-1-infected mothers in the prevention of mother-to-child transmission (PMTCT) project, HIV-1-infected individuals, and healthy people. The frequency of the CCR5-Δ32 genotype was assessed in a cross-sectional survey carried out from March 2014 to March 2019 among four different groups of the Iranian population. Genomic DNA was extracted from peripheral blood mononuclear cells of 140 Iranian healthy people, 84 neonates born to HIV-1-infected mothers in the PMTCT project, 71 people with high-risk behaviors, and 76 HIV-1-infected individuals. The polymerase chain reaction method was used for the amplification of the CCR5 gene. The CCR5-Δ32 heterozygous deletion was detected in five (6.6%) HIV-1-infected individuals, four (4.7%) neonates born to HIV-1 positive mothers, two (1.4%) healthy people, and also three (4.2%) people with high-risk behaviors whereas the CCR5-Δ32 homozygous deletion was absent in all the groups (Fisher's exact test, P = .0242). The allele of CCR5-Δ32 homozygous was not detected in the four study groups, and no significant difference was seen in the frequency of the CCR5Δ32 heterozygous allele between HIV seropositive and seronegative individuals. Therefore, it seems that this allele alone cannot explain the natural resistance to HIV-1 infection and probably several mechanisms are responsible for these processes and it should be further investigated.
Collapse
Affiliation(s)
- Tahereh Donyavi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Garshasbi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
108
|
Bardeskar NS, Chavan VR, Ahir-Bist S, Samant-Mavani P, Mehta PR, Mania-Pramanik J. Distribution of human leucocyte antigen-C in HIV-1-infected patients in Mumbai, India. Indian J Med Microbiol 2019; 37:102-104. [PMID: 31424018 DOI: 10.4103/ijmm.ijmm_19_84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
HIV pathogenesis is known to be highly influenced by host genetic factors, such as human leucocyte antigens (HLAs) HLA-A and HLA-B. However, the role of HLA-C remains largely unexplored. We evaluated HLA-C distribution in 186 HIV-1-infected individuals and compared them to ethnically matched data derived from the Allele Frequency Net Database using Chi-square test with Fisher's exact two-tailed test. The frequency of HLA-C*05 and HLA-C*15 was higher in infected group, whereas the frequency of HLA-C*04 and HLA-C*14 was higher in control group. HLA-C*17, a rare allele, was significantly higher in infected group. These data could be useful in designing and testing vaccines in Indian population.
Collapse
Affiliation(s)
- Nikhil S Bardeskar
- Department of Infectious Diseases Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Vijay R Chavan
- Department of Infectious Diseases Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Swati Ahir-Bist
- Department of Infectious Diseases Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Padmaja Samant-Mavani
- Department of Obstetrics and Gynaecology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Preeti R Mehta
- Department of Microbiology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Jayanti Mania-Pramanik
- Department of Infectious Diseases Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
109
|
Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, Morris LGT, Riaz N, Lenz TL, Chan TA. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med 2019; 25:1715-1720. [PMID: 31700181 DOI: 10.1038/s41591-019-0639-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
Abstract
Functional diversity of the highly polymorphic human leukocyte antigen class I (HLA-I) genes underlies successful immunologic control of both infectious disease and cancer. The divergent allele advantage hypothesis dictates that an HLA-I genotype with two alleles with sequences that are more divergent enables presentation of more diverse immunopeptidomes1-3. However, the effect of sequence divergence between HLA-I alleles-a quantifiable measure of HLA-I evolution-on the efficacy of immune checkpoint inhibitor (ICI) treatment for cancer remains unknown. In the present study the germline HLA-I evolutionary divergence (HED) of patients with cancer treated with ICIs was determined by quantifying the physiochemical sequence divergence between HLA-I alleles of each patient's genotype. HED was a strong determinant of survival after treatment with ICIs. Even among patients fully heterozygous at HLA-I, patients with an HED in the upper quartile respond better to ICIs than patients with a low HED. Furthermore, HED strongly impacts the diversity of tumor, viral and self-immunopeptidomes and intratumoral T cell receptor clonality. Similar to tumor mutation burden, HED is a fundamental metric of diversity at the major histocompatibility complex-peptide complex, which dictates ICI efficacy. The data link divergent HLA allele advantage to immunotherapy efficacy and unveil how ICI response relies on the evolved efficiency of HLA-mediated immunity.
Collapse
Affiliation(s)
- Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Naiyer A Rizvi
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell School of Medicine, New York, NY, USA.
| |
Collapse
|
110
|
Hanke T. Aiming for protective T-cell responses: a focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev Vaccines 2019; 18:1029-1041. [PMID: 31613649 DOI: 10.1080/14760584.2019.1675518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Despite life-saving antiretroviral drugs, an effective HIV-1 vaccine is the best solution and likely a necessary component of any strategy for halting the AIDS epidemic. The currently prevailing aim is to pursue antibody-mediated vaccine protection. With ample evidence for the ability of T cells to control HIV-1 replication, their protective potential should be also harnessed by vaccination. The challenge is to elicit not just any, but protective T cells.Areas covered: This article reviews the clinical experience with the first-generation conserved-region immunogen HIVconsv delivered by combinations of plasmid DNA, simian adenovirus, and poxvirus MVA. The aim of our strategy is to induce strong and broad T cells targeting functionally important parts of HIV-1 proteins common to global variants. These vaccines were tested in eight phase 1/2 preventive and therapeutic clinical trials in Europe and Africa, and induced high frequencies of broadly specific CD8+ T cells capable of in vitro inhibition of four major HIV-1 clades A, B, C and D, and in combination with latency-reactivating agent provided a signal of drug-free virological control in early treated patients.Expert opinion: A number of critical T-cell traits have to come together at the same time to achieve control over HIV-1.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
111
|
Cornillet M, Jansson H, Schaffer M, Hertwig L, Berglin L, Zimmer CL, Johansson H, Ellis E, Isaksson B, Gonzalez-Galarza FF, Middleton D, Malmberg KJ, Sparrelid E, Björkström NK. Imbalance of Genes Encoding Natural Killer Immunoglobulin-Like Receptors and Human Leukocyte Antigen in Patients With Biliary Cancer. Gastroenterology 2019; 157:1067-1080.e9. [PMID: 31229495 DOI: 10.1053/j.gastro.2019.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/03/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Bile duct tumors are rare and have poor prognoses. Natural killer (NK) cells are frequent in human liver and infiltrate these tumors but do not control their progression. Responses of NK cells are regulated by NK immunoglobulin-like receptors (KIRs), which interact with HLA class I ligands. We aimed to characterize the features of the KIR gene loci and their ligands in patients with bile duct cancer (BDC). METHODS We performed combined multidimensional characterization of genes that encode KIRs and their ligands in blood samples from patients with BDC from Sweden, followed for up to 8 years after diagnosis (n = 148), in 2 geographically matched cohorts of healthy individuals from Northern Europe (n = 204 and n = 900), and in healthy individuals from 6 geographically unrelated populations (n = 2917). We used real-time polymerase chain reaction, RNA sequencing, immunohistochemistry, and flow cytometry to evaluate NK-cell presence, as well as KIR and KIR-ligand expression in bile duct tumors and control tissues. RESULTS Patients with bile duct tumors had multiple alterations at the KIR gene loci. KIR loci are grouped into genotypes that encode more inhibitory (group A) and more activating (group B) receptors, which can be subdivided into centromeric and telomeric fragments. Patients with BDC had a lower prevalence of KIR2DL3, which was linked to disequilibrium in centromeric A/B and B/B genotypes, compared with control individuals. The associations between KIRs and KIR ligands differed between patients with BDC and control individuals; patients had an altered balance between activating and inhibitory KIRs. KIR-positive NK cells infiltrated biliary tumors that expressed matched KIR ligands. CONCLUSIONS In a multidimensional analysis of DNA from blood samples of patients with BDC in Europe, we found patients to have multiple alterations at the KIR and HLA gene loci compared with control individuals. These alterations might affect NK-cell tumor surveillance. NK cells from bile duct tumors expressed KIRs and were found in tumors that expressed cognate ligands. This should be considered in development of immune-based therapies for BDC.
Collapse
Affiliation(s)
- Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Hannes Jansson
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Schaffer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Hertwig
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Berglin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Johansson
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, and Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, and Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Isaksson
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Faviel F Gonzalez-Galarza
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital, Liverpool, UK
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
112
|
Thami PK, Chimusa ER. Population Structure and Implications on the Genetic Architecture of HIV-1 Phenotypes Within Southern Africa. Front Genet 2019; 10:905. [PMID: 31611910 PMCID: PMC6777512 DOI: 10.3389/fgene.2019.00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The interesting history of Southern Africa has put the region in the spotlight for population medical genetics. Major events including the Bantu expansion and European colonialism have imprinted unique genetic signatures within autochthonous populations of Southern Africa, this resulting in differential allele frequencies across the region. This genetic structure has potential implications on susceptibility and resistance to infectious diseases such as human immunodeficiency virus (HIV) infection. Southern Africa is the region affected worst by HIV. Here, we discuss advances made in genome-wide association studies (GWAS) of HIV-1 in the past 12 years and dissect population diversity within Southern Africa. Our findings accentuate that a plethora of factors such as migration, language and culture, admixture, and natural selection have profiled the genetics of the people of Southern Africa. Genetic structure has been observed among the Khoe-San, among Bantu speakers, and between the Khoe-San, Coloureds, and Bantu speakers. Moreover, Southern African populations have complex admixture scenarios. Few GWAS of HIV-1 have been conducted in Southern Africa, with only one of these identifying two novel variants (HCG22rs2535307 and CCNG1kgp22385164) significantly associated with HIV-1 acquisition and progression. High genetic diversity, multi-wave genetic mixture and low linkage disequilibrium of Southern African populations constitute a challenge in identifying genetic variants with modest risk or protective effect against HIV-1. We therefore posit that it is compelling to assess genome-wide contribution of ancestry to HIV-1 infection. We further suggest robust methods that can pin-point population-specific variants that may contribute to the control of HIV-1 in Southern Africa.
