101
|
Fazel Darbandi S, Robinson Schwartz SE, Pai ELL, Everitt A, Turner ML, Cheyette BNR, Willsey AJ, State MW, Sohal VS, Rubenstein JLR. Enhancing WNT Signaling Restores Cortical Neuronal Spine Maturation and Synaptogenesis in Tbr1 Mutants. Cell Rep 2021; 31:107495. [PMID: 32294447 PMCID: PMC7473600 DOI: 10.1016/j.celrep.2020.03.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/17/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Tbr1 is a high-confidence autism spectrum disorder (ASD)
gene encoding a transcription factor with distinct pre- and postnatal functions.
Postnatally, Tbr1 conditional knockout (CKO) mutants and
constitutive heterozygotes have immature dendritic spines and reduced synaptic
density. Tbr1 regulates expression of several genes that
underlie synaptic defects, including a kinesin (Kif1a) and a
WNT-signaling ligand (Wnt7b). Furthermore,
Tbr1 mutant corticothalamic neurons have reduced thalamic
axonal arborization. LiCl and a GSK3β inhibitor, two WNT-signaling
agonists, robustly rescue the dendritic spines and the synaptic and axonal
defects, suggesting that this could have relevance for therapeutic approaches in
some forms of ASD. Fazel Darbandi et al. demonstrate that TBR1 directly regulates
transcriptional circuits in cortical layers 5 and 6, which promote dendritic
spine and synaptic density. Enhancing WNT signaling rescues dendritic spine
maturation and synaptogenesis defects in Tbr1 mutants. These
results provide insights into mechanisms that underlie ASD pathophysiology.
Collapse
Affiliation(s)
- Siavash Fazel Darbandi
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah E Robinson Schwartz
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily Ling-Lin Pai
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amanda Everitt
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marc L Turner
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - A Jeremy Willsey
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew W State
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas S Sohal
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
102
|
Patient-Derived Induced Pluripotent Stem Cells (iPSCs) and Cerebral Organoids for Drug Screening and Development in Autism Spectrum Disorder: Opportunities and Challenges. Pharmaceutics 2021; 13:pharmaceutics13020280. [PMID: 33669772 PMCID: PMC7922555 DOI: 10.3390/pharmaceutics13020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a group of neurodevelopmental diseases characterized by persistent deficits in social communication, interaction, and repetitive patterns of behaviors, interests, and activities. The etiopathogenesis is multifactorial with complex interactions between genetic and environmental factors. The clinical heterogeneity and complex etiology of this pediatric disorder have limited the development of pharmacological therapies. The major limit to ASD research remains a lack of relevant human disease models which can faithfully recapitulate key features of the human pathology and represent its genetic heterogeneity. Recent advances in induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of patients into all types of patient-specific neural cells, have provided a promising cellular tool for disease modeling and development of novel drug treatments. The iPSCs technology allowed not only a better investigation of the disease etiopathogenesis but also opened up the potential for personalized therapies and offered new opportunities for drug discovery, pharmacological screening, and toxicity assessment. Moreover, iPSCs can be differentiated and organized into three-dimensional (3D) organoids, providing a model which mimics the complexity of the brain’s architecture and more accurately recapitulates tissue- and organ-level disease pathophysiology. The aims of this review were to describe the current state of the art of the use of human patient-derived iPSCs and brain organoids in modeling ASD and developing novel therapeutic strategies and to discuss the opportunities and major challenges in this rapidly moving field.
Collapse
|
103
|
Pintacuda G, Martín JM, Eggan KC. Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Mol Autism 2021; 12:10. [PMID: 33557935 PMCID: PMC7869517 DOI: 10.1186/s13229-021-00417-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interactions as well as the presentation of restrictive and repetitive behaviors. ASD is highly heritable but genetically heterogenous with both common and rare genetic variants collaborating to predispose individuals to the disorder. In this review, we synthesize recent efforts to develop human induced pluripotent stem cell (iPSC)-derived models of ASD-related phenotypes. We firstly address concerns regarding the relevance and validity of available neuronal iPSC-derived models. We then critically evaluate the robustness of various differentiation and cell culture protocols used for producing cell types of relevance to ASD. By exploring iPSC models of ASD reported thus far, we examine to what extent cellular and neuronal phenotypes with potential relevance to ASD can be linked to genetic variants found to underlie it. Lastly, we outline promising strategies by which iPSC technology can both enhance the power of genetic studies to identify ASD risk factors and nominate pathways that are disrupted across groups of ASD patients that might serve as common points for therapeutic intervention.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Jacqueline M Martín
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
104
|
Galosi S, Martinelli S, Pannone L, Terrinoni A, Venditti M, Pizzi S, Ciolfi A, Chillemi G, Gigliotti F, Cesario S, Tartaglia M, Leuzzi V. Co-occurring SYNJ1 and SHANK3 variants in a girl with intellectual disability, early-onset parkinsonism and catatonic episodes. Parkinsonism Relat Disord 2021; 84:5-7. [PMID: 33515856 DOI: 10.1016/j.parkreldis.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/07/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Affiliation(s)
- S Galosi
- Department of Neuroscience, Sapienza University of Rome, Rome, Italy
| | - S Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - L Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - A Terrinoni
- Department of Neuroscience, Sapienza University of Rome, Rome, Italy
| | - M Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - S Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - A Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - G Chillemi
- DIBAF, Università Della Tuscia, Viterbo, Italy
| | - F Gigliotti
- Department of Neuroscience, Sapienza University of Rome, Rome, Italy
| | - S Cesario
- Department of Neuroscience, Sapienza University of Rome, Rome, Italy
| | - M Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - V Leuzzi
- Department of Neuroscience, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
105
|
Chiola S, Napan KL, Wang Y, Lazarenko RM, Armstrong CJ, Cui J, Shcheglovitov A. Defective AMPA-mediated synaptic transmission and morphology in human neurons with hemizygous SHANK3 deletion engrafted in mouse prefrontal cortex. Mol Psychiatry 2021; 26:4670-4686. [PMID: 33558651 PMCID: PMC8349370 DOI: 10.1038/s41380-021-01023-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
Genetic abnormalities in synaptic proteins are common in individuals with autism; however, our understanding of the cellular and molecular mechanisms disrupted by these abnormalities is limited. SHANK3 is a postsynaptic scaffolding protein of excitatory synapses that has been found mutated or deleted in most patients with 22q13 deletion syndrome and about 2% of individuals with idiopathic autism and intellectual disability. Here, we generated CRISPR/Cas9-engineered human pluripotent stem cells (PSCs) with complete hemizygous SHANK3 deletion (SHANK3+/-), which is the most common genetic abnormality in patients, and investigated the synaptic and morphological properties of SHANK3-deficient PSC-derived cortical neurons engrafted in the mouse prefrontal cortex. We show that human PSC-derived neurons integrate into the mouse cortex by acquiring appropriate cortical layer identities and by receiving and sending anatomical projections from/to multiple different brain regions. We also demonstrate that SHANK3-deficient human neurons have reduced AMPA-, but not NMDA- or GABA-mediated synaptic transmission and exhibit impaired dendritic arbors and spines, as compared to isogenic control neurons co-engrafted in the same brain region. Together, this study reveals specific synaptic and morphological deficits caused by SHANK3 hemizygosity in human cortical neurons at different developmental stages under physiological conditions and validates the use of co-engrafted control and mutant human neurons as a new platform for studying connectivity deficits in genetic neurodevelopmental disorders associated with autism.
