101
|
Giampaoli O, Conta G, Calvani R, Miccheli A. Can the FUT2 Non-secretor Phenotype Associated With Gut Microbiota Increase the Children Susceptibility for Type 1 Diabetes? A Mini Review. Front Nutr 2020; 7:606171. [PMID: 33425974 PMCID: PMC7785815 DOI: 10.3389/fnut.2020.606171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The global toll of type 1 diabetes (T1D) has steadily increased over the last decades. It is now widely acknowledged that T1D pathophysiology is more complex than expected. Indeed, a multifaceted interplay between genetic, metabolic, inflammatory and environmental factors exists that leads to heterogeneous clinical manifestations across individuals. Children with non-secretor phenotype and those affected by T1D share low abundance of bifidobacteria, low content of short-chain fatty acids, intestinal phosphatase alkaline and a high incidence of inflammatory bowel diseases. In this context, host-gut microbiota dyad may represent a relevant contributor to T1D development and progression due to its crucial role in shaping host immunity and susceptibility to autoimmune conditions. The FUT2 gene is responsible for the composition and functional properties of glycans in mucosal tissues and bodily secretions, including human milk. FUT2 polymorphisms may profoundly influence gut microbiota composition and host susceptibility to viral infections and chronic inflammatory disease. In this minireview, the possible interplay between mothers' phenotype, host FUT2 genetic background and gut microbiota composition will be discussed in perspective of the T1D onset. The study of FUT2-gut microbiota interaction may add a new piece on the puzzling T1D etiology and unveil novel targets of intervention to contrast T1D development and progression. Dietary interventions, including the intake of α-(1, 2)-fucosyl oligosaccharides in formula milk and the use of specific prebiotics and probiotics, could be hypothesized.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Giorgia Conta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.,NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.,Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
102
|
Paraskevopoulou V, Schimpl M, Overman RC, Stolnik S, Chen Y, Nguyen L, Winkler GS, Gellert P, Klassen JS, Falcone FH. Structural and binding characterization of the LacdiNAc-specific adhesin (LabA; HopD) exodomain from Helicobacter pylori. Curr Res Struct Biol 2020; 3:19-29. [PMID: 34235483 PMCID: PMC8244420 DOI: 10.1016/j.crstbi.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
Helicobacter pylori (H. pylori) uses several outer membrane proteins for adhering to its host's gastric mucosa, an important step in establishing and preserving colonization. Several adhesins (SabA, BabA, HopQ) have been characterized in terms of their three-dimensional structure. A recent addition to the growing list of outer membrane porins is LabA (LacdiNAc-binding adhesin), which is thought to bind specifically to GalNAcβ1-4GlcNAc, occurring in the gastric mucosa. LabA47-496 protein expressed as His-tagged protein in the periplasm of E. coli and purified via subtractive IMAC after TEV cleavage and subsequent size exclusion chromatography, resulted in bipyramidal crystals with good diffraction properties. Here, we describe the 2.06 Å resolution structure of the exodomain of LabA from H. pylori strain J99 (PDB ID: 6GMM). Strikingly, despite the relatively low levels of sequence identity with the other three structurally characterized adhesins (20-49%), LabA shares an L-shaped fold with SabA and BabA. The 'head' region contains a 4 + 3 α-helix bundle, with a small insertion domain consisting of a short antiparallel beta sheet and an unstructured region, not resolved in the crystal structure. Sequence alignment of LabA from different strains shows a high level of conservation in the N- and C-termini, and identifies two main types based on the length of the insertion domain ('crown' region), the 'J99-type' (insertion ~31 amino acids), and the H. pylori '26695 type' (insertion ~46 amino acids). Analysis of ligand binding using Native Electrospray Ionization Mass Spectrometry (ESI-MS) together with solid phase-bound, ELISA-type assays could not confirm the originally described binding of GalNAcβ1-4GlcNAc-containing oligosaccharides, in line with other recent reports, which also failed to confirm LacdiNAc binding.
Collapse
Affiliation(s)
| | - Marianne Schimpl
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ross C. Overman
- Protein Science, Discovery Sciences, R&D, AstraZeneca, Alderley Park, United Kingdom
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Yajie Chen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Linh Nguyen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Paul Gellert
- Innovation Strategy & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Franco H. Falcone
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Institute for Parasitology, Justus-Liebig-University Gießen, Schubertstr. 81, D-35392, Gießen, Germany
| |
Collapse
|
103
|
de Oliveira IA, Corvelo TCDO. ABH and Lewis blood group systems and their relation to diagnosis and risk of Helicobacter pylori infection. Microb Pathog 2020; 152:104653. [PMID: 33253856 DOI: 10.1016/j.micpath.2020.104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Helicobacter pylori infection occurs in 50% of the world's population and represents a major risk factor for chronic gastritis, gastroduodenal ulcer and gastric cancer in developed and developing countries. The distribution of H. pylori virulence factors is diverse and varies geographically, such as the CagA and VacA genes, which have revealed association with disease status. Some findings show increased frequencies of these diseases in O Le (a-b +) and A Le (a-b +) blood type individuals, but other studies not found any relationship between these blood groups and H. pylori infection. AIM This study aimed to elucidate probable controversies described in the relationship between the ABH/Lewis blood groups and H. pylori, contributing to the severity of gastric diseases in northern the population of Belém -Pará.-Brazil. METHODS This cross-sectional study included 288 samples of patients separate into two groups with gastric cancer and chronic gastritis. Blood, saliva, and gastric biopsy were analyzed using modified Gram and hematoxylin-eosin staining techniques, the enzyme immunoassay Elisa and Multiplex PCR. The antigens expression of ABH and Lewis systems was determined through Dot-ELISA and direct hemagglutination. Proportions were compared in univariate analysis, while the relation between putative risk factors including H. pylori status and ABO/Lewis phenotype was performed using multivariable logistic regression analyses, P-value < 0.05 was considered significant. RESULTS The findings of this study demonstrate that the likelihood of developing gastric cancer increases threefold if the individual is from A1 Le (a-b +) blood group, has premalignant changes, and infection with H. pylori virulent strains (cagA+/vacA + s1m1). CONCLUSION Therefore, this study found a significant association between ABO and Lewis phenotypes and H. pylori cagA status into the relevance of the development of gastric carcinogenesis.
Collapse
|
104
|
Risk and Severity of COVID-19 and ABO Blood Group in Transcatheter Aortic Valve Patients. J Clin Med 2020; 9:jcm9113769. [PMID: 33266474 PMCID: PMC7700222 DOI: 10.3390/jcm9113769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
While cardiovascular disease has been associated with an increased risk of coronavirus disease 2019 (COVID-19), no studies have described its clinical course in patients with aortic stenosis who had undergone transcatheter aortic valve replacement (TAVR). Numerous observational studies have reported an association between the A blood group and an increased susceptibility to SARS-CoV-2 infection. Our objective was to investigate the frequency and clinical course of COVID-19 in a large sample of patients who had undergone TAVR and to determine the associations of the ABO blood group with disease occurrence and outcomes. Patients who had undergone TAVR between 2010 and 2019 were included in this study and followed-up through the recent COVID-19 outbreak. The occurrence and severity (hospitalization and/or death) of COVID-19 and their associations with the ABO blood group served as the main outcome measures. Of the 1125 patients who had undergone TAVR, 403 (36%) died before 1 January 2020, and 20 (1.8%) were lost to follow-up. The study sample therefore consisted of 702 patients. Of them, we identified 22 cases (3.1%) with COVID-19. Fourteen patients (63.6%) were hospitalized or died of disease. Multivariable analysis identified the A blood group (vs. others) as the only independent predictor of COVID-19 in patients who had undergone TAVR (odds ratio (OR) = 6.32; 95% confidence interval (CI) = 2.11-18.92; p = 0.001). The A blood group (vs. others; OR = 8.27; 95% CI = 1.83-37.43, p = 0.006) and a history of cancer (OR = 4.99; 95% CI = 1.64-15.27, p = 0.005) were significantly and independently associated with disease severity (hospitalization and/or death). We conclude that patients who have undergone TAVR frequently have a number of cardiovascular comorbidities that may work to increase the risk of COVID-19. The subgroup with the A blood group was especially prone to developing the disease and showed unfavorable outcomes.
Collapse
|
105
|
Zietz M, Zucker J, Tatonetti NP. Associations between blood type and COVID-19 infection, intubation, and death. Nat Commun 2020; 11:5761. [PMID: 33188185 PMCID: PMC7666188 DOI: 10.1038/s41467-020-19623-x] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/16/2020] [Indexed: 01/06/2023] Open
Abstract
The rapid global spread of the novel coronavirus SARS-CoV-2 has strained healthcare and testing resources, making the identification and prioritization of individuals most at-risk a critical challenge. Recent evidence suggests blood type may affect risk of severe COVID-19. Here, we use observational healthcare data on 14,112 individuals tested for SARS-CoV-2 with known blood type in the New York Presbyterian (NYP) hospital system to assess the association between ABO and Rh blood types and infection, intubation, and death. We find slightly increased infection prevalence among non-O types. Risk of intubation was decreased among A and increased among AB and B types, compared with type O, while risk of death was increased for type AB and decreased for types A and B. We estimate Rh-negative blood type to have a protective effect for all three outcomes. Our results add to the growing body of evidence suggesting blood type may play a role in COVID-19.
Collapse
Affiliation(s)
- Michael Zietz
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jason Zucker
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
106
|
Zietz M, Zucker J, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.08.20058073. [PMID: 32511586 PMCID: PMC7276013 DOI: 10.1101/2020.04.08.20058073] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rapid global spread of the novel coronavirus SARS-CoV-2 has strained healthcare and testing resources, making the identification and prioritization of individuals most at-risk a critical challenge. Recent evidence suggests blood type may affect risk of severe COVID-19. We used observational healthcare data on 14,112 individuals tested for SARS-CoV-2 with known blood type in the New York Presbyterian (NYP) hospital system to assess the association between ABO and Rh blood types and infection, intubation, and death. We found slightly increased infection prevalence among non-O types. Risk of intubation was decreased among A and increased among AB and B types, compared with type O, while risk of death was increased for type AB and decreased for types A and B. We estimated Rh-negative blood type to have a protective effect for all three outcomes. Our results add to the growing body of evidence suggesting blood type may play a role in COVID-19.
