101
|
Buckley-Benbow L, Agnarelli A, Bellelli R. 'Where is my gap': mechanisms underpinning PARP inhibitor sensitivity in cancer. Biochem Soc Trans 2025; 53:BST20241633. [PMID: 39927794 DOI: 10.1042/bst20241633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The introduction of poly-ADP ribose polymerase (PARP) inhibitors (PARPi) has completely changed the treatment landscape of breast cancer susceptibility 1-2 (BRCA1-BRCA2)-mutant cancers and generated a new avenue of research in the fields of DNA damage response and cancer therapy. Despite this, primary and secondary resistances to PARPi have become a challenge in the clinic, and novel therapies are urgently needed to address this problem. After two decades of research, a unifying model explaining sensitivity of cancer cells to PARPi is still missing. Here, we review the current knowledge in the field and the increasing evidence pointing to a crucial role for replicative gaps in mediating sensitization to PARPi in BRCA-mutant and 'wild-type' cancer cells. Finally, we discuss the challenges to be addressed to further improve the utilization of PARPi and tackle the emergence of resistance in the clinical context.
Collapse
Affiliation(s)
- Lauryn Buckley-Benbow
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| | - Alessandro Agnarelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| |
Collapse
|
102
|
Feng Y, Zou X, Huang J, Huang Z, Kuang G, Jiang Y. The E3 ubiquitin ligase MAEA promotes macrophage phagocytosis and inhibits gastrointestinal cancer progression by mediating PARP1 ubiquitination and degradation. Int J Biol Sci 2025; 21:1784-1800. [PMID: 39990651 PMCID: PMC11844278 DOI: 10.7150/ijbs.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
Background: While a role for the E3 ubiquitin ligase MAEA (macrophage erythroblast attacher) has been reported in several cancer types, its importance and mechanistic functions in gastrointestinal cancer (GIC) have yet to be established. Methods: The functions of MAEA in GIC were explored through in vitro and in vivo experiments, including loss- and gain-of-function analyses. Mass spectrometry was used to identify proteins that interact with MAEA. The mechanisms through which MAEA influences tumor aggression were examined through immunoprecipitation analyses. Results: GIC patients exhibiting reduced expression of MAEA were found to exhibit worse disease-free and overall survival outcomes. MAEA was found to impair the proliferation and chemoresistance of GIC tumors in vitro and in subcutaneous xenograft model systems. The combination of MAEA and the PARP1 inhibitor veliparib resulted in enhanced oxaliplatin treatment efficacy in vivo. From a mechanistic perspective, MAEA was found to mediate the K48-linked ubiquitination and degradation of PARP1, in addition to suppressing the M2 polarization of macrophages and enhancing macrophage phagocytic activity. Conclusions: These data suggest that MAEA offers value as a prognostic biomarker and target for the treatment of GIC owing to its ability to degrade PARP1 and augment the phagocytic activity of macrophages.
Collapse
Affiliation(s)
- Yanchun Feng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangcai Zou
- Department of Thyroid and Hernia Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Jintuan Huang
- Department of General Surgery (Department of Gastric Surgery Section 2), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, Guangdong, China
| | - Zhenze Huang
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghao Kuang
- Department of Thyroid and Hernia Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yingming Jiang
- Department of Thyroid and Hernia Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| |
Collapse
|
103
|
Erdogan MK, Usca AB. Gallic Acid Enhances Olaparib-Induced Cell Death and Attenuates Olaparib Resistance in Human Osteosarcoma U2OS Cell Line. Curr Issues Mol Biol 2025; 47:104. [PMID: 39996825 PMCID: PMC11854715 DOI: 10.3390/cimb47020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer remains one of the most formidable diseases globally and continues to be a leading cause of mortality. While chemotherapeutic agents are crucial in cancer treatment, they often come with severe side effects. Furthermore, the development of acquired drug resistance poses a significant challenge in the ongoing battle against cancer. Combining these chemotherapeutic agents with plant-derived phenolic compounds offers a promising approach, potentially reducing side effects and counteracting drug resistance. Phytochemicals, the bioactive compounds found in plants, exhibit a range of health-promoting properties, including anticarcinogenic, antimutagenic, antiproliferative, antioxidant, antimicrobial, neuroprotective, and cardioprotective effects. Their ability to enhance treatment, coupled with their non-toxic, multi-targeted nature and synergistic potential when used alongside conventional drugs, underscores the growing importance of natural therapeutics. In this study, we investigated the anticancer effects of olaparib (OL), a small-molecule PARP inhibitor that has shown promising results in both preclinical and clinical trials, and gallic acid (GA), a phenolic compound, in olaparib-resistant human osteosarcoma U2OS cells (U2OS-PIR). Both parental U2OS and U2OS-PIR cell lines were treated with increasing concentrations of olaparib and gallic acid, and their cytotoxic effects were assessed using the WST-1 cell viability assay. The synergistic potential of OL and GA, based on their determined IC50 values, was further explored in combination treatment. A colony survival assay revealed the combination's ability to significantly reduce the colony-forming capacity of cancer cells. Additionally, the apoptotic effects of OL and GA, both individually and in combination, were examined in U2OS-PIR cells using acridine orange/ethidium bromide dual staining. The anti-angiogenic properties were assessed through a VEGF ELISA, while the expression of proteins involved in DNA damage and apoptotic signaling pathways was analyzed via Western blot. The results of this study demonstrate that gallic acid effectively suppresses cell viability and colony formation, particularly when used in combination therapy to combat OL resistance. Additionally, GA inhibits angiogenesis and induces DNA damage and apoptosis by modulating key apoptosis-related proteins, including cPARP, Bcl-2, and Bax. These findings highlight gallic acid as a potential compound for enhancing therapeutic efficacy in overcoming acquired drug resistance.
