101
|
Blundell TL, Sibanda BL, Montalvão RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci 2006; 361:413-23. [PMID: 16524830 PMCID: PMC1609333 DOI: 10.1098/rstb.2005.1800] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Grande T, Bueren JA. The mobilization of hematopoietic progenitors to peripheral blood is predictive of the hematopoietic syndrome after total or partial body irradiation of mice. Int J Radiat Oncol Biol Phys 2006; 64:612-8. [PMID: 16414374 DOI: 10.1016/j.ijrobp.2005.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE In previous studies we showed that administration of mobilizing growth factors (MGFs) to mice previously exposed to total body irradiation mobilizes to peripheral blood (PB) a number of progenitors that correlates with the total reserve of progenitors surviving the exposure. Now we have tested whether this finding is independent of the radiosensitivity of the mice and of the homogeneity of the radiation exposure. Also we have investigated whether numbers of mobilized progenitors predict the hematopoietic syndrome after irradiation. METHODS AND MATERIALS Mice were subjected to partial or total body irradiation and treated with MGFs. Thereafter, the number of colony-forming units granulocyte-macrophage progenitors in PB was correlated with the total reserve of surviving progenitors and with the nadir of leukocytes after the irradiation. RESULTS The number of progenitors mobilized to PB after irradiation of normal and radiosensitive mice showed the same correlation with respect to the reserve of bone marrow progenitors surviving the exposure. Additionally, the number of mobilized progenitors correlated with the leukocytes' nadir after the irradiation, regardless of homogeneous or inhomogeneous exposures. CONCLUSIONS In a mouse experimental model, the number of hematopoietic progenitors mobilized to PB by MGFs is a good predictor of the hematopoietic syndrome occurring after total or partial body irradiation.
Collapse
Affiliation(s)
- Teresa Grande
- Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | | |
Collapse
|
103
|
Abstract
The genes that encode immunoglobulin and T cell receptor proteins are assembled from component gene segments in a reaction known as V(D)J recombination. The reaction, and its crucial mediators RAG1 and RAG2, are essential for lymphocyte development and hence for adaptive immunity. Here we consider the biochemistry of this reaction, focusing on the DNA transactions and the proteins involved. We discuss how the RAG proteins interact with DNA and how coordinate cleavage of the DNA at two sites might be achieved. Finally, we consider the RAG proteins and V(D)J recombination from an evolutionary point of view.
Collapse
Affiliation(s)
- D G Schatz
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011, USA.
| | | |
Collapse
|
104
|
Legrand N, Weijer K, Spits H. Experimental Models to Study Development and Function of the Human Immune System In Vivo. THE JOURNAL OF IMMUNOLOGY 2006; 176:2053-8. [PMID: 16455958 DOI: 10.4049/jimmunol.176.4.2053] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The study of development and function of the immune system in vivo has made intensive use of animal models, but performing such work in humans is difficult for experimental, practical, and ethical reasons. Confronted with this scientific challenge, several pioneering groups have developed in the late 1980s mouse models of human immune system development. Although these experimental approaches were proven successful and useful, they were suffering from limitations due to xenograft transplantation barriers. By reviewing the characteristics of the successive models over the last 20 years, it becomes apparent that screening of potentially interesting mouse strains and usage of combinations of genetic deficiencies has led to major advances. This is particularly true for human T cell development in the murine thymus. This review will focus on these advances and the potential future improvements that remain to be accomplished.
Collapse
Affiliation(s)
- Nicolas Legrand
- Department of Cell Biology and Histology, Academic Medical Center of the University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
105
|
Mitra AK, Bhat N, Sarma A, Krishna M. Alteration in the expression of signaling parameters following carbon ion irradiation. Mol Cell Biochem 2006; 276:169-73. [PMID: 16132698 DOI: 10.1007/s11010-005-3903-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/16/2005] [Indexed: 11/28/2022]
Abstract
Ionizing radiation induces DNA damage, which generates a complex array of genotoxic responses. These responses depend on the type of DNA damage, which in turn can lead to unique cellular responses. High LET radiation results in clustered damages. This evokes specific signaling responses, which can be cytotoxic or cytoprotective in nature. In the present study the effect of carbon ion irradiation on p 44/42 MAPK and NF-kappaB, which are essentially survival factors, have been studied. Moreover, the effect of inhibition of DNA-PK, which is an important component of DNA repair mechanism, with wortmanin on these signaling factors has been studied. The expression of p 44/42 MAPK was different at 0.1 Gy and 1 Gy and wortmanin was found to inhibit its expression. NF-kappaB expression was higher at 1 Gy than at 0.1 Gy and its expression is unaffected by inhibition of DNA-PK. The notable findings of this study are that the responses to high and low dose of high LET radiation are essentially different and the 6 h time point post irradiation is crucial in deciding the response and needs further investigation.
Collapse
Affiliation(s)
- Anirban Kumar Mitra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | |
Collapse
|
106
|
Dip R, Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. FASEB J 2005; 19:704-15. [PMID: 15857885 DOI: 10.1096/fj.04-3041rev] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a trimeric factor originally identified as an enzyme that becomes activated upon incubation with DNA. Genetic defects in either the catalytic subunit (DNA-PK(CS)) or the two Ku components of DNA-PK result in immunodeficiency, radiosensitivity, and premature aging. This combined phenotype is generally attributed to the requirement for DNA-PK in the repair of DNA double strand breaks during various biological processes. However, recent studies revealed that DNA-PK(CS), a member of the growing family of phosphatidylinositol 3-kinases, participates in signal transduction cascades related to apoptotic cell death, telomere maintenance and other pathways of genome surveillance. These manifold functions of DNA-PK(CS) have been associated with an increasing number of protein interaction partners and phosphorylation targets. Here we review the DNA binding properties of DNA-PK(CS) and highlight its ability to interact with an astounding diversity of nucleic acid substrates. This survey indicates that the large catalytic subunit of DNA-PK functions as a sensor of not only broken DNA molecules, but of a wider spectrum of aberrant, unusual, or specialized structures that interrupt the standard double helical conformation of DNA.
Collapse
Affiliation(s)
- Ramiro Dip
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
107
|
Sprung CN, Chao M, Leong T, McKay MJ. Chromosomal radiosensitivity in two cell lineages derived from clinically radiosensitive cancer patients. Clin Cancer Res 2005; 11:6352-8. [PMID: 16144940 DOI: 10.1158/1078-0432.ccr-04-1931] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite its prominent contribution to cancer cure and palliation, around 1% to 5% of cancer patients suffer serious side effects from radiotherapy. A cardinal goal in the fields of radiobiology and oncology is to predict normal tissue radiosensitivity of a cancer patient before radiotherapy. Higher tumor control rates are likely if radiotherapy individualization could be achieved by applying predictive approaches. EXPERIMENTAL DESIGN Here, we make use of the cytokinesis block micronucleus assay to assess radiosensitivity in cell lines derived from two different cell lineages obtained from clinically radiosensitive patients. We determined the micronucleus frequency after graded doses of ionizing radiation to primary fibroblasts and lymphoblast cell lines derived from 36 highly radiosensitive cancer patients. RESULTS Many cell lines, following exposure to ionizing radiation, from patients with severe clinical reactions to radiotherapy showed statistically significantly higher frequencies of micronuclei than those from patients who had normal reactions to radiotherapy. One individual revealed significantly higher micronucleus frequencies in both cell lineages. Interestingly, lymphoblast cell lines from one patient showed micronucleus frequencies similar to ataxia telangiectasia mutated-deficient cells. CONCLUSIONS These results indicate that the micronucleus assay may have use for identifying predisposition to clinical radiosensitivity, at least in a subset of patients as a component of a pretreatment radiosensitivity assay for use in the clinic.
