101
|
Fu T, Arnoux I, Döring J, Backhaus H, Watari H, Stasevicius I, Fan W, Stroh A. Exploring two-photon optogenetics beyond 1100 nm for specific and effective all-optical physiology. iScience 2021; 24:102184. [PMID: 33718836 PMCID: PMC7921810 DOI: 10.1016/j.isci.2021.102184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
Two-photon (2-P) all-optical approaches combine in vivo 2-P calcium imaging and 2-P optogenetic modulations. Here, firstly, we combined in vivo juxtacellular recordings and GCaMP6f-based 2-P calcium imaging in mouse visual cortex to tune our detection algorithm towards a 100% specific identification of action potential-related calcium transients. Secondly, we minimized photostimulation artifacts by using extended-wavelength-spectrum laser sources for optogenetic stimulation. We achieved artifact-free all-optical experiments performing optogenetic stimulation from 1100 nm to 1300 nm. Thirdly, we determined the spectral range for maximizing efficacy until 1300 nm. The rate of evoked transients in GCaMP6f/C1V1-co-expressing cortical neurons peaked already at 1100 nm. By refining spike detection and defining 1100 nm as the optimal wavelength for artifact-free and effective GCaMP6f/C1V1-based all-optical physiology, we increased the translational value of these approaches, e.g., for the development of network-based therapies. We developed an algorithm for 100 %-specific identification of AP-related calcium transients Artifact-free all-optical experiments can be achieved from 1100 nm to 1300 nm Efficacy of C1V1 excitation does not increase beyond 1100 nm until 1300 nm
Collapse
Affiliation(s)
- Ting Fu
- Institute of Pathophysiology, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, D-55128 Mainz, Germany.,Leibniz Institute for Resilience Research, Wallstr. 7, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Institute of Pathophysiology, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, D-55128 Mainz, Germany.,Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jan Döring
- Institute of Pathophysiology, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, D-55128 Mainz, Germany
| | - Hendrik Backhaus
- Leibniz Institute for Resilience Research, Wallstr. 7, D-55122 Mainz, Germany
| | - Hirofumi Watari
- Institute of Pathophysiology, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, D-55128 Mainz, Germany
| | - Ignas Stasevicius
- Vilnius University Laser Research Center, Saulėtekio av. 10, LT-10223 Vilnius, Lithuania.,Light Conversion, Keramikų 2b, Vilnius LT-10223, Lithuania
| | - Wei Fan
- Institute of Pathophysiology, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, D-55128 Mainz, Germany.,Leibniz Institute for Resilience Research, Wallstr. 7, D-55122 Mainz, Germany
| | - Albrecht Stroh
- Institute of Pathophysiology, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, D-55128 Mainz, Germany.,Leibniz Institute for Resilience Research, Wallstr. 7, D-55122 Mainz, Germany
| |
Collapse
|
102
|
McKenzie S, Huszár R, English DF, Kim K, Christensen F, Yoon E, Buzsáki G. Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron 2021; 109:1040-1054.e7. [PMID: 33539763 PMCID: PMC8095399 DOI: 10.1016/j.neuron.2021.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Memory models often emphasize the need to encode novel patterns of neural activity imposed by sensory drive. Prior learning and innate architecture likely restrict neural plasticity, however. Here, we test how the incorporation of synthetic hippocampal signals is constrained by preexisting circuit dynamics. We optogenetically stimulated small groups of CA1 neurons as mice traversed a chosen segment of a linear track, mimicking the emergence of place fields. Stimulation induced persistent place field remapping in stimulated and non-stimulated neurons. The emergence of place fields could be predicted from sporadic firing in the new place field location and the temporal relationship to peer neurons before the optogenetic perturbation. Circuit modification was reflected by altered spike transmission between connected pyramidal cells and inhibitory interneurons, which persisted during post-experience sleep. We hypothesize that optogenetic perturbation unmasked sub-threshold place fields. Plasticity in recurrent/lateral inhibition may drive learning through the rapid association of existing states.
Collapse
Affiliation(s)
- Sam McKenzie
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Roman Huszár
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Daniel F English
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kanghwan Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fletcher Christensen
- Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Republic of Korea
| | - György Buzsáki
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
103
|
Identification and quantification of neuronal ensembles in optical imaging experiments. J Neurosci Methods 2020; 351:109046. [PMID: 33359231 DOI: 10.1016/j.jneumeth.2020.109046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Recent technical advances in molecular biology and optical imaging have made it possible to record from up to thousands of densely packed neurons in superficial and deep brain regions in vivo, with cellular subtype specificity and high spatiotemporal fidelity. Such optical neurotechnologies are enabling increasingly fine-scaled studies of neuronal circuits and reliably co-active groups of neurons, so-called ensembles. Neuronal ensembles are thought to constitute the basic functional building blocks of brain systems, potentially exhibiting collective computational properties. While the technical framework of in vivo optical imaging and quantification of neuronal activity follows certain widely held standards, analytical methods for study of neuronal co-activity and ensembles lack consensus and are highly varied across the field. Here we provide a comprehensive step-by-step overview of theoretical, experimental, and analytical considerations for the identification and quantification of neuronal ensemble dynamics in high-resolution in vivo optical imaging studies.
Collapse
|
104
|
Robinson NTM, Descamps LAL, Russell LE, Buchholz MO, Bicknell BA, Antonov GK, Lau JYN, Nutbrown R, Schmidt-Hieber C, Häusser M. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell 2020; 183:1586-1599.e10. [PMID: 33159859 PMCID: PMC7754708 DOI: 10.1016/j.cell.2020.09.061] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an 'all-optical' combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory.
Collapse
Affiliation(s)
- Nick T M Robinson
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Lucie A L Descamps
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Moritz O Buchholz
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Brendan A Bicknell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Georgy K Antonov
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Joanna Y N Lau
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Christoph Schmidt-Hieber
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
105
|
Sadeh S, Clopath C. Inhibitory stabilization and cortical computation. Nat Rev Neurosci 2020; 22:21-37. [PMID: 33177630 DOI: 10.1038/s41583-020-00390-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Neuronal networks with strong recurrent connectivity provide the brain with a powerful means to perform complex computational tasks. However, high-gain excitatory networks are susceptible to instability, which can lead to runaway activity, as manifested in pathological regimes such as epilepsy. Inhibitory stabilization offers a dynamic, fast and flexible compensatory mechanism to balance otherwise unstable networks, thus enabling the brain to operate in its most efficient regimes. Here we review recent experimental evidence for the presence of such inhibition-stabilized dynamics in the brain and discuss their consequences for cortical computation. We show how the study of inhibition-stabilized networks in the brain has been facilitated by recent advances in the technological toolbox and perturbative techniques, as well as a concomitant development of biologically realistic computational models. By outlining future avenues, we suggest that inhibitory stabilization can offer an exemplary case of how experimental neuroscience can progress in tandem with technology and theory to advance our understanding of the brain.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bioengineering Department, Imperial College London, London, UK
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK.
| |
Collapse
|
106
|
Dalgleish HWP, Russell LE, Packer AM, Roth A, Gauld OM, Greenstreet F, Thompson EJ, Häusser M. How many neurons are sufficient for perception of cortical activity? eLife 2020; 9:e58889. [PMID: 33103656 PMCID: PMC7695456 DOI: 10.7554/elife.58889] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/17/2020] [Indexed: 01/12/2023] Open
Abstract
Many theories of brain function propose that activity in sparse subsets of neurons underlies perception and action. To place a lower bound on the amount of neural activity that can be perceived, we used an all-optical approach to drive behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while simultaneously recording local network activity with two-photon calcium imaging. By precisely titrating the number of neurons stimulated, we demonstrate that the lower bound for perception of cortical activity is ~14 pyramidal neurons. We find a steep sigmoidal relationship between the number of activated neurons and behaviour, saturating at only ~37 neurons, and show this relationship can shift with learning. Furthermore, activation of ensembles is balanced by inhibition of neighbouring neurons. This surprising perceptual sensitivity in the face of potent network suppression supports the sparse coding hypothesis, and suggests that cortical perception balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.