Collapse
Affiliation(s)
- Mehmet Kadir Erdogan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol 12000, Türkiye
| | - Ayse Busra Usca
- Department of Biology, Science Institute, Bingol University, Bingol 12000, Türkiye
| |
Collapse
|
104
|
Nakamura S, Kojima Y, Takeuchi S. Causative Genes of Homologous Recombination Deficiency (HRD)-Related Breast Cancer and Specific Strategies at Present. Curr Oncol 2025; 32:90. [PMID: 39996890 PMCID: PMC11854191 DOI: 10.3390/curroncol32020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Recently, homologous recombination deficiency (HRD) has become a new target for hereditary cancers. Molecular-based approaches for hereditary cancers in the clinical setting have been reviewed. In particular, the efficacy of the PARP inhibitor has been considered by several clinical trials for various kinds of hereditary cancers. This indicates that the PARP inhibitor can be effective for any kind of BRCA mutated cancers, regardless of the organ-specific cancer. Homologous recombination deficiency (HRD) has become a new target for hereditary cancers, indicating the necessity to confirm the status of HRD-related genes. ARID1A, ATM, ATRX, PALB2, BARD1, RAD51C and CHEK2 are known as HRD-related genes for which simultaneous examination as part of panel testing is more suitable. Both surgical and medical oncologists should learn the basis of genetics including HRD. An understanding of the basic mechanism of homologous repair recombination (HRR) in BRCA-related breast cancer is mandatory for all surgical or medical oncologists because PARP inhibitors may be effective for these cancers and a specific strategy of screening for non-cancers exists. The clinical behavior of each gene should be clarified based on a large-scale database in the future, or, in other words, on real-world data. Firstly, HRD-related genes should be examined when the hereditary nature of a cancer is placed in doubt after an examination of the relevant family history. Alternatively, HRD score examination is a solution by which to identify HRD-related genes at the first step. If lifetime risk is estimated at over 20%, an annual breast MRI is necessary for high-risk screening. However, there are limited data to show its benefit compared with BRCA. Therefore, a large-scale database, including clinical information and a long-term follow-up should be established, after which a periodical assessment is mandatory. The clinical behavior of each gene should be clarified based on a large-scale database, or, in other words, real-world data.
Collapse
Affiliation(s)
- Seigo Nakamura
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
- Division of Breast Surgical Oncology, Department of Surgery, Showa University, Tokyo 142-8666, Japan
| | - Yasuyuki Kojima
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
- Division of Breast Surgical Oncology, Department of Surgery, Showa University, Tokyo 142-8666, Japan
| | - Sayoko Takeuchi
- Institute for Clinical Genetics and Genomics, Showa University, Tokyo 142-8555, Japan; (Y.K.); (S.T.)
| |
Collapse
|
105
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
106
|
Liao Q, Yang J, Shi H, Mengjiang R, Li Y, Zhang Q, Wen X, Ge S, Chai P, Fan X, Jia R, Fan J. Aurora A Kinase Inhibition Is Synthetic Lethal With the Activation of MYCN in Retinoblastoma. Invest Ophthalmol Vis Sci 2025; 66:20. [PMID: 39918479 PMCID: PMC11809451 DOI: 10.1167/iovs.66.2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
Purpose RB1 inactivation and MYCN activation have been documented as common oncogenic alterations in retinoblastoma (RB). Direct targeting of RB1 and MYCN has not yet been proven to be feasible. The current treatment options for RB mainly consist of conventional chemotherapy, which inevitably poses health-threatening side effects. Here, we aimed to screen an in-house compound library to identify potential drugs for the treatment of human RB. Methods Aurora A kinase (AURKA) inhibitors were identified by differential viability screening with a tool compound library, and the pharmacological safety and efficacy of candidate drugs were further validated in zebrafish and RB patient-derived xenograft (PDX) models in vivo. Further CUT & Tag assay, ChIP-qPCR and RNA seq performances showed that MYCN binds to the AURKA promoter and upregulates its transcription, suggesting that AURKA inhibition induces synthetic lethality in RB. Results In this study, we revealed that AURKA inhibitors exhibited high therapeutic efficacy against RB both in vitro and in vivo. Mechanistically, we found that MYCN could bind to the AURKA promoter region to regulate its transcription, thereby promoting AURKA expression and consequently driving RB progression. Interestingly, AURKA inhibition exhibited synthetic lethality with RB1-deficient and MYCN-amplification in RB cells. Conclusions Collectively, these findings demonstrate that AURKA is crucial for RB progression and further expanded the current understanding of synthetic lethal therapeutic strategies. Our study indicates that AURKA inhibitors may represent a new therapeutic strategy for selectively targeting patients with RB with RB1-deficient and MYCN-amplification to improve the prognosis of aggressive types of patients with RB.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Jie Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Hanhan Shi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Reyizha Mengjiang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yongyun Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
107
|
Schlacher K. A multiverse of BRCA vulnerabilities. NATURE CANCER 2025; 6:234-236. [PMID: 39972106 DOI: 10.1038/s43018-024-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
108
|
Milella M, Orsi G, di Marco M, Salvatore L, Procaccio L, Noventa S, Bozzarelli S, Garajova I, Vasile E, Giordano G, Macchini M, Cavaliere A, Gaule M, Bergamo F, Chiaravalli M, Palloni A, Carloni R, Bittoni A, Niger M, Rapposelli IG, Rodriquenz MG, Scartozzi M, Mosconi S, Giommoni E, Bernardini I, Paratore C, Spallanzani A, Bencardino K, Forti L, Tamburini E, Lonardi S, Scarpa A, Cascinu S, Tortora G, Sperduti I, Reni M. Real-World Impact of Olaparib Exposure in Advanced Pancreatic Cancer Patients Harboring Germline BRCA1-2 Pathogenic Variants. Cancer Med 2025; 14:e70364. [PMID: 39861955 PMCID: PMC11761426 DOI: 10.1002/cam4.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 10/13/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication. METHODS Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed. RESULTS Of 114, 53 BRCA-mutant pancreatic cancer patients had received olaparib for metastatic disease. OS was significantly longer in patients who were exposed to olaparib (hazard ratio [HR] 0.568, 95% confidence interval [CI] 0.351-0.918, log-rank p = 0.02) in any setting/line of treatment; similar results were obtained for patients who received olaparib as maintenance treatment (in any line of treatment), patients who had stage IV disease at diagnosis, and patients who did not experience progressive disease as their best response to first-line chemotherapy. Exposure to olaparib in the first-line maintenance setting after platinum-based chemotherapy, however, did not significantly impact survival. At multivariate analysis, CA19.9 levels at diagnosis and response to first-line chemotherapy were independently prognostic; however, when response to chemotherapy was excluded, any exposure to olaparib was a significant independent predictor of longer OS, together with CA19.9 levels. CONCLUSION The real-world data presented here support the use of olaparib for metastatic disease in germline BRCA-mutant pancreatic cancer patients, as it may significantly prolong survival.