Collapse
Affiliation(s)
- Carl N Sprung
- Division of Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
108
|
Chang IY, Youn CK, Kim HB, Kim MH, Cho HJ, Yoon Y, Lee YS, Chung MH, You HJ. Oncogenic H-Ras up-regulates expression of Ku80 to protect cells from gamma-ray irradiation in NIH3T3 cells. Cancer Res 2005; 65:6811-9. [PMID: 16061663 DOI: 10.1158/0008-5472.can-04-4065] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ras activation contributes to radioresistance, but the mechanism is unclear. This article shows that the expression of the dominant-positive H-Ras increased the Ku80 level, which is one of the key enzymes involved in repairing dsDNA breaks (DSB). After exposing the cells to ionizing radiation and analyzing them using an electrophoretic mobility shift assay and pulsed-field gel electrophoresis, it was found that activated H-Ras expression in NIH3T3 cells increases the DNA-binding activity of Ku80 and increases the DSB repair activity. Ku80 small interfering RNA expression was shown to reduce the oncogenic H-Ras-mediated increase in the DSBs and suppress the oncogenic H-Ras-mediated resistance of the cells to gamma-ray irradiation, whereas Ku80 overexpression in the NIH3T3 cells significantly increased the radioresistance. These results suggest that the Ku80 expression induced by oncogenic H-Ras seems to play an important role in protecting cells against gamma-ray irradiation.
Collapse
Affiliation(s)
- In-Youb Chang
- Research Center for Proteineous Materials and Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Niimi N, Sugo N, Aratani Y, Koyama H. Genetic interaction between DNA polymerase beta and DNA-PKcs in embryogenesis and neurogenesis. Cell Death Differ 2005; 12:184-91. [PMID: 15647757 DOI: 10.1038/sj.cdd.4401543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase beta (Polbeta) has been implicated in base excision repair. Polbeta knockout mice exhibit apoptosis in postmitotic neuronal cells and die at birth. Also, mice deficient in nonhomologous end-joining (NHEJ), a major pathway for DNA double-strand break repair, cause massive neuronal apoptosis. Severe combined immunodeficiency (SCID) mice have a mutation in the gene encoding DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the component of NHEJ, and exhibit defective lymphogenesis. To study the interaction between Polbeta and DNA-PKcs, we generated mice doubly deficient in Polbeta and DNA-PKcs. Polbeta(-/-)DNA-PKcs(scid/scid) embryos displayed greater developmental delay, more extensive neuronal apoptosis, and earlier lethality than Polbeta(-/-) and DNA-PKcs(scid/scid) embryos. Furthermore, to study the involvement of p53 in the phenotype, we generated Polbeta(-/-)DNA-PKcs(scid/scid)p53(-/-) triple-mutant mice. The mutants did not exhibit apoptosis but were lethal with defective neurulation at midgestation. These results suggest a genetic interaction between Polbeta and DNA-PKcs in embryogenesis and neurogenesis.
Collapse
Affiliation(s)
- N Niimi
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | |
Collapse
|
110
|
Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E, Halbrook J, Kesicki EA, Kashishian A, Hallahan DE. DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 2005; 65:4987-92. [PMID: 15958537 DOI: 10.1158/0008-5472.can-04-4250] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA-dependent protein kinase (DNA-PK)-defective severe combined immunodeficient (SCID) mice have a greater sensitivity to ionizing radiation compared with wild-type mice due to deficient repair of DNA double-strand break. SCID cells were therefore studied to determine whether radiosensitization by the specific inhibitor of DNA-PK, IC87361, is eliminated in the absence of functional DNA-PK. IC87361 enhanced radiation sensitivity in wild-type C57BL6 endothelial cells but not in SCID cells. The tumor vascular window model was used to assess IC87361-induced radiosensitization of SCID and wild-type tumor microvasculature. Vascular density was 5% in irradiated SCID host compared with 50% in C57BL6 mice (P < 0.05). IC87361 induced radiosensitization of tumor microvasculature in wild-type mice that resembled the radiosensitive phenotype of tumor vessels in SCID mice. Radiosensitization by IC87361 was eliminated in SCID tumor vasculature, which lack functional DNA-PK. Irradiated LLC and B16F0 tumors implanted into SCID mice showed greater tumor growth delay compared with tumors implanted into either wild-type C57BL6 or nude mice. Furthermore, LLC tumors treated with radiation and IC87361 showed tumor growth delay that was significantly greater than tumors treated with radiation alone (P < 0.01 for 3 Gy alone versus 3 Gy + IC87361). DNA-PK inhibitors induced no cytotoxicity and no toxicity in mouse normal tissues. Mouse models deficient in enzyme activity are useful to assess the specificity of novel kinase inhibitors. DNA-PK is an important target for the development of novel radiation-sensitizing drugs that have little intrinsic cytotoxicity.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/radiotherapy
- Cell Growth Processes/drug effects
- Cell Growth Processes/radiation effects
- Cell Line, Tumor
- Combined Modality Therapy
- DNA-Activated Protein Kinase
- DNA-Binding Proteins/antagonists & inhibitors
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/radiation effects
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/radiotherapy
- Mice
- Mice, Nude
- Mice, SCID
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/radiotherapy
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Radiation-Sensitizing Agents/pharmacology
Collapse
Affiliation(s)
- Eric T Shinohara
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5671, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Datta K, Neumann RD, Winters TA. Characterization of complex apurinic/apyrimidinic-site clustering associated with an authentic site-specific radiation-induced DNA double-strand break. Proc Natl Acad Sci U S A 2005; 102:10569-74. [PMID: 16024726 PMCID: PMC1180784 DOI: 10.1073/pnas.0503975102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022] Open
Abstract
Radiation lethality is largely attributed to radiation-induced DNA double-strand breaks (DSBs). A range of structural complexity is predicted for radiation-induced DSBs. However, this lesion has never been analyzed in isolation at the molecular level. To address this problem, we have created authentic site-specific radiation-induced DSBs in plasmid DNA by triplex-forming oligonucleotide-targeted 125I decay. No significant difference in DSB yield was observed after irradiation in the presence or absence of the radical scavenger DMSO, suggesting that DSB formation is a result of the direct effect of the radiation. A restriction fragment terminated by the DSB was isolated and probed with the Escherichia coli DNA repair enzyme endonuclease IV (endo IV), which recognizes apurinic/apyrimidinic (AP) sites. Enzymatic probing demonstrated clustering of AP sites within 10 bases of the 125I-targeted base in the DNA duplex. Our results suggest scavengeable radicals may not play a large role in the generation of AP sites associated with DSB formation, because at least 30% of all fragments have endo IV-sensitive sites, regardless of irradiation conditions. An internal control fragment recovered from the 125I linearized plasmid did not exhibit endo IV sensitivity in excess of that observed for a similar fragment recovered from an undamaged plasmid. Thus, AP site clustering proximal to the DSB resulted from the 125I decays responsible for DSB formation and was not due to untargeted background irradiation.