Collapse
Affiliation(s)
- Simone Chiola
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Kandy L. Napan
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Yueqi Wang
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Neuroscience Graduate Program, University of Utah, Salt Lake City, UT USA
| | - Roman M. Lazarenko
- grid.152326.10000 0001 2264 7217Departments of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Celeste J. Armstrong
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Jun Cui
- grid.41891.350000 0001 2156 6108Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT USA
| | - Aleksandr Shcheglovitov
- Departments of Neurobiology, University of Utah, Salt Lake City, UT, USA. .,Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA. .,Department of Adult Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
106
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
107
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
108
|
Chen CP, Huang JP, Chern SR, Wu PS, Chen SW, Wu FT, Chen WL, Lee MS, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of de novo distal 5p deletion and distal 22q duplication. Taiwan J Obstet Gynecol 2020; 59:140-145. [PMID: 32039783 DOI: 10.1016/j.tjog.2019.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of de novo distal 5p deletion and distal 22q duplication. CASE REPORT A 34-year-old woman was underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a derivative chromosome 5 [der(5)] with an abnormal distal 5p segment of unknown origin. The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis was performed on the cultured amniocytes, and the result was arr 5p15.33p13.3 (22,149-29,760,922) × 1.0, arr 22q13.2q13.33 (42, 192, 065-51,178,264) × 3.0 [GRCh37 (hg19)] with a 29.739-Mb deletion of 5p15.33-p13.3 encompassing 55 [Online Mendelian Inheritance in Man (OMIM)] genes including TPPP, TERT, SRD5A1, SEMA5A and CTNND2, and an 8.986-Mb duplication of 22q13.2-q13.33 encompassing 82 OMIM genes including TRMU, SCO2, TYMP, CPT1B and SHANK3. The fetal karyotype was 46,XY,der(5)t(5; 22)(p13.3; q13.2)dn. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism. Postnatal polymorphic DNA marker analysis confirmed a maternal origin of the aberrant chromosome 5. CONCLUSION aCGH and polymorphic DNA marker analyses can determine the nature and parental origin of the de novo chromosome aberration, and the information acquired is useful for genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jian-Pei Huang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Meng-Shan Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
109
|
Miura Y, Li MY, Birey F, Ikeda K, Revah O, Thete MV, Park JY, Puno A, Lee SH, Porteus MH, Pașca SP. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat Biotechnol 2020; 38:1421-1430. [PMID: 33273741 PMCID: PMC9042317 DOI: 10.1038/s41587-020-00763-w] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cortico-striatal projections are critical components of forebrain circuitry that regulate motivated behaviors. To enable the study of the human cortico-striatal pathway and how its dysfunction leads to neuropsychiatric disease, we developed a method to convert human pluripotent stem cells into region-specific brain organoids that resemble the developing human striatum and include electrically active medium spiny neurons. We then assembled these organoids with cerebral cortical organoids in three-dimensional cultures to form cortico-striatal assembloids. Using viral tracing and functional assays in intact or sliced assembloids, we show that cortical neurons send axonal projections into striatal organoids and form synaptic connections. Medium spiny neurons mature electrophysiologically following assembly and display calcium activity after optogenetic stimulation of cortical neurons. Moreover, we derive cortico-striatal assembloids from patients with a neurodevelopmental disorder caused by a deletion on chromosome 22q13.3 and capture disease-associated defects in calcium activity, showing that this approach will allow investigation of the development and functional assembly of cortico-striatal connectivity using patient-derived cells.
Collapse
Affiliation(s)
- Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Kazuya Ikeda
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Jin-Young Park
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Samuel H Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
110
|
Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 2020; 518:110924. [PMID: 32619581 DOI: 10.1016/j.mce.2020.110924] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Oxytocin has been suggested as a potential therapeutic agent in autism and other neuropsychiatric conditions. Although, the link between the deficit in "SH3 domain and ankyrin repeat containing protein 3" (SHANK3) and autism spectrum disorders is highly studied topic, developmental mechanisms are still poorly understood. In this study, we clearly confirm that SHANK3 deficiency is accompanied with abnormalities in neurite number and length, which are reversed by oxytocin treatment (1 μM, 48h) in primary hippocampal neurons. Transient silencing for the SHANK3 gene (siSHANK3) in neuron-like cell line (SH-SY5Y) revealed a significant decrease in the expression levels of Neurexins 1α, 1β, 2α and 2β. Oxytocin treatment compensated reduced levels of Synapsin I, PSD95 and Neuroligin 3 in siSHANK3 cells suggesting a marked potential of oxytocin to ameliorate defects present in conditions of SHANK3 deficiency. Further analysis of hippocampal tissue revealed that oxytocin application (0.1 μg/μl, s.c. at P2 and P3 day) affects levels of synaptic proteins and GTPases in both WT and SHANK3 deficient mice on day P5. Oxytocin stimulated the mRNA expression of RhoB and Rac1 in both WT and SHANK3 deficient mice. Our data suggest that autism relevant synaptic pathologies could be reversed by oxytocin treatment.
Collapse
Affiliation(s)
- Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Kokavcova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Meliskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karel Frimmel
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
111
|
Han Y, Lyman KA, Foote KM, Chetkovich DM. The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels (Austin) 2020; 14:110-122. [PMID: 32189562 PMCID: PMC7153792 DOI: 10.1080/19336950.2020.1740501] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A. Lyman
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Kendall M. Foote
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
112
|
Xu N, Lv H, Yang T, Du X, Sun Y, Xiao B, Fan Y, Luo X, Zhan Y, Wang L, Li F, Yu Y. A 29 Mainland Chinese cohort of patients with Phelan-McDermid syndrome: genotype-phenotype correlations and the role of SHANK3 haploinsufficiency in the important phenotypes. Orphanet J Rare Dis 2020; 15:335. [PMID: 33256793 PMCID: PMC7708101 DOI: 10.1186/s13023-020-01592-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Phelan–McDermid syndrome (PMS) or 22q13 deletion syndrome is a rare developmental disorder characterized by hypotonia, developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD) and dysmorphic features. Most cases are caused by 22q13 deletions encompassing many genes including SHANK3. Phenotype comparisons between patients with SHANK3 mutations (or deletions only disrupt SHANK3) and 22q13 deletions encompassing more than SHANK3 gene are lacking. Methods A total of 29 Mainland China patients were clinically and genetically evaluated. Data were obtained from medical record review and a standardized medical history questionnaire, and dysmorphology evaluation was conducted via photographic evaluation. We analyzed 22q13 deletions and SHANK3 small mutations and performed genotype–phenotype analysis to determine whether neurological features and other important clinical features are responsible for haploinsufficiency of SHANK3. Results Nineteen patients with 22q13.3 deletions ranging in size from 34 kb to 8.7 Mb, one patient with terminal deletions and duplications, and nine patients with SHANK3 mutations were included. All mutations would cause loss-of function effect and six novel heterozygous variants, c.3838_3839insGG, c.3088delC, c.3526G > T, c.3372dupC, c.3120delC and c.3942delC, were firstly reported. Besides, we demonstrated speech delay (100%), DD/ID (88%), ASD (80%), hypotonia (83%) and hyperactivity (83%) were prominent clinical features. Finally, 100% of cases with monogenic SHANK3 deletion had hypotonia and there was no significant difference between loss of SHANK3 alone and deletions encompassing more than SHANK3 gene in the prevalence of hypotonia, DD/ID, ASD, increased pain tolerance, gait abnormalities, impulsiveness, repetitive behaviors, regression and nonstop crying which were high in loss of SHANK3 alone group. Conclusions This is the first work describing a cohort of Mainland China patients broaden the clinical and molecular spectrum of PMS. Our findings support the effect of 22q13 deletions and SHANK3 point mutations on language impairment and several clinical manifestations, such as DD/ID. We also demonstrated SHANK3 haploinsufficiency was a major contributor to the neurological phenotypes of PMS and also responsible for other important phenotypes such as hypotonia, increased pain tolerance, impulsiveness, repetitive behaviors, regression and nonstop crying.