Collapse
Affiliation(s)
- Henry WP Dalgleish
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Francesca Greenstreet
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Emmett J Thompson
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| |
Collapse
|
107
|
Serrano-Reyes M, García-Vilchis B, Reyes-Chapero R, Cáceres-Chávez VA, Tapia D, Galarraga E, Bargas J. Spontaneous Activity of Neuronal Ensembles in Mouse Motor Cortex: Changes after GABAergic Blockade. Neuroscience 2020; 446:304-322. [PMID: 32860933 DOI: 10.1016/j.neuroscience.2020.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Rosa Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
108
|
Antonini A, Sattin A, Moroni M, Bovetti S, Moretti C, Succol F, Forli A, Vecchia D, Rajamanickam VP, Bertoncini A, Panzeri S, Liberale C, Fellin T. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness. eLife 2020; 9:58882. [PMID: 33048047 PMCID: PMC7685710 DOI: 10.7554/elife.58882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
Collapse
Affiliation(s)
- Andrea Antonini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Monica Moroni
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Vijayakumar P Rajamanickam
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Bertoncini
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Carlo Liberale
- Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|
109
|
Liu YZ, Renteria C, Courtney CD, Ibrahim B, You S, Chaney EJ, Barkalifa R, Iyer RR, Zurauskas M, Tu H, Llano DA, Christian-Hinman CA, Boppart SA. Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light. NEUROPHOTONICS 2020; 7:045007. [PMID: 33163545 PMCID: PMC7607614 DOI: 10.1117/1.nph.7.4.045007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Recent advances in nonlinear optics in neuroscience have focused on using two ultrafast lasers for activity imaging and optogenetic stimulation. Broadband femtosecond light sources can obviate the need for multiple lasers by spectral separation for chromatically targeted excitation. AIM We present a photonic crystal fiber (PCF)-based supercontinuum source for spectrally resolved two-photon (2P) imaging and excitation of GCaMP6s and C1V1-mCherry, respectively. APPROACH A PCF is pumped using a 20-MHz repetition rate femtosecond laser to generate a supercontinuum of light, which is spectrally separated, compressed, and recombined to image GCaMP6s (930 nm excitation) and stimulate the optogenetic protein, C1V1-mCherry (1060 nm excitation). Galvanometric spiral scanning is employed on a single-cell level for multiphoton excitation and high-speed resonant scanning is employed for imaging of calcium activity. RESULTS Continuous wave lasers were used to verify functionality of optogenetic activation followed by directed 2P excitation. Results from these experiments demonstrate the utility of a supercontinuum light source for simultaneous, single-cell excitation and calcium imaging. CONCLUSIONS A PCF-based supercontinuum light source was employed for simultaneous imaging and excitation of calcium dynamics in brain tissue. Pumped PCFs can serve as powerful light sources for imaging and activation of neural activity, and overcome the limited spectra and space associated with multilaser approaches.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Carlos Renteria
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Connor D. Courtney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
| | - Baher Ibrahim
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Sixian You
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ronit Barkalifa
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Rishyashring R. Iyer
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Zurauskas
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Haohua Tu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Daniel A. Llano
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Catherine A. Christian-Hinman
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
110
|
Gill JV, Lerman GM, Zhao H, Stetler BJ, Rinberg D, Shoham S. Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection. Neuron 2020; 108:382-393.e5. [PMID: 32841590 DOI: 10.1016/j.neuron.2020.07.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Sensory systems transform the external world into time-varying spike trains. What features of spiking activity are used to guide behavior? In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony) and the onset of inhalation (latency). To explore the relevance of each mode of information transmission, we probed the sensitivity of mice to perturbations across each stimulus dimension (i.e., rate, synchrony, and latency) using holographic two-photon optogenetic stimulation of olfactory bulb neurons with cellular and single-action-potential resolution. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, but not the latency relative to inhalation.
Collapse
Affiliation(s)
- Jonathan V Gill
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Gilad M Lerman
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Hetince Zhao
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin J Stetler
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Physics, New York University, New York, NY 10003, USA.
| | - Shy Shoham
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA; Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
111
|
Global enhancement of cortical excitability following coactivation of large neuronal populations. Proc Natl Acad Sci U S A 2020; 117:20254-20264. [PMID: 32747543 DOI: 10.1073/pnas.1914869117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correlated activation of cortical neurons often occurs in the brain and repetitive correlated neuronal firing could cause long-term modifications of synaptic efficacy and intrinsic excitability. We found that repetitive optogenetic activation of neuronal populations in the mouse cortex caused enhancement of optogenetically evoked firing of local coactivated neurons as well as distant cortical neurons in both ipsilateral and contralateral hemispheres. This global enhancement of evoked responses required coactivation of a sufficiently large population of neurons either within one cortical area or distributed in several areas. Enhancement of neuronal firing was saturable after repeated episodes of coactivation, diminished by inhibition of N-methyl-d-aspartic acid receptors, and accompanied by elevated excitatory postsynaptic potentials, all consistent with activity-induced synaptic potentiation. Chemogenetic inhibition of neuronal activity of the thalamus decreased the enhancement effect, suggesting thalamic involvement. Thus, correlated excitation of large neuronal populations leads to global enhancement of neuronal excitability.
Collapse
|
112
|
Ceto S, Sekiguchi KJ, Takashima Y, Nimmerjahn A, Tuszynski MH. Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell 2020; 27:430-440.e5. [PMID: 32758426 DOI: 10.1016/j.stem.2020.07.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Neural stem/progenitor cell (NSPC) grafts can integrate into sites of spinal cord injury (SCI) and generate neuronal relays across lesions that can provide functional benefit. To determine if and how grafts become synaptically organized and connect with host systems, we performed calcium imaging of NSPC grafts in SCI sites in vivo and in adult spinal cord slices. NSPC grafts organize into localized and spontaneously active synaptic networks. Optogenetic stimulation of host corticospinal tract axons regenerating into grafts elicited distinct and segregated neuronal network responses throughout the graft. Moreover, optogenetic stimulation of graft-derived axons extending from the graft into the denervated spinal cord also triggered local host neuronal network responses. In vivo imaging revealed that behavioral stimulation likewise elicited focal synaptic responses within grafts. Thus neural progenitor grafts can form functional synaptic subnetworks whose activity patterns resemble intact spinal cord.
Collapse
Affiliation(s)
- Steven Ceto
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA.
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yoshio Takashima
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Medical Center, San Diego, La Jolla, CA 92161, USA.
| |
Collapse
|
113
|
Bolding KA, Nagappan S, Han BX, Wang F, Franks KM. Recurrent circuitry is required to stabilize piriform cortex odor representations across brain states. eLife 2020; 9:e53125. [PMID: 32662420 PMCID: PMC7360366 DOI: 10.7554/elife.53125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | | | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| |
Collapse
|
114
|
Yu T, Li Y, Hu Q, Wang F, Yuan S, Li C, Li J, Cui J, Shen H. Ketamine contributes to the alteration of Ca 2+ transient evoked by behavioral tests in the prelimbic area of mPFC: A study on chronic CORT-induced depressive mice. Neurosci Lett 2020; 735:135220. [PMID: 32615246 DOI: 10.1016/j.neulet.2020.135220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/15/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023]
Abstract
Recent studies have showed that ketamine is a rapid and efficient antidepressant, but the mechanism of its antidepressant effect is not fully clear. It is still lack of the research investigating the relation between depressive-like behaviors and neuronal activities in specific brain area after administration of ketamine in vivo. Medial prefrontal cortex (mPFC) involved in the pathogenesis of depression. As a result of effective assessments after behavioral test, most studies lack of direct evidence of the relation between efficacy and the activity of specific brain area. Therefore, we used fiber photometry to explore the alteration of Ca2+ transient in the prelimbic (PrL) area of mPFC during behavioral tests in freely moving mice. Our results showed that the chronic corticosterone (CORT) protocol induced depressive-like behaviors. Administration of ketamine reversed these effects. The activation of Ca2+ transients was associated with some behaviors during behavioral tests. Struggling, rearing and exploring evoked strong Ca2+ transients, but moving and grooming did not. The Ca2+ transients amplitude reductions of struggling, rearing and exploring induced by CORT were reversed by ketamine. The results indicated that ketamine ameliorated depressive-like behaviors via mediating neural activation in PrL.