Collapse
Affiliation(s)
- Michael Zietz
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - Jason Zucker
- Department of Medicine, Columbia University Irving Medical Center
| | | |
Collapse
|
107
|
In Vivo Genome and Methylome Adaptation of cag-Negative Helicobacter pylori during Experimental Human Infection. mBio 2020; 11:mBio.01803-20. [PMID: 32843556 PMCID: PMC7448279 DOI: 10.1128/mbio.01803-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exceptional genetic diversity and variability are hallmarks of Helicobacter pylori, but the biological role of this plasticity remains incompletely understood. Here, we had the rare opportunity to investigate the molecular evolution during the first weeks of H. pylori infection by comparing the genomes and epigenomes of H. pylori strain BCS 100 used to challenge human volunteers in a vaccine trial with those of bacteria reisolated from the volunteers 10 weeks after the challenge. The data provide molecular insights into the process of establishment of this highly versatile pathogen in 10 different human individual hosts, showing, for example, selection for changes in host-interaction molecules as well as changes in epigenetic methylation patterns. The data provide important clues to the early adaptation of H. pylori to new host niches after transmission, which we believe is vital to understand its success as a chronic pathogen and develop more efficient treatments and vaccines. Multiple studies have demonstrated rapid bacterial genome evolution during chronic infection with Helicobacter pylori. In contrast, little was known about genetic changes during the first stages of infection, when selective pressure is likely to be highest. Using single-molecule, real-time (SMRT) and Illumina sequencing technologies, we analyzed genome and methylome evolution during the first 10 weeks of infection by comparing the cag pathogenicity island (cagPAI)-negative H. pylori challenge strain BCS 100 with pairs of H. pylori reisolates from gastric antrum and corpus biopsy specimens of 10 human volunteers who had been infected with this strain as part of a vaccine trial. Most genetic changes detected in the reisolates affected genes with a surface-related role or a predicted function in peptide uptake. Apart from phenotypic changes of the bacterial envelope, a duplication of the catalase gene was observed in one reisolate, which resulted in higher catalase activity and improved survival under oxidative stress conditions. The methylomes also varied in some of the reisolates, mostly by activity switching of phase-variable methyltransferase (MTase) genes. The observed in vivo mutation spectrum was remarkable for a very high proportion of nonsynonymous mutations. Although the data showed substantial within-strain genome diversity in the challenge strain, most antrum and corpus reisolates from the same volunteers were highly similar to each other, indicating that the challenge infection represents a major selective bottleneck shaping the transmitted population. Our findings suggest rapid in vivo selection of H. pylori during early-phase infection providing adaptation to different individuals by common mechanisms of genetic and epigenetic alterations.
Collapse
|
108
|
Arnolds KL, Martin CG, Lozupone CA. Blood type and the microbiome- untangling a complex relationship with lessons from pathogens. Curr Opin Microbiol 2020; 56:59-66. [PMID: 32663769 PMCID: PMC10104170 DOI: 10.1016/j.mib.2020.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
The complex communities of microbes that constitute the human microbiome are influenced by host and environmental factors. Here, we address how a fundamental aspect of human biology, blood type, contributes to shaping this microscopic ecosystem. Although this question remains largely unexplored, we glean insights from decades of work describing relationships between pathogens and blood type. The bacterial strategies, molecular mechanisms, and host responses that shaped those relationships may parallel those that characterize how blood type and commensals interact. Understanding these nuanced interactions will expand our capacity to analyze and manipulate the human microbiome.
Collapse
Affiliation(s)
- Kathleen L Arnolds
- Department of Immunology and Microbiology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Casey G Martin
- Department of Immunology and Microbiology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Lozupone
- Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
109
|
Gilmiyarova FN, Kolotyeva NA, Kuzmicheva VI, Gusyakova OA, Borodina IA, Baisheva GM, Selezneva IA. [Blood group and human diseases (review of literature).]. Klin Lab Diagn 2020; 65:216-221. [PMID: 32227726 DOI: 10.18821/0869-2084-2020-65-4-216-221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
AB0 blood group antigens were discovered over a century ago; however, it is still important to study their role in development of various pathological conditions. Today it is known that antigenic determinants of this blood group are present not only on erythrocyte membrane but also on other cells and tissues: platelets, gastrointestinal epithelium and salivary glands, respiratory system cells. In the last decade, a large number of studies have appeared to reveal the relationship between a specific disease and blood group type, meta-analyses have been published. Previously, the authors have studied the metabolic status, cell composition and coagulation profile of clinically healthy individuals for more than on 180,000 donations, that allowed to identify groupspecific features for each blood group. This review presents generalized data on the association of such pathological conditions as coronary heart disease, thromboembolic complications, tumors of various localizations, inflammatory and destructive oral diseases, psychiatric and some infectious diseases with the presence or absence of antigenic determinants A and B. Carriers of blood group 0 (I) are generally more resistant to diseases, with the exception of H.pylori-associated gastrointestinal diseases. Carriers of «antigenic» blood groups A (II), B (III), AB (IV) are more susceptible to development of infectious, cardiovascular and cancer diseases. The presented data demonstrate clinical significance of the definition of group typing not only for selection of blood and its components during transfusion and transplantation, but also for diagnostics, determination of risk group and tactics for treatment patients with different nosologies.
Collapse
Affiliation(s)
| | - N A Kolotyeva
- Samara State Medical University, 443099, Samara, Russia
| | | | - O A Gusyakova
- Samara State Medical University, 443099, Samara, Russia
| | - I A Borodina
- Samara State Medical University, 443099, Samara, Russia
| | - G M Baisheva
- Samara State Medical University, 443099, Samara, Russia
| | - I A Selezneva
- Samara State Medical University, 443099, Samara, Russia
| |
Collapse
|
110
|
Outer inflammatory protein of Helicobacter pylori impacts IL-8 expression, adherence, cell apoptosis and cell cycle of gastric cells independent of its copy number. Med Microbiol Immunol 2020; 209:621-630. [PMID: 32607764 DOI: 10.1007/s00430-020-00688-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Outer inflammatory protein (OipA) is an important virulence factor of Helicobacter pylori (H. pylori), but the correlation between oipA copy number and its virulence remains unknown. The study was designed to investigate whether the duplicate oipA gene loci showed more virulent than one oipA gene in vitro. H. pylori strain CCS9803 (China Chongqing Strain 9803) that carries duplicate oipA loci was used to construct one or two oipA knockout mutant strain, which was further verified by qPCR and western blot. Gastric epithelial cells AGS and GES-1 were infected with wild-type (WT) or oipA mutants for 6 or 24 h. The expression levels of IL-8, bacterial adhesion, cell apoptosis and cell cycle were performed to analyze the function of oipA. The WT and oipA mutant strains induce significantly higher mRNA and protein levels of IL-8 than the uninfected group (P < 0.05), but only oipA2 mutants induced significantly decreased expression levels than the WT-infected group (P < 0.05). Adherence to gastric cells was significantly decreased by inactivated two oipA loci (P < 0.05). The WT strain caused a significant rising proportion of early apoptosis cell, which had dropped after duplicate oipA genes were both knockout (P < 0.05). WT and oipA1 mutants failed to affect cell cycle; however, the oipA2 mutants increased M phase and reduced S phase when compared to the uninfected group. In conclusion, our study demonstrated that oipA impacts IL-8 expression, adherence, cell apoptosis and cell cycle of gastric cells independent of its gene copy number.
Collapse
|
111
|
Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur J Clin Microbiol Infect Dis 2020; 39:1821-1830. [PMID: 32557327 PMCID: PMC7299134 DOI: 10.1007/s10096-020-03948-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is associated with some gastric diseases, such as gastritis, peptic ulcer, and gastric cancer. CagA and VacA are known virulence factors of H. pylori, which play a vital role in severe clinical outcomes. Additionally, the expression of outer membrane proteins (OMPs) helps H. pylori attach to gastric epithelial cells at the primary stage and increases the virulence of H. pylori. In this review, we have summarized the paralogs of H. pylori OMPs, their genomic loci, and the different receptors of OMPs identified so far. We focused on five OMPs, BabA (HopS), SabA (HopP), OipA (HopH), HopQ, and HopZ, and one family of OMPs: Hom. We highlight the coexpression of OMPs with other virulence factors and their relationship with clinical outcomes. In conclusion, OMPs are closely related to the pathogenic processes of adhesion, colonization, persistent infection, and severe clinical consequences. They are potential targets for the prevention and treatment of H. pylori–related diseases.
Collapse
Affiliation(s)
- Chenjing Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Yao Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shunfu Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
112
|
Is ABO blood group a risk or prognostic factor for patients with endometrioid endometrial cancer? A retrospective analysis in Germany. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 18:465-470. [PMID: 32530401 DOI: 10.2450/2020.002-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND A relationship is known to exist between gastric and pancreatic cancers and ABO antigens, caused by various immune modulations related to the ABO blood group of the patient. A similar relationship with regard to gynaecological cancers remains controversial. MATERIALS AND METHODS Patients who underwent surgery for endometrioid endometrial cancer in International Federation of Gynaecology and Obstetrics (FIGO) stage I, II, III or IV from 2006 to 2018 were identified. The research explored the existence of a relationship between the patients' blood group or Rhesus factor and the incidence of endometrial cancer, grade (G1, G2, G3), FIGO stage, nodal status, recurrence, menopausal status, parity, and body mass index. Statistical methods such as the chi-square test, analysis of variance and the Scheffé post-hoc test were used. RESULTS Two hundred and two patients with endometrioid endometrial cancer were included: 96 had blood group A, 19 blood group B, 75 blood group 0, and 12 had blood group AB. This distribution corresponds to the general blood group distribution in Germany. The vast majority of the dependent variables, such as grade, FIGO stage, nodal status or recurrence were not significantly associated with ABO blood group or Rhesus factor status. The relative frequencies of G1 and G3 endometrial cancers with respect to blood group were similar. Menopausal status, parity, and body mass index were not related to more advanced FIGO stages at initial diagnosis or to ABO blood group. DISCUSSION Blood group screening would probably not be helpful in the diagnosis of endometrioid endometrial carcinomas in early stages compared to the current gold standard. Furthermore, a specific blood group does not increase either the risk of recurrence or the risk of a dedifferentiated type of endometrial carcinoma.