Collapse
Affiliation(s)
- Prisca K Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
113
|
Le Clerc S, Limou S, Zagury JF. Large-Scale "OMICS" Studies to Explore the Physiopatholgy of HIV-1 Infection. Front Genet 2019; 10:799. [PMID: 31572435 PMCID: PMC6754074 DOI: 10.3389/fgene.2019.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
In this review, we present the main large-scale experimental studies that have been performed in the HIV/AIDS field. These “omics” studies are based on several technologies including genotyping, RNA interference, and transcriptome or epigenome analysis. Due to the direct connection with disease evolution, there has been a large focus on genotyping cohorts of well-characterized patients through genome-wide association studies (GWASs), but there have also been several invitro studies such as small interfering RNA (siRNA) interference or transcriptome analyses of HIV-1–infected cells. After describing the major results obtained with these omics technologies—including some with a high relevance for HIV-1 treatment—we discuss the next steps that the community needs to embrace in order to derive new actionable therapeutic or diagnostic targets. Only integrative approaches that combine all big data results and consider their complex interactions will allow us to capture the global picture of HIV molecular pathogenesis. This novel challenge will require large collaborative efforts and represents a huge open field for innovative bioinformatics approaches.
Collapse
Affiliation(s)
- Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation en Urologie et Néphrologie (ITUN), CHU de Nantes, Nantes, France.,Computer Sciences and Mathematics Department, Ecole Centrale de Nantes, Nantes, France
| | - Jean-François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| |
Collapse
|
114
|
|
115
|
Ramírez de Arellano E, Díez-Fuertes F, Aguilar F, de la Torre Tarazona HE, Sánchez-Lara S, Lao Y, Vicario JL, García F, González-Garcia J, Pulido F, Gutierrez-Rodero F, Moreno S, Iribarren JA, Viciana P, Vilches C, Ramos M, Capa L, Alcamí J, Del Val M. Novel association of five HLA alleles with HIV-1 progression in Spanish long-term non progressor patients. PLoS One 2019; 14:e0220459. [PMID: 31393887 PMCID: PMC6687284 DOI: 10.1371/journal.pone.0220459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Certain host genetic variants, especially in the human leucocyte antigen (HLA) region, are associated with different progression of HIV-1-induced diseases and AIDS. Long term non progressors (LTNP) represent only the 2% of infected patients but are especially relevant because of their efficient HIV control. In this work we present a global analysis of genetic data in the large national multicenter cohort of Spanish LTNP, which is compared with seronegative individuals and HIV-positive patients. We have analyzed whether several single-nucleotide polymorphisms (SNPs) including in key genes and certain HLA-A and B alleles could be associated with a specific HIV phenotype. A total of 846 individuals, 398 HIV-1-positive patients (213 typical progressors, 55 AIDS patients, and 130 LTNPs) and 448 HIV-negative controls, were genotyped for 15 polymorphisms and HLA-A and B alleles. Significant differences in the allele frequencies among the studied populations identified 16 LTNP-associated genetic factors, 5 of which were defined for the first time as related to LTNP phenotype: the protective effect of HLA-B39, and the detrimental impact of HLA-B18, -A24, -B08 and –A29. The remaining eleven polymorphisms confirmed previous publications, including the protective alleles HLA-B57, rs2395029 (HCP5), HLA bw4 homozygosity, HLA-B52, HLA-B27, CCR2 V64I, rs9264942 (HLA-C) and HLA-A03; and the risk allele HLA bw6 homozygosity. Notably, individual Spanish HIV-negative individuals had an average of 0.12 protective HLA alleles and SNPs, compared with an average of 1.43 protective alleles per LTNP patient, strongly suggesting positive selection of LTNP. Finally, stratification of LTNP according to viral load showed a proportional relationship between the frequency of protective alleles with control of viral load. Interestingly, no differences in the frequency of protection/risk polymorphisms were found between elite controllers and LTNPs maintaining viral loads <2.000 copies/mL throughout the follow-up.
Collapse
Affiliation(s)
- Eva Ramírez de Arellano
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| | - Francisco Díez-Fuertes
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Francisco Aguilar
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Susana Sánchez-Lara
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Yolanda Lao
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Luis Vicario
- Departamento de Histocompatibilidad, Centro de Transfusión de Madrid, Madrid, Spain
| | - Felipe García
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | - Federico Pulido
- HIV Unit, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Félix Gutierrez-Rodero
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital General Universitario de Elche, Alicante, Spain
| | | | | | - Pompeyo Viciana
- Laboratory of Immunovirology, Biomedicine Institute of Sevilla, Virgen del Rocío University Hospital, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, IBIS/CSIC/SAS/University of Sevilla, Sevilla, Spain
| | - Carlos Vilches
- Inmunogenética e Histocompatibilidad, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Manuel Ramos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Laura Capa
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Alcamí
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Margarita Del Val
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
116
|
Yu KKQ, Wilburn DB, Hackney JA, Darrah PA, Foulds KE, James CA, Smith MT, Jing L, Seder RA, Roederer M, Koelle DM, Swanson WJ, Seshadri C. Conservation of molecular and cellular phenotypes of invariant NKT cells between humans and non-human primates. Immunogenetics 2019; 71:465-478. [PMID: 31123763 PMCID: PMC6647187 DOI: 10.1007/s00251-019-01118-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 10/27/2022]
Abstract
Invariant NKT (iNKT) cells in both humans and non-human primates are activated by the glycolipid antigen, α-galactosylceramide (α-GalCer). However, the extent to which the molecular mechanisms of antigen recognition and in vivo phenotypes of iNKT cells are conserved among primate species has not been determined. Using an evolutionary genetic approach, we found a lack of diversifying selection in CD1 genes over 45 million years of evolution, which stands in stark contrast to the history of the MHC system for presenting peptide antigens to T cells. The invariant T cell receptor (TCR)-α chain was strictly conserved across all seven primate clades. Invariant NKT cells from rhesus macaques (Macaca mulatta) bind human CD1D-α-GalCer tetramer and are activated by α-GalCer-loaded human CD1D transfectants. The dominant TCR-β chain cloned from a rhesus-derived iNKT cell line is nearly identical to that found in the human iNKT TCR, and transduction of the rhesus iNKT TCR into human Jurkat cells show that it is sufficient for binding human CD1D-α-GalCer tetramer. Finally, we used a 20-color flow cytometry panel to probe tissue phenotypes of iNKT cells in a cohort of rhesus macaques. We discovered several tissue-resident iNKT populations that have not been previously described in non-human primates but are known in humans, such as TCR-γδ iNKTs. These data reveal a diversity of iNKT cell phenotypes despite convergent evolution of the genes required for lipid antigen presentation and recognition in humans and non-human primates.
Collapse
Affiliation(s)
- Krystle K Q Yu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Joshua A Hackney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte A James
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Malisa T Smith
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Tuberculosis Research & Training Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
117
|
Does MHC heterozygosity influence microbiota form and function? PLoS One 2019; 14:e0215946. [PMID: 31095603 PMCID: PMC6522005 DOI: 10.1371/journal.pone.0215946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
MHC molecules are essential for the adaptive immune response, and they are the most polymorphic genetic loci in vertebrates. Extreme genetic variation at these loci is paradoxical given their central importance to host health. Classic models of MHC gene evolution center on antagonistic host-pathogen interactions to promote gene diversification and allelic diversity in host populations. However, all multicellular organisms are persistently colonized by their microbiota that perform essential metabolic functions for their host and protect from infection. Here, we provide data to support the hypothesis that MHC heterozygote advantage (a main force of selection thought to drive MHC gene evolution), may operate by enhancing fitness advantages conferred by the host’s microbiome. We utilized fecal 16S rRNA gene sequences and their predicted metagenome datasets collected from multiple MHC congenic homozygote and heterozygote mouse strains to describe the influence of MHC heterozygosity on microbiome form and function. We find that in contrast to homozygosity at MHC loci, MHC heterozygosity promotes functional diversification of the microbiome, enhances microbial network connectivity, and results in enrichment for a variety of microbial functions that are positively associated with host fitness. We demonstrate that taxonomic and functional diversity of the microbiome is positively correlated in MHC heterozygote but not homozygote animals, suggesting that heterozygote microbiomes are more functionally adaptive under similar environmental conditions than homozygote microbiomes. Our data complement previous observations on the role of MHC polymorphism in sculpting microbiota composition, but also provide functional insights into how MHC heterozygosity may enhance host health by modulating microbiome form and function. We also provide evidence to support that MHC heterozygosity limits functional redundancy among commensal microbes and may enhance the metabolic versatility of their microbiome. Results from our analyses yield multiple testable predictions regarding the role of MHC heterozygosity on the microbiome that will help guide future research in the area of MHC-microbiome interactions.
Collapse
|
118
|
Hau TTT, Nakamura-Hoshi M, Kanno Y, Nomura T, Nishizawa M, Seki S, Ishii H, Kawana-Tachikawa A, Hall WW, Nguyen Thi LA, Matano T, Yamamoto H. CD8 + T cell-based strong selective pressure on multiple simian immunodeficiency virus targets in macaques possessing a protective MHC class I haplotype. Biochem Biophys Res Commun 2019; 512:213-217. [PMID: 30878187 DOI: 10.1016/j.bbrc.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host major histocompatibility complex class I (MHC-I) genotypes have a great impact on viral replication and MHC-I-associated viral genome mutations are selected under CD8+ T-cell pressure. Association of MHC-I genotypes with HIV/SIV control has been investigated at MHC-I allele levels but not fully at haplotype levels. We previously established groups of rhesus macaques sharing individual MHC-I haplotypes. In the present study, we compared viral genome diversification after SIV infection in macaques possessing a protective MHC-I haplotype, 90-010-Id, with those possessing a non-protective MHC-I haplotype, 90-010-Ie. These two MHC-I haplotypes are associated with immunodominant CD8+ T-cell responses targeting similar regions of viral Nef antigen. Analyses of viral genome sequences and antigen-specific T-cell responses showed four and two candidates of viral CD8+ T-cell targets associated with 90-010-Id and 90-010-Ie, respectively, in addition to the Nef targets. In these CD8+ T-cell target regions, higher numbers of mutations were detected at the setpoint after SIV infection in macaques possessing 90-010-Id than those possessing 90-010-Ie. These results indicate higher selective pressure on overall CD8+ T-cell targets associated with the protective MHC-I haplotype, suggesting a pattern of HIV/SIV control by multiple target-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan; Center of BioMedical Research, National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hanoi, Viet Nam
| | - Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshiaki Kanno
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - William W Hall
- Center of BioMedical Research, National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hanoi, Viet Nam; Centre for Research in Infectious Diseases, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lan Anh Nguyen Thi
- Center of BioMedical Research, National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hanoi, Viet Nam.