Collapse
Affiliation(s)
- Na Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Hui Lv
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai, 200092, China
| | - Tingting Yang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Xiujuan Du
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai, 200092, China
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Xiaomei Luo
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Lili Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai, 200092, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Room 801, Science and Education Building, Kongjiang Road 1665, Shanghai, 200092, China. .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| |
Collapse
|
113
|
Suliman-Lavie R, Title B, Cohen Y, Hamada N, Tal M, Tal N, Monderer-Rothkoff G, Gudmundsdottir B, Gudmundsson KO, Keller JR, Huang GJ, Nagata KI, Yarom Y, Shifman S. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice. Nat Commun 2020; 11:5836. [PMID: 33203851 PMCID: PMC7673123 DOI: 10.1038/s41467-020-19577-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Several genes implicated in autism spectrum disorder (ASD) are chromatin regulators, including POGZ. The cellular and molecular mechanisms leading to ASD impaired social and cognitive behavior are unclear. Animal models are crucial for studying the effects of mutations on brain function and behavior as well as unveiling the underlying mechanisms. Here, we generate a brain specific conditional knockout mouse model deficient for Pogz, an ASD risk gene. We demonstrate that Pogz deficient mice show microcephaly, growth impairment, increased sociability, learning and motor deficits, mimicking several of the human symptoms. At the molecular level, luciferase reporter assay indicates that POGZ is a negative regulator of transcription. In accordance, in Pogz deficient mice we find a significant upregulation of gene expression, most notably in the cerebellum. Gene set enrichment analysis revealed that the transcriptional changes encompass genes and pathways disrupted in ASD, including neurogenesis and synaptic processes, underlying the observed behavioral phenotype in mice. Physiologically, Pogz deficiency is associated with a reduction in the firing frequency of simple and complex spikes and an increase in amplitude of the inhibitory synaptic input in cerebellar Purkinje cells. Our findings support a mechanism linking heterochromatin dysregulation to cerebellar circuit dysfunction and behavioral abnormalities in ASD.
Collapse
Affiliation(s)
- Reut Suliman-Lavie
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Title
- Department of Neurobiology, The Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yahel Cohen
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Maayan Tal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Tal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galya Monderer-Rothkoff
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bjorg Gudmundsdottir
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kristbjorn O Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Bldg. 560/12-70, 1050 Boyles Street, Frederick, MD, 21702, USA
- Basic Research Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Bldg. 560/32-31D, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Bldg. 560/12-70, 1050 Boyles Street, Frederick, MD, 21702, USA
- Basic Research Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Bldg. 560/32-31D, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosef Yarom
- Department of Neurobiology, The Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
114
|
Arsenault D, Tremblay C, Emond V, Calon F. Sex-dependent alterations in the physiology of entorhinal cortex neurons in old heterozygous 3xTg-AD mice. Biol Sex Differ 2020; 11:63. [PMID: 33198813 PMCID: PMC7667843 DOI: 10.1186/s13293-020-00337-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
While the higher prevalence of Alzheimer’s disease (AD) in women is clear, studies suggest that biological sex may also influence AD pathogenesis. However, mechanisms behind these differences are not clear. To investigate physiological differences between sexes at the cellular level in the brain, we investigated the intrinsic and synaptic properties of entorhinal cortex neurons in heterozygous 3xTg-AD mice of both sexes at the age of 20 months. This brain region was selected because of its early association with AD symptoms. First, we found physiological differences between male and female non-transgenic mice, providing indirect evidence of axonal alterations in old females. Second, we observed a transgene-dependent elevation of the firing activity, post-burst afterhyperpolarization (AHP), and spontaneous excitatory postsynaptic current (EPSC) activity, without any effect of sex. Third, the passive properties and the hyperpolarization-activated current (Ih) were altered by transgene expression only in female mice, whereas the paired-pulse ratio (PPR) of evoked EPSC was changed only in males. Fourth, both sex and transgene expression were associated with changes in action potential properties. Consistent with previous work, higher levels of Aβ neuropathology were detected in 3xTg-AD females, whereas tau deposition was similar. In summary, our results support the idea that aging and AD neuropathology differentially alter the physiology of entorhinal cortex neurons in males and females.
Collapse
Affiliation(s)
- Dany Arsenault
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.,Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada.,Physiotek, Quebec City, QC, Canada
| | - Cyntia Tremblay
- Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada
| | - Vincent Emond
- Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada. .,Neuroscience, Centre de Recherche du CHU de Québec (CHUQ), Quebec City, QC, Canada.
| |
Collapse
|
115
|
Hassani Nia F, Woike D, Martens V, Klüssendorf M, Hönck HH, Harder S, Kreienkamp HJ. Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Mol Autism 2020; 11:85. [PMID: 33115499 PMCID: PMC7592556 DOI: 10.1186/s13229-020-00385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown. METHODS We used purification from a synaptic protein fraction, as well as a variety of biochemical and cell biological approaches to identify proteins which associate with the Shank3 N-terminus at postsynaptic sites. RESULTS We report here that δ-catenin, which is encoded by CTNND2, an autism candidate gene, directly interacts with the Ank domain of Shank3 at postsynaptic sites through its Armadillo-repeat domain. The interaction is not affected by well-known posttranslational modifications of δ-catenin, i.e. by phosphorylation or palmitoylation. However, an ASD-associated mutation in the SPN domain of Shank3, L68P, significantly increases the interaction of Shank3 with δ-catenin. By analysis of postsynaptic fractions from mice, we show that the lack of SPN-Ank containing, large isoforms of Shank3 results in the loss of postsynaptic δ-catenin. Further, expression of Shank3 variants containing the N-terminal domains in primary cultured neurons significantly increased the presence of coexpressed δ-catenin at postsynaptic sites. LIMITATIONS Work in model organisms such as mice, and in primary cultured neurons may not reproduce faithfully the situation in human brain neurons. Work in primary cultured neurons was also hampered by lack of a specific antibody for endogenous δ-catenin. CONCLUSIONS Our data show that the interaction between Shank3 N-terminus and δ-catenin is required for the postsynaptic targeting of δ-catenin. Failure of proper targeting of δ-catenin to postsynaptic sites may contribute to the pathogenesis of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniel Woike
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Victoria Martens
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Klüssendorf
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institut für Osteologie Und Biomechanik, Zellbiologie seltener Erkrankungen, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sönke Harder
- Massenspektrometrische Proteomanalytik, Institut für Klinische Chemie Und Laboratoriumsmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
116
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
117
|
An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Mol Psychiatry 2020; 25:2534-2555. [PMID: 30610205 PMCID: PMC6609509 DOI: 10.1038/s41380-018-0324-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Genome sequencing has revealed an increasing number of genetic variations that are associated with neuropsychiatric disorders. Frequently, studies limit their focus to likely gene-disrupting mutations because they are relatively easy to interpret. Missense variants, instead, have often been undervalued. However, some missense variants can be informative for developing a more profound understanding of disease pathogenesis and ultimately targeted therapies. Here we present an example of this by studying a missense variant in a well-known autism spectrum disorder (ASD) causing gene SHANK3. We analyzed Shank3's in vivo phosphorylation profile and identified S685 as one phosphorylation site where one ASD-linked variant has been reported. Detailed analysis of this variant revealed a novel function of Shank3 in recruiting Abelson interactor 1 (ABI1) and the WAVE complex to the post-synaptic density (PSD), which is critical for synapse and dendritic spine development. This function was found to be independent of Shank3's other functions such as binding to GKAP and Homer. Introduction of this human ASD mutation into mice resulted in a small subset of phenotypes seen previously in constitutive Shank3 knockout mice, including increased allogrooming, increased social dominance, and reduced pup USV. Together, these findings demonstrate the modularity of Shank3 function in vivo. This modularity further indicates that there is more than one independent pathogenic pathway downstream of Shank3 and correcting a single downstream pathway is unlikely to be sufficient for clear clinical improvement. In addition, this study illustrates the value of deep biological analysis of select missense mutations in elucidating the pathogenesis of neuropsychiatric phenotypes.