Collapse
|
113
|
Long M, Ní Cheallaigh A, Reihill M, Oscarson S, Lahmann M. Synthesis of type 1 Lewis b hexasaccharide antigen structures featuring flexible incorporation of l-[U- 13C 6]-fucose for NMR binding studies. Org Biomol Chem 2020; 18:4452-4458. [PMID: 32478348 DOI: 10.1039/d0ob00426j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While 13C-labelled proteins are common tools in NMR studies, lack of access to 13C-labelled carbohydrate structures has restricted their use. l-Fucose is involved in a wide range of physiological and pathophysiological processes in mammalian organisms. Here, l-[U-13C6]-Fuc labelled type I Lewis b (Leb) structures have been synthesised for use in NMR binding studies with the Blood-group Antigen Binding Adhesin (BabA), a membrane-bound protein from the bacterium Helicobacter pylori. As part of this work, an efficient synthesis of a benzylated l-[U-13C6]-Fuc thioglycoside donor from l-[U-13C6]-Gal has been developed. The design and synthesis of an orthogonally protected tetrasaccharide precursor enabled controlled introduction of one or two 13C-labelled or non-labelled fucosyl residues prior to global deprotection. NMR analysis showed that it is straightforward to assign the anomeric centres as well as the H-5 positions to the individual fucosyl residues which are relevant for NMR binding studies.
Collapse
Affiliation(s)
- Mark Long
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Aisling Ní Cheallaigh
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, IE
| | - Mark Reihill
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, IE
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, IE
| | - Martina Lahmann
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
114
|
Kpoghomou MA, Wang J, Wang T, Jin G. Association of Helicobacter pylori babA2 gene and gastric cancer risk: a meta-analysis. BMC Cancer 2020; 20:465. [PMID: 32448131 PMCID: PMC7247142 DOI: 10.1186/s12885-020-06962-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Background The association of Helicobacter pylori (H. pylori) babA2 gene with gastric cancer (GC) was reported by several studies, but results were inconsistent. This meta-analysis was performed to investigate the relationship between H. pylori babA2 gene and GC risk. Methods Case-control studies involving the association between H. pylori babA2 gene and GC risk were systematically identified from PubMed databases. A meta-analysis was used to pool studies and to estimate odds ratios (ORs) with 95% confidence intervals (CIs) of H. pylori babA2 gene associated with GC risk. Results Twenty studies were identified with a total of 1289 GC cases and 1081 controls. H. pylori babA2 gene was associated with an increased risk of GC by 2.05 fold (95% CI, 1.30–3.24, P = 0.002). In subgroup analysis, we found that H. pylori babA2 gene was significantly associated with GC risk in Asian population (OR = 2.63, 95% CI: 1.36–5.09 P = 0.004) but not in South American population (OR = 1.35, 95% CI: 0.69–2.64, P = 0.379). Conclusions This meta-analysis indicates that H. pylori babA2 gene may be associated with increased risk of GC, especially in Asian population.
Collapse
Affiliation(s)
- Marce-Amara Kpoghomou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jinchen Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guanfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
115
|
Pimentel G, Burnand D, Münger LH, Pralong FP, Vionnet N, Portmann R, Vergères G. Identification of Milk and Cheese Intake Biomarkers in Healthy Adults Reveals High Interindividual Variability of Lewis System-Related Oligosaccharides. J Nutr 2020; 150:1058-1067. [PMID: 32133503 PMCID: PMC7198293 DOI: 10.1093/jn/nxaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The use of biomarkers of food intake (BFIs) in blood and urine has shown great promise for assessing dietary intake and complementing traditional dietary assessment tools whose use is prone to misreporting. OBJECTIVE Untargeted LC-MS metabolomics was applied to identify candidate BFIs for assessing the intake of milk and cheese and to explore the metabolic response to the ingestion of these foods. METHODS A randomized controlled crossover study was conducted in healthy adults [5 women, 6 men; age: 23.6 ± 5.0 y; BMI (kg/m2): 22.1 ± 1.7]. After a single isocaloric intake of milk (600 mL), cheese (100 g), or soy-based drink (600 mL), serum and urine samples were collected postprandially up to 6 h and after fasting after 24 h. Untargeted metabolomics was conducted using LC-MS. Discriminant metabolites were selected in serum by multivariate statistical analysis, and their mass distribution and postprandial kinetics were compared. RESULTS Serum metabolites discriminant for cheese intake had a significantly lower mass distribution than metabolites characterizing milk intake (P = 4.1 × 10-4). Candidate BFIs for milk or cheese included saccharides, a hydroxy acid, amino acids, amino acid derivatives, and dipeptides. Two serum oligosaccharides, blood group H disaccharide (BGH) and Lewis A trisaccharide (LeA), specifically reflected milk intake but with high interindividual variability. The 2 oligosaccharides showed related but opposing trends: subjects showing an increase in either oligosaccharide did not show any increase in the other oligosaccharide. This result was confirmed in urine. CONCLUSIONS New candidate BFIs for milk or cheese could be identified in healthy adults, most of which were related to protein metabolism. The increase in serum of LeA and BGH after cow-milk intake in adults calls for further investigations considering the beneficial health effects on newborns of such oligosaccharides in maternal milk. The trial is registered at clinicaltrials.gov as NCT02705560.
Collapse
Affiliation(s)
- Grégory Pimentel
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - David Burnand
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - Linda H Münger
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - François P Pralong
- Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Reto Portmann
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| | - Guy Vergères
- Federal Department of Economic Affairs, Education, and Research, Agroscope, Bern, Switzerland
| |
Collapse
|
116
|
Nudel R, Appadurai V, Schork AJ, Buil A, Bybjerg-Grauholm J, Børglum AD, Daly MJ, Mors O, Hougaard DM, Mortensen PB, Werge T, Nordentoft M, Thompson WK, Benros ME. A large population-based investigation into the genetics of susceptibility to gastrointestinal infections and the link between gastrointestinal infections and mental illness. Hum Genet 2020; 139:593-604. [PMID: 32152699 PMCID: PMC7170821 DOI: 10.1007/s00439-020-02140-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/14/2020] [Indexed: 01/04/2023]
Abstract
Gastrointestinal infections can be life threatening, but not much is known about the host's genetic contribution to susceptibility to gastrointestinal infections or the latter's association with psychiatric disorders. We utilized iPSYCH, a genotyped population-based sample of individuals born between 1981 and 2005 comprising 65,534 unrelated Danish individuals (45,889 diagnosed with mental disorders and 19,645 controls from a random population sample) in which all individuals were linked utilizing nationwide population-based registers to estimate the genetic contribution to susceptibility to gastrointestinal infections, identify genetic variants associated with gastrointestinal infections, and examine the link between gastrointestinal infections and psychiatric and neurodevelopmental disorders. The SNP heritability of susceptibility to gastrointestinal infections ranged from 3.7% to 6.4% on the liability scale. Significant correlations were found between gastrointestinal infections and the combined group of mental disorders (OR = 2.09; 95% CI: 1.82-2.4, P = 1.87 × 10-25). Correlations with autism spectrum disorder, attention deficit hyperactivity disorder, and depression were also significant. We identified a genome-wide significant locus associated with susceptibility to gastrointestinal infections (OR = 1.13; 95% CI: 1.08-1.18, P = 2.9 × 10-8), where the top SNP was an eQTL for the ABO gene. The risk allele was associated with reduced ABO expression, providing, for the first time, genetic evidence to support previous studies linking the O blood group to gastrointestinal infections. This study also highlights the importance of integrative work in genetics, psychiatry, infection, and epidemiology on the road to translational medicine.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University and Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus Genome Center, Aarhus, Denmark
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - Preben Bo Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Kildegaardsvej 28, Entrance 15, 4th floor, 2900, Hellerup, Denmark
| | - Wesley K Thompson
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Family Medicine and Public Health, Division of Biostatistics, University of California, San Diego, CA, USA
| | - Michael E Benros
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Kildegaardsvej 28, Entrance 15, 4th floor, 2900, Hellerup, Denmark.
| |
Collapse
|
117
|
Mthembu YH, Jin C, Padra M, Liu J, Edlund JO, Ma H, Padra J, Oscarson S, Borén T, Karlsson NG, Lindén SK, Holgersson J. Recombinant mucin-type proteins carrying LacdiNAc on different O-glycan core chains fail to support H. pylori binding. Mol Omics 2020; 16:243-257. [PMID: 32267274 DOI: 10.1039/c9mo00175a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The β4-N-acetylgalactosaminyltransferase 3 (B4GALNT3) transfers GalNAc in a β1,4-linkage to GlcNAc forming the LacdiNAc (LDN) determinant on oligosaccharides. The LacdiNAc-binding adhesin (LabA) has been suggested to mediate attachment of Helicobacter pylori to the gastric mucosa via binding to the LDN determinant. The O-glycan core chain specificity of B4GALNT3 is poorly defined. We investigated the specificity of B4GALNT3 on GlcNAc residues carried by O-glycan core 2, core 3 and extended core 1 precursors using transient transfection of CHO-K1 cells and a mucin-type immunoglobulin fusion protein as reporter protein. Binding of the LabA-positive H. pylori J99 and 26695 strains to mucin fusion proteins carrying the LDN determinant on different O-glycan core chains and human gastric mucins with and without LDN was assessed in a microtiter well-based binding assay, while the binding of 125I-LDN-BSA to various clinical H. pylori isolates was assessed in solution. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and western blotting confirmed the requirement of a terminal GlcNAc for B4GALNT3 activity. B4GALNT3 added a β1,4-linked GalNAc to GlcNAc irrespective of whether the latter was carried by a core 2, core 3 or extended core 1 chain. No LDN-mediated adhesion of H. pylori strains 26 695 and J99 to LDN determinants on gastric mucins or a mucin-type fusion protein carrying core 2, 3 and extended core 1 O-glycans were detected in a microtiter well-based adhesion assay and no binding of a 125I-labelled LDN-BSA neoglycoconjugate to clinical H. pylori isolates was identified.