Collapse
Affiliation(s)
- Tianyu Yu
- Tianjing Medical University Second Clinical College, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cui Li
- Department of Anethesia, Tianjin Hospital of ITCWN Nankai Hospital, Tianjin, China
| | - Juping Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jialin Cui
- Tianjin Medical University School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China; Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
115
|
Montangie L, Miehl C, Gjorgjieva J. Autonomous emergence of connectivity assemblies via spike triplet interactions. PLoS Comput Biol 2020; 16:e1007835. [PMID: 32384081 PMCID: PMC7239496 DOI: 10.1371/journal.pcbi.1007835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/20/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
Non-random connectivity can emerge without structured external input driven by activity-dependent mechanisms of synaptic plasticity based on precise spiking patterns. Here we analyze the emergence of global structures in recurrent networks based on a triplet model of spike timing dependent plasticity (STDP), which depends on the interactions of three precisely-timed spikes, and can describe plasticity experiments with varying spike frequency better than the classical pair-based STDP rule. We derive synaptic changes arising from correlations up to third-order and describe them as the sum of structural motifs, which determine how any spike in the network influences a given synaptic connection through possible connectivity paths. This motif expansion framework reveals novel structural motifs under the triplet STDP rule, which support the formation of bidirectional connections and ultimately the spontaneous emergence of global network structure in the form of self-connected groups of neurons, or assemblies. We propose that under triplet STDP assembly structure can emerge without the need for externally patterned inputs or assuming a symmetric pair-based STDP rule common in previous studies. The emergence of non-random network structure under triplet STDP occurs through internally-generated higher-order correlations, which are ubiquitous in natural stimuli and neuronal spiking activity, and important for coding. We further demonstrate how neuromodulatory mechanisms that modulate the shape of the triplet STDP rule or the synaptic transmission function differentially promote structural motifs underlying the emergence of assemblies, and quantify the differences using graph theoretic measures. Emergent non-random connectivity structures in different brain regions are tightly related to specific patterns of neural activity and support diverse brain functions. For instance, self-connected groups of neurons, known as assemblies, have been proposed to represent functional units in brain circuits and can emerge even without patterned external instruction. Here we investigate the emergence of non-random connectivity in recurrent networks using a particular plasticity rule, triplet STDP, which relies on the interaction of spike triplets and can capture higher-order statistical dependencies in neural activity. We derive the evolution of the synaptic strengths in the network and explore the conditions for the self-organization of connectivity into assemblies. We demonstrate key differences of the triplet STDP rule compared to the classical pair-based rule in terms of how assemblies are formed, including the realistic asymmetric shape and influence of novel connectivity motifs on network plasticity driven by higher-order correlations. Assembly formation depends on the specific shape of the STDP window and synaptic transmission function, pointing towards an important role of neuromodulatory signals on formation of intrinsically generated assemblies.
Collapse
Affiliation(s)
- Lisandro Montangie
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Christoph Miehl
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Technical University of Munich, School of Life Sciences, Freising, Germany
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
- Technical University of Munich, School of Life Sciences, Freising, Germany
- * E-mail:
| |
Collapse
|
116
|
Carrillo-Reid L, Yuste R. Playing the piano with the cortex: role of neuronal ensembles and pattern completion in perception and behavior. Curr Opin Neurobiol 2020; 64:89-95. [PMID: 32320944 DOI: 10.1016/j.conb.2020.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/30/2022]
Abstract
Neuronal ensembles, i.e. coactive groups of neurons, have been long postulated to be functional building blocks of cortical circuits and units of the neural code. Calcium imaging of neuronal populations has demonstrated the widespread existence of spontaneous and sensory-evoked ensembles in cortical circuits in vivo. The development of two-photon optical techniques to simultaneously record and activate neurons with single cell resolution ("piano" experiments) has revealed the existence of pattern completion neurons, which can trigger an entire ensemble, and demonstrated a causal relation between ensembles and behavior. We review recent results controlling visual perception with targeted holographic manipulation of cortical ensembles by stimulating pattern completion neurons. Analyzing population activity as neuronal ensembles and exploiting pattern completion could enable control of brain states in health and disease.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- Neurobiology Institute, National Autonomous University of Mexico, Queretaro, Mexico.
| | - Rafael Yuste
- NeuroTechnology Center, Columbia University, New York, USA
| |
Collapse
|
117
|
Bando Y, Sakamoto M, Kim S, Ayzenshtat I, Yuste R. Comparative Evaluation of Genetically Encoded Voltage Indicators. Cell Rep 2020; 26:802-813.e4. [PMID: 30650368 PMCID: PMC7075032 DOI: 10.1016/j.celrep.2018.12.088] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/24/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Abstract
Imaging voltage using fluorescent-based sensors could be an ideal technique to probe neural circuits with high spatiotemporal resolution. However, due to insufficient signal-to-noise ratio (SNR), imaging membrane potential in mammalian preparations is still challenging. In recent years, many genetically encoded voltage indicators (GEVIs) have been developed. To compare them and guide decisions on which GEVI to use, we have characterized side by side the performance of eight GEVIs that represent different families of molecular constructs. We tested GEVIs in vitro with 1-photon imaging and in vivo with 1-photon wide-field imaging and 2-photon imaging. We find that QuasAr2 exhibited the best performance in vitro, whereas only ArcLight-MT could be used to reliably detect electrical activity in vivo with 2-photon excitation. No single GEVI was ideal for every experiment. These results provide a guide for choosing optimal GEVIs for specific applications.
Collapse
Affiliation(s)
- Yuki Bando
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Masayuki Sakamoto
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Samuel Kim
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Ayzenshtat
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
118
|
Rantamäki T, Kohtala S. Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects. Pharmacol Rev 2020; 72:439-465. [PMID: 32139613 DOI: 10.1124/pr.119.018697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Recent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms. We proceed to examine how the initial effects are short-lived and, as such, require both consolidation during wake and maintenance throughout sleep to remain sustained. Here, we incorporate elements from the synaptic homeostasis hypothesis and theorize that the fundamental mechanisms of synaptic plasticity and sleep, particularly the homeostatic emergence of slow-wave electroencephalogram activity and the renormalization of synaptic strength, are at the center of sustained antidepressant effects. We conclude by discussing the various implications of the ENCORE-D hypothesis and offer several considerations for future experimental and clinical research. SIGNIFICANCE STATEMENT: Proposed molecular perspectives of rapid antidepressant effects fail to appreciate the temporal distribution of the effects of ketamine on cortical excitation and plasticity as well as the prolonged influence on depressive symptoms. The encoding, consolidation, and renormalization in depression hypothesis proposes that the lasting clinical effects can be best explained by adaptive functional and structural alterations in neural circuitries set in motion in response to the acute pharmacological effects of ketamine (i.e., changes evoked during the engagement of receptor targets such as N-methyl-D-aspartate receptors) or other putative rapid-acting antidepressants. The present hypothesis opens a completely new avenue for conceptualizing and targeting brain mechanisms that are important for antidepressant effects wherein sleep and synaptic homeostasis are at the center stage.
Collapse
Affiliation(s)
- Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (T.R., S.K.) and SleepWell Research Program, Faculty of Medicine (T.R., S.K.), University of Helsinki, Helsinki, Finland
| | - Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (T.R., S.K.) and SleepWell Research Program, Faculty of Medicine (T.R., S.K.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
119
|
Straub BB, Lah DC, Schmidt H, Roth M, Gilson L, Butt HJ, Auernhammer GK. Versatile high-speed confocal microscopy using a single laser beam. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033706. [PMID: 32259986 DOI: 10.1063/1.5122311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
We present a new flexible high speed laser scanning confocal microscope and its extension by an astigmatism particle tracking velocimetry (APTV) device. Many standard confocal microscopes use either a single laser beam to scan the sample at a relatively low overall frame rate or many laser beams to simultaneously scan the sample and achieve a high overall frame rate. The single-laser-beam confocal microscope often uses a point detector to acquire the image. To achieve high overall frame rates, we use, next to the standard 2D probe scanning unit, a second 2D scan unit projecting the image directly onto a 2D CCD-sensor (re-scan configuration). Using only a single laser beam eliminates crosstalk and leads to an imaging quality that is independent of the frame rate with a lateral resolution of 0.235 µm. The design described here is suitable for a high frame rate, i.e., for frame rates well above the video rate (full frame) up to a line rate of 32 kHz. The dwell time of the laser focus on any spot in the sample (122 ns) is significantly shorter than those in standard confocal microscopes (in the order of milli- or microseconds). This short dwell time reduces phototoxicity and bleaching of fluorescent molecules. The new design opens up further flexibility and facilitates coupling to other optical methods. The setup can easily be extended by an APTV device to measure three dimensional dynamics while being able to show high resolution confocal structures. Thus, one can use the high resolution confocal information synchronized with an APTV dataset.