Collapse
Affiliation(s)
- Kamal Datta
- Nuclear Medicine Department, The Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
112
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
113
|
Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS. Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res 2005; 65:1670-7. [PMID: 15753361 DOI: 10.1158/0008-5472.can-04-3451] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports have suggested a connection between reduced levels of the catalytic subunit of DNA-dependent protein kinases (DNA-PKcs), a component of the nonhomologous DNA double-strand breaks end-joining system, and a reduction in ATM. We studied this possible connection in other DNA-PKcs-deficient cell types, and following knockdown of DNA-PKcs with small interfering RNA, Chinese hamster ovary V3 cells, lacking DNA-PKcs, had reduced levels of ATM and hSMG-1, but both were restored after transfection with PRKDC. Atm levels were also reduced in murine scid cells. Reduction of ATM in a human glioma cell line lacking DNA-PKcs was accompanied by defective signaling through downstream substrates, post-irradiation. A large reduction of DNA-PKcs was achieved in normal human fibroblasts after transfection with two DNA-PKcs small interfering RNA sequences. This was accompanied by a reduction in ATM. These data were confirmed using immunocytochemical detection of the proteins. Within hours after transfection, a decline in PRKDC mRNA was seen, followed by a more gradual decline in DNA-PKcs protein beginning 1 day after transfection. No change in ATM mRNA was observed for 2 days post-transfection. Only after the DNA-PKcs reduction occurred was a reduction in ATM mRNA observed, beginning 2 days post-transfection. The amount of ATM began to decline, starting about 3 days post-treatment, then it declined to levels comparable to DNA-PKcs. Both proteins returned to normal levels at later times. These data illustrate a potentially important cross-regulation between the nonhomologous end-joining system for rejoining of DNA double-strand breaks and the ATM-dependent damage response network of pathways, both of which operate to maintain the integrity of the genome.
Collapse
Affiliation(s)
- Yuanlin Peng
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Rajan TV, Moore JM, Shultz LD. Immunodeficient mice as hosts for hemoparasitic infections. ACTA ACUST UNITED AC 2005; 12:479-85. [PMID: 15275267 DOI: 10.1016/s0169-4758(96)10066-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thiruchandurai Rajan, Julie Moore and Leonard Shultz here review the evolution of technology in murine xeno-lymphohemopoietic chimeras, produced by engraftment with xenogeneic (fetal or adult) progenitor cells or mature lymphohemopoietic tissues into immunodeficient mice, and their use as hosts for hemoprotozoan parasites. Particular attention is paid to the development of chimeras that house xenogeneic peripheral red blood cells (xeno-RBC). These chimeras are potentially invaluable models for hemoprotozoan parasites, such as Babesia and Plasmodium. There are, however, daunting limitations that have to be overcome before these models can become universally acceptable systems for the study of these parasitic agents.
Collapse
Affiliation(s)
- T V Rajan
- Department of Pathology, University of Connecticut Health Center, Farmington, CT 06030-3105, USA.
| | | | | |
Collapse
|
115
|
Yamaguchi S, Hasegawa M, Aizawa S, Tanaka K, Yoshida K, Noda Y, Tatsumi K, Hirokawa K, Kitagawa M. DNA-dependent protein kinase enhances DNA damage-induced apoptosis in association with Friend gp70. Leuk Res 2005; 29:307-16. [PMID: 15661267 DOI: 10.1016/j.leukres.2004.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 07/24/2004] [Indexed: 01/01/2023]
Abstract
Friend leukemia virus (FLV) infection strongly enhances gamma-irradiation-induced apoptosis of hematopoietic cells of C3H hosts leading to a lethal anemia. Experiments using p53 knockout mice with the C3H background have clarified that the apoptosis is p53-dependent and would not be associated with changes of cell populations caused by the infection with FLV. In bone marrow cells of FLV + total body irradiation (TBI)-treated C3H mice, the p53 protein was prominently activated to overexpress p21 and bax suggesting that apoptosis-enhancing mechanisms lay upstream of p53 protein in the signaling pathway. Neither of DNA-dependent protein kinase (DNA-PK)-deficient SCID mice nor ataxia telangiectasia mutated (ATM) gene knockout mice with the C3H background exhibited a remarkable enhancement of apoptosis or p53 activation on FLV + TBI-treatment indicating that DNA-PK and ATM were both essential. ATM appeared necessary for introducing DNA damage-induced apoptosis, while DNA-PK enhanced p53-dependent apoptosis under FLV-infection. Surprisingly, viral envelope protein, gp70, was co-precipitated with DNA-PK but not with ATM in FLV + TBI-treated C3H mice. These results indicated that FLV-infection enhances DNA damage-induced apoptosis via p53 activation and that DNA-PK, in association with gp70, might play critical roles in modulating the signaling pathway.
Collapse
Affiliation(s)
- Shuichi Yamaguchi
- Department of Comprehensive Pathology, Aging and Developmental Sciences, Tokyo Medical and Dental University, Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Brzoska T, Luger TA. Murine models of atopic dermatitis. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:133-66. [PMID: 15526940 DOI: 10.1007/3-540-26811-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- T Brzoska
- Department of Dermatology and Allergy, Charité Campus Mitte, Germany.
| | | |
Collapse
|
117
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
118
|
Boxio R, Dournon C, Frippiat JP. Effects of a long-term spaceflight on immunoglobulin heavy chains of the urodele amphibian Pleurodeles waltl. J Appl Physiol (1985) 2004; 98:905-10. [PMID: 15531562 DOI: 10.1152/japplphysiol.00957.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of immune parameters are modified during and after a spaceflight. The effects of spaceflights on cellular immunity are well documented; however, little is known about the effects of these flights on humoral immunity. During the Genesis space experiment, two adult Pleurodeles waltl (urodele amphibian) stayed 5 mo onboard Mir and were subjected to oral immunization. Animals were killed 10 days after their return to earth. IgM and IgY heavy-chain transcripts in their spleens were quantified by Northern blotting. The use of the different VH families (coding for antibody heavy-chain variable domains) in IgM heavy chain transcripts was also analyzed. Results were compared with those obtained with ground control animals and animals reared in classical conditions in our animal facilities. We observed that, 10 days after the return on earth, the level of IgM heavy-chain transcription was normal but the level of IgY heavy-chain transcription was at least three times higher than in control animals. We also observed that the use of the different VH families in IgM heavy-chain transcripts was modified by the flight. These data suggest that the spaceflight affected the antibody response against the antigens contained in the food.
Collapse
Affiliation(s)
- Rachel Boxio
- Laboratoire de Biologie Expérimentale et Immunologie, EA 3442, Université Henri Poincaré-Nancy 1, Boulevard des Aiguillettes, BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | |
Collapse
|
119
|
Abstract
First observed in mouse pre-B-cell lines and then in knock-in mice carrying self-reactive IgH transgenes, VH replacement has now been shown to contribute to the primary B-cell repertoire in humans. Through recombination-activating gene (RAG)-mediated recombination between a cryptic recombination signal sequence (RSS) present in almost all VH genes and the flanking 23 base pair RSS of an upstream VH gene, VH replacement renews the entire VH-coding region, while leaving behind a short stretch of nucleotides as a VH replacement footprint. In addition to extending the CDR3 region, the VH replacement footprints preferentially contribute charged amino acids. VH replacement rearrangement in immature B cells may either eliminate a self-reactive B-cell receptor or contribute to the generation of self-reactive antibodies. VH replacement may also rescue non-productive or dysfunctional VHDJH rearrangement in pro-B and pre-B cells. Conversely, VH replacement of a productive immunoglobulin H gene may generate non-productive VH replacement to disrupt or temporarily reverse the B-cell differentiation process. VH replacement can thus play a complex role in the generation of the primary B-cell repertoire.
Collapse
Affiliation(s)
- Zhixin Zhang
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | | | |
Collapse
|
120
|
Daniel R, Greger JG, Katz RA, Taganov KD, Wu X, Kappes JC, Skalka AM. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 2004; 78:8573-81. [PMID: 15280466 PMCID: PMC479090 DOI: 10.1128/jvi.78.16.8573-8581.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have previously reported several lines of evidence that support a role for cellular DNA repair systems in completion of the retroviral DNA integration process. Failure to repair an intermediate in the process of integrating viral DNA into host DNA appears to trigger growth arrest or death of a large percentage of infected cells. Cellular proteins involved in the nonhomologous end joining (NHEJ) pathway (DNA-PK(CS)) and the damage-signaling kinases (ATM and ATR) have been implicated in this process. However, some studies have suggested that NHEJ proteins may not be required for the completion of lentiviral DNA integration. Here we provide additional evidence that NHEJ proteins are required for stable transduction by human immunodeficiency type 1 (HIV-1)-based vectors. Our analyses with two different reporters show that the number of stably transduced DNA-PK(CS)-deficient scid fibroblasts was reduced by 80 to 90% compared to the number of control cells. Furthermore, transduction efficiency can be restored to wild-type levels in scid cells that are complemented with a functional DNA-PK(CS) gene. The efficiency of stable transduction by an HIV-1-based vector is also reduced upon infection of Xrcc4 and ligase IV-deficient cells, implying a role for these components of the NHEJ repair pathway. Finally, we show that cells deficient in ligase IV are killed by infection with an integrase-competent but not an integrase-deficient HIV-1 vector. Results presented in this study lend further support to a general role for the NHEJ DNA repair pathway in completion of the retroviral DNA integration process.