Collapse
|
109
|
Sahu S, Galloux M, Southon E, Caylor D, Sullivan T, Arnaudi M, Zanti M, Geh J, Chari R, Michailidou K, Papaleo E, Sharan SK. Saturation genome editing-based clinical classification of BRCA2 variants. Nature 2025; 638:538-545. [PMID: 39779848 DOI: 10.1038/s41586-024-08349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Sequencing-based genetic tests have uncovered a vast array of BRCA2 sequence variants1. Owing to limited clinical, familial and epidemiological data, thousands of variants are considered to be variants of uncertain significance2-4 (VUS). Here we have utilized CRISPR-Cas9-based saturation genome editing in a humanized mouse embryonic stem cell line to determine the functional effect of VUS. We have categorized nearly all possible single nucleotide variants (SNVs) in the region that encodes the carboxylate-terminal DNA-binding domain of BRCA2. We have generated function scores for 6,551 SNVs, covering 96.4% of possible SNVs in exons 15-26 spanning BRCA2 residues 2479-3216. These variants include 1,282 SNVs that are categorized as missense VUS in the clinical variant database ClinVar, with 77.2% of these classified as benign and 20.4% classified as pathogenic using our functional score. Our assay provides evidence that 3,384 of the SNVs in the region are benign and 776 are pathogenic. Our classification aligns closely with pathogenicity data from ClinVar, orthogonal functional assays and computational meta predictors. We have integrated our embryonic stem cell-based BRCA2-saturation genome editing dataset with other available evidence and utilized the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for clinical classification of all possible SNVs. This classification is available as a sequence-function map and serves as a valuable resource for interpreting unidentified variants in the population and for physicians and genetic counsellors to assess BRCA2 VUS in patients.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matteo Arnaudi
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Josephine Geh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
110
|
Wen M, Qiu Y, Wang M, Tang F, Hu W, Zhu Y, Zhao W, Hu W, Chen Z, Duan Y, Geng A, Tan F, Li Y, Pei Q, Pei H, Mao Z, Wu N, Sun L, Tan R. Enhancing low-dose radiotherapy efficacy with PARP inhibitors via FBL-mediated oxidative stress response in colorectal cancer. Oncogene 2025; 44:228-240. [PMID: 39516657 PMCID: PMC11746129 DOI: 10.1038/s41388-024-03207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The effectiveness of radiotherapy in colorectal cancer (CRC) relies on its ability to induce cell death via the generation of reactive oxygen species (ROS). However, genes responsible for mitigating oxidative stress can impede radiotherapy's efficacy. In this study, we elucidate a significant association between the nucleolar protein Fibrillarin (FBL) and the oxidative stress response in CRC tumors. Our findings reveal elevated expression of FBL in colorectal cancer, which positively correlates with oxidative stress levels. Mechanistically, FBL demonstrates direct accumulation at DNA damage sites under the regulation of PARP1. Specifically, the N-terminal GAR domain of FBL is susceptible to PARylation by PARP1, enabling FBL to recognize PARylated proteins. The accumulation of damaged FBL plays a pivotal role in facilitating short-patched base excision repair by recruiting Ligase III and disassociating PCNA and FEN1. Moreover, tumors with heightened FBL expression exhibit reduced DNA damage levels but increased sensitivity to combined low-dose radiotherapy and olaparib treatment. This underscores the potential of leveraging PARP inhibitors to augment radiotherapy sensitivity in CRC cases characterized by elevated FBL expression, offering a promising therapeutic avenue.
Collapse
Affiliation(s)
- Ming Wen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Huan, 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, 410008, China
| | - Yanfang Qiu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Feiyu Tang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Wenfeng Hu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Yongwei Zhu
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenchao Zhao
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Wenzhen Hu
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Zhuohang Chen
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fengbo Tan
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqiang Li
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qian Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haiping Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lunquan Sun
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Huan, 410008, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, 410008, China.
| | - Rong Tan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Huan, 410008, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, 410008, China.