Collapse
Affiliation(s)
- Yolanda H Mthembu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Boniface K, Byars SG, Cowley D, Kirkwood CD, Bines JE. Human Neonatal Rotavirus Vaccine (RV3-BB) Produces Vaccine Take Irrespective of Histo-Blood Group Antigen Status. J Infect Dis 2020; 221:1070-1078. [PMID: 31763671 PMCID: PMC7075413 DOI: 10.1093/infdis/jiz333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND VP4 [P] genotype binding specificities of rotaviruses and differential expression of histo-blood group antigens (HBGAs) between populations may contribute to reduced efficacy against severe rotavirus disease. P[6]-based rotavirus vaccines could broaden protection in such settings, particularly in Africa, where the Lewis-negative phenotype and P[6] rotavirus strains are common. METHODS The association between HBGA status and G3P[6] rotavirus vaccine (RV3-BB) take was investigated in a phase 2A study of RV3-BB vaccine involving 46 individuals in Dunedin, New Zealand, during 2012-2014. FUT2 and FUT3 genotypes were determined from DNA extracted from stool specimens, and frequencies of positive cumulative vaccine take, defined as an RV3-BB serum immune response (either immunoglobulin A or serum neutralizing antibody) and/or stool excretion of the vaccine strain, stratified by HBGA status were determined. RESULTS RV3-BB produced positive cumulative vaccine take in 29 of 32 individuals (91%) who expressed a functional FUT2 enzyme (the secretor group), 13 of 13 (100%) who were FUT2 null (the nonsecretor group), and 1 of 1 with reduced FUT2 activity (i.e., a weak secretor); in 37 of 40 individuals (93%) who expressed a functional FUT3 enzyme (the Lewis-positive group) and 3 of 3 who were FUT3 null (the Lewis-negative group); and in 25 of 28 Lewis-positive secretors (89%), 12 of 12 Lewis-positive nonsecretors (100%), 2 of 2 Lewis-negative secretors, and 1 of 1 Lewis-negative weak secretor. CONCLUSIONS RV3-BB produced positive cumulative vaccine take irrespective of HBGA status. RV3-BB has the potential to provide an improved level of protection in settings where P[6] rotavirus disease is endemic, irrespective of the HBGA profile of the population.
Collapse
Affiliation(s)
- Karen Boniface
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
| | - Sean G Byars
- Melbourne School of Population and Global Health, Seattle, Washington
| | - Daniel Cowley
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
| | - Carl D Kirkwood
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
- Bill and Melinda Gates Foundation, Seattle, Washington
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville, Australia
| |
Collapse
|
119
|
Liu F, Fu J, Bergstrom K, Shan X, McDaniel JM, McGee S, Bai X, Chen W, Xia L. Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer. J Exp Med 2020; 217:e20182325. [PMID: 31645367 PMCID: PMC7037257 DOI: 10.1084/jem.20182325] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Core 1-derived mucin-type O-glycans (O-glycans) are a major component of gastric mucus with an unclear role. To address this, we generated mice lacking gastric epithelial O-glycans (GEC C1galt1-/-). GEC C1galt1-/- mice exhibited spontaneous gastritis that progressed to adenocarcinoma with ∼80% penetrance by 1 yr. GEC C1galt1-/- gastric epithelium exhibited defective expression of a major mucus forming O-glycoprotein Muc5AC relative to WT controls, which was associated with impaired gastric acid homeostasis. Inflammation and tumorigenesis in GEC C1galt1-/- stomach were concurrent with activation of caspases 1 and 11 (Casp1/11)-dependent inflammasome. GEC C1galt1-/- mice genetically lacking Casp1/11 had reduced gastritis and gastric cancer progression. Notably, expression of Tn antigen, a truncated form of O-glycan, and CASP1 activation was associated with tumor progression in gastric cancer patients. These results reveal a critical role of O-glycosylation in gastric homeostasis and the protection of the gastric mucosa from Casp1-mediated gastric inflammation and cancer.
Collapse
Affiliation(s)
- Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kirk Bergstrom
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - J. Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Xia Bai
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
120
|
King JR, Varadé J, Hammarström L. Fucosyltransferase Gene Polymorphisms and Lewisb-Negative Status Are Frequent in Swedish Newborns, With Implications for Infectious Disease Susceptibility and Personalized Medicine. J Pediatric Infect Dis Soc 2019; 8:507-518. [PMID: 30544260 DOI: 10.1093/jpids/piy085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/26/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in the fucosyltransferase genes FUT2 and FUT3 have been associated with susceptibility to various infectious and inflammatory disorders. FUT variations influence the expression of human histo-blood group antigens (HBGAs) (H-type 1 and Lewis), which are highly expressed in the gut and play an important role in microbial attachment, metabolism, colonization, and shaping of the microbiome. In particular, FUT polymorphisms confer susceptibility to specific rotavirus and norovirus genotypes, which has important global health implications. METHODS We designed a genotyping method using a nested polymerase chain reaction approach to determine the frequency of SNPs in FUT2 and FUT3, thereby inferring the prevalence of Lewisb-positive, Lewisb-negative, secretor, and nonsecretor phenotypes in 520 Swedish newborns. RESULTS There was an increased frequency of homozygotes for the minor allele for 1 SNP in FUT2 and 4 SNPs in FUT3. Overall, 37.3% of newborns were found to have Lewis b negative phenotypes (Le (a+b-) or Le (a-b-). Using our new, sensitive genotyping method, we were able to genetically define the Le (a-b-) individuals based on their secretor status and found that the frequency of Lewis b negative newborns in our cohort was 28%. CONCLUSIONS Given the high frequency of fucosyltransferase polymorphisms observed in our newborn cohort and the implications for disease susceptibility, FUT genotyping might play a future role in personalized health care, including recommendations for disease screening, therapy, and vaccination.
Collapse
Affiliation(s)
- Jovanka R King
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital Campus, and Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, South Australia
| | - Jezabel Varadé
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
121
|
Xue J, Li L, Li F, Li N, Li T, Li C. Expression of Lewis (b) blood group antigen interferes with oral dienogest therapy among women with adenomyosis. J Reprod Immunol 2019; 137:103079. [PMID: 31927399 DOI: 10.1016/j.jri.2019.103079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/03/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022]
Abstract
Adenomyosis is frequently observed in premenopausal women, and oral dienogest is the recommended treatment to target the underlying pathology and improve the symptoms. This retrospective study investigated the association of Lewis (b) antigen expression with outcomes of dienogest therapy among women with adenomyosis. Records from a total of 342 adenomyosis patients were analysed, who were prescribed with oral dienogest for a maximum of 16 weeks. Expression levels of Lewis (b) antigen were measured to categorize all patients into either Le (b)- and Le(b)+ groups. Treatment outcomes, in terms of uterine volume, menstrual flow, pain symptoms and quality of life, were compared between the two groups. While oral dienogest therapy showed considerable clinical efficacy in both groups of patients, the extent of improvements in treatment outcomes was significantly more pronounced in Le (b)- group than Le (b)+ group, with respect to treatment time, uterine symptoms, menstrual flow, pain symptoms and quality of life. No difference in adverse effects was observed between the two groups. Expression of Lewis (b) blood group antigen interferes with oral dialogist therapy among women with adenomyosis.
Collapse
Affiliation(s)
- Jing Xue
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Feifei Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
122
|
Hanafiah A, Lopes BS. Genetic diversity and virulence characteristics of Helicobacter pylori isolates in different human ethnic groups. INFECTION GENETICS AND EVOLUTION 2019; 78:104135. [PMID: 31837482 DOI: 10.1016/j.meegid.2019.104135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is the most predominant bacterium in almost 50% of the world's population and colonization causes a persistent inflammatory response leading to chronic gastritis. It shows high genetic diversity and individuals generally harbour a distinct bacterial population. With the advancement of whole-genome sequencing technology, new H. pylori subpopulations have been identified that show admixture between various H. pylori strains. Genotypic variation of H. pylori may be related to the presence of virulence factors among strains and is associated with different outcomes of infection in different individuals. This review summarizes the genetic diversity in H. pylori strain populations and its virulence characteristics responsible for variable outcomes in different ethnic groups.