Collapse
Affiliation(s)
- Benedikt B Straub
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - David C Lah
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Henrik Schmidt
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Marcel Roth
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Laurent Gilson
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Günter K Auernhammer
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
120
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
121
|
Abstract
Synaptic plasticity, the activity-dependent change in neuronal connection strength, has long been considered an important component of learning and memory. Computational and engineering work corroborate the power of learning through the directed adjustment of connection weights. Here we review the fundamental elements of four broadly categorized forms of synaptic plasticity and discuss their functional capabilities and limitations. Although standard, correlation-based, Hebbian synaptic plasticity has been the primary focus of neuroscientists for decades, it is inherently limited. Three-factor plasticity rules supplement Hebbian forms with neuromodulation and eligibility traces, while true supervised types go even further by adding objectives and instructive signals. Finally, a recently discovered hippocampal form of synaptic plasticity combines the above elements, while leaving behind the primary Hebbian requirement. We suggest that the effort to determine the neural basis of adaptive behavior could benefit from renewed experimental and theoretical investigation of more powerful directed types of synaptic plasticity.
Collapse
Affiliation(s)
- Jeffrey C Magee
- Department of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Christine Grienberger
- Department of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
122
|
Renteria C, Liu YZ, Chaney EJ, Barkalifa R, Sengupta P, Boppart SA. Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. Sci Rep 2020; 10:2540. [PMID: 32054882 PMCID: PMC7018813 DOI: 10.1038/s41598-020-59227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson's correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12-15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.
Collapse
Affiliation(s)
- Carlos Renteria
- Beckman Institute for Advanced Science and Technology, Urbana, USA
- Department of Bioengineering, Urbana, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, USA.
- Department of Bioengineering, Urbana, USA.
- Department of Electrical and Computer Engineering, Urbana, USA.
- Neuroscience Program, Urbana, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, USA.
| |
Collapse
|
123
|
Locating the engram: Should we look for plastic synapses or information-storing molecules? Neurobiol Learn Mem 2020; 169:107164. [PMID: 31945459 DOI: 10.1016/j.nlm.2020.107164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Karl Lashley began the search for the engram nearly seventy years ago. In the time since, much has been learned but divisions remain. In the contemporary neurobiology of learning and memory, two profoundly different conceptions contend: the associative/connectionist (A/C) conception and the computational/representational (C/R) conception. Both theories ground themselves in the belief that the mind is emergent from the properties and processes of a material brain. Where these theories differ is in their description of what the neurobiological substrate of memory is and where it resides in the brain. The A/C theory of memory emphasizes the need to distinguish memory cognition from the memory engram and postulates that memory cognition is an emergent property of patterned neural activity routed through engram circuits. In this model, learning re-organizes synapse association strengths to guide future neural activity. Importantly, the version of the A/C theory advocated for here contends that synaptic change is not symbolic and, despite normally being necessary, is not sufficient for memory cognition. Instead, synaptic change provides the capacity and a blueprint for reinstating symbolic patterns of neural activity. Unlike the A/C theory, which posits that memory emerges at the circuit level, the C/R conception suggests that memory manifests at the level of intracellular molecular structures. In C/R theory, these intracellular structures are information-conveying and have properties compatible with the view that brain computation utilizes a read/write memory, functionally similar to that in a computer. New research has energized both sides and highlighted the need for new discussion. Both theories, the key questions each theory has yet to resolve and several potential paths forward are presented here.
Collapse
|
124
|
Zanos S. Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034314. [PMID: 30559253 DOI: 10.1101/cshperspect.a034314] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuromodulation, the focused delivery of energy to neural tissue to affect neural or physiological processes, is a common method to study the physiology of the nervous system. It is also successfully used as treatment for disorders in which the nervous system is affected or implicated. Typically, neurostimulation is delivered in open-loop mode (i.e., according to a predetermined schedule and independently of the state of the organ or physiological system whose function is sought to be modulated). However, the physiology of the nervous system or the modulated organ can be dynamic, and the same stimulus may have different effects depending on the underlying state. As a result, open-loop stimulation may fail to restore the desired function or cause side effects. In such cases, a neuromodulation intervention may be preferable to be administered in closed-loop mode. In a closed-loop neuromodulation (CLN) system, stimulation is delivered when certain physiological states or conditions are met (responsive neurostimulation); the stimulation parameters can also be adjusted dynamically to optimize the effect of stimulation in real time (adaptive neurostimulation). In this review, the reasons and the conditions for using CLN are discussed, the basic components of a CLN system are described, and examples of CLN systems used in physiological and translational research are presented.
Collapse
Affiliation(s)
- Stavros Zanos
- Translational Neurophysiology Laboratory, Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
125
|
Diana G, Sainsbury TTJ, Meyer MP. Bayesian inference of neuronal assemblies. PLoS Comput Biol 2019; 15:e1007481. [PMID: 31671090 PMCID: PMC6850560 DOI: 10.1371/journal.pcbi.1007481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/12/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
In many areas of the brain, both spontaneous and stimulus-evoked activity can manifest as synchronous activation of neuronal assemblies. The characterization of assembly structure and dynamics provides important insights into how brain computations are distributed across neural networks. The proliferation of experimental techniques for recording the activity of neuronal assemblies calls for a comprehensive statistical method to describe, analyze and characterize these high dimensional datasets. The performance of existing methods for defining assemblies is sensitive to noise and stochasticity in neuronal firing patterns and assembly heterogeneity. To address these problems, we introduce a generative hierarchical model of synchronous activity to describe the organization of neurons into assemblies. Unlike existing methods, our analysis provides a simultaneous estimation of assembly composition, dynamics and within-assembly statistical features, such as the levels of activity, noise and assembly synchrony. We have used our method to characterize population activity throughout the tectum of larval zebrafish, allowing us to make statistical inference on the spatiotemporal organization of tectal assemblies, their composition and the logic of their interactions. We have also applied our method to functional imaging and neuropixels recordings from the mouse, allowing us to relate the activity of identified assemblies to specific behaviours such as running or changes in pupil diameter.
Collapse
Affiliation(s)
- Giovanni Diana
- Center for Developmental Neurobiology & MRC Center for Neurodevelopmental Disorders, King’s College London, Guy’s Hospital Campus, London, United Kingdom
| | - Thomas T. J. Sainsbury
- Center for Developmental Neurobiology & MRC Center for Neurodevelopmental Disorders, King’s College London, Guy’s Hospital Campus, London, United Kingdom
| | - Martin P. Meyer
- Center for Developmental Neurobiology & MRC Center for Neurodevelopmental Disorders, King’s College London, Guy’s Hospital Campus, London, United Kingdom
| |
Collapse
|
126
|
Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, Kadmon J, Raja C, Chibukhchyan A, Ramakrishnan C, Inoue M, Shane JC, McKnight DJ, Yoshizawa S, Kato HE, Ganguli S, Deisseroth K. Cortical layer-specific critical dynamics triggering perception. Science 2019; 365:eaaw5202. [PMID: 31320556 PMCID: PMC6711485 DOI: 10.1126/science.aaw5202] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022]
Abstract
Perceptual experiences may arise from neuronal activity patterns in mammalian neocortex. We probed mouse neocortex during visual discrimination using a red-shifted channelrhodopsin (ChRmine, discovered through structure-guided genome mining) alongside multiplexed multiphoton-holography (MultiSLM), achieving control of individually specified neurons spanning large cortical volumes with millisecond precision. Stimulating a critical number of stimulus-orientation-selective neurons drove widespread recruitment of functionally related neurons, a process enhanced by (but not requiring) orientation-discrimination task learning. Optogenetic targeting of orientation-selective ensembles elicited correct behavioral discrimination. Cortical layer-specific dynamics were apparent, as emergent neuronal activity asymmetrically propagated from layer 2/3 to layer 5, and smaller layer 5 ensembles were as effective as larger layer 2/3 ensembles in eliciting orientation discrimination behavior. Population dynamics emerging after optogenetic stimulation both correctly predicted behavior and resembled natural internal representations of visual stimuli at cellular resolution over volumes of cortex.