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, 410008, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
111
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
112
|
Tan S, Feng M, Zhou N, Zhang S, Yi C, Gou H. DNA damage response and repair gene mutations predict clinical outcomes in biliary tract cancer. Cancer 2025; 131:e35726. [PMID: 39876053 DOI: 10.1002/cncr.35726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND This study aims to explore the genetic characteristics of biliary tract cancer (BTC), with a particular focus on the impact of DNA damage response and repair (DDR) genes on clinical outcomes. METHODS A total of 180 patients with BTC and next-generation sequencing data were retrospectively analyzed. Clinical outcomes were compared between DDR-positive and DDR-negative groups. RESULTS DDR mutations were found in 28.3% of patients, with ATM (7.8%), BAP1 (5.6%), and BRCA2 (3.3%) being the most common. DDR-positive patients receiving first-line platinum-based chemotherapy (n = 73) had a significantly higher objective response rate (50.0% vs. 14.9 %; p = .001), longer median progression-free survival (mPFS) (7.7 vs. 3.8 months; p = .001) and longer median overall survival (28.6 vs. 11.9 months; p < .001). Multivariate analysis confirmed that deleterious DDR gene mutations were independently associated with prolonged mPFS (hazard ratio [HR], 0.37; 95% CI, 0.20-0.67; p < .001) and median overall survival (mOS) (HR, 0.19; 95% CI, 0.08-0.46; p < .001). In 56 patients receiving immunotherapy combined with chemotherapy, DDR-positive patients had a significantly higher overall response rate (45% vs. 8.3%; p = .001), longer mPFS (7.7 vs. 3.8 months; p = .009), and longer mOS (12.7 vs. 8.8 months; p = .011). Multivariate analysis showed that the presence of deleterious DDR gene mutations was associated with significantly longer mPFS (HR, 0.34; 95% CI, 0.16-0.73); p = .005] and mOS (HR, 0.23; 95% CI, 0.08-0.62; p = .004). CONCLUSION Deleterious DDR gene mutations are associated with improved clinical outcomes in patients with BTC treated with platinum-based chemotherapy or immunotherapy combined with chemotherapy.
Collapse
Affiliation(s)
- Sirui Tan
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Nan Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shunyu Zhang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongfeng Gou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
113
|
He L, Moon J, Cai C, Hao Y, Lee H, Kim W, Zhao F, Lou Z. The interplay between chromatin remodeling and DNA double-strand break repair: Implications for cancer biology and therapeutics. DNA Repair (Amst) 2025; 146:103811. [PMID: 39848026 DOI: 10.1016/j.dnarep.2025.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Proper chromatin remodeling is crucial for many cellular physiological processes, including the repair of DNA double-strand break (DSB). While the mechanism of DSB repair is well understood, the connection between chromatin remodeling and DSB repair remains incompletely elucidated. In this review, we aim to highlight recent studies demonstrating the close relationship between chromatin remodeling and DSB repair. We summarize the impact of DSB repair on chromatin, including nucleosome arrangement, chromatin organization, and dynamics, and conversely, the role of chromatin architecture in regulating DSB repair. Additionally, we also summarize the contribution of chromatin remodeling complexes to cancer biology through DNA repair and discuss their potential as therapeutic targets for cancer.
Collapse
Affiliation(s)
- Liujun He
- College of Biology, Hunan University, Changsha 410082, China
| | - Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea
| | - Chenghui Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Hyorin Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea.
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China.
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
114
|
Brosey CA, Shen R, Tainer JA. NADH-bound AIF activates the mitochondrial CHCHD4/MIA40 chaperone by a substrate-mimicry mechanism. EMBO J 2025; 44:1220-1248. [PMID: 39806100 PMCID: PMC11832770 DOI: 10.1038/s44318-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates. NMR and X-ray scattering (SAXS) solution measurements, mutational analyses, and biochemistry show that the substrate-mimicking AIF-interaction domain shields CHCHD4's redox-sensitive active site. Disrupting this shield critically activates CHCHD4 substrate affinity and chaperone activity. Regulatory-domain sequestration by NADH-activated AIF directly stimulates chaperone binding and folding, revealing how AIF mediates CHCHD4 mitochondrial import. These results establish AIF as an integral component of the metazoan disulfide relay and point to NADH-activated dimeric AIF as an organizational import center for CHCHD4 and its substrates. Importantly, AIF regulation of CHCHD4 directly links AIF's cellular NAD(H) sensing to CHCHD4 chaperone function, suggesting a mechanism to balance tissue-specific oxidative phosphorylation (OXPHOS) capacity with NADH availability.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
115
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
116
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
117
|
Jiang L, Kang Y. Biomolecular condensates: A new lens on cancer biology. Biochim Biophys Acta Rev Cancer 2025; 1880:189245. [PMID: 39675392 DOI: 10.1016/j.bbcan.2024.189245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Cells are compartmentalized into different organelles to ensure precise spatial temporal control and efficient operation of cellular processes. Membraneless organelles, also known as biomolecular condensates, are emerging as previously underappreciated ways of organizing cellular functions. Condensates allow local concentration of protein, RNA, or DNA molecules with shared functions, thus facilitating spatiotemporal control of biochemical reactions spanning a range of cellular processes. Studies discussed herein have shown that aberrant formation of condensates is associated with various diseases such as cancers. Here, we summarize how condensates mechanistically contribute to malignancy-related cellular processes, including genomic instability, epigenetic rewiring, oncogenic transcriptional activation, and signaling. An improved understanding of condensate formation and dissolution will enable development of new cancer therapies. Finally, we address the remaining challenges in the field and suggest future efforts to better integrate condensates into cancer research.
Collapse
Affiliation(s)
- Lifei Jiang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
118
|
Pastò B, Vida R, Dri A, Foffano L, Della Rossa S, Gerratana L, Puglisi F. Beyond Hormone Receptors: liquid biopsy tools to unveil new clinical meanings and empower therapeutic decision-making in Luminal-like metastatic breast cancer. Breast 2025; 79:103859. [PMID: 39708442 PMCID: PMC11872398 DOI: 10.1016/j.breast.2024.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Immunohistochemical (IHC) tissue profiling is a standard practice in the management of metastatic breast cancer (mBC), that enables the identification of distinct biological phenotypes based on hormone receptors' expression. Luminal-like tumors primarily benefit from a first line treatment strategy combining endocrine therapy and cyclin-dependent kinase 4/6 inhibitors. However, IHC analyses necessitate invasive procedures and may encounter technical and interpretational challenges. In the current era of precision medicine, liquid biopsy holds potential to provide clinicians with additional insights into disease biology, including mechanisms underlying endocrine resistance and disease progression. Several liquid-based biomarkers are entering clinical practice and hold prognostic and predictive values in Luminal-like mBC, while many others are currently being investigated. The present work aims to summarize the current evidence regarding the clinical meanings of hormone receptors and their downstream molecular pathways, alongside their implications for therapeutic decision-making in Luminal-like mBC.