Collapse
Affiliation(s)
- Alfizah Hanafiah
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Bruno S Lopes
- Department of Medical Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, 0:025 Polwarth Building, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
123
|
Muc5ac null mice are predisposed to spontaneous gastric antro-pyloric hyperplasia and adenomas coupled with attenuated H. pylori-induced corpus mucous metaplasia. J Transl Med 2019; 99:1887-1905. [PMID: 31399638 PMCID: PMC6927550 DOI: 10.1038/s41374-019-0293-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide and is strongly associated with chronic Helicobacter pylori (Hp) infection. The ability of Hp to closely adhere to the gastric surface protective mucous layer containing mucins (MUC in humans and Muc in animals), primarily Muc5ac, is integral in the stepwise pathogenesis from gastritis to cancer. To probe the role of Muc5ac in Hp-induced gastric pathology, Muc5ac-/- and Muc5ac+/+ (WT) mice were experimentally infected with Hp Sydney strain (SS1). At 16 weeks and 32 weeks post infection (wpi), groups of mice were euthanized and evaluated for the following: gastric histopathological parameters, immunohistochemical expression of mucins (Muc5ac, Muc1, Muc2), Trefoil factor family proteins (Tff1 and Tff2), Griffonia (Bandeiraea) simplicifolia lectin II (GSL II) (mucous metaplasia marker) and Clusterin (Spasmolytic Polypeptide Expressing Metaplasia (SPEM) marker), Hp colonization density by qPCR and gastric cytokine mRNA levels. Our results demonstrate that Muc5ac-/- mice developed spontaneous antro-pyloric proliferation, adenomas and in one case with neuroendocrine differentiation; these findings were independent of Hp infection along with strong expression levels of Tff1, Tff2 and Muc1. Hp-infected Muc5ac-/- mice had significantly lowered gastric corpus mucous metaplasia at 16 wpi and 32 wpi (P = 0.0057 and P = 0.0016, respectively), with a slight reduction in overall gastric corpus pathology. GSII-positive mucous neck cells were decreased in Hp-infected Muc5ac-/- mice compared to WT mice and clusterin positivity was noted within metaplastic glands in both genotypes following Hp infection. Additionally, Hp colonization densities were significantly higher in Muc5ac-/- mice compared to WT at 16 wpi in both sexes (P = 0.05) along with a significant reduction in gastric Tnfα (16 wpi-males and females, P = 0.017 and P = 0.036, respectively and 32 wpi-males only, P = 0.025) and Il-17a (16 wpi-males) (P = 0.025). Taken together, our findings suggest a protective role for MUC5AC/Muc5ac in maintaining gastric antral equilibrium and inhibiting Hp colonization and associated inflammatory pathology.
Collapse
|
124
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
125
|
Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019; 7:305. [PMID: 31828053 PMCID: PMC6849485 DOI: 10.3389/fpubh.2019.00305] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Most of the human pandemics reported to date can be classified as zoonoses. Among these, there is a long history of infectious diseases that have spread from non-human primates (NHP) to humans. For millennia, indigenous groups that depend on wildlife for their survival were exposed to the risk of NHP pathogens' transmission through animal hunting and wild meat consumption. Usually, exposure is of no consequence or is limited to mild infections. In rare situations, it can be more severe or even become a real public health concern. Since the emergence of acquired immune deficiency syndrome (AIDS), nobody can ignore that an emerging infectious diseases (EID) might spread from NHP into the human population. In large parts of Central Africa and Asia, wildlife remains the primary source of meat and income for millions of people living in rural areas. However, in the past few decades the risk of exposure to an NHP pathogen has taken on a new dimension. Unprecedented breaking down of natural barriers between NHP and humans has increased exposure to health risks for a much larger population, including people living in urban areas. There are several reasons for this: (i) due to road development and massive destruction of ecosystems for agricultural needs, wildlife and humans come into contact more frequently; (ii) due to ecological awareness, many long distance travelers are in search of wildlife discovery, with a particular fascination for African great apes; (iii) due to the attraction for ancient temples and mystical practices, others travelers visit Asian places colonized by NHP. In each case, there is a risk of pathogen transmission through a bite or another route of infection. Beside the individual risk of contracting a pathogen, there is also the possibility of starting a new pandemic. This article reviews the known cases of NHP pathogens' transmission to humans whether they are hunters, travelers, ecotourists, veterinarians, or scientists working on NHP. Although pathogen transmission is supposed to be a rare outcome, Rabies virus, Herpes B virus, Monkeypox virus, Ebola virus, or Yellow fever virus infections are of greater concern and require quick countermeasures from public health professionals.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Hacene Medkour
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
126
|
Paraskevopoulou V, Artiaga VG, Rowlinson R, Winkler GS, Gellert P, Stolnik S, Overman R, Falcone FH. Introduction of a C-terminal hexa-lysine tag increases thermal stability of the LacDiNac binding adhesin (LabA) exodomain from Helicobacter pylori. Protein Expr Purif 2019; 163:105446. [DOI: 10.1016/j.pep.2019.105446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 12/20/2022]
|
127
|
Influence of histo blood group antigen expression on susceptibility to enteric viruses and vaccines. Curr Opin Infect Dis 2019; 32:445-452. [DOI: 10.1097/qco.0000000000000571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
128
|
Maurer MA, Meyer L, Bianchi M, Turner HL, Le NPL, Steck M, Wyrzucki A, Orlowski V, Ward AB, Crispin M, Hangartner L. Glycosylation of Human IgA Directly Inhibits Influenza A and Other Sialic-Acid-Binding Viruses. Cell Rep 2019; 23:90-99. [PMID: 29617676 PMCID: PMC5905402 DOI: 10.1016/j.celrep.2018.03.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/02/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022] Open
Abstract
Immunoglobulin A (IgA) plays an important role in protecting our mucosal surfaces from viral infection, in maintaining a balance with the commensal bacterial flora, and in extending maternal immunity via breast feeding. Here, we report an additional innate immune effector function of human IgA molecules in that we demonstrate that the C-terminal tail unique to IgA molecules interferes with cell-surface attachment of influenza A and other enveloped viruses that use sialic acid as a receptor. This antiviral activity is mediated by sialic acid found in the complex N-linked glycans at position 459. Antiviral activity was observed even in the absence of classical antibody binding via the antigen binding sites. Our data, therefore, show that the C-terminal tail of IgA subtypes provides an innate line of defense against viruses that use sialic acid as a receptor and the role of neuraminidases present on these virions. Heterosubtypic IgA1 or IgA2 antibodies neutralize virus much more potently than IgG1 Sialic acid in IgA’s C-terminal tail competes with viral receptor binding This may represent an innate line of defense against viral pathogens
Collapse
Affiliation(s)
- Michael A Maurer
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Larissa Meyer
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matteo Bianchi
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Ngoc P L Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Marco Steck
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Arkadiusz Wyrzucki
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vanessa Orlowski
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Center for Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Lars Hangartner
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
129
|
Hu Y, Kumru OS, Xiong J, Antunez LR, Hickey J, Wang Y, Cavacini L, Klempner M, Joshi SB, Volkin DB. Preformulation Characterization and Stability Assessments of Secretory IgA Monoclonal Antibodies as Potential Candidates for Passive Immunization by Oral Administration. J Pharm Sci 2019; 109:407-421. [PMID: 31369743 PMCID: PMC6941217 DOI: 10.1016/j.xphs.2019.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease among children in developing countries, and there are no licensed vaccines to protect against ETEC. Passive immunization by oral delivery of ETEC-specific secretory IgAs (sIgAs) could potentially provide an alternative approach for protection in targeted populations. In this study, a series of physiochemical techniques and an in vitro gastric digestion model were used to characterize and compare key structural attributes and stability profiles of 3 anti-heat-labile enterotoxin mAbs (sIgA1, sIgA2, and IgG1 produced in CHO cells). The mAbs were evaluated in terms of primary structure, N-linked glycan profiles, size and aggregate content, relative apparent solubility, conformational stability, and in vitro antigen binding. Compared to IgG1 mAb, sIgA1 and sIgA2 mAbs showed increased sample heterogeneity, especially in terms of N-glycan composition and the presence of higher molecular weight species. The sIgA mAbs showed overall better physical stability and were more resistant to loss of antigen binding activity during incubation at low pH, 37°C with pepsin. These results are discussed in terms of future challenges to design stable, low-cost formulations of sIgA mAbs as an oral supplement for passive immunization to protect against enteric diseases in the developing world.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047
| | - Jian Xiong
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047
| | - Lorena R Antunez
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047
| | - John Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center (VAFC), University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
130
|
Guberman M, Bräutigam M, Seeberger PH. Automated glycan assembly of Lewis type I and II oligosaccharide antigens. Chem Sci 2019; 10:5634-5640. [PMID: 31293748 PMCID: PMC6552968 DOI: 10.1039/c9sc00768g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human blood group related glycan antigens are fucosylated (neo-)lactoseries oligosaccharides that play crucial roles in pathogenic processes. Lewis type-II-chain antigens mark the surface of cancer cells, but are also mediators of bacterial infections. To investigate the biological roles of Lewis type glycans a host of synthetic approaches has been developed. Here, we illustrate how automated glycan assembly (AGA) using a set of six monosaccharide building blocks provides quick access to a series of more than ten defined Lewis type-I and type-II antigens, including Lex, Ley, Lea, Leb and KH-1. Glycans with up to three α-fucose branches were assembled following a strictly linear approach and obtained in excellent stereoselectivity and purity.
Collapse
Affiliation(s)
- Mónica Guberman
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| | - Maria Bräutigam
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| |
Collapse
|
131
|
Stowell CP, Stowell SR. Biologic roles of the ABH and Lewis histo-blood group antigens Part I: infection and immunity. Vox Sang 2019; 114:426-442. [PMID: 31070258 DOI: 10.1111/vox.12787] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
The ABH and Lewis antigens were among the first of the human red blood cell polymorphisms to be identified and, in the case of the former, play a dominant role in transfusion and transplantation. But these two therapies are largely twentieth century innovations, and the ABH and related carbohydrate antigens are not only expressed on a very wide range of human tissues, but were present in primates long before modern humans evolved. Although we have learned a great deal about the biochemistry and genetics of these structures, the biological roles that they play in human health and disease are incompletely understood. This review and its companion, to appear in a later issue of Vox Sanguinis, will focus on a few of the biologic and pathologic processes which appear to be affected by histo-blood group phenotype. The first of the two reviews will explore the interactions of two bacteria with the ABH and Lewis glycoconjugates of their human host cells, and describe the possible connections between the immune response of the human host to infection and the development of the AB-isoagglutinins. The second review will describe the relationship between ABO phenotype and thromboembolic disease, cardio-vascular disease states, and general metabolism.