Collapse
Affiliation(s)
- René Daniel
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Doré AS, Drake ACB, Brewerton SC, Blundell TL. Identification of DNA-PK in the arthropods. Evidence for the ancient ancestry of vertebrate non-homologous end-joining. DNA Repair (Amst) 2004; 3:33-41. [PMID: 14697757 DOI: 10.1016/j.dnarep.2003.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellular life depends upon the preservation and transmission of genetic material. Double stranded DNA breaks (DSBs) cause catastrophic gene loss in cell division and must be promptly and accurately repaired. In eukaryotes DSBs may be repaired by either non-homologous end-joining (NHEJ), single strand annealing or homologous recombination (HR). Vertebrate NHEJ has been shown to depend upon the DNA-dependent protein kinase (DNA-PK) consisting of the phosphatidylinositol 3 (PI 3)-kinase like (PIKK) catalytic sub-unit (DNA-PKcs) and the DNA targeting factor Ku. Our analysis of recently completed genomes found several novel PIKKs in Anopheles gambiae and Drosophila melanogaster including a novel mosquito DNA-PKcs orthologue, the first non-vertebrate DNA-PKcs described to date. We also detected a DNA-PKcs fragment in the high quality EST set of Apis mellifera ligustica (honey bee) suggesting that DNA-PK is a far older and more important eukaryotic complex than previously thought.
Collapse
Affiliation(s)
- Andrew S Doré
- Department of Biochemistry, University of Cambridge, Old Addenbrookes site, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | | | | | | |
Collapse
|
122
|
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59:928-42. [PMID: 15234026 DOI: 10.1016/j.ijrobp.2004.03.005] [Citation(s) in RCA: 780] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/01/2004] [Accepted: 03/08/2004] [Indexed: 02/09/2023]
Abstract
Multiple pathways are involved in maintaining the genetic integrity of a cell after its exposure to ionizing radiation. Although repair mechanisms such as homologous recombination and nonhomologous end-joining are important mammalian responses to double-strand DNA damage, cell cycle regulation is perhaps the most important determinant of ionizing radiation sensitivity. A common cellular response to DNA-damaging agents is the activation of cell cycle checkpoints. The DNA damage induced by ionizing radiation initiates signals that can ultimately activate either temporary checkpoints that permit time for genetic repair or irreversible growth arrest that results in cell death (necrosis or apoptosis). Such checkpoint activation constitutes an integrated response that involves sensor (RAD, BRCA, NBS1), transducer (ATM, CHK), and effector (p53, p21, CDK) genes. One of the key proteins in the checkpoint pathways is the tumor suppressor gene p53, which coordinates DNA repair with cell cycle progression and apoptosis. Specifically, in addition to other mediators of the checkpoint response (CHK kinases, p21), p53 mediates the two major DNA damage-dependent cellular checkpoints, one at the G(1)-S transition and the other at the G(2)-M transition, although the influence on the former process is more direct and significant. The cell cycle phase also determines a cell's relative radiosensitivity, with cells being most radiosensitive in the G(2)-M phase, less sensitive in the G(1) phase, and least sensitive during the latter part of the S phase. This understanding has, therefore, led to the realization that one way in which chemotherapy and fractionated radiotherapy may work better is by partial synchronization of cells in the most radiosensitive phase of the cell cycle. We describe how cell cycle and DNA damage checkpoint control relates to exposure to ionizing radiation.
Collapse
Affiliation(s)
- Timothy M Pawlik
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Box 66, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
123
|
Le Deist F, Poinsignon C, Moshous D, Fischer A, de Villartay JP. Artemis sheds new light on V(D)J recombination. Immunol Rev 2004; 200:142-55. [PMID: 15242402 DOI: 10.1111/j.0105-2896.2004.00169.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(D)J recombination represents one of the three mechanisms that contribute to the diversity of the immune repertoire of B lymphocytes and T lymphocytes. It also constitutes a major checkpoint during the development of the immune system. Indeed, any V(D)J recombination deficiency leads to a block of B-cell and T-cell maturation in humans and animal models, leading to severe combined immunodeficiency (T-B-SCID). Nine factors have been identified so far to participate in V(D)J recombination. The discovery of Artemis, mutated in a subset of T-B-SCID, provided some new information regarding one of the missing V(D)J recombinase activities: hairpin opening at coding ends prior to DNA repair of the recombination activating genes 1/2-generated DNA double-strand break. New conditions of immune deficiency in humans are now under investigations and should lead to the identification of additional V(D)J recombination/DNA repair factors.
Collapse
Affiliation(s)
- Françoise Le Deist
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Paris, France
| | | | | | | | | |
Collapse
|
124
|
Jensen R, Glazer PM. Cell-interdependent cisplatin killing by Ku/DNA-dependent protein kinase signaling transduced through gap junctions. Proc Natl Acad Sci U S A 2004; 101:6134-9. [PMID: 15069205 PMCID: PMC395935 DOI: 10.1073/pnas.0400051101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cisplatin is one of the most widely used cancer chemotherapy agents, but its mechanism of action is not fully understood. Current models suggest that cell killing by cisplatin occurs in a cell-autonomous manner by means of formation of platinum-DNA adducts that, if not removed by DNA repair, block transcription and replication. Here, we show that there is a separate cell-interdependent pathway of cisplatin killing in which damaged cells can transmit a death signal to neighboring cells. This signal is produced within the damaged cell by the kinase function of the Ku70, Ku80, and DNA-dependent protein kinase complex and is conveyed to the recipient cell by direct cell-to-cell communication through gap junctions. These findings suggest that DNA-dependent protein kinase activity and gap junction expression in human cancers may influence the clinical response to cisplatin. In addition, strategies to manipulate these cellular components in conjunction with cisplatin treatment may provide new approaches to cancer therapy.
Collapse
Affiliation(s)
- Ryan Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
| | | |
Collapse
|
125
|
Tippin B, Pham P, Bransteitter R, Goodman MF. Somatic Hypermutation: A Mutational Panacea. ACTA ACUST UNITED AC 2004; 69:307-35. [PMID: 15588848 DOI: 10.1016/s0065-3233(04)69011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Brigette Tippin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
126
|
Davis PH, Stanley SL. Breaking the species barrier: use of SCID mouse-human chimeras for the study of human infectious diseases. Cell Microbiol 2003; 5:849-60. [PMID: 14641171 DOI: 10.1046/j.1462-5822.2003.00321.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mouse-human chimeras have become a novel way to model the interactions between microbial pathogens and human cells, tissues or organs. Diseases studied with human xenografts in severe combined immunodeficient (SCID) mice include Pseudomonas aeruginosa infection in cystic fibrosis, group A streptococci and impetigo, bacillary and amoebic dysentery, and AIDS. In many cases, disease in the human xenograft appears to accurately reproduce the disease in humans, providing a powerful model for identifying virulence factors, host responses to infection and the effects of specific interventions on disease. In this review, we summarize recent studies that have used mouse-human chimeras to understand the pathophysiology of specific bacterial and protozoan infections.