Collapse
|
118
|
Wang L, Adamski CJ, Bondar VV, Craigen E, Collette JR, Pang K, Han K, Jain A, Y Jung S, Liu Z, Sifers RN, Holder JL, Zoghbi HY. A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability. Mol Psychiatry 2020; 25:2504-2516. [PMID: 30696942 PMCID: PMC6663662 DOI: 10.1038/s41380-018-0325-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Neurons are sensitive to changes in the dosage of many genes, especially those regulating synaptic functions. Haploinsufficiency of SHANK3 causes Phelan-McDermid syndrome and autism, whereas duplication of the same gene leads to SHANK3 duplication syndrome, a disorder characterized by neuropsychiatric phenotypes including hyperactivity and bipolar disorder as well as epilepsy. We recently demonstrated the functional modularity of Shank3, which suggests that normalizing levels of Shank3 itself might be more fruitful than correcting pathways that function downstream of it for treatment of disorders caused by alterations in SHANK3 dosage. To identify upstream regulators of Shank3 abundance, we performed a kinome-wide siRNA screen and identified multiple kinases that potentially regulate Shank3 protein stability. Interestingly, we discovered that several kinases in the MEK/ERK2 pathway destabilize Shank3 and that genetic deletion and pharmacological inhibition of ERK2 increases Shank3 abundance in vivo. Mechanistically, we show that ERK2 binds Shank3 and phosphorylates it at three residues to promote its poly-ubiquitination-dependent degradation. Altogether, our findings uncover a druggable pathway as a potential therapeutic target for disorders with reduced SHANK3 dosage, provide a rich resource for studying Shank3 regulation, and demonstrate the feasibility of this approach for identifying regulators of dosage-sensitive genes.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Evelyn Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - John R Collette
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kihoon Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Antrix Jain
- Alkek Center for Molecular Discovery, Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sung Y Jung
- Alkek Center for Molecular Discovery, Verna and Marrs McLean, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard N Sifers
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
119
|
FMR1 loss in a human stem cell model reveals early changes to intrinsic membrane excitability. Dev Biol 2020; 468:93-100. [PMID: 32976839 DOI: 10.1016/j.ydbio.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022]
Abstract
Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a leading monogenic cause of autism. While cortical hyperexcitability is a hallmark of FXS, the reported phenotypes and underlying mechanisms, including alterations in synaptic transmission and ion channel properties, are heterogeneous and at times contradictory. Here, we report the generation of new isogenic FMR1y/+ and FMR1y/- human pluripotent stem cell (hPSC) lines using CRISPR-Cas9 to facilitate the study of how complete FMRP loss, independent of genetic background, drives molecular and cellular alterations relevant for FXS. After differentiating these stem cell tools into excitatory neurons, we systematically assessed the impact of FMRP loss on intrinsic membrane and synaptic properties over time. Using whole-cell patch clamp analyses, we found that FMR1y/- neurons overall showed an increased intrinsic membrane excitability compared to age-matched FMR1y/+ controls, with no discernable alternations in synaptic transmission. Surprisingly, longitudinal analyses of cell intrinsic defects revealed that a majority of significant changes emerged early following in vitro differentiation and some were not stable over time. Collectively, this study provides a new isogenic hPSC model which can be further leveraged by the scientific community to investigate basic mechanisms of FMR1 gene function relevant for FXS. Moreover, our results suggest that precocious changes in the intrinsic membrane properties during early developmental could be a critical cellular pathology ultimately contributing to cortical hyperexcitability in FXS.
Collapse
|
120
|
SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J Neurosci 2020; 40:7980-7994. [PMID: 32887745 DOI: 10.1523/jneurosci.1367-20.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENT SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.
Collapse
|
121
|
Matos MR, Ho SM, Schrode N, Brennand KJ. Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Mol Cell Neurosci 2020; 107:103532. [PMID: 32712198 PMCID: PMC7484226 DOI: 10.1016/j.mcn.2020.103532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropsychiatric disorders are highly heritable polygenic disorders arising from the complex interplay of highly penetrant rare variants and common variants of small effect. There is a large index of comorbidity and shared genetic risk between disorders, reflecting the pleiotropy of individual variants as well as predicted downstream pathway-level convergence. Importantly, the mechanism(s) through which psychiatric disease-associated variants interact to contribute to disease risk remains unknown. Human induced pluripotent stem cell (hiPSC)-based models are increasingly useful for the systematic study of the complex genetics associated with brain diseases, particularly when combined with CRISPR-mediated genomic engineering, which together facilitate isogenic comparisons of defined neuronal cell types. In this review, we discuss the latest CRISPR technologies and consider how they can be successfully applied to the functional characterization of the growing list genetic variants linked to psychiatric disease.
Collapse
Affiliation(s)
- Marliette R Matos
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Seok-Man Ho
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Stem Cell and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Nadine Schrode
- Department of Genetics and Genomics, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - Kristen J Brennand
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Stem Cell and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
122
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
123
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
124
|
Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems. J Neurosci 2020; 40:1176-1185. [PMID: 32024766 DOI: 10.1523/jneurosci.0518-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized research on human diseases, particularly neurodegenerative and psychiatric disorders, making it possible to study mechanisms of disease risk and initiation in otherwise inaccessible patient-specific cells. Today, the integration of CRISPR engineering approaches with hiPSC-based models permits precise isogenic comparisons of human neurons and glia. This review is intended as a guideline for neuroscientists and clinicians interested in translating their research to hiPSC-based studies. It offers state-of-the-art approaches to tackling the challenges that are unique to human in vitro disease models, particularly interdonor and intradonor variability, and limitations in neuronal maturity and circuit complexity. Finally, we provide a detailed overview of the immense possibilities the field has to offer, highlighting efficient neural differentiation and induction strategies for the major brain cell types and providing perspective into integrating CRISPR-based methods into study design. The combination of hiPSC-based disease modeling, CRISPR technology, and high-throughput approaches promises to advance our scientific knowledge and accelerate progress in drug discovery.Dual Perspectives Companion Paper: Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids, by Ai Tian, Julien Muffat, and Yun Li.
Collapse
|
125
|
Vitrac A, Pons S, Balkota M, Lemière N, Raïs C, Bourgeois JP, Maskos U, Bourgeron T, Cloëz-Tayarani I. A chimeric mouse model to study human iPSC-derived neurons: the case of a truncating SHANK3 mutation. Sci Rep 2020; 10:13315. [PMID: 32769989 PMCID: PMC7414912 DOI: 10.1038/s41598-020-70056-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Using human induced pluripotent stem cells (iPSC), recent studies have shown that the events underlying autism spectrum disorders (ASD) can occur during neonatal development. We previously analyzed the iPSC-derived pyramidal cortical neurons of a subset of patients with ASD carrying de novo heterozygous mutations in postsynaptic SHANK3 protein, in culture. We reported altered spinogenesis of those neurons. The transplantation of human iPSC-derived neuronal precursors into mouse brain represents a novel option for in vivo analysis of mutations affecting the human brain. In this study, we transplanted the neuronal precursor cells (NPC) into the cortex of newborn mice to analyze their integration and maturation at early stages of development and studied axonal projections of transplanted human neurons into adult mouse brain. We then co-transplanted NPC from a control individual and from a patient carrying a de novo heterozygous SHANK3 mutation. We observed a reduction in cell soma size of selective neuronal categories and in axonal projections at 30 days post-transplantation. In contrast to previous in vitro studies, we did not observe any alteration in spinogenesis at this early age. The humanized chimeric mouse models offer the means to analyze ASD-associated mutations further and provide the opportunity to visualize phenotypes in vivo.
Collapse
Affiliation(s)
- Aline Vitrac
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Stéphanie Pons
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France
| | - Marta Balkota
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France
| | - Nathalie Lemière
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Célia Raïs
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Jean-Pierre Bourgeois
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, CNRS UMR 3571 « Genes, Synapses and Cognition », Université de Paris, Institut Pasteur, Paris, France
| | - Isabelle Cloëz-Tayarani
- Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571 « Genes, Synapses and Cognition », Institut Pasteur, Paris, France.
| |
Collapse
|
126
|
Abstract
Altered prepulse inhibition (PPI) is an endophenotype associated with multiple brain disorders, including schizophrenia. Circuit mechanisms that regulate PPI have been suggested, but none has been demonstrated through direct manipulations. IRSp53 is an abundant excitatory postsynaptic scaffold implicated in schizophrenia, autism spectrum disorders, and attention-deficit/hyperactivity disorder. We found that mice lacking IRSp53 in cortical excitatory neurons display decreased PPI. IRSp53-mutant layer 6 cortical neurons in the anterior cingulate cortex (ACC) displayed decreased excitatory synaptic input but markedly increased neuronal excitability, which was associated with excessive excitatory synaptic input in downstream mediodorsal thalamic (MDT) neurons. Importantly, chemogenetic inhibition of mutant neurons projecting to MDT normalized the decreased PPI and increased excitatory synaptic input onto MDT neurons. In addition, chemogenetic activation of MDT-projecting layer 6 neurons in the ACC decreased PPI in wild-type mice. These results suggest that the hyperactive ACC-MDT pathway suppresses PPI in wild-type and IRSp53-mutant mice.