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan.
| |
Collapse
|
119
|
Yang Y, Ganusov VV. Defining Kinetic Properties of HIV-Specific CD8⁺ T-Cell Responses in Acute Infection. Microorganisms 2019; 7:E69. [PMID: 30836625 PMCID: PMC6462943 DOI: 10.3390/microorganisms7030069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple lines of evidence indicate that CD8 + T cells are important in the control of HIV-1 (HIV) replication. However, CD8 + T cells induced by natural infection cannot eliminate the virus or reduce viral loads to acceptably low levels in most infected individuals. Understanding the basic quantitative features of CD8 + T-cell responses induced during HIV infection may therefore inform us about the limits that HIV vaccines, which aim to induce protective CD8 + T-cell responses, must exceed. Using previously published experimental data from a cohort of HIV-infected individuals with sampling times from acute to chronic infection we defined the quantitative properties of CD8 + T-cell responses to the whole HIV proteome. In contrast with a commonly held view, we found that the relative number of HIV-specific CD8 + T-cell responses (response breadth) changed little over the course of infection (first 400 days post-infection), with moderate but statistically significant changes occurring only during the first 35 symptomatic days. This challenges the idea that a change in the T-cell response breadth over time is responsible for the slow speed of viral escape from CD8 + T cells in the chronic infection. The breadth of HIV-specific CD8 + T-cell responses was not correlated with the average viral load for our small cohort of patients. Metrics of relative immunodominance of HIV-specific CD8 + T-cell responses such as Shannon entropy or the Evenness index were also not significantly correlated with the average viral load. Our mathematical-model-driven analysis suggested extremely slow expansion kinetics for the majority of HIV-specific CD8 + T-cell responses and the presence of intra- and interclonal competition between multiple CD8 + T-cell responses; such competition may limit the magnitude of CD8 + T-cell responses, specific to different epitopes, and the overall number of T-cell responses induced by vaccination. Further understanding of mechanisms underlying interactions between the virus and virus-specific CD8 + T-cell response will be instrumental in determining which T-cell-based vaccines will induce T-cell responses providing durable protection against HIV infection.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
120
|
Abstract
Checkpoint inhibitor-based immunotherapies that target cytotoxic T lymphocyte antigen 4 (CTLA4) or the programmed cell death 1 (PD1) pathway have achieved impressive success in the treatment of different cancer types. Yet, only a subset of patients derive clinical benefit. It is thus critical to understand the determinants driving response, resistance and adverse effects. In this Review, we discuss recent work demonstrating that immune checkpoint inhibitor efficacy is affected by a combination of factors involving tumour genomics, host germline genetics, PD1 ligand 1 (PDL1) levels and other features of the tumour microenvironment, as well as the gut microbiome. We focus on recently identified molecular and cellular determinants of response. A better understanding of how these variables cooperate to affect tumour-host interactions is needed to optimize the implementation of precision immunotherapy.
Collapse
Affiliation(s)
- Jonathan J Havel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
121
|
Jin SW, Markle TJ, Anmole G, Rahimi A, Kuang XT, Brumme ZL, Brockman MA. Modulation of TCR-dependent NFAT signaling is impaired in HIV-1 Nef isolates from elite controllers. Virology 2019; 530:39-50. [PMID: 30780124 DOI: 10.1016/j.virol.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 12/24/2022]
Abstract
HIV-1 Nef modulates the activation state of CD4+ T cells by altering signaling events elicited by the T cell receptor (TCR). Primary nef sequences exhibit extensive inter-individual diversity that influences their ability to downregulate CD4 and HLA class I; however, the impact of nef variation on modulation of T cell signaling is poorly characterized. Here, we measured TCR-mediated activation of NFAT transcription factor in the presence of nef alleles isolated from 45 elite controllers (EC) and 46 chronic progressors (CP). EC Nef clones displayed lower ability to inhibit NFAT signaling (median 87 [IQR 75-93]% relative to SF2 Nef) compared to CP clones (94 [IQR 89-98]%) (p < 0.001). Polymorphisms in Nef's N-terminal domain impaired its ability to inhibit NFAT signaling. Results indicate that primary nef alleles exhibit a range of abilities to modulate TCR-dependent NFAT signaling, implicating natural variation in this function as a potential contributor to differential HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Tristan J Markle
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Gursev Anmole
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Asa Rahimi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaomei T Kuang
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
122
|
Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nat Commun 2019; 10:63. [PMID: 30622247 PMCID: PMC6325131 DOI: 10.1038/s41467-018-07936-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Maintenance of polymorphism by overdominance (heterozygote advantage) is a fundamental concept in evolutionary biology. In most examples known in nature, overdominance is a result of homozygotes suffering from deleterious effects. Here we show that overdominance maintains a non-deleterious polymorphism with black, red and white floral morphs in the Alpine orchid Gymnadenia rhellicani. Phenotypic, metabolomic and transcriptomic analyses reveal that the morphs differ solely in cyanidin pigments, which are linked to differential expression of an anthocyanidin synthase (ANS) gene. This expression difference is caused by a premature stop codon in an ANS-regulating R2R3-MYB transcription factor, which is heterozygous in the red colour morph. Furthermore, field observations show that bee and fly pollinators have opposite colour preferences; this results in higher fitness (seed set) of the heterozygous morph without deleterious effects in either homozygous morph. Together, these findings demonstrate that genuine overdominance exists in nature. Examples of overdominance are usually explained by deleterious effects in homozygotes. Here, Kellenberger et al. describe a case of overdominance in the floral color of the Alpine orchid Gymnadenia rhellicani apparently maintained by pollinator preferences without deleterious effects in homozygotes.
Collapse
|
123
|
Inhibitory natural killer cell receptor KIR3DL1 with its ligand Bw4 constraints HIV-1 disease among South Indians. AIDS 2018; 32:2679-2688. [PMID: 30289808 DOI: 10.1097/qad.0000000000002028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the role of genotypic and phenotypic characteristics of killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) class-1 ligands in HIV-1 disease progression. STUDY DESIGN AND METHODS This is a nested case-control study including 347 HIV seropositive (HIV-1+) individuals from South India constituting 45 long-term nonprogressors (LTNPs) and 302 disease progressors. KIR genotyping was performed by multiplex sequence-specific primer-directed PCR (SSP-PCR). Phenotypic expressions of KIR3DL1/S1 was studied using multiparametric flow cytometry assay. HLA-Bw4 and Bw6 epitopes were determined by ARMS-PCR. HLA-Bw4I80, HLA-Bw4T80, HLA-C1, HLA-C2, and HLA-Aw4 were genotyped using SSP-PCR. Serum levels of IFN-γ was quantified using ELISA method. RESULTS Overall, 37 different KIR genotypes were observed and the distribution of genotypes with AB-AB (OR = 2.2, P = 0.033) constellations showed significant increase among LTNPs. The frequencies of 3DL1-2DL3-2DL5 (OR = 2.2, Pc = 0.031), 3DL1-Bw4/Aw4 (OR = 2.49, Pc = 0.019), homozygous Bw4 (OR = 2.422, Pc = 0.011) were observed higher in LTNPs and 2DS1-2DS2-2DS3 (OR = 0.475, Pc = 0.03), homozygous Bw6 (OR = 0.413, Pc = 0.011) were higher in the disease progressors. Flow cytometry assay showed the increased expression and maintenance of 3DL1/S1+NK cells in LTNPs (P = 0.0001). Further the expansion of 3DS1+NK cells was higher than 3DL1+NK cells in the heterozygous 3DL1/S1 LTNPs (P = 0.001). CONCLUSION The inhibitory receptor 3DL1 with Bw4 and its A-haplotype defining KIR genes (2DL3/L5) confers protection against HIV-1 disease progression. An increased expression and maintenance of 3DL1/S1+ natural killer cells may contribute to the efficient activation of the natural killer cells and subsequent long-term nonprogression (LTNPn) to the disease.
Collapse
|
124
|
Li L, Liu Y, Gorny MK. Association of Diverse Genotypes and Phenotypes of Immune Cells and Immunoglobulins With the Course of HIV-1 Infection. Front Immunol 2018; 9:2735. [PMID: 30534128 PMCID: PMC6275200 DOI: 10.3389/fimmu.2018.02735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Disease progression among HIV-1-infected individuals varies widely, but the mechanisms underlying this variability remains unknown. Distinct disease outcomes are the consequences of many factors working in concert, including innate and adaptive immune responses, cell-mediated and humoral immunity, and both genetic and phenotypic factors. Current data suggest that these multifaceted aspects in infected individuals should be considered as a whole, rather than as separate unique elements, and that analyses must be performed in greater detail in order to meet the requirements of personalized medicine and guide optimal vaccine design. However, the wide adoption of antiretroviral therapy (ART) influences the implementation of systematic analyses of the HIV-1-infected population. Consequently, fewer data will be available for acquisition in the future, preventing the comprehensive investigations required to elucidate the underpinnings of variability in disease outcome. This review seeks to recapitulate the distinct genotypic and phenotypic features of the immune system, focusing in particular on comparing the surface proteins of immune cells among individuals with different HIV infection outcomes.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Yan Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
125
|
Boelen L, Debebe B, Silveira M, Salam A, Makinde J, Roberts CH, Wang ECY, Frater J, Gilmour J, Twigger K, Ladell K, Miners KL, Jayaraman J, Traherne JA, Price DA, Qi Y, Martin MP, Macallan DC, Thio CL, Astemborski J, Kirk G, Donfield SM, Buchbinder S, Khakoo SI, Goedert JJ, Trowsdale J, Carrington M, Kollnberger S, Asquith B. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8 + T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 2018; 3:eaao2892. [PMID: 30413420 PMCID: PMC6277004 DOI: 10.1126/sciimmunol.aao2892] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed predominantly on natural killer cells, where they play a key role in the regulation of innate immune responses. Recent studies show that inhibitory KIRs can also affect adaptive T cell-mediated immunity. In mice and in human T cells in vitro, inhibitory KIR ligation enhanced CD8+ T cell survival. To investigate the clinical relevance of these observations, we conducted an extensive immunogenetic analysis of multiple independent cohorts of HIV-1-, hepatitis C virus (HCV)-, and human T cell leukemia virus type 1 (HTLV-1)-infected individuals in conjunction with in vitro assays of T cell survival, analysis of ex vivo KIR expression, and mathematical modeling of host-virus dynamics. Our data suggest that functional engagement of inhibitory KIRs enhances the CD8+ T cell response against HIV-1, HCV, and HTLV-1 and is a significant determinant of clinical outcome in all three viral infections.