Collapse
Affiliation(s)
- Paul H Davis
- Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
127
|
Conley ME. Immunogenetics. Curr Opin Immunol 2003; 15:567-70. [PMID: 14499266 DOI: 10.1016/s0952-7915(03)00106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
128
|
Guipaud O, Deriano L, Salin H, Vallat L, Sabatier L, Merle-Béral H, Delic J. B-cell chronic lymphocytic leukaemia: a polymorphic family unified by genomic features. Lancet Oncol 2003; 4:505-14. [PMID: 12901966 DOI: 10.1016/s1470-2045(03)01171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human cancer is characterised by complex molecular aberrations which result in a wide variety of clinical manifestations. B-cell chronic lymphocytic leukaemia (B-CLL) is particularly diverse, both in terms of molecular changes and clinical course, and consequently our understanding of the pathology of this disease is generally poor. Furthermore, the heterogeneity of this tumour type coupled with the absence of an obvious genetic "hallmark", such as gain of oncogene function or loss of suppressor-gene function, has led many investigators to question whether B-CLL is a single disease entity. In most cases, B-CLL does not show specific reciprocal chromosomal translocations as found in other haemopoietic malignant diseases. The genomic instability of B-CLL results in numerous different types of chromosomal losses and gains, giving rise to unsettled karyotypes among individuals with this disease. Nevertheless, genetic data imply that B-CLL is a single disease characterised by a common gene-expression profile and by the existence of specific subtypes that may have clinical correlates in patients.
Collapse
Affiliation(s)
- Olivier Guipaud
- Laboratoire de Radiobiologie et Oncologie, CEA, Fontenay aux Roses, France
| | | | | | | | | | | | | |
Collapse
|
129
|
Hashimoto M, Rao S, Tokuno O, Yamamoto KI, Takata M, Takeda S, Utsumi H. DNA-PK: the major target for wortmannin-mediated radiosensitization by the inhibition of DSB repair via NHEJ pathway. JOURNAL OF RADIATION RESEARCH 2003; 44:151-159. [PMID: 13678345 DOI: 10.1269/jrr.44.151] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of wortmannin posttreatment was studied in cells derived from different species (hamster, mouse, chicken, and human) with normal and defective DNA-dependent protein kinase (DNA-PK) activity, cells with and without the ataxia telangiectasia (ATM) gene, and cells lacking other regulatory proteins involved in the DNA double-strand break (DSB) repair pathways. Clonogenic assays were used to obtain all results. Wortmannin radiosensitization was observed in Chinese hamster cells (V79-B310H , CHO-K1), mouse mammary carcinoma cells (SR-1), transformed human fibroblast (N2KYSV), chicken B lymphocyte wild-type cells (DT40), and chicken Rad54 knockout cells (Rad54-/-). However, mouse mammary carcinoma cells (SX9) with defects in the DNA-PK and chicken DNA-PK catalytic subunit (DNA-PKcs) knockout cells (DNA-PKcs-/-/-) failed to exhibit wortmannin radiosensitization. On the other hand, SCID mouse cells (SC3VA2) exposed to wortmannin exhibited significant increases in radiosensitivity, possibly because of some residual function of DNA-PKcs. Moreover, the transformed human cells derived from AT patients (AT2KYSV) and chicken ATM knockout cells (ATM-/-) showed pronounced wortmannin radiosensitization. These studies demonstrate confirm that the mechanism underlying wortmannin radiosensitization is the inhibition of DNA-PK, but not of ATM, thereby resulting in the inhibition of DSB repair via nonhomologous endjoining (NHEJ).
Collapse
Affiliation(s)
- Mitsumasa Hashimoto
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Friesland S, Kanter-Lewensohn L, Tell R, Munck-Wikland E, Lewensohn R, Nilsson A. Expression of Ku86 confers favorable outcome of tonsillar carcinoma treated with radiotherapy. Head Neck 2003; 25:313-21. [PMID: 12658736 DOI: 10.1002/hed.10199] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND To determine possible molecular markers for predicting radiosensitivity in squamous cell carcinoma, we have examined the relationship between pretreatment expression of the DNA damage recognition complex DNA-PK, its in vitro substrates, p53 and MDM2, local tumor control after radiotherapy (RT), and patient survival. METHODS AND MATERIALS Formalin-fixed tumor biopsy specimens from 79 previously untreated patients with tonsillar carcinoma were analyzed by immunohistochemical methods. RESULTS Tumors expressing high levels of Ku86 had better locoregional control in contrast to tumors expressing low levels of Ku86 (p =.023). Survival of patients with tumors expressing high levels of DNA-PKcs was significantly better than survival of patients with tumors expressing low levels of DNA-PKcs (p =.0024). p53 and MDM2 status alone did not correlate with survival of patients. However, patients with p53 tumors and high DNA-PKcs expression had significantly better survival than patients with p53+ tumors expressing low levels of DNA-PKcs (p =.0018). Furthermore, survival of patients with high expression of DNA-PKcs or Ku86 and low MDM2 levels was significantly better when compared with survival of patients with low DNA-PKcs or Ku86 and high MDM2 (p =.0017 and p =.0034, respectively). CONCLUSIONS High expression of DNA-PKcs/Ku86 in combination with p53 negativity in tonsillar carcinoma correlates with better survival of patients. Identifying tumors with a phenotype predicting poor survival may be used to optimize treatment of patients with radioresistant tumors.
Collapse
Affiliation(s)
- Signe Friesland
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
131
|
Watanabe F, Shinohara KI, Teraoka H, Komatsu K, Tatsumi K, Suzuki F, Imai T, Sagara M, Tsuji H, Ogiu T. Involvement of DNA-dependent protein kinase in down-regulation of cell cycle progression. Int J Biochem Cell Biol 2003; 35:432-40. [PMID: 12565705 DOI: 10.1016/s1357-2725(02)00268-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The catalytic polypeptide of DNA-dependent protein kinase (p470) is encoded by the gene responsible for murine severe combined immunodeficiency (SCID) devoid of DNA double-strand break repair and V(D)J recombination. Here, we have characterized the role of p470 in cell proliferation using SCID mice and the cell lines. In accord with DNA histogram patterns, SCID cell lines (SD/SD-eA and SC3VA2) expressing extremely low level of DNA-PK activity grew faster than a normal mouse cell line (CB/CB-eB) and SC3VA2 complemented with human p470 gene (RD13B2). In regenerating liver after partial hepatectomy, de novo DNA synthesis determined by [(3)H]thymidine incorporation started at 30h in C.B-17/Icr-SCID (SCID) mice and at around 36h in C.B-17/Icr (C.B-17) mice. Compared with normal cells, SCID cells contained slightly higher levels of transcripts of cyclin A, cyclin E, B-Myb and dihydrofolate reductase, which are regulated by E2F-1. E2F-1 playing a key role in G1- to S-phase progression was phosphorylated in vitro by DNA-PK. Importantly, the E2F-1 promoter transcriptional activity in SCID cell lines (SD/SD-eA and SC3VA2) was 4-5-fold higher than that in CB/CB-eB and RD13B2. These results suggest that p470 is involved in down-regulation of cell cycle progression through E2F-1-responsible genes.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, 101-0062, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Haks MC, Belkowski SM, Ciofani M, Rhodes M, Lefebvre JM, Trop S, Hugo P, Zúñiga-Pflücker JC, Wiest DL. Low activation threshold as a mechanism for ligand-independent signaling in pre-T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2853-61. [PMID: 12626535 DOI: 10.4049/jimmunol.170.6.2853] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pre-TCR complexes are thought to signal in a ligand-independent manner because they are constitutively targeted to lipid rafts. We report that ligand-independent signaling is not a unique capability of the pre-TCR complex. Indeed, the TCR alpha subunit restores development of pT alpha-deficient thymocytes to the CD4(+)CD8(+) stage even in the absence of conventional MHC class I and class II ligands. Moreover, we found that pre-TCR and alpha beta TCR complexes exhibit no appreciable difference in their association with lipid rafts, suggesting that ligand-independence is a function of the CD4(-)CD8(-) (DN) thymocytes in which pre-TCR signaling occurs. In agreement, we found that only CD44(-)CD25(+) DN thymocytes (DN3) enabled activation of extracellular signal-regulated kinases by the pre-TCR complex. DN thymocytes also exhibited a lower signaling threshold relative to CD4(+)CD8(+) thymocytes, which was associated with both the markedly elevated lipid raft content of their plasma membranes and more robust capacitative Ca(2+) entry. Taken together these data suggest that cell-autonomous, ligand-independent signaling is primarily a property of the thymocytes in which pre-TCR signaling occurs.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Enzyme Activation/immunology
- Ligands
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Stem Cells/enzymology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/enzymology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Mariëlle C Haks
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 2003; 100:2462-7. [PMID: 12604777 PMCID: PMC151363 DOI: 10.1073/pnas.0437964100] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA nonhomologous end-joining (NHEJ) is the major pathway for repairing DNA double-strand breaks in mammalian cells. It also functions to carry out rearrangements at the specialized breaks introduced during V(D)J recombination. Here, we describe a patient with T(-)B(-) severe combined immunodeficiency, whose cells have defects closely resembling those of NHEJ-defective rodent cells. Cells derived from this patient show dramatic radiosensitivity, decreased double-strand break rejoining, and reduced fidelity in signal and coding joint formation during V(D)J recombination. Detailed examination indicates that the patient is defective neither in the known factors involved in NHEJ in mammals (Ku70, Ku80, DNA-dependent protein kinase catalytic subunit, Xrcc4, DNA ligase IV, or Artemis) nor in the Mre11/Rad50/Nbs1 complex, whose homologue in Saccharomyces cerevisiae functions in NHEJ. These results provide strong evidence that additional activities are crucial for NHEJ and V(D)J recombination in mammals.