Collapse
Affiliation(s)
- Christopher P Stowell
- Blood Transfusion Service, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Center for Apheresis, Center for Transfusion and Cellular Therapies, Emory Hospital, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
132
|
Enevold C, Nielsen CH, Molbo D, Lund R, Bendtzen K, Fiehn NE, Holmstrup P. Lewis and AB0 blood group-phenotypes in periodontitis, cardiovascular disease, obesity and stroke. Sci Rep 2019; 9:6283. [PMID: 31000730 PMCID: PMC6472418 DOI: 10.1038/s41598-019-42594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
The AB0 blood group has been linked to ischaemic heart disease, stroke, and periodontal disease, while the Lewis blood group has been linked to ischaemic heart disease and obesity, all of which have been associated with periodontitis. AB0 or Lewis blood group phenotype may therefore constitute common hereditary components predisposing to these disorders. In this study, we investigated if blood group phenotype associated with periodontitis in a subpopulation consisting of 702 participants from a Danish cross-sectional cohort and, secondarily, attempted to confirm their association with hypertension, ischaemic heart disease, stroke, and obesity. No significant association between blood group phenotype and periodontitis was detected, nor were previously reported associations between blood group phenotype and hypertension, ischaemic heart disease, stroke, and obesity confirmed. This may, at least partly, be attributed to differences in study type, outcome definitions, cohort sizes, and population attributable factors. However, our results suggested a strong association between self-reported stroke and the Lewis (a−b−) phenotype (P = 0.0002, OR: 22.28; CI 95: 4.72–131.63).
Collapse
Affiliation(s)
- C Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark.
| | - C H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark.,University of Copenhagen, Faculty of Health and Medical Sciences, Department of Odontology, Copenhagen, Denmark
| | - D Molbo
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Public Health, Section of Social Medicine, Copenhagen, Denmark
| | - R Lund
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Public Health, Section of Social Medicine, Copenhagen, Denmark
| | - K Bendtzen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - N -E Fiehn
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - P Holmstrup
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Odontology, Copenhagen, Denmark
| |
Collapse
|
133
|
Zendehdel A, Roham M. Biological evidence of the relationship between
Helicobacter pylori
and associated extragastric diseases. J Cell Biochem 2019; 120:12128-12140. [PMID: 30977160 DOI: 10.1002/jcb.28681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital Tehran University of Medical Sciences Tehran Iran
| | - Maryam Roham
- Antimicrobial‐Resistant Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
134
|
Colomb F, Giron LB, Trbojevic-Akmacic I, Lauc G, Abdel-Mohsen M. Breaking the Glyco-Code of HIV Persistence and Immunopathogenesis. Curr HIV/AIDS Rep 2019; 16:151-168. [PMID: 30707400 PMCID: PMC6441623 DOI: 10.1007/s11904-019-00433-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Glycoimmunology is an emerging field focused on understanding how immune responses are mediated by glycans (carbohydrates) and their interaction with glycan-binding proteins called lectins. How glycans influence immunological functions is increasingly well understood. In a parallel way, in the HIV field, it is increasingly understood how the host immune system controls HIV persistence and immunopathogenesis. However, what has mostly been overlooked, despite its potential for therapeutic applications, is the role that the host glycosylation machinery plays in modulating the persistence and immunopathogenesis of HIV. Here, we will survey four areas in which the links between glycan-lectin interactions and immunology and between immunology and HIV are well described. For each area, we will describe these links and then delineate the opportunities for the HIV field in investigating potential interactions between glycoimmunology and HIV persistence/immunopathogenesis. RECENT FINDINGS Recent studies show that the human glycome (the repertoire of human glycan structures) plays critical roles in driving or modulating several cellular processes and immunological functions that are central to maintaining HIV infection. Understanding the links between glycoimmunology and HIV infection may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication, functional cure, or improved tolerance of lifelong infection.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Leila B Giron
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb, Croatia
| | | |
Collapse
|
135
|
Gonciarz W, Walencka M, Moran AP, Hinc K, Obuchowski M, Chmiela M. Upregulation of MUC5AC production and deposition of LEWIS determinants by HELICOBACTER PYLORI facilitate gastric tissue colonization and the maintenance of infection. J Biomed Sci 2019; 26:23. [PMID: 30841890 PMCID: PMC6402143 DOI: 10.1186/s12929-019-0515-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori bacteria colonize human gastric mucosa, cause chronic inflammation, peptic ulcers and gastric cancer. Colonization is mediated by H. pylori adhesins, which preferentially bind mucin 5 (MUC5AC) and Lewis (Le) determinants. The aim of this study was to evaluate the influence of H. pylori and their components on MUC5AC production and deposition of LeX/LeY in gastric epithelial cells in relation to bacterial adhesion using Caviae porcellus primary gastric epithelial cells and an in vivo model of experimental H. pylori infection in these animals. Methods MUCA5C and LeX/LeY were induced in vitro by live H. pylori reference strain CCUG 17874 (2 × 107 CFU/ml), H. pylori glycine acid extract (GE), 10 μg/ml; cytotoxin associated gene A (CagA) protein, 1 μl/ml; UreA urease subunit, 5 μg/ml; lipopolysaccharide (LPS) 25 ng/ml and imaged by fluorescence microscopy after anti-MUC5AC or anti-LeX/LeY FITC antibody staining. Bacterial adhesion was imaged by using anti-H. pylori FITC antibodies. The animals were inoculated per os with H. pylori (3 times in 2 days intervals, 1 × 1010 CFU/ml). After 7 or 28 days an infection and inflammation were assessed by histological, serological and molecular methods. Gastric tissue sections of infected and control animals were screend for MUCA5C and LeX, and H. pylori adhesion as above. Results MUC5AC production and deposition of Lewis determinants, especially LeX were upregulated in the milieu of live H. pylori as well as GE, CagA, UreA or LPS in vitro and in vivo during infection, more effectively in the acute (7 days) than in the chronic (28 days) phase of infection. This was related to enhanced adhesion of H. pylori, which was abrogated by anti-MUC5AC and anti-LeX or anti-LeY antibody treatment. Conclusions Modulation of MUCA5C production and LeX/LeY deposition in the gastric mucosa by H. pylori can significantly increase gastric tissue colonization during H. pylori infection.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Maria Walencka
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | - Magdalena Chmiela
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
136
|
Alfarouk KO, Bashir AHH, Aljarbou AN, Ramadan AM, Muddathir AK, AlHoufie STS, Hifny A, Elhassan GO, Ibrahim ME, Alqahtani SS, AlSharari SD, Supuran CT, Rauch C, Cardone RA, Reshkin SJ, Fais S, Harguindey S. The Possible Role of Helicobacter pylori in Gastric Cancer and Its Management. Front Oncol 2019; 9:75. [PMID: 30854333 PMCID: PMC6395443 DOI: 10.3389/fonc.2019.00075] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (HP) is a facultative anaerobic bacterium. HP is a normal flora having immuno-modulating properties. This bacterium is an example of a microorganism inducing gastric cancer. Its carcinogenicity depends on bacteria-host related factors. The proper understanding of the biology of HP inducing gastric cancer offers the potential strategy in the managing of HP rather than eradicating it. In this article, we try to summarize the biology of HP-induced gastric cancer and discuss the current pharmacological approach to treat and prevent its carcinogenicity.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Alfarouk Biomedical Research LLC, Tampa, FL, United States.,Hala Alfarouk Cancer Center, Khartoum, Sudan.,Al-Ghad International College for Applied Medical Sciences, Medina, Saudi Arabia.,American Biosciences, Inc., New York City, NY, United States
| | - Adil H H Bashir
- Hala Alfarouk Cancer Center, Khartoum, Sudan.,Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ahmed N Aljarbou
- College of Pharmacy, Qassim University, Buraydah, Saudi Arabia.,Al-Ghad International College for Applied Medical Sciences, Jeddah, Saudi Arabia
| | | | - Abdel Khalig Muddathir
- Hala Alfarouk Cancer Center, Khartoum, Sudan.,Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sari T S AlHoufie
- Al-Ghad International College for Applied Medical Sciences, Medina, Saudi Arabia.,Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | | | - Gamal O Elhassan
- Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Saad S Alqahtani
- Clinical Pharmacy Department, College of pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | | |
Collapse
|
137
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
138
|
Javed S, Skoog EC, Solnick JV. Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Curr Top Microbiol Immunol 2019; 421:21-52. [PMID: 31123884 DOI: 10.1007/978-3-030-15138-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.