Collapse
Affiliation(s)
- Yangsik Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea,Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,To whom correspondence should be addressed; Mental Health Research Institute, National Center for Mental Health, Yongmasan-ro 127, Gwangjin-gu, Seoul, South Korea 04933; tel: +82-2-2204-0502, fax: +82-2-2204-0393, e-mail:
| | - Young Woo Noh
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunction, Institute for Basic Science, Daejeon, South Korea,Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
127
|
Breen MS, Browne A, Hoffman GE, Stathopoulos S, Brennand K, Buxbaum JD, Drapeau E. Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Mol Autism 2020; 11:53. [PMID: 32560742 PMCID: PMC7304190 DOI: 10.1186/s13229-020-00355-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of autism spectrum disorder (ASD), intellectual disability, and language delay, and is caused by 22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the development of new therapeutic interventions. METHODS We developed human-induced pluripotent stem cell (hiPSC)-based models of PMS by reprogramming peripheral blood samples from individuals with PMS (n = 7) and their unaffected siblings (n = 6). For each participant, up to three hiPSC clones were generated and differentiated into induced neural progenitor cells (hiPSC-NPCs; n = 39) and induced forebrain neurons (hiPSC-neurons; n = 41). Genome-wide RNA-sequencing was applied to explore transcriptional differences between PMS probands and unaffected siblings. RESULTS Transcriptome analyses identified 391 differentially expressed genes (DEGs) in hiPSC-NPCs and 82 DEGs in hiPSC-neurons, when comparing cells from PMS probands and unaffected siblings (FDR < 5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic development, and protein translation, while over-expressed genes were enriched for pre- and postsynaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel activity. Gene co-expression network analysis identified two modules in hiPSC-neurons that were over-expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules harbored a significant enrichment of genetic risk loci for developmental delay and intellectual disability. Finally, PMS-associated genes were integrated with other ASD hiPSC transcriptome findings and several points of convergence were identified, indicating altered Wnt signaling and extracellular matrix. LIMITATIONS Given the rarity of the condition, we could not carry out experimental validation in independent biological samples. In addition, functional and morphological phenotypes caused by loss of SHANK3 were not characterized here. CONCLUSIONS This is the largest human neural sample analyzed in PMS. Genome-wide RNA-sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and distinct transcriptional signatures across hiPSC-NPCs and hiPSC-neurons, including many genes implicated in risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Browne
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sofia Stathopoulos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kristen Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
128
|
Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci 2020; 43:608-621. [PMID: 32507511 DOI: 10.1016/j.tins.2020.05.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a class of disorders affecting brain development and function and are characterized by wide genetic and clinical variability. In this review, we discuss the multiple factors that influence the clinical presentation of NDDs, with particular attention to gene vulnerability, mutational load, and the two-hit model. Despite the complex architecture of mutational events associated with NDDs, the various proteins involved appear to converge on common pathways, such as synaptic plasticity/function, chromatin remodelers and the mammalian target of rapamycin (mTOR) pathway. A thorough understanding of the mechanisms behind these pathways will hopefully lead to the identification of candidates that could be targeted for treatment approaches.
Collapse
|
129
|
Shank3 contributes to neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95. Neurosci Res 2020; 166:34-41. [PMID: 32454040 DOI: 10.1016/j.neures.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023]
Abstract
Neuropathic pain is a very complex chronic pain state, the detailed molecular mechanisms of which remain unclear. In the present study, Shank3 was found to play an important role in neuropathic pain in rats following spared nerve injury (SNI). Shank3 was upregulated in the spinal dorsal horn of rats subjected to SNI, and mechanical hypersensitivity to noxious stimuli in these rats could be alleviated by knock down of Shank3. Shank3 also interacted with hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and promoted the expression of HCN2 in central neurons of the spinal dorsal. Together with the SNI-dependent increase of HCN2, we also found that the postsynaptic protein of excitatory synapse (PSD95) was increased in rats following SNI. Taken together, our results showed that Shank3 modulated neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95 in spinal dorsal horn neurons. Our findings revealed new synaptic remodeling mechanisms linking Shank3 with neuropathic pain.
Collapse
|
130
|
Ross PJ, Mok RSF, Smith BS, Rodrigues DC, Mufteev M, Scherer SW, Ellis J. Modeling neuronal consequences of autism-associated gene regulatory variants with human induced pluripotent stem cells. Mol Autism 2020; 11:33. [PMID: 32398033 PMCID: PMC7218542 DOI: 10.1186/s13229-020-00333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic factors contribute to the development of autism spectrum disorder (ASD), and although non-protein-coding regions of the genome are being increasingly implicated in ASD, the functional consequences of these variants remain largely uncharacterized. Induced pluripotent stem cells (iPSCs) enable the production of personalized neurons that are genetically matched to people with ASD and can therefore be used to directly test the effects of genomic variation on neuronal gene expression, synapse function, and connectivity. The combined use of human pluripotent stem cells with genome editing to introduce or correct specific variants has proved to be a powerful approach for exploring the functional consequences of ASD-associated variants in protein-coding genes and, more recently, long non-coding RNAs (lncRNAs). Here, we review recent studies that implicate lncRNAs, other non-coding mutations, and regulatory variants in ASD susceptibility. We also discuss experimental design considerations for using iPSCs and genome editing to study the role of the non-protein-coding genome in ASD.
Collapse
Affiliation(s)
- P Joel Ross
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Rebecca S F Mok
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon S Smith
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Deivid C Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
131
|
Culotta L, Penzes P. Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD. Mol Autism 2020; 11:32. [PMID: 32393347 PMCID: PMC7216514 DOI: 10.1186/s13229-020-00339-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders characterized by impaired social interaction and communication, and repetitive or restricted behaviors. ASD subjects exhibit complex genetic and clinical heterogeneity, thus hindering the discovery of pathophysiological mechanisms. Considering that several ASD-risk genes encode proteins involved in the regulation of synaptic plasticity, neuronal excitability, and neuronal connectivity, one hypothesis that has emerged is that ASD arises from a disruption of the neuronal network activity due to perturbation of the synaptic excitation and inhibition (E/I) balance. The development of induced pluripotent stem cell (iPSC) technology and recent advances in neuronal differentiation techniques provide a unique opportunity to model complex neuronal connectivity and to test the E/I hypothesis of ASD in human-based models. Here, we aim to review the latest advances in studying the different cellular and molecular mechanisms contributing to E/I balance using iPSC-based in vitro models of ASD.
Collapse
Affiliation(s)
- Lorenza Culotta
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
132
|
Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M, Lee EJ, Lee H, Bae YC, Paoletti P, Kim E. Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol 2020; 18:e3000717. [PMID: 32353004 PMCID: PMC7217483 DOI: 10.1371/journal.pbio.3000717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 04/15/2020] [Indexed: 01/28/2023] Open
Abstract
Extensive evidence links Glutamate receptor, ionotropic, NMDA2B (GRIN2B), encoding the GluN2B/NR2B subunit of N-methyl-D-aspartate receptors (NMDARs), with various neurodevelopmental disorders, including autism spectrum disorders (ASDs), but the underlying mechanisms remain unclear. In addition, it remains unknown whether mutations in GluN2B, which starts to be expressed early in development, induces early pathophysiology that can be corrected by early treatments for long-lasting effects. We generated and characterized Grin2b-mutant mice that carry a heterozygous, ASD-risk C456Y mutation (Grin2b+/C456Y). In Grin2b+/C456Y mice, GluN2B protein levels were strongly reduced in association with decreased hippocampal NMDAR currents and NMDAR-dependent long-term depression (LTD) but unaltered long-term potentiation, indicative of mutation-induced protein degradation and LTD sensitivity. Behaviorally, Grin2b+/C456Y mice showed normal social interaction but exhibited abnormal anxiolytic-like behavior. Importantly, early, but not late, treatment of young Grin2b+/C456Y mice with the NMDAR agonist D-cycloserine rescued NMDAR currents and LTD in juvenile mice and improved anxiolytic-like behavior in adult mice. Therefore, GluN2B-C456Y haploinsufficiency decreases GluN2B protein levels, NMDAR-dependent LTD, and anxiety-like behavior, and early activation of NMDAR function has long-lasting effects on adult mouse behavior.