Collapse
Affiliation(s)
- Y Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PPW, Ashley T, de Rooij DG. Function of DNA-protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86. Biol Reprod 2003; 68:717-21. [PMID: 12604618 DOI: 10.1095/biolreprod.102.008920] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
All components of the double-stranded DNA break (DSB) repair complex DNA-dependent protein kinase (DNA-PK), including Ku70, Ku86, and DNA-PK catalytic subunit (DNA-PKcs), were found in the radiosensitive spermatogonia. Although p53 induction was unaffected, spermatogonial apoptosis occurred faster in the irradiated DNA-PKcs-deficient scid testis. This finding suggests that spermatogonial DNA-PK functions in DNA damage repair rather than p53 induction. Despite the fact that early spermatocytes lack the Ku proteins, spontaneous apoptosis of these cells occurred in the scid testis. The majority of these apoptotic spermatocytes were found at stage IV of the cycle of the seminiferous epithelium where a meiotic checkpoint has been suggested to exist. Meiotic synapsis and recombination during the early meiotic prophase induce DSBs, which are apparently less accurately repaired in scid spermatocytes that then fail to pass the meiotic checkpoint. The role for DNA-PKcs during the meiotic prophase differs from that in mitotic cells; it is not influenced by ionizing radiation and is independent of the Ku heterodimer.
Collapse
Affiliation(s)
- Geert Hamer
- Department of Endocrinology, Faculty of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Nilsson A, Sirzén F, Lewensohn R, Wang N, Skog S. Cell cycle-dependent regulation of the DNA-dependent protein kinase. Cell Prolif 2003; 32:239-48. [PMID: 10614713 PMCID: PMC6726331 DOI: 10.1046/j.1365-2184.1999.3240239.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human DNA-dependent protein kinase (DNA-PK) is a nuclear-localized serine/threonine protein kinase. The holoenzyme consists of a catalytic subunit with a molecular mass of 465 kDa and a DNA-binding heterodimer Ku86/70. The kinase has been implicated in a variety of nuclear processes including V(D)J recombination, double-strand break repair, and transcription. Cells with defective DNA-PK activity show increased radiosensitivity and lack of V(D)J recombination. To study DNA-PK activity during the cell cycle, HeLa cells were separated by elutriation centrifugation into different cell cycle compartments based on cellular size. DNA-PK activity was found to vary during the cell cycle. The kinase activity was lowest during G1 phase and increased dramatically as the cells entered S phase and remained high during the G2-phase. The subcellular distribution of DNA-PKcs is relocalized from the cytoplasm during M and G1 phases to the nucleus during G1-S phase transition and S phase. Expression of both the catalytic subunit and the Ku86/70 heterodimer was found to be constant throughout the cell cycle. This study demonstrates that DNA-PK activity as well as its subcellular localization fluctuates during the cell cycle. In addition, the distribution of DNA-PK during M phase corresponds with low DNA-PK activity.
Collapse
Affiliation(s)
- A Nilsson
- Unit of Medical Radiobiology, Cancer Centre Karolinska, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
136
|
Krejci L, Chen L, Van Komen S, Sung P, Tomkinson A. Mending the break: two DNA double-strand break repair machines in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 74:159-201. [PMID: 14510076 DOI: 10.1016/s0079-6603(03)01013-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lumir Krejci
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
137
|
Nishino T, Morikawa K. Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 2002; 21:9022-32. [PMID: 12483517 DOI: 10.1038/sj.onc.1206135] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA nucleases catalyze the cleavage of phosphodiester bonds. These enzymes play crucial roles in various DNA repair processes, which involve DNA replication, base excision repair, nucleotide excision repair, mismatch repair, and double strand break repair. In recent years, new nucleases involved in various DNA repair processes have been reported, including the Mus81 : Mms4 (Eme1) complex, which functions during the meiotic phase and the Artemis : DNA-PK complex, which processes a V(D)J recombination intermediate. Defects of these nucleases cause genetic instability or severe immunodeficiency. Thus, structural biology on various nuclease actions is essential for the elucidation of the molecular mechanism of complex DNA repair machinery. Three-dimensional structural information of nucleases is also rapidly accumulating, thus providing important insights into the molecular architectures, as well as the DNA recognition and cleavage mechanisms. This review focuses on the three-dimensional structure-function relationships of nucleases crucial for DNA repair processes.
Collapse
Affiliation(s)
- Tatsuya Nishino
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
138
|
Bosma GC, Kim J, Urich T, Fath DM, Cotticelli MG, Ruetsch NR, Radic MZ, Bosma MJ. DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J Exp Med 2002; 196:1483-95. [PMID: 12461083 PMCID: PMC2194268 DOI: 10.1084/jem.20001871] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2000] [Revised: 10/10/2002] [Accepted: 10/14/2002] [Indexed: 11/15/2022] Open
Abstract
Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end-joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM(+) B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR.
Collapse
Affiliation(s)
- Gayle C Bosma
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Woods T, Wang W, Convery E, Errami A, Zdzienicka MZ, Meek K. A single amino acid substitution in DNA-PKcs explains the novel phenotype of the CHO mutant, XR-C2. Nucleic Acids Res 2002; 30:5120-8. [PMID: 12466535 PMCID: PMC137947 DOI: 10.1093/nar/gkf625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently described a CHO DSBR mutant belonging to the XRCC7 complementation group (XR-C2) that has the interesting phenotype of being radiosensitive, but having only a modest defect in VDJ recombination. This cell line expresses only slightly reduced levels of DNA-PKcs but has undetectable DNA-PK activity. Limited sequence analyses of DNA-PKcs transcripts from XR-C2 revealed a point mutation that results in an amino acid substitution of glutamic acid for glycine six residues from the C-terminus. To determine whether this single substitution was responsible for the phenotype in XR-C2 cells, we introduced the mutation into a DNA-PKcs expression vector. Whereas transfection of this expression vector significantly restores the VDJ recombination deficits in DNA-PKcs-deficient cells, radioresistance is not restored. Thus, expression of this mutant form of DNA-PKcs in DNA-PKcs- deficient cells substantially recapitulates the phenotype observed in XR-C2, and we conclude that this single amino acid substitution is responsible for the non-homologous end joining deficits observed in XR-C2.