Collapse
Affiliation(s)
- Lies Boelen
- Department of Medicine, Imperial College London, London, UK
| | - Bisrat Debebe
- Department of Medicine, Imperial College London, London, UK
| | - Marcos Silveira
- Department of Medicine, Imperial College London, London, UK
- Faculty of Engineering, São Paulo State University-UNESP, São Paulo, Brazil
| | - Arafa Salam
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Julia Makinde
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Chrissy H Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Katie Twigger
- Department of Medicine, Imperial College London, London, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jyothi Jayaraman
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - James A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Derek C Macallan
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | | | | | | | | | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, CA, USA
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Becca Asquith
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
126
|
Abstract
In this brief review and perspective, we address the question of whether the immune responses that bring about immune control of acute HIV infection are the same as, or distinct from, those that maintain long-term viral suppression once control of viremia has been achieved. To this end, we describe the natural history of elite and post-treatment control, noting the lack of data regarding what happens acutely. We review the evidence suggesting that the two clinical phenotypes may differ in terms of the mechanisms required to achieve and maintain control, as well as the level of inflammation that persists once a steady state is achieved. We then describe the evidence from longitudinal studies of controllers who fail and studies of biologic sex (male versus female), age (children versus adults), and simian immunodeficiency virus (SIV) (pathogenic/experimental versus nonpathogenic/natural infection). Collectively, these studies demonstrate that the battle between the inflammatory and anti-inflammatory pathways during acute infection has long-term consequences, both for the degree to which control is maintained and the health of the individual. Potent and stringent control of HIV may be required acutely, but once control is established, the chronic inflammatory response can be detrimental. Interventional approaches designed to bring about HIV cure and/or remission should be nuanced accordingly.
Collapse
Affiliation(s)
- Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
127
|
Moyo N, Vogel AB, Buus S, Erbar S, Wee EG, Sahin U, Hanke T. Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:32-46. [PMID: 30547051 PMCID: PMC6258890 DOI: 10.1016/j.omtm.2018.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Focusing T cell responses on the most vulnerable parts of HIV-1, the functionally conserved regions of HIV-1 proteins, is likely a key prerequisite for vaccine success. For a T cell vaccine to efficiently control HIV-1 replication, the vaccine-elicited individual CD8+ T cells and as a population have to display a number of critical traits. If any one of these traits is suboptimal, the vaccine is likely to fail. Fine-tuning of individual protective characteristics of T cells will require iterative stepwise improvements in clinical trials. Although the second-generation tHIVconsvX immunogens direct CD8+ T cells to predominantly protective and conserved epitopes, in the present work, we have used formulated self-amplifying mRNA (saRNA) to deliver tHIVconsvX to the immune system. We demonstrated in BALB/c and outbred mice that regimens employing saRNA vaccines induced broadly specific, plurifunctional CD8+ and CD4+ T cells, which displayed structured memory subpopulations and were maintained at relatively high frequencies over at least 22 weeks post-administration. This is one of the first thorough analyses of mRNA vaccine-elicited T cell responses. The combination of tHIVconsvX immunogens and the highly versatile and easily manufacturable saRNA platform may provide a long-awaited opportunity to define and optimize induction of truly protective CD8+ T cell parameters in human volunteers.
Collapse
Affiliation(s)
- Nathifa Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Annette B Vogel
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stephanie Erbar
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz 55131, Germany
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
128
|
Whole Exome Sequencing of HIV-1 long-term non-progressors identifies rare variants in genes encoding innate immune sensors and signaling molecules. Sci Rep 2018; 8:15253. [PMID: 30323326 PMCID: PMC6189090 DOI: 10.1038/s41598-018-33481-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
Common CCR5-∆32 and HLA alleles only explain a minority of the HIV long-term non-progressor (LTNP) and elite controller (EC) phenotypes. To identify rare genetic variants contributing to the slow disease progression phenotypes, we performed whole exome sequencing (WES) on seven LTNPs and four ECs. HLA and CCR5 allele status, total HIV DNA reservoir size, as well as variant-related functional differences between the ECs, LTNPs, and eleven age- and gender-matched HIV-infected non-controllers on antiretroviral therapy (NCARTs) were investigated. Several rare variants were identified in genes involved in innate immune sensing, CD4-dependent infectivity, HIV trafficking, and HIV transcription mainly within the LTNP group. ECs and LTNPs had a significantly lower HIV reservoir compared to NCARTs. Furthermore, three LTNPs with variants affecting HIV nuclear import showed integrated HIV DNA levels below detection limit after in vitro infection. HIV slow progressors with variants in the TLR and NOD2 pathways showed reduced pro-inflammatory responses compared to matched controls. Low-range plasma levels of fibronectin was observed in a LTNP harboring two FN1 variants. Taken together, this study identified rare variants in LTNPs as well as in one EC, which may contribute to understanding of HIV pathogenesis and these slow progressor phenotypes, especially in individuals without protecting CCR5-∆32 and HLA alleles.
Collapse
|
129
|
Marty Pyke R, Thompson WK, Salem RM, Font-Burgada J, Zanetti M, Carter H. Evolutionary Pressure against MHC Class II Binding Cancer Mutations. Cell 2018; 175:416-428.e13. [PMID: 30245014 PMCID: PMC6482006 DOI: 10.1016/j.cell.2018.08.048] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
The anti-cancer immune response against mutated peptides of potential immunological relevance (neoantigens) is primarily attributed to MHC-I-restricted cytotoxic CD8+ T cell responses. MHC-II-restricted CD4+ T cells also drive anti-tumor responses, but their relation to neoantigen selection and tumor evolution has not been systematically studied. Modeling the potential of an individual's MHC-II genotype to present 1,018 driver mutations in 5,942 tumors, we demonstrate that the MHC-II genotype constrains the mutational landscape during tumorigenesis in a manner complementary to MHC-I. Mutations poorly bound to MHC-II are positively selected during tumorigenesis, even more than mutations poorly bound to MHC-I. This emphasizes the importance of CD4+ T cells in anti-tumor immunity. In addition, we observed less inter-patient variation in mutation presentation for MHC-II than for MHC-I. These differences were reflected by age at diagnosis, which was correlated with presentation by MHC-I only. Collectively, our results emphasize the central role of MHC-II presentation in tumor evolution.
Collapse
Affiliation(s)
- Rachel Marty Pyke
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Wesley Kurt Thompson
- Department of Family Medicine and Public Health, Division of Biostatistics & Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rany M Salem
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Joan Font-Burgada
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; CIFAR, MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON, Canada.
| |
Collapse
|
130
|
Hacking JD, Stuart‐Fox D, Godfrey SS, Gardner MG. Specific MHC class I supertype associated with parasite infection and color morph in a wild lizard population. Ecol Evol 2018; 8:9920-9933. [PMID: 30386586 PMCID: PMC6202711 DOI: 10.1002/ece3.4479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
The major histocompatibility complex (MHC) is a large gene family that plays a central role in the immune system of all jawed vertebrates. Nonavian reptiles are underrepresented within the MHC literature and little is understood regarding the mechanisms maintaining MHC diversity in this vertebrate group. Here, we examined the relative roles of parasite-mediated selection and sexual selection in maintaining MHC class I diversity of a color polymorphic lizard. We discovered evidence for parasite-mediated selection acting via rare-allele advantage or fluctuating selection as ectoparasite load was significantly lower in the presence of a specific MHC supertype (functional clustering of alleles): supertype four. Based on comparisons between ectoparasite prevalence and load, and assessment of the impact of ectoparasite load on host fitness, we suggest that supertype four confers quantitative resistance to ticks or an intracellular tickborne parasite. We found no evidence for MHC-associated mating in terms of pair genetic distance, number of alleles, or specific supertypes. An association was uncovered between supertype four and male throat color morph. However, it is unlikely that male throat coloration acts as a signal of MHC genotype to conspecifics because we found no evidence to suggest that male throat coloration predicts male mating status. Overall, our results suggest that parasite-mediated selection plays a role in maintaining MHC diversity in this population via rare-allele advantage and/or fluctuating selection. Further work is required to determine whether sexual selection also plays a role in maintaining MHC diversity in agamid lizards.