Collapse
Affiliation(s)
- Sundus Javed
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Emma C Skoog
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Jay V Solnick
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA. .,Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
139
|
Sáenz JB, Vargas N, Mills JC. Tropism for Spasmolytic Polypeptide-Expressing Metaplasia Allows Helicobacter pylori to Expand Its Intragastric Niche. Gastroenterology 2019; 156:160-174.e7. [PMID: 30287170 PMCID: PMC6309511 DOI: 10.1053/j.gastro.2018.09.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS In patients with chronic Helicobacter pylori (H pylori) infection, parietal and chief cell atrophy in the gastric corpus, a process known as spasmolytic polypeptide-expressing metaplasia (SPEM), increases the risk for progression to cancer. The relation between H pylori and these metaplastic changes is unclear. We investigated whether H pylori localizes to regions of SPEM. METHODS We developed an in situ adherence assay in which we incubated H pylori with free-floating tissue sections from the gastric corpora of mice; we assessed H pylori distribution along the gastric unit by immunofluorescence. We analyzed the interactions of H pylori with tissue collected from mice with acute SPEM, induced by high-dose tamoxifen. We also evaluated how adhesin-deficient H pylori strains, chemical competition assays, and epithelial glycosylation affected H pylori adhesion to SPEM glands. Mice colonized with the mouse-adapted PMSS1 strain were analyzed for H pylori colonization in vivo during tamoxifen-induced SPEM or after decrease of stomach acid with omeprazole. RESULTS Compared with uninjured glands, H pylori penetrated deep within SPEM glands, in situ, through interaction of its adhesin, SabA, with sialyl-Lewis X, which expanded in SPEM. H pylori markedly increased gastric corpus colonization when SPEM was induced, but this proximal spread reversed in mice allowed to recover from SPEM. Decreasing corpus acidity also promoted proximal spread. However, H pylori penetrated deep within corpus glands in vivo only when sialyl-Lewis X expanded during SPEM. CONCLUSIONS Helicobacter pylori differentially binds SPEM glands in situ and in mice, in large part by interacting with sialyl-Lewis X. Our findings indicate that H pylori expands its niche into the gastric corpus by promoting and exploiting epithelial metaplastic changes that can lead to tumorigenesis.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Nancy Vargas
- Division of Gastroenterology, Department of Internal Medicine, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University in St Louis School of Medicine, St Louis, Missouri; Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University in St Louis School of Medicine, St Louis, Missouri.
| |
Collapse
|
140
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
141
|
Chakrani Z, Robinson K, Taye B. Association Between ABO Blood Groups and Helicobacter pylori Infection: A Meta-Analysis. Sci Rep 2018; 8:17604. [PMID: 30514875 PMCID: PMC6279815 DOI: 10.1038/s41598-018-36006-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
There is no consensus among the existing literature on the relationship between ABO blood groups and risk of Helicobacter pylori infection. However, histo-blood group carbohydrates are proposed to influence the risk of acquiring this pathogen via effects on adhesion to the gastric mucosa. The objective of this meta-analysis was to evaluate the association between ABO blood groups and H. pylori infection. All relevant epidemiological studies published in English (up to October 2017) was retrieved through an extensive systematic literature search of MEDLINE/PubMed databases. Pooled estimates of effects were obtained through the use of fixed and random effects meta-analyses. Individuals with O blood group were more likely to be infected with H. pylori (pooled odds ratio (OR) 1.163; 95% confidence interval (CI) 1.074-1.259; P < 0.001). While individuals with B and AB blood group were less likely to be infected with H. pylori (OR 0.831; 95% CI 0.738-0.935; P = 0.002 and OR 0.709; 95% CI 0.605-0.832; P < 0.001, respectively). The results from this meta-analysis of observational studies suggest an estimated 16.3% increased odds of H. pylori infection amongst individuals with the O blood group. If this observed association is causal, a better understanding of the underlying mechanisms could provide indications to potential prevention strategies for H. pylori infection.
Collapse
Affiliation(s)
- Zakaria Chakrani
- Department of Biology, Colgate University, 13 Oak Dr, Hamilton, 13346, NY, USA
| | - Karen Robinson
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, The University of Nottingham, Nottingham, UK
| | - Bineyam Taye
- Department of Biology, Colgate University, 13 Oak Dr, Hamilton, 13346, NY, USA.
| |
Collapse
|
142
|
Padra M, Adamczyk B, Benktander J, Flahou B, Skoog EC, Padra JT, Smet A, Jin C, Ducatelle R, Samuelsson T, Haesebrouck F, Karlsson NG, Teneberg S, Lindén SK. Helicobacter suis binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes. Virulence 2018; 9:898-918. [PMID: 29638186 PMCID: PMC5955484 DOI: 10.1080/21505594.2018.1460979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter suis colonizes the stomach of most pigs and is the most prevalent non-Helicobacter pylori Helicobacter species found in the human stomach. In the human host, H. suis contributes to the development of chronic gastritis, peptic ulcer disease and MALT lymphoma, whereas in pigs it is associated with gastritis, decreased growth and ulcers. Here, we demonstrate that the level of H. pylori and H. suis binding to human and pig gastric mucins varies between individuals with species dependent specificity. The binding optimum of H. pylori is at neutral pH whereas that of H. suis has an acidic pH optimum, and the mucins that H. pylori bind to are different than those that H. suis bind to. Mass spectrometric analysis of mucin O-glycans from the porcine mucin showed that individual variation in binding is reflected by a difference in glycosylation; of 109 oligosaccharide structures identified, only 14 were present in all examined samples. H. suis binding to mucins correlated with glycans containing sulfate, sialic acid and terminal galactose. Among the glycolipids present in pig stomach, binding to lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer) was identified, and adhesion to Galβ3GlcNAcβ3Galβ4Glc at both acidic and neutral pH was confirmed using other glycoconjugates. Together with that H. suis bound to DNA (used as a proxy for acidic charge), we conclude that H. suis has two binding modes: one to glycans terminating with Galβ3GlcNAc, and one to negatively charged structures. Identification of the glycan structures H. suis interacts with can contribute to development of therapeutic strategies alternative to antibiotics.
Collapse
Affiliation(s)
- Médea Padra
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Barbara Adamczyk
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - John Benktander
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Bram Flahou
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Emma C Skoog
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - János Tamás Padra
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annemieke Smet
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium.,c Laboratorium of Experimental Medicine and Pediatrics , Faculty of Medicine and Health Sciences, University of Antwerp , Antwerp
| | - Chunsheng Jin
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Richard Ducatelle
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Tore Samuelsson
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Freddy Haesebrouck
- b Department of Pathology , Bacteriology and Avian Diseases, Ghent University , Belgium
| | - Niclas G Karlsson
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Susann Teneberg
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Sara K Lindén
- a Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
143
|
Radhakrishnan D, Yamaguchi M, Kawabata S, Ponnuraj K. Streptococcus pneumoniae surface adhesin PfbA and its interaction with erythrocytes and hemoglobin. Int J Biol Macromol 2018; 120:135-143. [PMID: 30125626 DOI: 10.1016/j.ijbiomac.2018.08.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae is one of the major colonizers of human nasopharynx and its surface protein PfbA interacts with host molecules like plasmin(ogen), fibrinogen and fibronectin for colonization. Most of the binding partners of PfbA are glycoproteins. Recently we found that PfbA exhibited high affinity towards carbohydrates. It was reported that S. pneumoniae invades erythrocytes and utilizes them to evade human innate immunity. The results of this study suggested that LPXTG motif containing pneumococcal surface proteins, erythrocyte lipid rafts and erythrocyte actin remodeling are all involved in the invasion mechanism. The erythrocyte cell membrane contains different glycoproteins and glycolipids. Therefore, to find out if PfbA plays any role in erythrocyte binding, we carried out the binding studies of rPfbA49-684 with human red blood cells (RBCs) especially with its surface molecules employing ELISA and Bio Layer Interferometry. The results from these experiments show that rPfbA49-684 has a broad specificity for carbohydrates and remarkable affinity towards RBCs and in particular with extracted surface glycolipids. Further rPfbA49-684 also exhibited moderate affinity towards hemoglobin. Thus the results of the present study provide clear evidence that PfbA can interact with RBCs and this could be one of the important factors in erythrocyte invasion of S. pneumoniae.
Collapse
Affiliation(s)
- Deepthi Radhakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
144
|
Berthenet E, Yahara K, Thorell K, Pascoe B, Meric G, Mikhail JM, Engstrand L, Enroth H, Burette A, Megraud F, Varon C, Atherton JC, Smith S, Wilkinson TS, Hitchings MD, Falush D, Sheppard SK. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biol 2018; 16:84. [PMID: 30071832 PMCID: PMC6090961 DOI: 10.1186/s12915-018-0550-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Helicobacter pylori are stomach-dwelling bacteria that are present in about 50% of the global population. Infection is asymptomatic in most cases, but it has been associated with gastritis, gastric ulcers and gastric cancer. Epidemiological evidence shows that progression to cancer depends upon the host and pathogen factors, but questions remain about why cancer phenotypes develop in a minority of infected people. Here, we use comparative genomics approaches to understand how genetic variation amongst bacterial strains influences disease progression. RESULTS We performed a genome-wide association study (GWAS) on 173 H. pylori isolates from the European population (hpEurope) with known disease aetiology, including 49 from individuals with gastric cancer. We identified SNPs and genes that differed in frequency between isolates from patients with gastric cancer and those with gastritis. The gastric cancer phenotype was associated with the presence of babA and genes in the cag pathogenicity island, one of the major virulence determinants of H. pylori, as well as non-synonymous variations in several less well-studied genes. We devised a simple risk score based on the risk level of associated elements present, which has the potential to identify strains that are likely to cause cancer but will require refinement and validation. CONCLUSION There are a number of challenges to applying GWAS to bacterial infections, including the difficulty of obtaining matched controls, multiple strain colonization and the possibility that causative strains may not be present when disease is detected. Our results demonstrate that bacterial factors have a sufficiently strong influence on disease progression that even a small-scale GWAS can identify them. Therefore, H. pylori GWAS can elucidate mechanistic pathways to disease and guide clinical treatment options, including for asymptomatic carriers.