Collapse
Affiliation(s)
- Timothy Woods
- College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, Michigan State University, 350 FST, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
140
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
141
|
Kim CH, Park SJ, Lee SH. A targeted inhibition of DNA-dependent protein kinase sensitizes breast cancer cells following ionizing radiation. J Pharmacol Exp Ther 2002; 303:753-9. [PMID: 12388662 DOI: 10.1124/jpet.102.038505] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major mechanism by which cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs is by enhanced DNA repair of the lesions; therefore, through inhibition of DNA repair pathways that tumor cells rely on to escape chemotherapy, we expect to increase the killing of cancer cells and reduce drug resistance. DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase essential for DNA repair as well as sensing and transmitting a damage signal to downstream targets leading to cell cycle arrest. We used a peptide cotherapy strategy to see whether a targeted inhibition of DNA-PK activity sensitizes breast cancer cells in response to IR or chemotherapy drug. A synthesized peptide representing the C terminus of Ku80 (HNI-38) selectively targeted and disrupted interaction between Ku complex and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) as well as the DNA binding activity of Ku that led to the inhibition of DNA-PK activity and reduction in double-stranded DNA break (dsb) repair activity. Furthermore, a peptide-based inhibitor with target sequence effectively inhibited the growth of breast cancer cells only in the presence of DNA damage, suggesting that the target peptide sensitizes cancer cells through blocking dsb DNA repair activity. Together, this study not only validates the involvement of the C terminus of Ku80 in Ku's DNA termini binding and interaction with DNA-PKcs, but also a supports physiological role for DNA-PK in IR or chemotherapy drug resistance of cancer cells.
Collapse
Affiliation(s)
- Chung-Hui Kim
- Department of Biochemistry & Molecular Biology, Indiana University Cancer Center, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
142
|
Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3094-104. [PMID: 12218126 DOI: 10.4049/jimmunol.169.6.3094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.
Collapse
Affiliation(s)
- Pamela B Nakajima
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
143
|
Ishii Y, Ikushima T. Post-treatment effects of DNA topoisomerase inhibitors on UVB- and X-ray-induced chromosomal aberration formations. Mutat Res 2002; 504:67-74. [PMID: 12106647 DOI: 10.1016/s0027-5107(02)00080-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Post-treatments with nogalamycin, an inhibitor of DNA topoisomerase I, for last 3h of the culture (during the G2 phase) drastically enhanced the yield of ultraviolet light B (UVB)-induced exchange-type chromatid aberrations, while showing little effect on the formation of breakage-type aberrations in Chinese hamster V79 cells. These results are very similar to those obtained with ICRF-193, an inhibitor of topoisomerase II, with respect to the effect on UVB-induced chromatid aberrations. Thus, both types of topoisomerases may suppress the formation of exchange-type chromatid aberrations in the G2 phase which is suggested to be the principal stage of the cell cycle for chromatid aberration formation.In human lymphocytes irradiated with X-rays before phytohaemagglutinin (PHA) stimulation, post-treatments with nogalamycin through the whole cell cycle enhanced only the yield of dicentrics, while showing little effect on the yields of any other chromosome-type aberrations. Nogalamycin added 6h after PHA stimulation to irradiated cells also showed almost the same effects, whereas, addition of nogalamycin 24h after PHA stimulation showed no effect on X-ray-induced chromosome-type aberrations. These results suggest that X-ray-induced DNA damage lead to chromosome-type aberrations before the start of S phase and topoisomerase I may suppress the formation of dicentrics, exchange-type chromosome aberrations. Post-treatments with ICRF-193 showed no effect on the formation of X-ray-induced chromosome-type aberrations, suggesting nonparticipation of topoisomerase II in this process.
Collapse
Affiliation(s)
- Y Ishii
- Department of Medical Genetics, B4, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, Japan.
| | | |
Collapse
|
144
|
Maruyama C, Suemizu H, Tamamushi S, Kimoto S, Tamaoki N, Ohnishi Y. Genotyping the mouse severe combined immunodeficiency mutation using the polymerase chain reaction with confronting two-pair primers (PCR-CTPP). Exp Anim 2002; 51:391-3. [PMID: 12221933 DOI: 10.1538/expanim.51.391] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
An allele specific polymerase chain reaction with confronting two-pair primers (PCR-CTPP) was developed as an assay for genotyping the mouse Prkdcscid gene mutation (former name scid). The reverse primer (WR) was designed to include the antisense nucleotide (A) specific for the wild type allele at the 3' end with the counterpart forward primer (F) upstream. The other forward primer (MF) was designed to include the sense nucleotide (A) specific for the Prkdcscid mutation at the 3' end with the other counterpart reverse primer (R) downstream. PCR was performed in a single tube with these two pairs of primers. The products specific for each allele extended by F/WR (101 bp) or MF/R (180 bp) were visualized with common PCR products (257 bp) extended by F/R, and three genotypes of mice (Prkdcscid/Prkdcscid, Prkdcscid/+, and +/+) were clearly distinguished.
Collapse
Affiliation(s)
- Chika Maruyama
- Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki-shi, 216-0001, Japan
| | | | | | | | | | | |
Collapse
|
145
|
Boehringer-Wyss N, Clarkson SG, Allal AS. No benefits of ultrafractionation in two head-and-neck cancer cell lines with different inherent radiosensitivity. Int J Radiat Oncol Biol Phys 2002; 52:1099-103. [PMID: 11958907 DOI: 10.1016/s0360-3016(01)02793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess if ultrafractionation is applicable in the context of an unknown hyperradiosensitivity (HRS) status, we studied the survival and repair capacity of two tumor cell lines after irradiation with two different dose/fractionation schedules that can be used in a clinical setting. MATERIALS AND METHODS Squamous cell carcinoma cell lines SCC-3 (radioresistant) and SCC-6 (radiosensitive) were used. Survival was studied by clonogenic assay after multiple fractions of 0.5 Gy (2 fractions/day, 6-h interval) and 2 Gy (1 fraction/day) for a total dose of 8 Gy of gamma-rays. The capacity to repair single-strand and double-strand breaks (SSB, DSB) was assessed by comet assay. The messenger RNA (mRNA) levels of DNA-dependent protein kinase (PK) components were analyzed by RNase protection and real-time polymerase chain reaction (PCR). RESULTS In both cell lines, no apparent difference was noted between the two fractionation protocols. In particular for SCC-3, the mean surviving fraction tended to be lower after 2 Gy than after 0.5 Gy fractions. In SCC-3 and SCC-6 no significant difference was observed in the repair capacity of SSB and DSB after exposure to single doses of 0.5 Gy or 2 Gy. After exposure to the same single doses, the mRNA levels of DNA-PK catalytic subunit (PKcs), Ku 70, and Ku 80 were similar. CONCLUSIONS Our data do not support the concept of ultrafractionation, at least when using fractions of 0.5 Gy in the cell lines studied. This suggests that methods for testing HRS status in individual tumors need to be developed before the relevance of ultrafractionation can be investigated in the clinic.