Collapse
Affiliation(s)
- Brenno Pastò
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Riccardo Vida
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Arianna Dri
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lorenzo Foffano
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Serena Della Rossa
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy.
| | - Fabio Puglisi
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| |
Collapse
|
119
|
Kono T, Ozawa H. A comprehensive review of current therapeutic strategies in cancers targeting DNA damage response mechanisms in head and neck squamous cell cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189255. [PMID: 39746459 DOI: 10.1016/j.bbcan.2024.189255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The DNA damage response (DDR) is an essential mechanism for maintaining genomic stability. Although DDR-targeted therapeutic strategies are being developed in several familial cancers, evaluation of their utility in head and neck squamous cell cancer (HNSCC) is lagging. This review briefly summarizes the mechanisms of DDR and the current knowledge on discovering DDR-related predictive biomarkers in HNSCC. This review also presents novel therapeutic strategies targeting DDR pathways for HNSCC based on the synthetic lethal concept. The combination of DDR inhibitors with cytotoxic treatments such as radiotherapy, chemotherapy, and immune checkpoint inhibitors is being evaluated, and several clinical trials are ongoing in patients with HNSCC. While DDR inhibitors are considered promising treatment options, resistance to these drugs is frequently observed, and their mechanisms are currently active research areas. A better understanding of the correlation between DDR pathways and cancer biology provides new therapeutic strategies for personalized medicine in HNSCC.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Otolaryngology-Head Neck Surgery, Keio University School of Medicine, Japan.
| | - Hiroyuki Ozawa
- Department of Otolaryngology-Head Neck Surgery, Keio University School of Medicine, Japan
| |
Collapse
|
120
|
Jiang Y, Wang J, Zhang Y, Cao Z, Zhang Q, Su J, He S, Bo X. Graph based recurrent network for context specific synthetic lethality prediction. SCIENCE CHINA. LIFE SCIENCES 2025; 68:527-540. [PMID: 39422810 DOI: 10.1007/s11427-023-2618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/10/2024] [Indexed: 10/19/2024]
Abstract
The concept of synthetic lethality (SL) has been successfully used for targeted therapies. To further explore SL for cancer therapy, identifying more SL interactions with therapeutic potential are essential. Recently, graph neural network-based deep learning methods have been proposed for SL prediction, which reduce the SL search space of wet-lab based methods. However, these methods ignore that most SL interactions depend strongly on genetic context, which limits the application of the predicted results. In this study, we proposed a graph recurrent network-based model for specific context-dependent SL prediction (SLGRN). In particular, we introduced a Graph Recurrent Network-based encoder to acquire a context-specific, low-dimensional feature representation for each node, facilitating the prediction of novel SL. SLGRN leveraged gate recurrent unit (GRU) and it incorporated a context-dependent-level state to effectively integrate information from all nodes. As a result, SLGRN outperforms the state-of-the-arts models for SL prediction. We subsequently validate novel SL interactions under different contexts based on combination therapy or patient survival analysis. Through in vitro experiments and retrospective clinical analysis, we emphasize the potential clinical significance of this context-specific SL prediction model.
Collapse
Affiliation(s)
- Yuyang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - ZhiWei Cao
- School of Informatics, Xiamen University, Xiamen, 361005, China
| | - Qinglong Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jinsong Su
- School of Informatics, Xiamen University, Xiamen, 361005, China.
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
121
|
Fu S, Zou P, Fang Z, Zhou X, Chen J, Gong C, Quan L, Lin B, Chen Q, Lang J, Chen M. Incidence and risk of endocrine and metabolic abnormalities linked to PARP inhibitors in solid tumors: a meta-analysis. BMC Cancer 2025; 25:183. [PMID: 39891102 PMCID: PMC11783722 DOI: 10.1186/s12885-025-13579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) serve as crucial therapeutic agents in solid tumor treatment. Preclinical investigations suggest a potential protective function of PARPi against endocrine and metabolic impairments. Nevertheless, the existing body of evidence remains inconclusive on this aspect. PURPOSE Our aim was to evaluate the potential impact of PARPi on endocrine and metabolic disruptions in clinical trials. DATA SOURCES We conducted a comprehensive search across the Medline, EMBASE, PubMed, and Web of Science databases, along with the ClinicalTrials.gov registry. STUDY SELECTION Phase II/III randomized controlled trials (RCTs) investigating the effects of PARPi in metabolic and endocrine processes were selected for inclusion in patients with solid tumors. DATA EXTRACTION The primary outcomes of interest encompassed metabolic and endocrine dysfunctions. DATA SYNTHESIS A total of 26 trials (n = 9,590 patients) were included in our meta-analysis. Niraparib demonstrated an increased risk of any-grade hyperglycemia (OR = 2.15, 95% CI 1.28-3.62), with patients receiving PARPi for metastatic pancreatic cancer showing a higher susceptibility to any-grade hyperglycemia (OR = 1.78, 95% CI 1.04-3.04). Conversely, rucaparib exhibited a potential ameliorative effect on hyperglycemia (OR = 0.54, 95% CI 0.30-0.97). No statistically significant disparities were observed for other outcomes associated with PARPi utilization. LIMITATIONS Among these RCTs included, 50% were assessed as low qualities due to high risk of bias. CONCLUSIONS Our meta-analysis demonstrated that PARPi may exert adverse effects on endocrine and metabolic pathways. Close monitoring of hyperglycemia is recommended for patients undergoing niraparib therapy, especially those with pancreatic cancer. TRIAL REGISTRATION This meta-Analysis was prospectively registered in the PROSPERO database with ID CRD42023457959.