Collapse
Affiliation(s)
- Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Benjamin Serraz
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
- * E-mail:
| |
Collapse
|
133
|
Gordon A, Geschwind DH. Human in vitro models for understanding mechanisms of autism spectrum disorder. Mol Autism 2020; 11:26. [PMID: 32299488 PMCID: PMC7164291 DOI: 10.1186/s13229-020-00332-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Early brain development is a critical epoch for the development of autism spectrum disorder (ASD). In vivo animal models have, until recently, been the principal tool used to study early brain development and the changes occurring in neurodevelopmental disorders such as ASD. In vitro models of brain development represent a significant advance in the field. Here, we review the main methods available to study human brain development in vitro and the applications of these models for studying ASD and other psychiatric disorders. We discuss the main findings from stem cell models to date focusing on cell cycle and proliferation, cell death, cell differentiation and maturation, and neuronal signaling and synaptic stimuli. To be able to generalize the results from these studies, we propose a framework of experimental design and power considerations for using in vitro models to study ASD. These include both technical issues such as reproducibility and power analysis and conceptual issues such as the brain region and cell types being modeled.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
134
|
Lee SY, Vuong TA, So HK, Kim HJ, Kim YB, Kang JS, Kwon I, Cho H. PRMT7 deficiency causes dysregulation of the HCN channels in the CA1 pyramidal cells and impairment of social behaviors. Exp Mol Med 2020; 52:604-614. [PMID: 32269286 PMCID: PMC7210990 DOI: 10.1038/s12276-020-0417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
HCN channels regulate excitability and rhythmicity in the hippocampal CA1 pyramidal cells. Perturbation in the HCN channel current (Ih) is associated with neuropsychiatric disorders, such as autism spectrum disorders. Recently, protein arginine methyltransferase 7 (PRMT7) was shown to be highly expressed in the hippocampus, including the CA1 region. However, the physiological function of PRMT7 in the CA1 neurons and the relationship to psychiatric disorders are unclear. Here we showed that PRMT7 knockout (KO) mice exhibit hyperactivity and deficits in social interaction. The firing frequency of the CA1 neurons in the PRMT7 KO mice was significantly higher than that in the wild-type (WT) mice. Compared with the WT CA1 neurons, the PRMT7 KO CA1 neurons showed a more hyperpolarized resting potential and a higher input resistance, which were occluded by the Ih-current inhibitor ZD7288; these findings were consistent with the decreased Ih and suggested the contribution of Ih-channel dysfunction to the PRMT7 KO phenotypes. The HCN1 protein level was decreased in the CA1 region of the PRMT7 KO mice in conjunction with a decrease in the expression of Shank3, which encodes a core scaffolding protein for HCN channel proteins. A brief application of the PRMT7 inhibitor DS437 did not reproduce the phenotype of the PRMT7 KO neurons, further indicating that PRMT7 regulates Ih by controlling the channel number rather than the open probability. Moreover, shRNA-mediated PRMT7 suppression reduced both the mRNA and protein levels of SHANK3, implying that PRMT7 deficiency might be responsible for the decrease in the HCN protein levels by altering Shank3 expression. These findings reveal a key role for PRMT7 in the regulation of HCN channel density in the CA1 pyramidal cells that may be amenable to pharmacological intervention for neuropsychiatric disorders. Disrupted expression of an ion channel that helps stabilize brain cell activity contributes to behavioral symptoms in mice resembling those seen in autism spectrum disorders (ASDs). Nerve cell firing depends on the right balance of ions inside and outside cells, and a channel protein called HCN helps establish ionic conditions that prevent excessive activity. Researchers led by Hana Cho and Ilmin Kwon of the Sungkyunkwan University School of Medicine, Suwon, South Korea have demonstrated that mice lacking another protein called PRMT7 exhibit reduced numbers of HCN channels in brain structures known to be affected in animal models of ASDs. These mice exhibit hyperactivity and social anxiety, presumably as a consequence of poor regulation of nerve cell firing. The authors propose that this PRMT7-HCN pathway may offer a fruitful target for the development of neuropsychiatric therapies.
Collapse
Affiliation(s)
- Seul-Yi Lee
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tuan Anh Vuong
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Kyung So
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yoo Bin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|
135
|
Sun AX, Yuan Q, Fukuda M, Yu W, Yan H, Lim GGY, Nai MH, D'Agostino GA, Tran HD, Itahana Y, Wang D, Lokman H, Itahana K, Lim SWL, Tang J, Chang YY, Zhang M, Cook SA, Rackham OJL, Lim CT, Tan EK, Ng HH, Lim KL, Jiang YH, Je HS. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science 2020; 366:1486-1492. [PMID: 31857479 DOI: 10.1126/science.aav5386] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/29/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.
Collapse
Affiliation(s)
- Alfred Xuyang Sun
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore. .,Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Qiang Yuan
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.,Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Masahiro Fukuda
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Haidun Yan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Grace Gui Yin Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
| | | | - Hoang-Dai Tran
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yoko Itahana
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Danlei Wang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Hidayat Lokman
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Koji Itahana
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Stephanie Wai Lin Lim
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiong Tang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Ya Yin Chang
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Menglan Zhang
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Huck Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Kah Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yong-Hui Jiang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
136
|
Yoon SH, Choi J, Lee WJ, Do JT. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. J Clin Med 2020; 9:E966. [PMID: 32244359 PMCID: PMC7230567 DOI: 10.3390/jcm9040966] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by difficulties in social interaction, language development delays, repeated body movements, and markedly deteriorated activities and interests. Environmental factors, such as viral infection, parental age, and zinc deficiency, can be plausible contributors to ASD susceptibility. As ASD is highly heritable, genetic risk factors involved in neurodevelopment, neural communication, and social interaction provide important clues in explaining the etiology of ASD. Accumulated evidence also shows an important role of epigenetic factors, such as DNA methylation, histone modification, and noncoding RNA, in ASD etiology. In this review, we compiled the research published to date and described the genetic and epigenetic epidemiology together with environmental risk factors underlying the etiology of the different phenotypes of ASD.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Korea; (S.H.Y.); (J.C.); (W.J.L.)
| |
Collapse
|
137
|
Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NJ, Hengen KB, Wagner FF, Van Hooser SD, Turrigiano GG. Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent V1. Neuron 2020; 106:769-777.e4. [PMID: 32199104 DOI: 10.1016/j.neuron.2020.02.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Mutations in Shank3 are strongly associated with autism spectrum disorders and neural circuit changes in several brain areas, but the cellular mechanisms that underlie these defects are not understood. Homeostatic forms of plasticity allow central circuits to maintain stable function during experience-dependent development, leading us to ask whether loss of Shank3 might impair homeostatic plasticity and circuit-level compensation to perturbations. We found that Shank3 loss in vitro abolished synaptic scaling and intrinsic homeostatic plasticity, deficits that could be rescued by treatment with lithium. Further, Shank3 knockout severely compromised the in vivo ability of visual cortical circuits to recover from perturbations to sensory drive. Finally, lithium treatment ameliorated a repetitive self-grooming phenotype in Shank3 knockout mice. These findings demonstrate that Shank3 loss severely impairs the ability of central circuits to harness homeostatic mechanisms to compensate for perturbations in drive, which, in turn, may render them more vulnerable to such perturbations.