Collapse
Affiliation(s)
- Jessica D. Hacking
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Devi Stuart‐Fox
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Michael G. Gardner
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
| |
Collapse
|
131
|
Murakoshi H, Koyanagi M, Akahoshi T, Chikata T, Kuse N, Gatanaga H, Rowland-Jones SL, Oka S, Takiguchi M. Impact of a single HLA-A*24:02-associated escape mutation on the detrimental effect of HLA-B*35:01 in HIV-1 control. EBioMedicine 2018; 36:103-112. [PMID: 30249546 PMCID: PMC6197679 DOI: 10.1016/j.ebiom.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background HLA-B*35 is an HLA allele associated with rapid progression to AIDS. However, a mechanism underlying the detrimental effect of HLA-B*35 on disease outcome remains unknown. Recent studies demonstrated that most prevalent subtype HLA-B*35:01 is a detrimental allele in HIV-1 clade B-infected individuals. We here investigated the effect of mutations within the epitopes on HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. Methods We analyzed 16 HLA-B*35:01-restricted epitope-specific T cells in 63 HIV-1 clade B-infected Japanese B*35:01+ individuals and identified HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. We further analyzed the effect of HLA-associated mutations on the ability of these T cells. Findings The breadth of T cell responses to 4 epitopes was inversely associated with plasma viral load (pVL). However, the accumulation of an Y135F mutation in NefYF9 out of the 4 epitopes, which is selected by HLA-A*24:02-restricted T cells, affected the ability of YF9-specific T cells to suppress HIV-1 replication. HLA-B*35:01+ individuals harboring this mutation had much higher pVL than those without it. YF9-specific T cells failed to suppress replication of the Y135F mutant in vitro. These results indicate that this mutation impairs suppression of HIV-1 replication by YF9-specific T cells. Interpretation These findings indicate that the Y135F mutation is a key factor underlying the detrimental effect of HLA-B*35:01 on disease outcomes in HIV-1 clade B-infected individuals. Fund Grants-in-aid for AIDS Research from AMED and for scientific research from the Ministry of Education, Science, Sports, and Culture, Japan. T cells specific for 4 HLA-B*35:01-restricted epitopes have abilities to suppress HIV-1 replication in vivo. An Y135F mutation selected by HLA-A*24:02-restricted T cells affected HIV-1 control by NefYF9-specific T cells in vivo. The NefY135F mutation impaired suppression of HIV-1 replication by NefYF9-specific T cells in vitro.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Sarah L Rowland-Jones
- IRCMS, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
132
|
Leelawiwat W, Pattanasin S, Sriporn A, Wasinrapee P, Kongpechsatit O, Mueanpai F, Tongtoyai J, Holtz TH, Curlin ME. Association between HIV genotype, viral load and disease progression in a cohort of Thai men who have sex with men with estimated dates of HIV infection. PLoS One 2018; 13:e0201386. [PMID: 30063722 PMCID: PMC6067726 DOI: 10.1371/journal.pone.0201386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Differences between HIV genotypes may affect HIV disease progression. We examined infecting HIV genotypes and their association with disease progression in a cohort of men who have sex with men with incident HIV infection in Bangkok, Thailand. METHODS We characterized the viral genotype of 189 new HIV infections among MSM identified between 2006-2014 using hybridization and sequencing. Plasma viral load (PVL) was determined by PCR, and CD4+ T-cell counts were measured by flow cytometry. We used Generalized Estimating Equations to examine factors associated with changes in CD4+ T-cell counts. Factors associated with immunologic failure were analyzed using Cox proportional hazard models. RESULTS Among 189 MSM, 84% were infected with CRF01_AE, 11% with recombinant B/CRF01_AE and 5% with subtype B. CD4+ T-cell decline rates were 68, 65, and 46 cells/μL/year for CRF01_AE, recombinants, and subtype B, respectively, and were not significantly different between HIV subtypes. CD4+ T-cell decline rate was significantly associated with baseline PVL and CD4+ T-cell counts (p <0.001). Progression to immunologic failure was associated with baseline CD4+ T-cell ≤ 500 cells/μL (AHR 1.97; 95% CI 1.14-3.40, p = 0.015) and PVL > 50,000 copies/ml (AHR 2.03; 1.14-3.63, p = 0.017). There was no difference in time to immunologic failure between HIV subtypes. CONCLUSION Among HIV-infected Thai MSM, low baseline CD4+ T-cell and high PVL are associated with rapid progression. In this cohort, no significant difference in CD4+ T-cell decline rate or time to immunologic failure was seen between CRF01_AE and other infecting HIV subtypes.
Collapse
Affiliation(s)
- Wanna Leelawiwat
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- * E-mail:
| | - Sarika Pattanasin
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Anuwat Sriporn
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Punneeporn Wasinrapee
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Oranuch Kongpechsatit
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Famui Mueanpai
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Jaray Tongtoyai
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Timothy H. Holtz
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Marcel E. Curlin
- Thailand Ministry of Public Health–U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
133
|
Wang SS, Carrington M, Berndt SI, Slager SL, Bracci PM, Voutsinas J, Cerhan JR, Smedby KE, Hjalgrim H, Vijai J, Morton LM, Vermeulen R, Paltiel O, Vajdic CM, Linet MS, Nieters A, de Sanjose S, Cozen W, Brown EE, Turner J, Spinelli JJ, Zheng T, Birmann BM, Flowers CR, Becker N, Holly EA, Kane E, Weisenburger D, Maynadie M, Cocco P, Albanes D, Weinstein SJ, Teras LR, Diver WR, Lax SJ, Travis RC, Kaaks R, Riboli E, Benavente Y, Brennan P, McKay J, Delfau-Larue MH, Link BK, Magnani C, Ennas MG, Latte G, Feldman AL, Doo NW, Giles GG, Southey MC, Milne RL, Offit K, Musinsky J, Arslan AA, Purdue MP, Adami HO, Melbye M, Glimelius B, Conde L, Camp NJ, Glenn M, Curtin K, Clavel J, Monnereau A, Cox DG, Ghesquières H, Salles G, Bofetta P, Foretova L, Staines A, Davis S, Severson RK, Lan Q, Brooks-Wilson A, Smith MT, Roman E, Kricker A, Zhang Y, Kraft P, Chanock SJ, Rothman N, Hartge P, Skibola CF. HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Res 2018; 78:4086-4096. [PMID: 29735552 PMCID: PMC6065509 DOI: 10.1158/0008-5472.can-17-2900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/07/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
Abstract
A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of "heterozygote advantage" regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL = 1.31, 95% CI = 1.06-1.60; OR MZL = 1.45, 95% CI = 1.12-1.89) and class II HLA-DRB1 locus (OR DLBCL = 2.10, 95% CI = 1.24-3.55; OR MZL = 2.10, 95% CI = 0.99-4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (P trend < 0.0001, FDR = 0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes.Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma. Cancer Res; 78(14); 4086-96. ©2018 AACR.
Collapse
Affiliation(s)
- Sophia S. Wang
- Department of Population Sciences, Beckman Research Institute and the City of Hope, Duarte, California,To whom correspondence should be addressed: Sophia S. Wang, Ph.D., Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, Phone: (626) 471-7316, Fax: (626) 471-7308,
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD and Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Susan L. Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California–San Francisco, San Francisco, CA
| | - Jenna Voutsinas
- Department of Population Sciences, Beckman Research Institute and the City of Hope, Duarte, California
| | - James R. Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Karin E. Smedby
- Department of Medicine Solna, unit of clinical epidemiology, Karolinska Institutet, Stockholm, Sweden,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark,Department of Hematology, Rishospitalet, Copenhagen, Denmark
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY
| | - Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ora Paltiel
- Braun School of Public Health and Community Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Martha S. Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Alexandra Nieters
- Centre for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Silvia de Sanjose
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, Institut Català d’ Oncologia, IDIBELL, 08908 L’Hospitalet de Llobregat, Barcelona, Spain,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Wendy Cozen
- Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Departments of Preventive Medicine and Pathology, University of Southern California, Los Angeles, CA
| | - Elizabeth E. Brown
- Department of Pathology, School of Medicine and the UAB Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer Turner
- Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, Australia,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - John J. Spinelli
- Cancer Control Research, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Christopher R. Flowers
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Nikolaus Becker
- Division of Clinical Epidemiology, German Cancer Research Centre, Heidelberg, Baden-Württemberg, Germany
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California–San Francisco, San Francisco, CA
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, United Kingdom
| | | | - Marc Maynadie
- Registry of Hematological Malignancies of Cote d’Or, INSERM UMR1231, University of Burgundy and Dijon University Hospital, Dijon, France
| | - Pierluigi Cocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | - Lauren R. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - W. Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | - Stephanie J. Lax
- Department of Health Sciences, University of York, York, United Kingdom
| | - Ruth C. Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Rudolph Kaaks
- Division of Clinical Epidemiology, German Cancer Research Centre, Heidelberg, Baden-Württemberg, Germany
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Yolanda Benavente
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, Institut Català d’ Oncologia, IDIBELL, 08908 L’Hospitalet de Llobregat, Barcelona, Spain,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - James McKay
- Department of Immunology, CHU Henri Mondor, Créteil, France
| | - Marie-Hélène Delfau-Larue
- Department of Immunology, CHU Henri Mondor, Créteil, France,INSERM U 955, CHU Henri Mondor, Créteil, France
| | - Brian K. Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA
| | - Corrado Magnani
- Center of Oncological Prevention (CPO) Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Maria Grazia Ennas
- Department of Biomedical Science, University of Cagliari, Monserrato, Cagliari, Italy
| | | | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Nicole Wong Doo
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Australia
| | - Graham G. Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Australia,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Roger L. Milne
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Australia,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Kenneth Offit
- Department of Hematology, Rishospitalet, Copenhagen, Denmark
| | - Jacob Musinsky
- Department of Hematology, Rishospitalet, Copenhagen, Denmark
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York City, NY,Department of Environmental Medicine, New York University School of Medicine, New York City, NY,Perlmutter Cancer Center, NYU Langone Medical Center, New York City, NY
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Hans-Olov Adami
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mads Melbye
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bengt Glimelius
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, WC1E 6DD, London, United Kingdom
| | - Lucia Conde
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Nicola J. Camp
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, France
| | - Martha Glenn
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, France
| | - Karen Curtin
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris, France
| | - Jacqueline Clavel
- Université Paris Descartes, Paris, France,Registre des hémopathies malignes de la Gironde, Institut Bergonié, University of Bordeaux, Inserm, Team EPICENE, UMR 1219, France
| | - Alain Monnereau
- Université Paris Descartes, Paris, France,Registre des hémopathies malignes de la Gironde, Institut Bergonié, University of Bordeaux, Inserm, Team EPICENE, UMR 1219, France,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. Cancer Research Center of Lyon, INSERM UMR1052, Center Léon Bérard, Lyon, France
| | - David G. Cox
- Department of Hematology, Centre Léon Bérard, Lyon, France
| | - Hervé Ghesquières
- Laboratoire de Biologie Moléculaire de la Cellule UMR 5239, Centre National de la Recherche Scientifique, Pierre benite Cedex, France,Department of Hematology, Hospices Civils De Lyon, Centre Hospitalier Lyon-Sud and Université Claude Bernard, Lyon, France
| | - Gilles Salles
- Department of Hematology, Hospices Civils De Lyon, Centre Hospitalier Lyon-Sud and Université Claude Bernard, Lyon, France,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Paulo Bofetta
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, MF MU, Brno, Czech Republic
| | - Lenka Foretova
- School of Nursing and Human Sciences, Dublin City University, Dublin, Ireland
| | - Anthony Staines
- Fred Hutchinson Cancer Research Center & School of Public Health and Community Medicine, University of Washington, Seattle, WA
| | - Scott Davis
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI
| | - Richard K. Severson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Angela Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada,Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Martyn T Smith
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Eve Roman
- Department of Health Sciences, University of York, York, United Kingdom
| | - Anne Kricker
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Christine F. Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
134
|
Kennedy AE, Ozbek U, Dorak MT. What has GWAS done for HLA and disease associations? Int J Immunogenet 2018; 44:195-211. [PMID: 28877428 DOI: 10.1111/iji.12332] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
The major histocompatibility complex (MHC) is located in chromosome 6p21 and contains crucial regulators of immune response, including human leucocyte antigen (HLA) genes, alongside other genes with nonimmunological roles. More recently, a repertoire of noncoding RNA genes, including expressed pseudogenes, has also been identified. The MHC is the most gene dense and most polymorphic part of the human genome. The region exhibits haplotype-specific linkage disequilibrium patterns, contains the strongest cis- and trans-eQTLs/meQTLs in the genome and is known as a hot spot for disease associations. Another layer of complexity is provided to the region by the extreme structural variation and copy number variations. While the HLA-B gene has the highest number of alleles, the HLA-DR/DQ subregion is structurally most variable and shows the highest number of disease associations. Reliance on a single reference sequence has complicated the design, execution and analysis of GWAS for the MHC region and not infrequently, the MHC region has even been excluded from the analysis of GWAS data. Here, we contrast features of the MHC region with the rest of the genome and highlight its complexities, including its functional polymorphisms beyond those determined by single nucleotide polymorphisms or single amino acid residues. One of the several issues with customary GWAS analysis is that it does not address this additional layer of polymorphisms unique to the MHC region. We highlight alternative approaches that may assist with the analysis of GWAS data from the MHC region and unravel associations with all functional polymorphisms beyond single SNPs. We suggest that despite already showing the highest number of disease associations, the true extent of the involvement of the MHC region in disease genetics may not have been uncovered.