Collapse
Affiliation(s)
- James H Marshel
- CNC Department, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Timothy A Machado
- CNC Department, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sean Quirin
- CNC Department, Stanford University, Stanford, CA 94305, USA
| | - Brandon Benson
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Kadmon
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Cephra Raja
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | - Susumu Yoshizawa
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8564, Japan
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- CNC Department, Stanford University, Stanford, CA 94305, USA.
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
127
|
Comparison of Actions between L-DOPA and Different Dopamine Agonists in Striatal DA-Depleted Microcircuits In Vitro: Pre-Clinical Insights. Neuroscience 2019; 410:76-96. [DOI: 10.1016/j.neuroscience.2019.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
128
|
Carrillo-Reid L, Han S, Yang W, Akrouh A, Yuste R. Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles. Cell 2019; 178:447-457.e5. [PMID: 31257030 DOI: 10.1016/j.cell.2019.05.045] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Neurons in cortical circuits are often coactivated as ensembles, yet it is unclear whether ensembles play a functional role in behavior. Some ensemble neurons have pattern completion properties, triggering the entire ensemble when activated. Using two-photon holographic optogenetics in mouse primary visual cortex, we tested whether recalling ensembles by activating pattern completion neurons alters behavioral performance in a visual task. Disruption of behaviorally relevant ensembles by activation of non-selective neurons decreased performance, whereas activation of only two pattern completion neurons from behaviorally relevant ensembles improved performance, by reliably recalling the whole ensemble. Also, inappropriate behavioral choices were evoked by the mistaken activation of behaviorally relevant ensembles. Finally, in absence of visual stimuli, optogenetic activation of two pattern completion neurons could trigger behaviorally relevant ensembles and correct behavioral responses. Our results demonstrate a causal role of neuronal ensembles in a visually guided behavior and suggest that ensembles implement internal representations of perceptual states.
Collapse
Affiliation(s)
- Luis Carrillo-Reid
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Shuting Han
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Weijian Yang
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Alejandro Akrouh
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
129
|
Palagina G, Meyer JF, Smirnakis SM. Inhibitory Units: An Organizing Nidus for Feature-Selective SubNetworks in Area V1. J Neurosci 2019; 39:4931-4944. [PMID: 30979814 PMCID: PMC6670246 DOI: 10.1523/jneurosci.2275-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023] Open
Abstract
Neuronal circuits often display small-world network architecture characterized by neuronal cliques of dense local connectivity communicating with each other through a limited number of cells that participate in multiple cliques. The principles by which such cliques organize to encode information remain poorly understood. Similarly tuned pyramidal cells that preferentially target each other may form multicellular encoding units performing distinct computational tasks. The existence of such units can reflect upon both spontaneous and stimulus-driven population events.We applied two-photon calcium imaging to study spontaneous population bursts in layer 2/3 of area V1 in male C57BL/6 mice. To identify potential small-world cliques, we searched for pyramidal cells whose calcium events had a consistent temporal relationship with the events of local inhibitory interneurons. This was guided by the intuition that groups of neurons whose synchronous firing represents a temporally coherent computational unit should be inhibited together. Pyramidal members of these interneuron-centered clusters on average displayed stronger functional connectivity between each other than with nonmember pyramidal neurons. The structure of the clusters evolved during postnatal development: cluster size and overlap between clusters decreased with developmental maturation. Pyramidal neurons in a cluster showed higher than chance tuning function similarity between each other and with the linked interneuron. Thus, spontaneous population events in V1 are shaped by small-world subnetworks of pyramidal neurons that share functional properties and work as a coherent unit with a local interneuron. These interneuron-pyramidal cell partnerships may represent a fundamental neocortical unit of computation at the population level.SIGNIFICANCE STATEMENT Neuronal circuit in layer 2/3 of mouse area V1 possesses small-world network architecture, where cliques of densely interconnected neurons ("small worlds") communicate via restricted number of hub cells. We show that: (1) in mouse V1 individual small-world cliques preferably incorporate pyramidal neurons with similar visual feature tuning, and (2) ongoing population activity of such pyramidal neuron clique is temporally linked to the activity of the local interneuron sharing its feature tuning with the clique members. Functional grouping of similarly tuned interneurons and pyramidal cells into cliques may ensure that ensembles of functionally alike pyramidal cells recruited during perceptual tasks and spontaneous activity are also turned off together as a unit, with interneurons serving as organizers of linked pyramidal ensemble activity.
Collapse
Affiliation(s)
- Ganna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts 02115,
- Jamaica Plain Veterans Administration Hospital, Boston, Massachusetts 02130, and
| | | | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts 02115
- Jamaica Plain Veterans Administration Hospital, Boston, Massachusetts 02130, and
- Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
130
|
Carrillo‐Reid L, Larriva‐Sahd J. Contributions of Lorente de Nó to the Nonlinear Circuitry of the Brain. Anat Rec (Hoboken) 2019; 303:1215-1220. [DOI: 10.1002/ar.24192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/20/2018] [Accepted: 05/24/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Luis Carrillo‐Reid
- Departamento de Neurobiología del DesarrolloInstituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Campus Juriquilla Querétaro Mexico
| | - Jorge Larriva‐Sahd
- Departamento de Neurobiología del DesarrolloInstituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Campus Juriquilla Querétaro Mexico
| |
Collapse
|
131
|
Sakamoto R, Kameno R, Kobayashi T, Ishiyama A, Watanabe K, Hoshino O. Extracellular GABA assisting in organizing dynamic cell assemblies to shorten reaction time to sensory stimulation. BIOLOGICAL CYBERNETICS 2019; 113:257-271. [PMID: 30746602 DOI: 10.1007/s00422-019-00793-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Until recently, glia, which exceeds the number of neurons, was considered to only have supportive roles in the central nervous system, providing homeostatic controls and metabolic supports. However, recent studies suggest that glia interacts with neurons and plays active roles in information processing within neuronal circuits. To elucidate how glia contributes to neuronal information processing, we simulated a sensory neuron-glia (neuron-astrocyte) network model. It was investigated in association with ambient (extracellular) GABA level, because the astrocyte has a major role in removing extracellular GABA molecules. In the network model, transporters, embedded in plasma membranes of astrocytes, modulated local ambient GABA levels by actively removing extracellular GABA molecules which persistently acted on receptors in membranes outside synapses and provided pyramidal cells with inhibitory currents. Gap-junction coupling between astrocytes mediated a concordant decrease in local ambient GABA levels, which solicited a prompt population response of pyramidal cells (i.e., activation of an ensemble of pyramidal cells) to a sensory stimulus. As a consequence, the reaction time of a motor network, to which axons of pyramidal cells of the sensory network project, to the sensory stimulus was shortened. We suggest that the astrocytic gap-junction coupling may assist in organizing dynamic cell assemblies by coordinating a reduction in local ambient GABA levels, thereby shortening reaction time to sensory stimulation.
Collapse
Affiliation(s)
- Ryuta Sakamoto
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Rikiya Kameno
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| | - Taira Kobayashi
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Asahi Ishiyama
- Production Engineering HQ, TDK Corporation, 151, Aza-Maeda, Hirasawa, Nikaho-shi, Akita, 018-0402, Japan
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| | - Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan.
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan.
| |
Collapse
|
132
|
Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Sci Rep 2019; 9:7603. [PMID: 31110187 PMCID: PMC6527563 DOI: 10.1038/s41598-019-43933-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/25/2019] [Indexed: 11/08/2022] Open
Abstract
In the past 10 years, the use of light has become irreplaceable for the optogenetic study and control of neurons and neural circuits. Optical techniques are however limited by scattering and can only see through a depth of few hundreds µm in living tissues. GRIN lens based micro-endoscopes represent a powerful solution to reach deeper regions. In this work we demonstrate that cutting edge optical methods for the precise photostimulation of multiple neurons in three dimensions can be performed through a GRIN lens. By spatio-temporally shaping a laser beam in the two-photon regime we project several tens of spatially confined targets in a volume of at least 100 × 150 × 300 µm3. We then apply such approach to the optogenetic stimulation of multiple neurons simultaneously in vivo in mice. Our work paves the way for an all-optical investigation of neural circuits in previously inaccessible brain areas.