Collapse
Affiliation(s)
- Nicole Boehringer-Wyss
- Department of Genetics and Microbiology, University Medical Centre, Geneva, Switzerland.
| | | | | |
Collapse
|
146
|
Huang J, Dynan WS. Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction. Nucleic Acids Res 2002; 30:667-74. [PMID: 11809878 PMCID: PMC100305 DOI: 10.1093/nar/30.3.667] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/06/2001] [Accepted: 12/06/2001] [Indexed: 12/14/2022] Open
Abstract
The non-homologous end-joining pathway promotes direct enzymatic rejoining of DNA double-strand breaks (DSBs) and is an important determinant of genome stability in eukaryotic cells. Although previous work has shown that this pathway requires Ku, DNA-PKcs and the DNA ligase IV/XRCC4 complex, we found that these proteins alone did not promote efficient joining of cohesive-ended DNA fragments in a cell-free assay. To identify factors that were missing from the reaction, we screened fractions from HeLa cell extracts for the ability to stimulate the joining of cohesive DNA ends in a complementation assay containing other known proteins required for DNA DSB repair. We identified a factor that restored end-joining activity to the level observed in crude nuclear extracts. Factor activity copurified with Rad50, Mre11 and NBS1, three proteins that have previously been implicated in DSB repair by genetic and cytologic evidence. Factor activity was inhibited by anti-Mre11 antibody. The reconstituted system remained fully dependent on DNL IV/XRCC4 and at least partially dependent on Ku, but the requirement for DNA-PKcs was progressively lost as other components were purified. Results support a model where DNA-PKcs acts early in the DSB repair pathway to regulate progression of the reaction, and where Mre11, Rad50 and NBS1 play a key role in aligning DNA ends in a synaptic complex immediately prior to ligation.
Collapse
Affiliation(s)
- Juren Huang
- Institute of Molecular Medicine and Genetics, Program in Gene Regulation, CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | |
Collapse
|
147
|
Abstract
The existence of a capping structure at the extremities of chromosomes was first deduced in the 1930s by Herman Müller (Müller, 1938), who showed that X-irradiation of Drosophila rarely resulted in terminal deletions or inversions of chromosomes, suggesting that chromosome ends have protective structures that distinguish them from broken chromosomes, which he named telomeres. In this review, we will focus on mammalian telomeres and, in particular, on the analysis of different mouse models for proteins that are important for telomere function, such as telomerase and various telomere-binding proteins. These murine models are helping us to understand the consequences of telomere dysfunction for cancer, aging and DNA repair, as well as, the molecular mechanisms by which telomeres exert their protective function.
Collapse
Affiliation(s)
- Fermín A Goytisolo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-CSIC, Campus Cantoblanco, E-28049, Madrid, Spain
| | | |
Collapse
|
148
|
Chen J, Harrison DE. Quantitative trait loci regulating relative lymphocyte proportions in mouse peripheral blood. Blood 2002; 99:561-6. [PMID: 11781239 DOI: 10.1182/blood.v99.2.561] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Relative proportions of peripheral blood (PB) B lymphocytes (B220%) as well as CD4 (CD4%) and CD8 (CD8%) T lymphocytes differ significantly among inbred mouse strains: B220% is high in C57BL/6J (B6) and C57BR/cdJ, intermediate in BALB/cByJ (BALB) and DBA/2J (D2), and low in NOD/LtJ (NOD) and SJL/J (SJL) mice, whereas CD4% and CD8% are high in NOD and SJL mice and low in the other 4 strains. By following segregating genetic markers linked to these traits in (B6 x D2) recombinant inbred (BXD RI) mice, the study defined 2 quantitative trait loci (QTLs) for the B220% phenotype: Pbbcp1 (peripheral blood B cell percentage 1, logarithm of odds [LOD] 4.1, P <.000 01) and Pbbcp2 (LOD 3.7, P <.000 04) on chromosome 1 (Chr 1) at about 63 cM and 48 cM; one suggestive locus for the CD4% phenotype (LOD 2.6, P <.000 57) on Chr 8 at about 73 cM; and one QTL for the CD8% phenotype: Pbctlp1 (peripheral blood cytotoxic T lymphocyte percentage 1, LOD 3.8, P <.000 02) on Chr 19 at about 12 cM. The study further segregated PB lymphocyte proportions in B6SJLF2 mice by using DNA markers adjacent to these mapped QTLs and found that the Pbbcp1 locus (LOD 5.6, P <.000 01) was also important in this mouse population. In both BXD RI and B6SJLF2 mice, QTLs regulating B-cell proportions showed no significant effect on T-cell proportions and vice versa. Thus, PB B- and T-lymphocyte proportions are regulated separately by different genetic elements.
Collapse
Affiliation(s)
- Jichun Chen
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA.
| | | |
Collapse
|
149
|
Davila M, Foster S, Kelsoe G, Yang K. A role for secondary V(D)J recombination in oncogenic chromosomal translocations? Adv Cancer Res 2002; 81:61-92. [PMID: 11430596 DOI: 10.1016/s0065-230x(01)81002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosomal translocations are hallmarks of certain lymphoproliferative disorders. Indeed, in many leukemias and lymphomas, translocations are the transforming event that brings about malignancy. Recurrence of the immunoglobulin (Ig) and T-cell receptor (Tcr) loci at the breakpoints of oncogenic chromosomal translocations has led to speculation that the lymphocyte-specific process of V(D)J rearrangement, which is necessary for the generation of functional Ig and TCR antigen receptors on B and T lymphocytes, mediates translocation. Recent studies have led to a fuller understanding of the molecular mechanisms of V(D)J rearrangement and have revealed that the V(D)J recombinase possesses latent transposase activity. These studies have led to plausible models of illegitimate V(D)J recombination producing chromosomal translocations consistent with those present in lymphomas and leukemias. Errors of V(D)J recombination may even generate lymphomas with the phenotypes of mature cells. For example, follicular and Burkitt's lymphomas have been classified by phenotype and somatic genotype as malignant germinal center (GC) B or post-GC B cells. The GC is a site of affinity maturation where B cells undergo V(D)J hypermutation and Ig class switch; in addition, much evidence has accumulated to suggest that GC B cells may also support secondary V(D)J recombination. Interestingly, all three of these elements, genomic plasticity, mutation, and translocation breakpoints near switch sites or recombinational elements, are characteristic of certain lymphomas. The high frequency of lymphomas carrying these GC markers suggests that the GC reaction may play a significant role in lymphomagenesis.
Collapse
Affiliation(s)
- M Davila
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
150
|
Manivasakam P, Aubrecht J, Sidhom S, Schiestl RH. Restriction enzymes increase efficiencies of illegitimate DNA integration but decrease homologous integration in mammalian cells. Nucleic Acids Res 2001; 29:4826-33. [PMID: 11726692 PMCID: PMC96699 DOI: 10.1093/nar/29.23.4826] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian cells repair DNA double-strand breaks by illegitimate end-joining or by homologous recombination. We investigated the effects of restriction enzymes on illegitimate and homologous DNA integration in mammalian cells. A plasmid containing the neo(R) expression cassette, which confers G418 resistance, was used to select for illegitimate integration events in CHO wild-type and xrcc5 mutant cells. Co-transfection with the restriction enzymes BamHI, BglII, EcoRI and KpnI increased the efficiency of linearized plasmid integration up to 5-fold in CHO cells. In contrast, the restriction enzymes did not increase the integration efficiency in xrcc5 mutant cells. Effects of restriction enzymes on illegitimate and homologous integration were also studied in mouse embryonic stem (ES) cells using a plasmid containing the neo(R) gene flanked by exon 3 of HPRT: The enzymes BamHI, BglII and EcoRI increased the illegitimate integration efficiency of transforming DNA several-fold, similar to the results for CHO cells. However, all three enzymes decreased the absolute frequency of homologous integration approximately 2-fold, and the percentage of homologous integration decreased >10-fold. This suggests that random DNA breaks attract illegitimate recombination (IR) events that compete with homology search.
Collapse
Affiliation(s)
- P Manivasakam
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|