Collapse
Affiliation(s)
- A E Kennedy
- Center for Research Strategy, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - U Ozbek
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M T Dorak
- Head of School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, UK
| |
Collapse
|
135
|
Partridge T, Nicastri A, Kliszczak AE, Yindom LM, Kessler BM, Ternette N, Borrow P. Discrimination Between Human Leukocyte Antigen Class I-Bound and Co-Purified HIV-Derived Peptides in Immunopeptidomics Workflows. Front Immunol 2018; 9:912. [PMID: 29780384 PMCID: PMC5946011 DOI: 10.3389/fimmu.2018.00912] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Elucidation of novel peptides presented by human leukocyte antigen (HLA) class I alleles by immunopeptidomics constitutes a powerful approach that can inform the rational design of CD8+ T cell inducing vaccines to control infection with pathogens such as human immunodeficiency virus type 1 (HIV-1) or to combat tumors. Recent advances in the sensitivity of liquid chromatography tandem mass spectrometry instrumentation have facilitated the discovery of thousands of natural HLA-restricted peptides in a single measurement. However, the extent of contamination of class I-bound peptides identified using HLA immunoprecipitation (IP)-based immunopeptidomics approaches with peptides from other sources has not previously been evaluated in depth. Here, we investigated the specificity of the IP-based immunopeptidomics methodology using HLA class I- or II-deficient cell lines and membrane protein-specific antibody IPs. We demonstrate that the 721.221 B lymphoblastoid cell line, widely regarded to be HLA class Ia-deficient, actually expresses and presents peptides on HLA-C*01:02. Using this cell line and the C8166 (HLA class I- and II-expressing) cell line, we show that some HLA class II-bound peptides were co-purified non-specifically during HLA class I and membrane protein IPs. Furthermore, IPs of "irrelevant" membrane proteins from HIV-1-infected HLA class I- and/or II-expressing cells revealed that unusually long HIV-1-derived peptides previously reported by us and other immunopeptidomics studies as potentially novel CD8+ T cell epitopes were non-specifically co-isolated, and so constitute a source of contamination in HLA class I IPs. For example, a 16-mer (FLGKIWPSYKGRPGNF), which was detected in all samples studied represents the full p1 segment of the abundant intracellular or virion-associated proteolytically-processed HIV-1 Gag protein. This result is of importance, as these long co-purified HIV-1 Gag peptides may not elicit CD8+ T cell responses when incorporated into candidate vaccines. These results have wider implications for HLA epitope discovery from abundant or membrane-associated antigens by immunopeptidomics in the context of infectious diseases, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Thomas Partridge
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Anna E. Kliszczak
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Louis-Marie Yindom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
136
|
Valenzuela-Ponce H, Alva-Hernández S, Garrido-Rodríguez D, Soto-Nava M, García-Téllez T, Escamilla-Gómez T, García-Morales C, Quiroz-Morales VS, Tapia-Trejo D, Del Arenal-Sánchez S, Prado-Galbarro FJ, Hernández-Juan R, Rodríguez-Aguirre E, Murakami-Ogasawara A, Mejía-Villatoro C, Escobar-Urias IY, Pinzón-Meza R, Pascale JM, Zaldivar Y, Porras-Cortés G, Quant-Durán C, Lorenzana I, Meza RI, Palou EY, Manzanero M, Cedillos RA, Aláez C, Brockman MA, Harrigan PR, Brumme CJ, Brumme ZL, Ávila-Ríos S, Reyes-Terán G. Novel HLA class I associations with HIV-1 control in a unique genetically admixed population. Sci Rep 2018; 8:6111. [PMID: 29666450 PMCID: PMC5904102 DOI: 10.1038/s41598-018-23849-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Associations between HLA class I alleles and HIV progression in populations exhibiting Amerindian and Caucasian genetic admixture remain understudied. Using univariable and multivariable analyses we evaluated HLA associations with five HIV clinical parameters in 3,213 HIV clade B-infected, ART-naïve individuals from Mexico and Central America (MEX/CAM cohort). A Canadian cohort (HOMER, n = 1622) was used for comparison. As expected, HLA allele frequencies in MEX/CAM and HOMER differed markedly. In MEX/CAM, 13 HLA-A, 24 HLA-B, and 14 HLA-C alleles were significantly associated with at least one clinical parameter. These included previously described protective (e.g. B*27:05, B*57:01/02/03 and B*58:01) and risk (e.g. B*35:02) alleles, as well as novel ones (e.g. A*03:01, B*15:39 and B*39:02 identified as protective, and A*68:03/05, B*15:30, B*35:12/14, B*39:01/06, B*39:05~C*07:02, and B*40:01~C*03:04 identified as risk). Interestingly, both protective (e.g. B*39:02) and risk (e.g. B*39:01/05/06) subtypes were identified within the common and genetically diverse HLA-B*39 allele group, characteristic to Amerindian populations. While HLA-HIV associations identified in MEX and CAM separately were similar overall (Spearman's rho = 0.33, p = 0.03), region-specific associations were also noted. The identification of both canonical and novel HLA/HIV associations provides a first step towards improved understanding of HIV immune control among unique and understudied Mestizo populations.
Collapse
Affiliation(s)
- Humberto Valenzuela-Ponce
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Selma Alva-Hernández
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Daniela Garrido-Rodríguez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Maribel Soto-Nava
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Thalía García-Téllez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.,Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Tania Escamilla-Gómez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Claudia García-Morales
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | - Daniela Tapia-Trejo
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Silvia Del Arenal-Sánchez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | - Ramón Hernández-Juan
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Edna Rodríguez-Aguirre
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | | | | | | | - Yamitzel Zaldivar
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | | | | | - Ivette Lorenzana
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Rita I Meza
- Honduras HIV National Laboratory, Tegucigalpa, Honduras
| | - Elsa Y Palou
- Hospital Escuela Universitario, Tegucigalpa, Honduras
| | | | | | - Carmen Aláez
- National Institute of Genomic Medicine, Translational Medicine Laboratory, Mexico City, Mexico
| | - Mark A Brockman
- Simon Fraser University, Faculty of Health Sciences, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Zabrina L Brumme
- Simon Fraser University, Faculty of Health Sciences, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Santiago Ávila-Ríos
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.
| | - Gustavo Reyes-Terán
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.
| | | |
Collapse
|
137
|
The influence of human leukocyte antigen-types on disease progression among HIV-2 infected patients in Guinea-Bissau. AIDS 2018; 32:721-728. [PMID: 29369163 DOI: 10.1097/qad.0000000000001758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES HIV-2 is endemic in West Africa and is characterized by lower transmissibility because of lower viral load, and HIV-2-infected persons usually have a slower progression to AIDS. The mechanisms behind the slower disease progression are unknown. The main objective was to identify specific HLA class I and II alleles that may influence the disease progression of HIV-2 infection. DESIGN Cohort follow-up study. METHODS We used high-resolution HLA typing of DNA from 437 antiretroviral naive HIV-2-infected patients from the Bissau HIV Cohort, Guinea-Bissau, to identify HLA alleles with an influence on HIV-2 disease progression. The effect of HLA-type on viral load and CD4 cell count was assessed initially by ranksum-test and t-test, followed by adjusted logistic regression and multivariable linear regression analysis, respectively. RESULTS Three alleles (HLA-B58:01, HLA-DPB110:01 and HLA-DRB111:01) were associated with lower possibility of detectable baseline plasma viral load (P = 0.002, P = 0.044 and P = 0.033, respectively), and no alleles were associated with higher possibility of detectable plasma viral load. HLA-DPB110:01 and HLA-DRB111:01 were in linkage disequilibrium (P = 0.047). Patients with heterozygous HLA types in all their HLA class I loci or in one or two loci were not more likely to have undetectable viral load compared with patients that were homozygous in all their class I loci after adjusting for sex and CD4 cell count (P = 0.93 and P = 0.88, respectively). CONCLUSION The three alleles HLA-B58:01, HLA-DPB110:01 and HLA-DRB111:01 may protect against HIV-2 disease progression towards AIDS.
Collapse
|
138
|
McBrien JB, Kumar NA, Silvestri G. Mechanisms of CD8 + T cell-mediated suppression of HIV/SIV replication. Eur J Immunol 2018; 48:898-914. [PMID: 29427516 DOI: 10.1002/eji.201747172] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
In this article, we summarize the role of CD8+ T cells during natural and antiretroviral therapy (ART)-treated HIV and SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the rationale for CD8+ T cell-based HIV cure strategies. Evidence suggests that CD8+ T cells are involved in the control of virus replication during HIV and SIV infections. During early HIV infection, the cytolytic activity of CD8+ T cells is responsible for control of viremia. However, it has been proposed that CD8+ T cells also use non-cytolytic mechanisms to control SIV infection. More recently, CD8+ T cells were shown to be required to fully suppress virus production in ART-treated SIV-infected macaques, suggesting that CD8+ T cells are involved in the control of virus transcription in latently infected cells that persist under ART. A better understanding of the complex antiviral activities of CD8+ T cells during HIV/SIV infection will pave the way for immune interventions aimed at harnessing these functions to target the HIV reservoir.