Collapse
Affiliation(s)
| | | | | | - Heather Lin
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Priya Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | | | - Keith B Hengen
- Department of Biology, Brandeis University, Waltham, MA 02493, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
138
|
Wei F, Wang Q, Han J, Goswamee P, Gupta A, McQuiston AR, Liu Q, Zhou L. Photodynamic Modification of Native HCN Channels Expressed in Thalamocortical Neurons. ACS Chem Neurosci 2020; 11:851-863. [PMID: 32078767 DOI: 10.1021/acschemneuro.9b00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The photodynamic process requires three elements: light, oxygen, and photosensitizer, and involves the formation of singlet oxygen, the molecular oxygen in excited electronic states. Previously, we reported that heterologously expressed hyperpolarization-activated cAMP-gated (HCN) channels in excised membrane patches are sensitive to photodynamic modification (PDM). Here we extend this study to native HCN channels expressed in thalamocortical (TC) neurons in the ventrobasal (VB) complex of the thalamus and dopaminergic neurons (DA) of the ventral tegmental area (VTA). To do this, we introduced the photosensitizer FITC-cAMP into TCs or DAs of rodent brain slices via a whole-cell patch-clamp recording pipette. After illumination with blue light pulses, we observed an increase in the voltage-insensitive, instantaneous Iinst component, accompanied by a long-lasting decrease in the hyperpolarization-dependent Ih component. Both Ih and the increased Iinst after PDM could be blocked by the HCN blockers Cs+ and ZD7288. When FITC and cAMP were dissociated and loaded into neurons as two separate chemicals, light application did not result in any long-lasting changes of the HCN currents. In contrast, light pulses applied to HCN2-/- neurons loaded with FITC-cAMP generated a much greater reduction in the Iinst component compared to that of WT neurons. Next, we investigated the impact of the long-lasting increases in Iinst after PDM on the cellular physiology of VB neurons. Consistent with an upregulation of HCN channel function, PDM elicited a depolarization of the resting membrane potential (RMP). Importantly, Trolox-C, an effective quencher for singlet oxygen, could block the PDM-dependent increase in Iinst and depolarization of the RMP. We propose that PDM of native HCN channels under physiological conditions may provide a photodynamic approach to alleviate HCN channelopathy in certain pathological conditions.
Collapse
Affiliation(s)
- Fusheng Wei
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330031, Jiangxi, China
| | - Qiang Wang
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Jizhong Han
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Priyodarshan Goswamee
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ankush Gupta
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Adam Rory McQuiston
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Qinglian Liu
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Lei Zhou
- Department of Physiology and Biophysics, Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
139
|
Huang M, Pu S, Jiang W, Worley PF, Xu T. Deficiency of SHANK3 isoforms impairs thermal hyperalgesia and dysregulates the expression of postsynaptic proteins in the spinal cord. Neurosci Res 2020; 163:26-33. [PMID: 32147472 DOI: 10.1016/j.neures.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
SHANK3 is one of the scaffolding proteins in the postsynaptic density (PSD). Pain perception and underlying mechanisms were investigated in Shank3 exon 21 deficient (Shank3△C) mice. Sixty-six mice were attributed according to their genotype to three groups: (1) wild-type (WT), (2) heterozygous Shank3△C/+, and (3) homozygous Shank3△C/△C. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and thermal hyperalgesia was determined. CFA treatment reduced the thermal threshold in the WT group; groups expressing mutations of Shank3 (△C/+ and △C/△C) had higher thresholds after CFA administration compared to the WT group. Mice with Shank3 mutations (△C/+ or △C/△C) had a lower expression of GluN2A and IP3R proteins and a higher expression of mGluR5 protein in the PSD compared to WT mice without changes in GluN1, GluN2B, and Homer expression. The crosslinking of Homer-IP3R, but not Homer-mGluR5, was decreased in the total lysate. Deficit of Shank3 exon 21 may lead to impaired perception of thermal pain in mice under inflammatory conditions. This impairment may result from protein dysregulation in the PSD like downregulation of the GluN2A subunit, which may reduce NMDAR-mediated currents, and/or decreased crosslinking between Homer and IP3R, which may reduce the release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Min Huang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Shaofeng Pu
- Pain Management Center, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Wei Jiang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China.
| |
Collapse
|
140
|
Rajarajan P, Flaherty E, Akbarian S, Brennand KJ. CRISPR-based functional evaluation of schizophrenia risk variants. Schizophr Res 2020; 217:26-36. [PMID: 31277978 PMCID: PMC6939156 DOI: 10.1016/j.schres.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
As expanding genetic and genomic studies continue to implicate a growing list of variants contributing risk to neuropsychiatric disease, an important next step is to understand the functional impact and points of convergence of these risk factors. Here, with a focus on schizophrenia, we survey the most recent findings of the rare and common variants underlying genetic risk for schizophrenia. We discuss the ongoing efforts to validate these variants in post-mortem brain tissue, as well as new approaches to combine CRISPR-based genome engineering with patient-specific human induced pluripotent stem cell (hiPSC)-based models, in order to identify putative causal schizophrenia loci that regulate gene expression and cellular function. We consider the current limitations of hiPSC-based approaches as well as the future advances necessary to improve the fidelity of this human model. With the objective of utilizing patient genotype data to improve diagnosis and predict treatment response, the integration of CRISPR-genome engineering and hiPSC-based models represent an important strategy with which to systematically demonstrate the cell-type-specific effects of schizophrenia-associated variants.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Erin Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
141
|
Orefice LL. Peripheral Somatosensory Neuron Dysfunction: Emerging Roles in Autism Spectrum Disorders. Neuroscience 2020; 445:120-129. [PMID: 32035119 DOI: 10.1016/j.neuroscience.2020.01.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
Alterations in somatosensory (touch and pain) behaviors are highly prevalent among people with autism spectrum disorders (ASDs). However, the neural mechanisms underlying abnormal touch and pain-related behaviors in ASDs and how altered somatosensory reactivity might contribute to ASD pathogenesis has not been well studied. Here, we provide a brief review of somatosensory alterations observed in people with ASDs and recent evidence from animal models that implicates peripheral neurons as a locus of dysfunction for somatosensory abnormalities in ASDs. Lastly, we describe current efforts to understand how altered peripheral sensory neuron dysfunction may impact brain development and complex behaviors in ASD models, and whether targeting peripheral somatosensory neurons to improve their function might also improve related ASD phenotypes.
Collapse
Affiliation(s)
- Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
142
|
Hoffmann A, Ziller M, Spengler D. Focus on Causality in ESC/iPSC-Based Modeling of Psychiatric Disorders. Cells 2020; 9:E366. [PMID: 32033412 PMCID: PMC7072492 DOI: 10.3390/cells9020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an increasing number of genetic variants that significantly associate with psychiatric disorders. Despite this wealth of information, our knowledge of which variants causally contribute to disease, how they interact, and even more so of the functions they regulate, is still poor. The availability of embryonic stem cells (ESCs) and the advent of patient-specific induced pluripotent stem cells (iPSCs) has opened new opportunities to investigate genetic risk variants in living disease-relevant cells. Here, we analyze how this progress has contributed to the analysis of causal relationships between genetic risk variants and neuronal phenotypes, especially in schizophrenia (SCZ) and bipolar disorder (BD). Studies on rare, highly penetrant risk variants have originally led the field, until more recently when the development of (epi-) genetic editing techniques spurred studies on cause-effect relationships between common low risk variants and their associated neuronal phenotypes. This reorientation not only offers new insights, but also raises issues on interpretability. Concluding, we consider potential caveats and upcoming developments in the field of ESC/iPSC-based modeling of causality in psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany; (A.H.); (M.Z.)
| |
Collapse
|
143
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
144
|
Altered excitatory transmission onto hippocampal interneurons in the IQSEC2 mouse model of X-linked neurodevelopmental disease. Neurobiol Dis 2020; 137:104758. [PMID: 31978606 DOI: 10.1016/j.nbd.2020.104758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 02/01/2023] Open
Abstract
Mutations in the X-linked gene IQSEC2 are associated with multiple cases of epilepsy, epileptic encephalopathy, intellectual disability and autism spectrum disorder, the mechanistic understanding and successful treatment of which remain a significant challenge in IQSEC2 and related neurodevelopmental genetic diseases. To investigate disease etiology, we studied behaviors and synaptic function in IQSEC2 deficient mice. Hemizygous Iqsec2 null males exhibit growth deficits, hyperambulation and hyperanxiety phenotypes. Adult hemizygotes experience lethal spontaneous seizures, but paradoxically have a significantly increased threshold to electrically induced limbic seizures and relative resistance to chemically induced seizures. Although there are no gross defects in brain morphology, hemizygotes exhibit stark hippocampal reactive astrogliosis. Electrophysiological recordings of hippocampal neurons reveal increased excitatory drive specifically onto interneurons, and significant alterations in intrinsic electrical properties specific to the interneuron population. As they age, hemizygotes also develop an increased abundance of parvalbumin-positive interneurons in the hippocampus, neurons in which IQSEC2 is expressed in addition to the excitatory neurons. These findings point to a novel role of IQSEC2 in hippocampal interneuron synaptic function and development with implications for a class of intractable neurodevelopmental diseases.