Collapse
|
133
|
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, Witztum J, Shaver DC, Rosenthal DL, Alway EJ, Lopez K, Meng Y, Nellissen L, Grosenick L, Milner TA, Deisseroth K, Bito H, Kasai H, Liston C. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. SCIENCE (NEW YORK, N.Y.) 2019; 364:364/6436/eaat8078. [PMID: 30975859 DOI: 10.1126/science.aat8078] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The neurobiological mechanisms underlying the induction and remission of depressive episodes over time are not well understood. Through repeated longitudinal imaging of medial prefrontal microcircuits in the living brain, we found that prefrontal spinogenesis plays a critical role in sustaining specific antidepressant behavioral effects and maintaining long-term behavioral remission. Depression-related behavior was associated with targeted, branch-specific elimination of postsynaptic dendritic spines on prefrontal projection neurons. Antidepressant-dose ketamine reversed these effects by selectively rescuing eliminated spines and restoring coordinated activity in multicellular ensembles that predict motivated escape behavior. Prefrontal spinogenesis was required for the long-term maintenance of antidepressant effects on motivated escape behavior but not for their initial induction.
Collapse
Affiliation(s)
- R N Moda-Sava
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - M H Murdock
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - P K Parekh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R N Fetcho
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - B S Huang
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - T N Huynh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Witztum
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - D C Shaver
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - D L Rosenthal
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - E J Alway
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - K Lopez
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Y Meng
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - L Nellissen
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - L Grosenick
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA.,Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - T A Milner
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - K Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - H Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - H Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - C Liston
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
134
|
Chen IW, Ronzitti E, Lee BR, Daigle TL, Dalkara D, Zeng H, Emiliani V, Papagiakoumou E. In Vivo Submillisecond Two-Photon Optogenetics with Temporally Focused Patterned Light. J Neurosci 2019; 39:3484-3497. [PMID: 30833505 PMCID: PMC6495136 DOI: 10.1523/jneurosci.1785-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
To better examine circuit mechanisms underlying perception and behavior, researchers need tools to enable temporally precise control of action-potential generation of individual cells from neuronal ensembles. Here we demonstrate that such precision can be achieved with two-photon (2P) temporally focused computer-generated holography to control neuronal excitability at the supragranular layers of anesthetized and awake visual cortex in both male and female mice. Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing any of the three opsins ReaChR, CoChR, or ChrimsonR, we investigated the dependence of spiking activity on the opsin's channel kinetics. We found that in all cases the use of brief illumination (≤10 ms) induces spikes of millisecond temporal resolution and submillisecond precision, which were preserved upon repetitive illuminations up to tens of hertz. To reach high temporal precision, we used a large illumination spot covering the entire cell body and an amplified laser at high peak power and low excitation intensity (on average ≤0.2 mW/μm2), thus minimizing the risk for nonlinear photodamage effects. Finally, by combining 2P holographic excitation with electrophysiological recordings and calcium imaging using GCaMP6s, we investigated the factors, including illumination shape and intensity, opsin distribution in the target cell, and cell morphology, which affect the spatial selectivity of single-cell and multicell holographic activation. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should make it easier to investigate neuronal connections and find further links between connectivity, microcircuit dynamics, and brain functions.SIGNIFICANCE STATEMENT Recent developments in the field of optogenetics has enabled researchers to probe the neuronal microcircuit with light by optically actuating genetically encoded light-sensitive opsins expressed in the target cells. Here, we applied holographic light shaping and temporal focusing to simultaneously deliver axially confined holographic patterns to opsin-positive cells in the living mouse cortex. Parallel illumination efficiently induced action potentials with high temporal resolution and precision for three opsins of different kinetics. We extended the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitored their calcium dynamics. These results demonstrate fast and temporally precise in vivo control of a neuronal subpopulation, opening new opportunities for revealing circuit mechanisms underlying brain functions.
Collapse
Affiliation(s)
- I-Wen Chen
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Paris 75006, France
- Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Paris 75006, France
- Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and
| | - Brian R Lee
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Deniz Dalkara
- Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Paris 75006, France,
- Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and
| | - Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Paris 75006, France,
- Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and
| |
Collapse
|
135
|
Wide-Area All-Optical Neurophysiology in Acute Brain Slices. J Neurosci 2019; 39:4889-4908. [PMID: 30952812 DOI: 10.1523/jneurosci.0168-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
Optical tools for simultaneous perturbation and measurement of neural activity open the possibility of mapping neural function over wide areas of brain tissue. However, spectral overlap of actuators and reporters presents a challenge for their simultaneous use, and optical scattering and out-of-focus fluorescence in tissue degrade resolution. To minimize optical crosstalk, we combined an optimized variant (eTsChR) of the most blue-shifted channelrhodopsin reported to-date with a nuclear-localized red-shifted Ca2+ indicator, H2B-jRGECO1a. To perform wide-area optically sectioned imaging in tissue, we designed a structured illumination technique that uses Hadamard matrices to encode spatial information. By combining these molecular and optical approaches we made wide-area functional maps in acute brain slices from mice of both sexes. The maps spanned cortex and striatum and probed the effects of antiepileptic drugs on neural excitability and the effects of AMPA and NMDA receptor blockers on functional connectivity. Together, these tools provide a powerful capability for wide-area mapping of neuronal excitability and functional connectivity in acute brain slices.SIGNIFICANCE STATEMENT A new technique for simultaneous optogenetic stimulation and calcium imaging across wide areas of brain slice enables high-throughput mapping of neuronal excitability and synaptic transmission.
Collapse
|
136
|
Ocker GK, Doiron B. Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity. Cereb Cortex 2019; 29:937-951. [PMID: 29415191 PMCID: PMC7963120 DOI: 10.1093/cercor/bhy001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
The synaptic connectivity of cortex is plastic, with experience shaping the ongoing interactions between neurons. Theoretical studies of spike timing-dependent plasticity (STDP) have focused on either just pairs of neurons or large-scale simulations. A simple analytic account for how fast spike time correlations affect both microscopic and macroscopic network structure is lacking. We develop a low-dimensional mean field theory for STDP in recurrent networks and show the emergence of assemblies of strongly coupled neurons with shared stimulus preferences. After training, this connectivity is actively reinforced by spike train correlations during the spontaneous dynamics. Furthermore, the stimulus coding by cell assemblies is actively maintained by these internally generated spiking correlations, suggesting a new role for noise correlations in neural coding. Assembly formation has often been associated with firing rate-based plasticity schemes; our theory provides an alternative and complementary framework, where fine temporal correlations and STDP form and actively maintain learned structure in cortical networks.
Collapse
Affiliation(s)
- Gabriel Koch Ocker
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brent Doiron
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
137
|
Chettih SN, Harvey CD. Single-neuron perturbations reveal feature-specific competition in V1. Nature 2019; 567:334-340. [PMID: 30842660 PMCID: PMC6682407 DOI: 10.1038/s41586-019-0997-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
The computations performed by local neural populations, such as a cortical layer, are typically inferred from anatomical connectivity and observations of neural activity. Here we describe a method-influence mapping-that uses single-neuron perturbations to directly measure how cortical neurons reshape sensory representations. In layer 2/3 of the primary visual cortex (V1), we use two-photon optogenetics to trigger action potentials in a targeted neuron and calcium imaging to measure the effect on spiking in neighbouring neurons in awake mice viewing visual stimuli. Excitatory neurons on average suppressed other neurons and had a centre-surround influence profile over anatomical space. A neuron's influence on its neighbour depended on their similarity in activity. Notably, neurons suppressed activity in similarly tuned neurons more than in dissimilarly tuned neurons. In addition, photostimulation reduced the population response, specifically to the targeted neuron's preferred stimulus, by around 2%. Therefore, V1 layer 2/3 performed feature competition, in which a like-suppresses-like motif reduces redundancy in population activity and may assist with inference of the features that underlie sensory input. We anticipate that influence mapping can be extended to investigate computations in other neural populations.