Collapse
Affiliation(s)
- Julia Bergild McBrien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Nitasha A Kumar
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
139
|
Chikata T, Tran GV, Murakoshi H, Akahoshi T, Qi Y, Naranbhai V, Kuse N, Tamura Y, Koyanagi M, Sakai S, Nguyen DH, Nguyen DT, Nguyen HT, Nguyen TV, Oka S, Martin MP, Carrington M, Sakai K, Nguyen KV, Takiguchi M. HLA Class I-Mediated HIV-1 Control in Vietnamese Infected with HIV-1 Subtype A/E. J Virol 2018; 92:e01749-17. [PMID: 29237835 PMCID: PMC5809730 DOI: 10.1128/jvi.01749-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
HIV-1-specific cytotoxic T cells (CTLs) play an important role in the control of HIV-1 subtype B or C infection. However, the role of CTLs in HIV-1 subtype A/E infection still remains unclear. Here we investigated the association of HLA class I alleles with clinical outcomes in treatment-naive Vietnamese infected with subtype A/E virus. We found that HLA-C*12:02 was significantly associated with lower plasma viral loads (pVL) and higher CD4 counts and that the HLA-A*29:01-B*07:05-C*15:05 haplotype was significantly associated with higher pVL and lower CD4 counts than those for individuals without these respective genotypes. Nine Pol and three Nef mutations were associated with at least one HLA allele in the HLA-A*29:01-B*07:05-C*15:05 haplotype, with a strong negative correlation between the number of HLA-associated Pol mutations and CD4 count as well as a positive correlation with pVL for individuals with these HLA alleles. The results suggest that the accumulation of mutations selected by CTLs restricted by these HLA alleles affects HIV control.IMPORTANCE Most previous studies on HLA association with disease progression after HIV-1 infection have been performed on cohorts infected with HIV-1 subtypes B and C, whereas few such population-based studies have been reported for cohorts infected with the Asian subtype A/E virus. In this study, we analyzed the association of HLA class I alleles with clinical outcomes for 536 HIV-1 subtype A/E-infected Vietnamese individuals. We found that HLA-C*12:02 is protective, while the HLA haplotype HLA-A*29:01-B*07:05-C*15:05 is deleterious. The individuals with HIV-1 mutations associated with at least one of the HLA alleles in the deleterious HLA haplotype had higher plasma viral loads and lower CD4 counts than those of individuals without the mutations, suggesting that viral adaptation and escape from HLA-mediated immune control occurred. The present study identifies a protective allele and a deleterious haplotype for HIV-1 subtype A/E infection which are different from those identified for cohorts infected with HIV-1 subtypes B and C.
Collapse
Affiliation(s)
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | | | | | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Yoshiko Tamura
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Sachiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Dung Hoai Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Dung Thi Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Ha Thu Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Keiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kinh Van Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | | |
Collapse
|
140
|
Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, Greenbaum B, Carroll J, Garon E, Hyman DM, Zehir A, Solit D, Berger M, Zhou R, Rizvi NA, Chan TA. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018; 359:582-587. [PMID: 29217585 PMCID: PMC6057471 DOI: 10.1126/science.aao4572] [Citation(s) in RCA: 802] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
CD8+ T cell-dependent killing of cancer cells requires efficient presentation of tumor antigens by human leukocyte antigen class I (HLA-I) molecules. However, the extent to which patient-specific HLA-I genotype influences response to anti-programmed cell death protein 1 or anti-cytotoxic T lymphocyte-associated protein 4 is currently unknown. We determined the HLA-I genotype of 1535 advanced cancer patients treated with immune checkpoint blockade (ICB). Maximal heterozygosity at HLA-I loci ("A," "B," and "C") improved overall survival after ICB compared with patients who were homozygous for at least one HLA locus. In two independent melanoma cohorts, patients with the HLA-B44 supertype had extended survival, whereas the HLA-B62 supertype (including HLA-B*15:01) or somatic loss of heterozygosity at HLA-I was associated with poor outcome. Molecular dynamics simulations of HLA-B*15:01 revealed different elements that may impair CD8+ T cell recognition of neoantigens. Our results have important implications for predicting response to ICB and for the design of neoantigen-based therapeutic vaccines.
Collapse
Affiliation(s)
- Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luc G T Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claud M Grigg
- NewYork-Presbyterian/Columbia University Medical Center, 177 Fort Washington Avenue, New York, NY 10032, USA
| | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Robert M Samstein
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sviatoslav M Kendall
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Carroll
- David Geffen School of Medicine, University of California, Los Angeles, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA
| | - Edward Garon
- David Geffen School of Medicine, University of California, Los Angeles, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell School of Medicine, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Naiyer A Rizvi
- NewYork-Presbyterian/Columbia University Medical Center, 177 Fort Washington Avenue, New York, NY 10032, USA.
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell School of Medicine, New York, NY 10065, USA
| |
Collapse
|
141
|
Killian MS, Teque F, Sudhagoni R. Analysis of the CD8 + T cell anti-HIV activity in heterologous cell co-cultures reveals the benefit of multiple HLA class I matches. Immunogenetics 2018; 70:99-113. [PMID: 28735348 DOI: 10.1007/s00251-017-1021-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Abstract
CD8+ T lymphocytes can reduce the production of human immunodeficiency virus 1 (HIV-1) by CD4+ T cells by cytotoxic and non-cytotoxic mechanisms. To investigate the involvement of human leukocyte antigen (HLA) class I compatibility in anti-HIV responses, we co-cultured primary CD8+ T cells, isolated from the peripheral blood of HIV-1-infected individuals, with panels of autologous and heterologous acutely HIV-1-infected primary CD4+ T cells. Altogether, CD8+ T cell anti-HIV activity was evaluated in more than 200 co-cultures. Marked heterogeneity in HIV-1 replication levels was observed among the co-cultures sharing a common CD8+ T cell source. The co-cultures that exhibited greater than 50% reduction in HIV production were found to have significantly increased numbers of matching HLA class I alleles (Yates chi-square = 54.21; p < 0.001). With CD8+ T cells from HIV controllers and asymptomatic viremic individuals, matching HLA-B and/or HLA-C alleles were more predictive of strong anti-HIV activity than matching HLA-A alleles. Overall, HLA class I genotype matches were more closely associated with CD8+ T cell anti-HIV activity than supertype pairings. Antibodies against HLA class I and CD3 reduced the CD8+ T cell anti-HIV activity. Stimulated CD8+ T cells exhibited increased anti-HIV activity and reduced dependency on HLA compatibility. These findings provide evidence that the maximal suppression of HIV replication by CD8+ T cells requires the recognition of multiple epitopes. These studies provide insight for HIV vaccine development, and the analytic approach can be useful for the functional characterization of HLA class I alleles and tentative HLA class I supertypes.
Collapse
Affiliation(s)
- M Scott Killian
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St, Vermillion, SD, 57069, USA.
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD, 57069, USA.
| | - Fernando Teque
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramu Sudhagoni
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD, 57069, USA
| |
Collapse
|
142
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 491] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
143
|
What Is the most Important for Elite Control: Genetic Background of Patient, Genetic Background of Partner, both or neither? Description of Complete Natural History within a Couple of MSM. EBioMedicine 2017; 27:51-60. [PMID: 29273355 PMCID: PMC5828297 DOI: 10.1016/j.ebiom.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022] Open
Abstract
Background We describe a homosexual man who strongly controlled HIV-1 for ten years despite lack of protective genetic background. Methods HIV-1 DNA was measured in blood and other tissues. Cell susceptibility was evaluated with various strains. HIV-1-specific (CD4 and CD8 activation markers and immune check points) and NK cells responses were assessed; KIRs haplotypes and HLA alleles were determined. Findings Two HIV-1 RNA copies/mL of plasma were detected in 2009, using an ultra-sensitive assay. HIV-DNA was detected at 1.1 and 2 copies/106 PBMCs in 2009 and 2015 respectively, at 1.2 copies/106 cells in rectal cells in 2011. WBs showed weak reactivity with antibodies to gp160, p55 and p25 from 2007 to 2014, remaining incomplete in 2017. CD4 T cells were susceptible to various strains including HIVKON, a primary isolate of his own CRF02_AG variant. CD8 T cells showed a strong poly-functional response against HIV-Gag, producing mainly IFN-γ; a robust capacity of antibody-dependant cell cytotoxicity (ADCC) was observed in NK cells. Case patient was group B KIR haplotype. Neutralizing antibodies were not detected. CD4 and CD8 blood T cells showed normal proportions without increased activation markers. Phylogenetic analyses identified the same CRF02_AG variant in his partner. The patient and his partner were heterozygous for the CCR5ΔD32 deletion and shared HLA-B*07, C*07 non-protective alleles. Interpretation This thorough description of the natural history of an individual controlling HIV-1 in various compartments for ten years despite lack of protective alleles, and of his partner, may have implications for strategies to cure HIV-1 infection. We described a MSM, elite controller despite pejorative genetic background. The patient had two HLA pejoratives alleles and no protective alleles. The partner was infected by the same strain. The genetic backgrounds of the patient and partner, and the virus could interact with each other to lead to elite control.
We considered all the evidence about elite control, HLA, ADCC and NK, using Medline/PubMed. We described a MSM, elite controller despite non-protective genetic background, explored extensively the patient: sequential WBs, RNA in plasma (ultrasensitive assay), DNA in PBMC/GALT, cell susceptibility, HIV-1 responses in PBMC/LNMC, neutralizing antibodies, CD3-CD56 + NK, ADCC, KIRs. He had one HLA pejorative and no protective alleles. The partner was infected by the same strain, his genetic background was studied. The genetic background of the exposed person, of the source, and the viral strain could interact with each other to lead to elite control.