Collapse
Affiliation(s)
- Shunlian Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Pingjin Zou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zengyi Fang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xinxiang Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junyang Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Cuicui Gong
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Li Quan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Bing Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P.R. China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P.R. China.
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
122
|
Ye Y, Huang Y, Pan J. Exploration of the diagnostic and prognostic roles of decreased autoantibodies in lung cancer. Front Immunol 2025; 16:1538071. [PMID: 39949782 PMCID: PMC11821978 DOI: 10.3389/fimmu.2025.1538071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Tumor-associated antigens (TAA) are proteins expressed during the growth and development of tumor cells, and TAA autoantibodies (TAAbs) can be detected in the serum of lung cancer patients, which can be utilized in the early screening of lung cancer. Almost all the TAAbs applied for diagnosis are those elevated, however, there are still large numbers of autoantibodies detected to decrease in tumor serums, and their functions were rarely known. Diagnosing malignant small lung nodules (≤3cm) in CT scans remains a challenge in clinical practice. Methods In this study, we applied the HuProt array and the bioinformatics analysis to assess the diagnostic values of the decreased autoantibodies in lung cancers. Results In total, 15 types of decreased autoantibodies were identified, and 6 of them were constructed into a predictive model for early lung cancer, reaching a sensitivity of 76.19% and a specificity of 55.74%. We combined with 4 elevated TAAbs, the sensitivity and the specificity of the 10-marker model can attain 80.0% and 87.0%, respectively, which is higher than that of the commonly used 7-TAAbs model in diagnosis for early-stage lung cancer. Moreover, 5 of the decreased autoantibodies can also be applied for supervising bone metastasis in lung adenocarcinoma. A follow-up process for 13 patients diagnosed with early-stage lung cancer revealed that 10 of the 15 decreased autoantibodies would recover to a higher level after the tumor was resected. Bioinformatic analysis indicated that the 15 biomarkers were strongly correlated with the prognosis of lung cancer patients. Conclusion We confirmed the importance of the decreased autoantibodies in lung cancer, providing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Ye
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
123
|
Provencher L, Nartey W, Brownlee PM, Atkins AW, Gagné JP, Baudrier L, Ting NSY, Piett CG, Fang S, Pearson DD, Moore S, Billon P, Nagel ZD, Poirier GG, Williams GJ, Goodarzi AA. CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair. Nat Commun 2025; 16:1026. [PMID: 39863586 PMCID: PMC11762318 DOI: 10.1038/s41467-025-56085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage. While CHD6 loss does not impair RAD51 foci formation or DNA double-strand break repair, it causes sensitivity to replication stress, and PARP1/2-trapping or Pol ζ inhibitor-induced γH2AX foci accumulation in S-phase. DNA repair pathway screening reveals that CHD6 loss elicits insufficiency in apurinic-apyrimidinic endonuclease (APEX1) activity and genomic abasic site accumulation. We reveal APEX1-linked roles for CHD6 important for understanding PARP1/2-trapping inhibitor sensitivity.
Collapse
Affiliation(s)
- Luc Provencher
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wilson Nartey
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Austin W Atkins
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Lou Baudrier
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas S Y Ting
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, USA
| | - Shujuan Fang
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shaun Moore
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Billon
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Gareth J Williams
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
124
|
Xiao Y, Wu Y, Wang Q, Li M, Deng C, Gu X. Repression of PFKFB3 sensitizes ovarian cancer to PARP inhibitors by impairing homologous recombination repair. Cell Commun Signal 2025; 23:48. [PMID: 39863903 PMCID: PMC11762855 DOI: 10.1186/s12964-025-02056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance. METHODS We conducted in vitro and in vivo experiments to assess the role of PFKFB3 in OC and its impact on PARPi resistance. We analyzed PFKFB3 expression and activity in primary OC tissues and cell lines using western blotting and immunohistochemistry. CRISPR-Cas9 and pharmacological inhibitors were employed to inhibit PFKFB3, and the effects on PARPi resistance, homologous recombination (HR) repair efficiency, and DNA damage were evaluated. RNA sequencing and proximity labeling were employed to identify the molecular mechanisms underlying PFKFB3-mediated resistance. The in vivo efficacy of PARPi and PFK158 combination therapy was evaluated in OC xenograft models. RESULTS PFKFB3 activity was significantly elevated in OC tissues and associated with PARPi resistance. Inhibition of PFKFB3, both genetically and pharmacologically, sensitized OC cells to PARPis, impaired HR repair and increased DNA damage. Proximity labeling revealed replication protein A3 (RPA3) as a novel PFKFB3-binding protein involved in HR repair. In vivo, the combination of PFK158 and olaparib significantly inhibited tumor growth, increased DNA damage, and induced apoptosis in OC xenografts without exacerbating adverse effects. CONCLUSIONS Our findings demonstrate that PFKFB3 is crucial for PARPi resistance in OC. Inhibiting PFKFB3 sensitizes HR-proficient OC cells to PARPis by impairing HR repair, leading to increased DNA damage and apoptosis. PFKFB3 represents a promising therapeutic target for overcoming PARPi resistance and improving outcomes in OC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
| | - Qilong Wang
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100083, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China
| | - Chaolin Deng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiaoyang Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
125
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
126
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
127
|