Collapse
|
145
|
Ross PJ, Zhang WB, Mok RS, Zaslavsky K, Deneault E, D’Abate L, Rodrigues DC, Yuen RK, Faheem M, Mufteev M, Piekna A, Wei W, Pasceri P, Landa RJ, Nagy A, Varga B, Salter MW, Scherer SW, Ellis J. Synaptic Dysfunction in Human Neurons With Autism-Associated Deletions in PTCHD1-AS. Biol Psychiatry 2020; 87:139-149. [PMID: 31540669 PMCID: PMC6948145 DOI: 10.1016/j.biopsych.2019.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/23/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Xp22.11 locus that encompasses PTCHD1, DDX53, and the long noncoding RNA PTCHD1-AS is frequently disrupted in male subjects with autism spectrum disorder (ASD), but the functional consequences of these genetic risk factors for ASD are unknown. METHODS To evaluate the functional consequences of PTCHD1 locus deletions, we generated induced pluripotent stem cells (iPSCs) from unaffected control subjects and 3 subjects with ASD with microdeletions affecting PTCHD1-AS/PTCHD1, PTCHD1-AS/DDX53, or PTCHD1-AS alone. Function of iPSC-derived cortical neurons was assessed using molecular approaches and electrophysiology. We also compiled novel and known genetic variants of the PTCHD1 locus to explore the roles of PTCHD1 and PTCHD1-AS in genetic risk for ASD and other neurodevelopmental disorders. Finally, genome editing was used to explore the functional consequences of deleting a single conserved exon of PTCHD1-AS. RESULTS iPSC-derived neurons from subjects with ASD exhibited reduced miniature excitatory postsynaptic current frequency and N-methyl-D-aspartate receptor hypofunction. We found that 35 ASD-associated deletions mapping to the PTCHD1 locus disrupted exons of PTCHD1-AS. We also found a novel ASD-associated deletion of PTCHD1-AS exon 3 and showed that exon 3 loss altered PTCHD1-AS splicing without affecting expression of the neighboring PTCHD1 coding gene. Finally, targeted disruption of PTCHD1-AS exon 3 recapitulated diminished miniature excitatory postsynaptic current frequency, supporting a role for the long noncoding RNA in the etiology of ASD. CONCLUSIONS Our genetic findings provide strong evidence that PTCHD1-AS deletions are risk factors for ASD, and human iPSC-derived neurons implicate these deletions in the neurophysiology of excitatory synapses and in ASD-associated synaptic impairment.
Collapse
Affiliation(s)
- P. Joel Ross
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada,These authors contributed equally to this work,Present address: Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Wen-Bo Zhang
- Neuroscience & Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada,These authors contributed equally to this work
| | - Rebecca S.F. Mok
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kirill Zaslavsky
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Deneault
- Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lia D’Abate
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada,Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deivid C. Rodrigues
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryan K.C. Yuen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada,Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Muhammad Faheem
- Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alina Piekna
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Pasceri
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebecca J. Landa
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andras Nagy
- Lunenfeld-Tenenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada,Institute of Medical Science and Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Balazs Varga
- Lunenfeld-Tenenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada,Present address: Wellcome Trust MRC Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Michael W. Salter
- Neuroscience & Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stephen W. Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada,Genetics & Genome Biology Program and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
146
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
147
|
Cai Q, Hosokawa T, Zeng M, Hayashi Y, Zhang M. Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure 2019; 28:290-300.e4. [PMID: 31879129 DOI: 10.1016/j.str.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Shank1/2/3, major scaffold proteins in excitatory synapses, are frequently mutated in patients with psychiatric disorders. Although the Shank N-terminal domain and ankyrin repeats domain tandem (NTD-ANK) is known to bind to Ras and Rap1, the molecular mechanism underlying and functional significance of the bindings in synapses are unknown. Here, we demonstrate that Shank3 NTD-ANK specifically binds to the guanosine triphosphate (GTP)-bound form of HRas and Rap1. In addition to the canonical site mediated by the Ras-association domain and common to both GTPases, Shank3 contains an unconventional Rap1 binding site formed by NTD and ANK together. Binding of Shank3 to the GTP-loaded Rap1 slows down its GTP hydrolysis by SynGAP. We further show that the interactions between Shank3 and HRas/Rap1 at excitatory synapses are promoted by synaptic activation. Thus, Shank3 may be able to modulate signaling of the Ras family proteins via directly binding to and stabilizing the GTP-bound form of the enzymes.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
148
|
Noninvasive Brain Stimulation Enhances Memory Acquisition and Is Associated with Synaptoneurosome Modification in the Rat Hippocampus. eNeuro 2019; 6:ENEURO.0311-19.2019. [PMID: 31699891 PMCID: PMC6900464 DOI: 10.1523/eneuro.0311-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 01/11/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation approach previously shown to enhance memory acquisition, but more studies are needed to elucidate the underlying mechanisms. Here, we examined the effects of anodal tDCS (0.25 mA for 30 min) on the memory performance of male Sprague Dawley rats in the passive avoidance test (PAT) and the associated modifications to the hippocampal proteomes. Results indicate anodal tDCS applied before the acquisition period significantly enhanced memory performance in the PAT. Following PAT, synaptoneurosomes were biochemically purified from the hippocampi of tDCS-treated or sham-treated rats and individual protein abundances were determined by bottom-up liquid chromatography mass spectrometry analysis. Proteomic analysis identified 184 differentially expressed hippocampal proteins when comparing the sham to the tDCS before memory acquisition treatment group. Ingenuity pathway analysis (IPA) showed anodal tDCS before memory acquisition significantly enhanced pathways associated with memory, cognition, learning, transmission, neuritogenesis, and long-term potentiation (LTP). IPA identified significant upstream regulators including bdnf, shank3, and gsk3b. Protein-protein interaction (PPI) and protein sequence similarity (PSS) networks show that glutamate receptor pathways, ion channel activity, memory, learning, cognition, and long-term memory were significantly associated with anodal tDCS. Centrality measures from both networks identified key proteins including dlg, shank, grin, and gria that were significantly modified by tDCS applied before the acquisition period. Together, our results provide descriptive molecular evidence that anodal tDCS enhances memory performance in the PAT by modifying hippocampal synaptic plasticity related proteins.
Collapse
|
149
|
Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, Green MF, Light GA, Nievergelt CM, Nuechterlein KH, Radant AD, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Gur RC, Gur RE, Braff DL. Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry 2019; 76:1274-1284. [PMID: 31596458 PMCID: PMC6802253 DOI: 10.1001/jamapsychiatry.2019.2850] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. OBJECTIVE To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). DESIGN, SETTING, AND PARTICIPANTS A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. MAIN OUTCOMES AND MEASURES A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. RESULTS The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. CONCLUSIONS AND RELEVANCE These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California,Sierra Pacific Mental Illness Research Education and Clinical Center, Department of Veterans Affairs (VA) Health Care System, Palo Alto, California
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | | | | | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Department of Biostatistics, UCLA School of Public Health
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla
| |
Collapse
|
150
|
Ojeda J, Ávila A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front Synaptic Neurosci 2019; 11:33. [PMID: 31824293 PMCID: PMC6881277 DOI: 10.3389/fnsyn.2019.00033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.
Collapse
Affiliation(s)
- Jorge Ojeda
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|