Collapse
|
144
|
Seki S, Nomura T, Nishizawa M, Yamamoto H, Ishii H, Matsuoka S, Shiino T, Sato H, Mizuta K, Sakawaki H, Miura T, Naruse TK, Kimura A, Matano T. In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts. PLoS Pathog 2017; 13:e1006638. [PMID: 28931083 PMCID: PMC5624644 DOI: 10.1371/journal.ppat.1006638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/02/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023] Open
Abstract
CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced. CD8+ T-cell responses exert considerable control over replication of HIV and select for viral escape mutations. Recent studies have suggested that these major histocompatibility complex class I (MHC-I)-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Other studies have shown that some of these escape mutations can revert after passage to MHC-I-disparate hosts. In an attempt to reconcile these apparently conflicting results, we serially passaged a virus isolate through MHC-I-mismatched hosts in the macaque AIDS model of simian immunodeficiency virus (SIV) infection. Here we show an increase in the in vivo virulence of an MHC-I-adapted virus despite a reduction in in vitro viral replication capacity. Only a few of the selected escape mutations reverted after transmission to MHC-I-disparate recipients. Results clearly showed that MHC-I-adapted SIVs that have been serially-transmitted through MHC-I-mismatched hosts can have higher in vivo virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that HIVs may become less sensitive to CD8+ T cell responses and could have increased in vivo virulence by adaptation to MHC-I in human populations.
Collapse
Affiliation(s)
- Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuta Mizuta
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taeko K. Naruse
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
145
|
Sundaramurthi JC, Ashokkumar M, Swaminathan S, Hanna LE. HLA based selection of epitopes offers a potential window of opportunity for vaccine design against HIV. Vaccine 2017; 35:5568-5575. [PMID: 28888341 DOI: 10.1016/j.vaccine.2017.08.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
The pace of progression to AIDS after HIV infection varies from individual to individual. While some individuals develop AIDS quickly, others are protected from the onset of disease for more than a decade (elite controllers and long term non-progressors). The mechanisms of protection are not yet clearly understood, though various factors including host genetics, immune components and virus attenuation have been elucidated partly. The influence of HLA alleles on HIV-1 infection and disease outcome has been studied extensively. Several HLA alleles are known to be associated with resistance to infection or delayed progression to AIDS after infection. Similarly, certain HLA alleles are reported to be associated with rapid progression to disease. Since HLA alleles influence the outcome of HIV infection differentially, selection of epitopes specifically recognized by protective alleles could serve asa rational means for HIV vaccine design. In this review article, we discuss existing knowledge on HLA alleles and their association with resistance/susceptibility to HIV and its relevance to vaccine design.
Collapse
Affiliation(s)
- Jagadish Chandrabose Sundaramurthi
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Manickam Ashokkumar
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Soumya Swaminathan
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India.
| |
Collapse
|
146
|
Kenney AD, Dowdle JA, Bozzacco L, McMichael TM, St Gelais C, Panfil AR, Sun Y, Schlesinger LS, Anderson MZ, Green PL, López CB, Rosenberg BR, Wu L, Yount JS. Human Genetic Determinants of Viral Diseases. Annu Rev Genet 2017; 51:241-263. [PMID: 28853921 DOI: 10.1146/annurev-genet-120116-023425] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - James A Dowdle
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.,Current affiliation: Target Information Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA;
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Corine St Gelais
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Amanda R Panfil
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , , .,Texas Biomedical Research Institute, San Antonio, Texas 78227, USA;
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Patrick L Green
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Brad R Rosenberg
- Program in Immunogenomics, John C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065, USA.,Current affiliation: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Li Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , , .,Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| |
Collapse
|
147
|
Gorin AM, Du Y, Liu FY, Zhang TH, Ng HL, Hofmann C, Cumberland WG, Sun R, Yang OO. HIV-1 epitopes presented by MHC class I types associated with superior immune containment of viremia have highly constrained fitness landscapes. PLoS Pathog 2017; 13:e1006541. [PMID: 28787455 PMCID: PMC5560751 DOI: 10.1371/journal.ppat.1006541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/17/2017] [Accepted: 07/19/2017] [Indexed: 01/11/2023] Open
Abstract
Certain Major Histocompatibility-I (MHC-I) types are associated with superior immune containment of HIV-1 infection by CD8+ cytotoxic T lymphocytes (CTLs), but the mechanisms mediating this containment are difficult to elucidate in vivo. Here we provide controlled assessments of fitness landscapes and CTL-imposed constraints for immunodominant epitopes presented by two protective (B*57 and B*27) and one non-protective (A*02) MHC-I types. Libraries of HIV-1 with saturation mutagenesis of CTL epitopes are propagated with and without CTL selective pressure to define the fitness landscapes for epitope mutation and escape from CTLs via deep sequencing. Immunodominant B*57- and B*27- present epitopes are highly limited in options for fit mutations, with most viable variants recognizable by CTLs, whereas an immunodominant A*02 epitope-presented is highly permissive for mutation, with many options for CTL evasion without loss of viability. Generally, options for evasion overlap considerably between CTL clones despite highly distinct T cell receptors. Finally, patterns of variant recognition suggest population-wide CTL selection for the A*02-presented epitope. Overall, these findings indicate that these protective MHC-I types yield CTL targeting of highly constrained epitopes, and underscore the importance of blocking public escape pathways for CTL-based interventions against HIV-1. Certain MHC class I types are associated with superior immune containment of HIV-1, underscoring the importance of CD8+ cytotoxic T lymphocytes (CTLs). Epitope escape mutations for these types is limited, indicating reduced immune evasion. Two proposed mechanisms are: 1) CTL targeting of highly sequence-constrained epitopes, or 2) more promiscuous CTLs for epitope variation. However, the in vivo complexity of undefined starting virus, multiple targeted epitopes, polyclonal CTL responses against each epitope, and post-hoc evaluation of the interaction renders examination of mechanisms difficult. Here we approach this question with controlled prospective in vitro experiments using saturation mutagenesis of epitopes in clonal HIV-1, propagated in the absence or presence of CTL clones to define the options for epitope mutation and immune evasion by deep sequencing. We find that two immunodominant epitopes presented by protective MHC types are highly mutation-constrained compared to one presented by a non-protective MHC type, whereas CTL promiscuity for epitope variation is not appreciably different. These results suggest that these protective MHC types are associated with limited HIV-1 escape predominately due to intrinsic constraints on epitope mutation, and underscore the importance of focusing the CTL response on highly conserved epitopes for immunotherapies and vaccines.
Collapse
Affiliation(s)
- Aleksandr M. Gorin
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Franklin Y. Liu
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hwee L. Ng
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christian Hofmann
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William G. Cumberland
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Otto O. Yang
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- AIDS Healthcare Foundation, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
148
|
Naranbhai V, Carrington M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 2017; 69:489-498. [PMID: 28695282 PMCID: PMC5537324 DOI: 10.1007/s00251-017-1000-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
Abstract
This review aims to provide a summary of current knowledge of host genetic effects on human immunodeficiency virus (HIV) disease. Mapping of simple single nucleotide polymorphisms (SNP) has been largely successful in HIV, but more complex genetic associations involving haplotypic or epigenetic variation, for example, remain elusive. Mechanistic insights explaining SNP associations are incomplete, but continue to be forthcoming. The number of robust immunogenetic correlates of HIV is modest and their discovery mostly predates the genome-wide era. Nevertheless, genome-wide evaluations have nicely validated the impact of HLA and CCR5 variants on HIV disease, and importantly, made clear the many false positive associations that were previously suggested by studies using the candidate gene approach. We describe how multiple HIV outcome measures such as acquisition, viral control, and immune decline have been studied in adults and in children, but that collectively these identify only the two replicable loci responsible for modifying HIV disease, CCR5, and HLA. Recent heritability estimates in this disease corroborate the modest impact of genetic determinants and their oligogenic nature. While the mechanism of protection afforded by genetic variants that diminish CCR5 expression is clear, new aspects of HLA class I-mediated protection continue to be uncovered. We describe how these genetic findings have enhanced insights into immunobiology, been clinically translated into CCR5 antagonists, allowed prioritization of antigens for vaccination efforts, and identified targets for genome-editing interventions. Finally, we describe how studies of genetically complex parts of the genome using new tools may begin revealing additional correlates.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
149
|
Seshasubramanian V, Soundararajan G, Ramasamy P. Human leukocyte antigen A, B and Hepatitis B infection outcome: A meta-analysis. INFECTION GENETICS AND EVOLUTION 2017; 66:392-398. [PMID: 28757339 DOI: 10.1016/j.meegid.2017.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022]
Abstract
AIM To evaluate the association between HLA A, B with chronic Hepatitis B by comprehensive meta-analysis. METHODS We searched PubMed and Cochrane databases, identified relevant studies, evaluated these for quality by New Castle Ottawa scale (NOS) and further analyzed the qualified data sets. Heterogeneity analyses were performed by Cochrane's Q test and I2 tests. Pooled Odds ratio (OR) & 95% Confidence Interval (CI) were obtained by fixed effects, using Mantel-Haenszel's method for homogenous studies, and by using DerSimonian and Laird's method for heterogenous studies. Publication bias was determined by the Beggs test and Eggers test and all tests were two tailed to evaluate their significance. RESULTS The meta-analyses on 1652 healthy controls and 659 Chronic Hepatitis B (CHB) patients from 8 studies from various continents revealed a HLA B*07 (p value of Odds ratio (pOR)=0.004; OR Fixed effects=0.480 with 95%CI 0.290-0.794) and B*58 (pOR=0.029; OR Fixed Effects=0.020 with 95%CI 0.381-0.949) associated protection for CHB. The identified HLA B*35 associated risk (pOR 0.009; OR Fixed effect 1.445; 95% confidence interval 1.094-1.907) however did not stand the test of random effect model. CONCLUSION While HLA B*07 and B*58 are protective against CHB. The HLA B*35 associated marginal risk need to be further validated in well-designed global study on larger cohorts, considering the population, ethnic, epidemiological and HLA diversity at the sequence level: these may throw further light to utilize these markers in predictive medicine.
Collapse
Affiliation(s)
- Vani Seshasubramanian
- Department of Genomics, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam (Chennai) 603103, India
| | - Govindaraju Soundararajan
- Department of Genomics, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam (Chennai) 603103, India
| | | |
Collapse
|
150
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B. Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|