Ma W, Zhou S. Metabolic Rewiring in the Face of Genomic Assault: Integrating DNA Damage Response and Cellular Metabolism. Biomolecules 2025; 15:168. [PMID: 40001471 PMCID: PMC11852599 DOI: 10.3390/biom15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The DNA damage response (DDR) and cellular metabolism exhibit a complex, bidirectional relationship crucial for maintaining genomic integrity. Studies across multiple organisms, from yeast to humans, have revealed how cells rewire their metabolism in response to DNA damage, supporting repair processes and cellular homeostasis. We discuss immediate metabolic shifts upon damage detection and long-term reprogramming for sustained genomic stability, highlighting key signaling pathways and participating molecules. Importantly, we examine how DNA repair processes can conversely induce metabolic changes and oxidative stress through specific mechanisms, including the histone H2A variant X (H2AX)/ataxia telangiectasia mutated (ATM)/NADPH oxidase 1 (Nox1) pathway and repair-specific ROS signatures. The review covers organelle-specific responses and metabolic adaptations associated with different DNA repair mechanisms, with a primary focus on human cells. We explore the implications of this DDR-metabolism crosstalk in cancer, aging, and neurodegenerative diseases, and discuss emerging therapeutic opportunities. By integrating recent findings, this review provides a comprehensive overview of the intricate interplay between DDR and cellular metabolism, offering new perspectives on cellular resilience and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjian Ma
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| |
Collapse
|
128
|
Mammone G, Borghesi S, Borsellino N, Caliò A, Ceccarelli R, Cimadamore A, Conti GN, Cortesi L, D'Angelillo RM, Facchini G, Incorvaia L, Lapini A, Mearini L, Pappagallo G, Prontera P, Turchetti D, Sirgiovanni G, Bracarda S. Integrating BRCA testing into routine prostate cancer care: a multidisciplinary approach by SIUrO and other Italian Scientific Societies. BMC Cancer 2025; 25:127. [PMID: 39844131 PMCID: PMC11756108 DOI: 10.1186/s12885-025-13521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Prostate cancer (PCa) ranks among the most prevalent malignancies in men, with notable associations to Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Lynch Syndrome, both linked to germline likely pathogenetic variant/pathogenetic variant (LPV/PV) in genes involved in DNA repair. Among these genes, BRCA2 in PCa patients is the most frequently altered. Despite progresses, challenges in BRCA carriers detection persist, with a quarter of PCa cases lacking family history.To address these challenges, a multidisciplinary expert panel from six Italian Scientific Societies, formulated a care pathway to integrate BRCA testing into routine clinical practice in different Italian geographical areas.The development process, promoted by the Italian Society of Uro-Oncology (SIUrO), involved three key stages. A preliminary meeting convened teams from different Italian regions to establish minimal requirements for a mini-counseling program (defined as a pre-test consultation carried out by clinicians responsible of patients' management) and propose care pathway models. At the same time, a comprehensive survey was launched to highlight regional variations in BRCA testing and identify eventual obstacles to testing activities. A subsequent meeting synthesized care pathway proposals and formulated a unified framework, acknowledging regional legislative variations as enriching factors. Lastly, implementation of the unified framework was promoted by the project faculty and identified regional team leaders.Survey results revealed significant regional disparities in BRCA testing, reimbursement policies, and access to genetic counseling. The proposed mini-counseling program outlined essential steps for patient identification, information provision, and multidisciplinary review, aiming to streamline BRCA testing processes.Expert recommendations emphasized offering tumor genetic testing to metastatic PCa patients eligible for PARP-i treatment and outlined criteria for genetic counseling and germline testing. Key considerations included family history and tumor characteristics.In conclusion, the proposed care pathway represents a critical step towards integrating BRCA testing into routine PCa care, aiming to optimize patient management and familial risk assessment within the constraints of the Italian healthcare system.
Collapse
Affiliation(s)
- Giulia Mammone
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano Di Joannuccio 1, Terni, 05100, Italy.
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud-Est, Ospedale Arezzo e Valdarno, Arezzo, Italy
| | - Nicolò Borsellino
- Medical Oncology Unit, Ospedale Buccheri La Ferla, Fatebenefratelli, Palermo, Italy
| | - Anna Caliò
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, via Chiusaforte, Udine, 33100, Italy
| | | | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Rolando Maria D'Angelillo
- Radiation Oncology, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Roma, Italy
| | - Gaetano Facchini
- Oncology Operative Unit, Santa Maria delle Grazie Hospital, ASL NA2 NORD, Pozzuoli, Napoli, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | | | | | - Giovanni Pappagallo
- School of Methodology of Clinical Research IRCCS "Sacro Cuore - Don Calabria" Hospital Negrar di Valpolicella, Verona, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Hospital of Perugia, Perugia, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, 40126, Italy
| | - Grazia Sirgiovanni
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano Di Joannuccio 1, Terni, 05100, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano Di Joannuccio 1, Terni, 05100, Italy
- Italian Society of Uro-Oncology, Bologna, Italy
| |
Collapse
|
129
|
Azad AA, Gurney H, Campbell A, Goh JC, Rathi V. BRCA Mutation Testing in Men with Metastatic Castration-Resistant Prostate Cancer: Practical Guidance for Australian Clinical Practice. Asia Pac J Clin Oncol 2025. [PMID: 39825869 DOI: 10.1111/ajco.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC. There are practical challenges in the current molecular testing pathway in Australia that can compromise testing success. Testing success is often contingent on quality of tissue handling and laboratory processing techniques to minimize DNA degradation and suboptimal sequencing data quality. Greater adoption of best testing practices in Australia can be facilitated with education and greater awareness of expert recommendations. Here, we provide expert recommendations on how to optimize BRCA molecular diagnostic testing in patients with mCRPC. Optimization and standardization of molecular diagnostic testing will support health care providers and institutes in establishing more efficient testing pathways, enabling access to targeted therapies such as PARPi, and improving patient outcomes.