Collapse
Affiliation(s)
- Elvire Berthenet
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Toyama, Japan
| | - Kaisa Thorell
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Guillaume Meric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jane M Mikhail
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Lars Engstrand
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Enroth
- Systems Biology Research Group, School of Biosciences, University of Skövde, Skövde, Sweden
| | - Alain Burette
- Department of Gastroenterology, Centre Hospitalier Interrégional Edith Cavell/Site de la Basilique, Brussels, USA
| | - Francis Megraud
- Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et des Hélicobacters, Place Amélie Raba Léon, 33076, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France
| | - Christine Varon
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France
| | - John C Atherton
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Sinead Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Matthew D Hitchings
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Daniel Falush
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
145
|
Fan G, Hu D, Peng F, Xu G, Lin X, Liang B, Zhang H, Xia Y, Lin J, Zheng X, Niu W. Different Risk Profiles for the Postsurgical Prognosis of Gastric Cancer Patients with Different Blood Types: The FIESTA Study. J Cancer 2018; 9:2885-2894. [PMID: 30123357 PMCID: PMC6096365 DOI: 10.7150/jca.25408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives: We here attempted to evaluate the prediction of different “ABO” blood groups for postsurgical gastric cancer-specific mortality by using data from the ongoing Fujian prospective investigation of cancer (FIESTA) study. Methods: Initially, a total of 3413 patients with gastric cancer were consecutively enrolled between January 2000 and December 2010 to receive radical gastrectomy, and they were followed up until December 2015. Study patients were divided into the “O+” group and the blood type “O-” group. Results: Of 2781 eligible patients, 1116 (40.1%) were in the “O+” group and 1665 (59.9%) in the “O-” group, with mortality rate of being 45.0% (n = 502) and 45.3% (n = 755), respectively. A 1:1 propensity score match between the “O+” and the “O-” groups was used. After adjustment, neutrophil-lymphocyte ratio (NLR), lymphocyte-monocyte ratio (LMR), high total cholesterol and high low-density lipoprotein cholesterol, had non-overlapping 95% confidence intervals between the “O+” and the “O-” groups and simultaneously had detectable statistical significance in either group only. A forward method in the multivariate-adjusted COX model was employed and there were five shared risk factors between both groups, including diabetes mellitus, low high-density lipoprotein cholesterol, regional lymph node metastasis, tumor size and TNM stage. Further nomogram plot revealed that presurgical risk factors selected can better predict the risk of early gastric cancer-specific mortality (C-index: 0.737 for the “O-” group and 0.751 for the “O+” group). Conclusions: Our findings indicated that the prognostic factors differed between postsurgical gastric cancer patients with “O+” and “O-” blood types.
Collapse
Affiliation(s)
- Guohui Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Dan Hu
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Feng Peng
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guodong Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Binying Liang
- Department of Medical Record, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hejun Zhang
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Xia
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinxiu Lin
- Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiongwei Zheng
- Department of Pathology, Fujian Provincial Cancer Hospital, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
146
|
Kumar P, Kuhlmann FM, Chakraborty S, Bourgeois AL, Foulke-Abel J, Tumala B, Vickers TJ, Sack DA, DeNearing B, Harro CD, Wright WS, Gildersleeve JC, Ciorba MA, Santhanam S, Porter CK, Gutierrez RL, Prouty MG, Riddle MS, Polino A, Sheikh A, Donowitz M, Fleckenstein JM. Enterotoxigenic Escherichia coli-blood group A interactions intensify diarrheal severity. J Clin Invest 2018; 128:3298-3311. [PMID: 29771685 DOI: 10.1172/jci97659] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/03/2018] [Indexed: 12/27/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections are highly prevalent in developing countries, where clinical presentations range from asymptomatic colonization to severe cholera-like illness. The molecular basis for these varied presentations, which may involve strain-specific virulence features as well as host factors, has not been elucidated. We demonstrate that, when challenged with ETEC strain H10407, originally isolated from a case of cholera-like illness, blood group A human volunteers developed severe diarrhea more frequently than individuals from other blood groups. Interestingly, a diverse population of ETEC strains, including H10407, secrete the EtpA adhesin molecule. As many bacterial adhesins also agglutinate red blood cells, we combined the use of glycan arrays, biolayer inferometry, and noncanonical amino acid labeling with hemagglutination studies to demonstrate that EtpA is a dominant ETEC blood group A-specific lectin/hemagglutinin. Importantly, we have also shown that EtpA interacts specifically with glycans expressed on intestinal epithelial cells from blood group A individuals and that EtpA-mediated bacterial-host interactions accelerate bacterial adhesion and effective delivery of both the heat-labile and heat-stable toxins of ETEC. Collectively, these data provide additional insight into the complex molecular basis of severe ETEC diarrheal illness that may inform rational design of vaccines to protect those at highest risk.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - F Matthew Kuhlmann
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - A Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brunda Tumala
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tim J Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clayton D Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - W Shea Wright
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Jeffrey C Gildersleeve
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Fredrick, Maryland, USA
| | - Matthew A Ciorba
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Srikanth Santhanam
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chad K Porter
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Ramiro L Gutierrez
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Michael G Prouty
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Mark S Riddle
- Enteric Disease Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Alexander Polino
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.,Medicine Service, Veterans Affairs Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
147
|
Inshaw JRJ, Cutler AJ, Burren OS, Stefana MI, Todd JA. Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat Immunol 2018; 19:674-684. [PMID: 29925982 DOI: 10.1038/s41590-018-0129-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies are transformative in revealing the polygenetic basis of common diseases, with autoimmune diseases leading the charge. Although the field is just over 10 years old, advances in understanding the underlying mechanistic pathways of these conditions, which result from a dense multifactorial blend of genetic, developmental and environmental factors, have already been informative, including insights into therapeutic possibilities. Nevertheless, the challenge of identifying the actual causal genes and pathways and their biological effects on altering disease risk remains for many identified susceptibility regions. It is this fundamental knowledge that will underpin the revolution in patient stratification, the discovery of therapeutic targets and clinical trial design in the next 20 years. Here we outline recent advances in analytical and phenotyping approaches and the emergence of large cohorts with standardized gene-expression data and other phenotypic data that are fueling a bounty of discovery and improved understanding of human physiology.
Collapse
Affiliation(s)
- Jamie R J Inshaw
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Antony J Cutler
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Oliver S Burren
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
148
|
Quintana-Hayashi MP, Padra M, Padra JT, Benktander J, Lindén SK. Mucus-Pathogen Interactions in the Gastrointestinal Tract of Farmed Animals. Microorganisms 2018; 6:E55. [PMID: 29912166 PMCID: PMC6027344 DOI: 10.3390/microorganisms6020055] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Gastrointestinal infections cause significant challenges and economic losses in animal husbandry. As pathogens becoming resistant to antibiotics are a growing concern worldwide, alternative strategies to treat infections in farmed animals are necessary in order to decrease the risk to human health and increase animal health and productivity. Mucosal surfaces are the most common route used by pathogens to enter the body. The mucosal surface that lines the gastrointestinal tract is covered by a continuously secreted mucus layer that protects the epithelial surface. The mucus layer is the first barrier the pathogen must overcome for successful colonization, and is mainly composed of densely glycosylated proteins called mucins. The vast array of carbohydrate structures present on the mucins provide an important setting for host-pathogen interactions. This review summarizes the current knowledge on gastrointestinal mucins and their role during infections in farmed animals. We examine the interactions between mucins and animal pathogens, with a focus on how pathogenic bacteria can modify the mucin environment in the gut, and how this in turn affects pathogen adhesion and growth. Finally, we discuss analytical challenges and complexities of the mucus-based defense, as well as its potential to control infections in farmed animals.
Collapse
Affiliation(s)
- Macarena P Quintana-Hayashi
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - Médea Padra
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - John Benktander
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden.
| |
Collapse
|
149
|
Hanisch FG, Hansman GS, Morozov V, Kunz C, Schroten H. Avidity of α-fucose on human milk oligosaccharides and blood group-unrelated oligo/polyfucoses is essential for potent norovirus-binding targets. J Biol Chem 2018; 293:11955-11965. [PMID: 29858242 DOI: 10.1074/jbc.ra117.001369] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
There is agreement with respect to norovirus infection routes in humans regarding binding of the pathogen to gastrointestinal epithelia via recognition of blood group-active mucin-typeO-glycans as the initiating and essential event. Among food additives playing a potential role in applications to protect newborns, human milk oligosaccharides (HMOs) as competitors are of major importance. By focusing on fractions of high-molecular mass HMOs with high fucose contents, we attempted to identify the structural elements required for norovirus GII.4 (Sydney 2012, JX459908) capsid binding in neoglycolipid-based arrays. We provide evidence that HMO fractions with the strongest binding capacities contained hepta- to decasaccharides expressing branches with terminal blood group H1 or Lewis-b antigen. H2 antigen, as recognized by UEA-I lectin, is apparently not expressed in high-mass HMOs. Beyond affinity, sterical and valency effects contribute more to virus-like particle binding, as revealed for oligovalent fucose conjugates of α-cyclodextrin and oligofucoses from fucoidan. Accordingly, high-mass HMOs with oligovalent fucose can exhibit stronger binding capacities compared with monovalent fucose HMOs. The above features were revealed for the most clinically relevant and prevalent GII.4 strain and are distinct from other strains, like GII.10 (Vietnam 026, AF504671), which showed a preference for blood group Lewis-a positive glycans.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Köln,
| | - Grant S Hansman
- the Schaller Research Group at University of Heidelberg and DKFZ, and Department of Infectious Diseases, Virology, University of Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg
| | - Vasily Morozov
- the Schaller Research Group at University of Heidelberg and DKFZ, and Department of Infectious Diseases, Virology, University of Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg.,the Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, and
| | - Clemens Kunz
- the Institute of Nutritional Science, University of Giessen, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Horst Schroten
- the Pediatric Infectious Diseases Unit, University Children's Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, and
| |
Collapse
|
150
|
Binding of Helicobacter pylori to Human Gastric Mucins Correlates with Binding of TFF1. Microorganisms 2018; 6:microorganisms6020044. [PMID: 29783620 PMCID: PMC6027488 DOI: 10.3390/microorganisms6020044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori binds to the gastric mucin, MUC5AC, and to trefoil factor, TFF1, which has been shown to interact with gastric mucin. We examined the interactions of TFF1 and H. pylori with purified gastrointestinal mucins from different animal species and from humans printed on a microarray platform to investigate whether TFF1 may play a role in locating H. pylori in gastric mucus. TFF1 bound almost exclusively to human gastric mucins and did not interact with human colonic mucins. There was a strong correlation between binding of TFF1 and H. pylori to human gastric mucins, and between binding of both TFF1 and H. pylori to gastric mucins with that of Griffonia simplicifolia lectin-II, which is specific for terminal non-reducing α- or β-linked N-acetyl-d-glucosamine. These results suggest that TFF1 may help to locate H. pylori in a discrete layer of gastric mucus and hence restrain their interactions with epithelial cells.
Collapse
|