Collapse
|
138
|
Jayant K, Wenzel M, Bando Y, Hamm JP, Mandriota N, Rabinowitz JH, Plante IJL, Owen JS, Sahin O, Shepard KL, Yuste R. Flexible Nanopipettes for Minimally Invasive Intracellular Electrophysiology In Vivo. Cell Rep 2019; 26:266-278.e5. [PMID: 30605681 PMCID: PMC7263204 DOI: 10.1016/j.celrep.2018.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022] Open
Abstract
Intracellular recordings in vivo remains the best technique to link single-neuron electrical properties to network function. Yet existing methods are limited in accuracy, throughput, and duration, primarily via washout, membrane damage, and movement-induced failure. Here, we introduce flexible quartz nanopipettes (inner diameters of 10-25 nm and spring constant of ∼0.08 N/m) as nanoscale analogs of traditional glass microelectrodes. Nanopipettes enable stable intracellular recordings (seal resistances of 500 to ∼800 MΩ, 5 to ∼10 cells/nanopipette, and duration of ∼1 hr) in anaesthetized and awake head-restrained mice, exhibit minimal diffusional flux, and facilitate precise recording and stimulation. When combined with quantum-dot labels and microprisms, nanopipettes enable two-photon targeted electrophysiology from both somata and dendrites, and even paired recordings from neighboring neurons, while permitting simultaneous population imaging across cortical layers. We demonstrate the versatility of this method by recording from parvalbumin-positive (Pv) interneurons while imaging seizure propagation, and we find that Pv depolarization block coincides with epileptic spread. Flexible nanopipettes present a simple method to procure stable intracellular recordings in vivo.
Collapse
Affiliation(s)
- Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Michael Wenzel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Yuki Bando
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Nicola Mandriota
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jake H Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Ilan Jen-La Plante
- Department of Chemistry, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Physics, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
139
|
Pang R, Fairhall AL. Fast and flexible sequence induction in spiking neural networks via rapid excitability changes. eLife 2019; 8:44324. [PMID: 31081753 PMCID: PMC6538377 DOI: 10.7554/elife.44324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Cognitive flexibility likely depends on modulation of the dynamics underlying how biological neural networks process information. While dynamics can be reshaped by gradually modifying connectivity, less is known about mechanisms operating on faster timescales. A compelling entrypoint to this problem is the observation that exploratory behaviors can rapidly cause selective hippocampal sequences to 'replay' during rest. Using a spiking network model, we asked whether simplified replay could arise from three biological components: fixed recurrent connectivity; stochastic 'gating' inputs; and rapid gating input scaling via long-term potentiation of intrinsic excitability (LTP-IE). Indeed, these enabled both forward and reverse replay of recent sensorimotor-evoked sequences, despite unchanged recurrent weights. LTP-IE 'tags' specific neurons with increased spiking probability under gating input, and ordering is reconstructed from recurrent connectivity. We further show how LTP-IE can implement temporary stimulus-response mappings. This elucidates a novel combination of mechanisms that might play a role in rapid cognitive flexibility.
Collapse
Affiliation(s)
- Rich Pang
- Neuroscience Graduate ProgramUniversity of WashingtonSeattleUnited States,Department of Physiology and BiophysicsUniversity of WashingtonSeattleUnited States,Computational Neuroscience CenterUniversity of WashingtonSeattleUnited States
| | - Adrienne L Fairhall
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleUnited States,Computational Neuroscience CenterUniversity of WashingtonSeattleUnited States
| |
Collapse
|
140
|
Koizumi K, Inoue M, Chowdhury S, Bito H, Yamanaka A, Ishizuka T, Yawo H. Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. J Physiol Sci 2019; 69:65-77. [PMID: 29761270 PMCID: PMC10716991 DOI: 10.1007/s12576-018-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
Abstract
To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input-output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.
Collapse
Affiliation(s)
- Kyo Koizumi
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Srikanta Chowdhury
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Akihiro Yamanaka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
141
|
Jennings JH, Kim CK, Marshel JH, Raffiee M, Ye L, Quirin S, Pak S, Ramakrishnan C, Deisseroth K. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature 2019; 565:645-649. [PMID: 30651638 PMCID: PMC6447429 DOI: 10.1038/s41586-018-0866-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
Categorically distinct basic drives (for example, for social versus feeding behaviour1-3) can exert potent influences on each other; such interactions are likely to have important adaptive consequences (such as appropriate regulation of feeding in the context of social hierarchies) and can become maladaptive (such as in clinical settings involving anorexia). It is known that neural systems regulating natural and adaptive caloric intake, and those regulating social behaviours, involve related circuitry4-7, but the causal circuit mechanisms of these drive adjudications are not clear. Here we investigate the causal role in behaviour of cellular-resolution experience-specific neuronal populations in the orbitofrontal cortex, a major reward-processing hub that contains diverse activity-specific neuronal populations that respond differentially to various aspects of caloric intake8-13 and social stimuli14,15. We coupled genetically encoded activity imaging with the development and application of methods for optogenetic control of multiple individually defined cells, to both optically monitor and manipulate the activity of many orbitofrontal cortex neurons at the single-cell level in real time during rewarding experiences (caloric consumption and social interaction). We identified distinct populations within the orbitofrontal cortex that selectively responded to either caloric rewards or social stimuli, and found that activity of individually specified naturally feeding-responsive neurons was causally linked to increased feeding behaviour; this effect was selective as, by contrast, single-cell resolution activation of naturally social-responsive neurons inhibited feeding, and activation of neurons responsive to neither feeding nor social stimuli did not alter feeding behaviour. These results reveal the presence of potent cellular-level subnetworks within the orbitofrontal cortex that can be precisely engaged to bidirectionally control feeding behaviours subject to, for example, social influences.
Collapse
Affiliation(s)
- Joshua H Jennings
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christina K Kim
- Neurosciences Program, Stanford University, Stanford, CA, USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Misha Raffiee
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Li Ye
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sally Pak
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Neurosciences Program, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
- CNC Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
142
|
Ronzitti E, Emiliani V, Papagiakoumou E. Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits. Front Cell Neurosci 2018; 12:469. [PMID: 30618626 PMCID: PMC6304748 DOI: 10.3389/fncel.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Optical means for modulating and monitoring neuronal activity, have provided substantial insights to neurophysiology and toward our understanding of how the brain works. Optogenetic actuators, calcium or voltage imaging probes and other molecular tools, combined with advanced microscopies have allowed an "all-optical" readout and modulation of neural circuits. Completion of this remarkable work is evolving toward a three-dimensional (3D) manipulation of neural ensembles at a high spatiotemporal resolution. Recently, original optical methods have been proposed for both activating and monitoring neurons in a 3D space, mainly through optogenetic compounds. Here, we review these methods and anticipate possible combinations among them.
Collapse
Affiliation(s)
| | | | - Eirini Papagiakoumou
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris, France
| |
Collapse
|
143
|
Valiant LG. Toward Identifying the Systems-Level Primitives of Cortex by In-Circuit Testing. Front Neural Circuits 2018; 12:104. [PMID: 30524250 PMCID: PMC6256282 DOI: 10.3389/fncir.2018.00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022] Open
|
144
|
de Boer WDAM, Hirtz JJ, Capretti A, Gregorkiewicz T, Izquierdo-Serra M, Han S, Dupre C, Shymkiv Y, Yuste R. Neuronal photoactivation through second-harmonic near-infrared absorption by gold nanoparticles. LIGHT, SCIENCE & APPLICATIONS 2018; 7:100. [PMID: 30534369 PMCID: PMC6279767 DOI: 10.1038/s41377-018-0103-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 05/05/2023]
Abstract
Optical activation of neurons requires genetic manipulation or the use of chemical photoactivators with undesirable side effects. As a solution to these disadvantages, here, we demonstrate optically evoked neuronal activity in mouse cortical neurons in acute slices and in vivo by nonlinear excitation of gold nanoparticles. In addition, we use this approach to stimulate individual epitheliomuscular cells and evoke body contractions in Hydra vulgaris. To achieve this, we use a low-power pulsed near-infrared excitation at the double-wavelength of the plasmon resonance of gold nanoparticles, which enables optical sectioning and allows for high spatial precision and large penetration depth. The effect is explained by second-harmonic Mie scattering, demonstrating light absorption by a second-order nonlinear process, which enables photothermal stimulation of the cells. Our approach also minimizes photodamage, demonstrating a major advancement towards precise and harmless photoactivation for neuroscience and human therapeutics.
Collapse
Affiliation(s)
- Wieteke D. A. M. de Boer
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Jan J. Hirtz
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Antonio Capretti
- Van der Waals–Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Tom Gregorkiewicz
- Van der Waals–Zeeman Institute, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Mercè Izquierdo-Serra
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
- Present Address: Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Shuting Han
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Christophe Dupre
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Yuriy Shymkiv
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
145
|
Zhang Z, Russell LE, Packer AM, Gauld OM, Häusser M. Closed-loop all-optical interrogation of neural circuits in vivo. Nat Methods 2018; 15:1037-1040. [PMID: 30420686 PMCID: PMC6513754 DOI: 10.1038/s41592-018-0183-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/04/2018] [Indexed: 11/09/2022]
Abstract
Understanding the causal relationship between neural activity and behavior requires the ability to perform rapid and targeted interventions in ongoing activity. Here we describe a closed-loop all-optical strategy for dynamically controlling neuronal activity patterns in awake mice. We rapidly tailored and delivered two-photon optogenetic stimulation based on online readout of activity using simultaneous two-photon imaging, thus enabling the manipulation of neural circuit activity 'on the fly' during behavior.
Collapse
Affiliation(s)
- Zihui Zhang
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Department of Electronic & Electrical Engineering, University College London, London, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK.
- Oxford University, Oxford, UK.
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
146
|
Luccioli S, Angulo-Garcia D, Cossart R, Malvache A, Módol L, Sousa VH, Bonifazi P, Torcini A. Modeling driver cells in developing neuronal networks. PLoS Comput Biol 2018; 14:e1006551. [PMID: 30388120 PMCID: PMC6235603 DOI: 10.1371/journal.pcbi.1006551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 11/14/2018] [Accepted: 10/07/2018] [Indexed: 12/17/2022] Open
Abstract
Spontaneous emergence of synchronized population activity is a characteristic feature of developing brain circuits. Recent experiments in the developing neo-cortex showed the existence of driver cells able to impact the synchronization dynamics when single-handedly stimulated. We have developed a spiking network model capable to reproduce the experimental results, thus identifying two classes of driver cells: functional hubs and low functionally connected (LC) neurons. The functional hubs arranged in a clique orchestrated the synchronization build-up, while the LC drivers were lately or not at all recruited in the synchronization process. Notwithstanding, they were able to alter the network state when stimulated by modifying the temporal activation of the functional clique or even its composition. LC drivers can lead either to higher population synchrony or even to the arrest of population dynamics, upon stimulation. Noticeably, some LC driver can display both effects depending on the received stimulus. We show that in the model the presence of inhibitory neurons together with the assumption that younger cells are more excitable and less connected is crucial for the emergence of LC drivers. These results provide a further understanding of the structural-functional mechanisms underlying synchronized firings in developing circuits possibly related to the coordinated activity of cell assemblies in the adult brain.
Collapse
Affiliation(s)
- Stefano Luccioli
- CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
- INFN Sez. Firenze, Sesto Fiorentino, Italy
| | - David Angulo-Garcia
- Grupo de Modelado Computacional - Dinámica y Complejidad de Sistemas, Instituto de Matemáticas Aplicadas, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Rosa Cossart
- Aix Marseille Univ, INSERM, INMED, Marseille, France
| | | | - Laura Módol
- Aix Marseille Univ, INSERM, INMED, Marseille, France
| | | | - Paolo Bonifazi
- Biocruces Health Research Institute, Bilbao, Vizcaya, Spain
- Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Alessandro Torcini
- CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
- Aix Marseille Univ, INSERM, INMED, Marseille, France
- Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, Cergy-Pontoise, France
| |
Collapse
|
147
|
Izquierdo-Serra M, Hirtz JJ, Shababo B, Yuste R. Two-Photon Optogenetic Mapping of Excitatory Synaptic Connectivity and Strength. iScience 2018; 8:15-28. [PMID: 30268510 PMCID: PMC6170329 DOI: 10.1016/j.isci.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/27/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022] Open
Abstract
The development of optical methods to activate neurons with single-cell resolution has enabled systematic mapping of inhibitory connections. In contrast, optical mapping of excitatory connections between pyramidal neurons (PCs) has been a major challenge due to their high densities in cortical tissue and their weak and stochastic connectivity. Here we present an optogenetic two-photon mapping method in mouse neocortical slices by activating PCs with the red-shifted opsin C1V1 while recording postsynaptic responses in whole-cell configuration. Comparison of delays from triggered action potentials (APs) with those from synaptic inputs allowed us to predict connected PCs in three dimensions. We confirmed these predictions with paired recordings, and used this method to map strong connections among large populations of layer 2/3 PCs. Our method can be used for fast, systematic mapping of synaptic connectivity and weights. Two-photon optogenetic mapping of excitatory connectivity and strength in neocortex Identification of connected neurons in acute slices through numerical optimization Synaptic delays align with location of connected presynaptic cell Confirmation of predicted connections by dual patch-clamp recordings
Collapse
Affiliation(s)
- Mercè Izquierdo-Serra
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Jan J Hirtz
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Ben Shababo
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
148
|
Hidaka S, Oizumi M. Fast and exact search for the partition with minimal information loss. PLoS One 2018; 13:e0201126. [PMID: 30204751 PMCID: PMC6133274 DOI: 10.1371/journal.pone.0201126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 06/08/2018] [Indexed: 11/29/2022] Open
Abstract
In analysis of multi-component complex systems, such as neural systems, identifying groups of units that share similar functionality will aid understanding of the underlying structures of the system. To find such a grouping, it is useful to evaluate to what extent the units of the system are separable. Separability or inseparability can be evaluated by quantifying how much information would be lost if the system were partitioned into subsystems, and the interactions between the subsystems were hypothetically removed. A system of two independent subsystems are completely separable without any loss of information while a system of strongly interacted subsystems cannot be separated without a large loss of information. Among all the possible partitions of a system, the partition that minimizes the loss of information, called the Minimum Information Partition (MIP), can be considered as the optimal partition for characterizing the underlying structures of the system. Although the MIP would reveal novel characteristics of the neural system, an exhaustive search for the MIP is numerically intractable due to the combinatorial explosion of possible partitions. Here, we propose a computationally efficient search to precisely identify the MIP among all possible partitions by exploiting the submodularity of the measure of information loss, when the measure of information loss is submodular. Submodularity is a mathematical property of set functions which is analogous to convexity in continuous functions. Mutual information is one such submodular information loss function, and is a natural choice for measuring the degree of statistical dependence between paired sets of random variables. By using mutual information as a loss function, we show that the search for MIP can be performed in a practical order of computational time for a reasonably large system (N = 100 ∼ 1000). We also demonstrate that MIP search allows for the detection of underlying global structures in a network of nonlinear oscillators.
Collapse
Affiliation(s)
- Shohei Hidaka
- Japan Advanced Institute of Science and Technology, Nomi-shi, Ishikawa, Japan
| | - Masafumi Oizumi
- Araya Inc., Minato-ku, Tokyo, Japan
- RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| |
Collapse
|
149
|
Eichenbaum H. Barlow versus Hebb: When is it time to abandon the notion of feature detectors and adopt the cell assembly as the unit of cognition? Neurosci Lett 2018; 680:88-93. [PMID: 28389238 PMCID: PMC5628090 DOI: 10.1016/j.neulet.2017.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/13/2023]
Abstract
Research on how information is encoded by the brain is largely based on studies of feature detector properties of single neurons, but considerable new data shows that single neurons in many brain areas have mixed selectivity for multiple features and change their tuning properties across realistic information processing situations. Here I consider new approaches that explore cell assemblies as the units of information processing and how these approaches are revealing the structure and organization of neural representations in perception and cognition.
Collapse
Affiliation(s)
- Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
150
|
Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S, Tajik A, Fritz C, Trulson M, Otte SL. Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope. Front Neurosci 2018; 12:496. [PMID: 30087590 PMCID: PMC6066578 DOI: 10.3389/fnins.2018.00496] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.
Collapse
|