Collapse
Affiliation(s)
- Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Westmead Hospital, Westmead, Australia
| | - Ainsley Campbell
- Austin Health, Clinical Genetics Department, Heidelberg, Victoria, Australia
| | - Jeffrey C Goh
- Department of Medical Oncology, Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
- Department of Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vivek Rathi
- LifeStrands Genomics Australia, Mount Waverley, Victoria, Australia
| |
Collapse
|
130
|
February 2025 Letters to the Editor. Clin J Oncol Nurs 2025; 29:E1-E6. [PMID: 39933079 PMCID: PMC12056853 DOI: 10.1188/25.cjon.e1-e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A series of three letters to the editor, with responses from the authors.
Collapse
|
131
|
Pacaud R, Thomas S, Chaudhuri S, Lazar A, Timmerman LA, Munster PN. Low dose DNA methyltransferase inhibitors potentiate PARP inhibitors in homologous recombination repair deficient tumors. Breast Cancer Res 2025; 27:8. [PMID: 39819384 PMCID: PMC11740508 DOI: 10.1186/s13058-024-01954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Poly (ADP-Ribose) polymerase inhibitors are approved for treatment of tumors with BRCA1/2 and other homologous recombination repair (HRR) mutations. However, clinical responses are often not durable and treatment may be detrimental in advanced cancer due to excessive toxicities. Thus we are seeking alternative therapeutics to enhance PARP-directed outcomes. In an effort to expand the clinical use of PARP inhibitors to HRR proficient tumors, several groups have tested combinations of DNA methyltransferase inhibitors and PARP inhibitors. While this approach attenuated tumor cell proliferation in preclinical studies, subsequent clinical trials revealed little benefit. We hypothesized that benefit for this drug combination would only be specific to HRR deficient tumors, due to their inability to enact high fidelity DNA repair with subsequent cell death. METHODS We generated hypomorphic BRCA1 and BRCA2 variants of the HRR proficient triple negative breast cancer cell line MDA-MB-231. We compared therapeutic response features such as RAD51 focus formation, cell cycle fraction alterations, DNA damage accumulation, colony formation, and cell death of these and other cell lines with and without intrinsic BRCA1/2 mutations. Results were confirmed in BRCA1/2 intact and deficient xenografts and PDX. RESULTS Our targeted variants and cells with intrinsic BRCA1/2 mutations responded to low dose combination therapeutic treatment by G2M stalling, compounded DNA damage, severely attenuated colony formation, and importantly, increased cell death. In contrast, the parental MDA-MB-231 cells and other HRR proficient cell lines produced smaller cell populations with short term treatment, but with much less cumulative DNA damage, and minimal cell death. In animal studies, our BRCA-engineered hypomorphs and several independent PDX models with clinically relevant BRCA mutations were acutely more vulnerable to this drug combination. CONCLUSIONS We conclude that low dose DNA methyltransferase inhibition can cooperate with low dose PARP inhibition to increase DNA damage predominantly in cells with HRR deficiencies, ultimately producing more cell death than in HRR proficient tumors. We predict that clinical benefit will more likely be apparent in patients with DNA repair defective tumors and are focusing clinical exploration of this drug combination in these patients, with the goals of enhancing tumor cell death at minimal toxicities.
Collapse
Affiliation(s)
- Romain Pacaud
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA
| | - Scott Thomas
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA
| | - Sibapriya Chaudhuri
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA
| | - Ann Lazar
- Division of Oral Epidemiology and Division of Biostatistics, School of Dentistry and School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Luika A Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Pamela N Munster
- Department of Medicine (Hematology/Oncology), School of Medicine, University of California San Francisco, 1450 Third St, San Francisco, CA, 94158, USA.
| |
Collapse
|
132
|
Cashman R, Haim-Abadi G, Lezmi E, Philip H, Nissenbaum J, Viner-Breuer R, Kozulin C, Golan-Lev T, Gadban A, Spinner-Potesky S, Yanuka O, Kopper O, Benvenisty N. Genome-Wide Screening in Haploid Stem Cells Reveals Synthetic Lethality Targeting MLH1 and TP53 Deficient Tumours. Cell Prolif 2025:e13788. [PMID: 39814695 DOI: 10.1111/cpr.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 01/18/2025] Open
Abstract
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death, whereas each of them separately does not. Synthetic lethality can be a useful tool in personalised oncology. MLH1 is a cancer-related gene that has a central role in DNA mismatch-repair and TP53 is the most frequently mutated gene in cancer. To identify genetic events that can lead to tumour death once either MLH1 or TP53 is mutated, a genome-wide genetic screening was performed. Thus, mutations in all protein-coding genes were introduced into haploid human embryonic stem cells (hESCs) with and without loss-of-function mutations in the MLH1 or TP53 genes. These experiments uncovered a list of putative hits with EXO1, NR5A2, and PLK2 genes for MLH1, and MYH10 gene for TP53 emerging as the most promising candidates. Synthetic lethal interactions of these genes were validated genetically or chemically using small molecules that inhibit these genes. The specific effects of SR1848, which inhibits NR5A2, ON1231320 or BI2536, which inhibits PLK2, and blebbistatin, which inhibits MYH10, were further validated in cancer cell lines. Finally, animal studies with CCL xenografts showed the selective effect of the small molecule BI2536 on MLH1-null tumours and of blebbistatin on TP53-mutated tumours. Thus, demonstrating their potential for personalised medicine, and the robustness of genetic screening in haploid hESCs in the context of cancer therapeutics.
Collapse
Affiliation(s)
| | - Guy Haim-Abadi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Elyad Lezmi
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Aseel Gadban
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | - Nissim Benvenisty
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
133
|
Wu M, Jiang Y, Zhang D, Wu Y, Jin Y, Liu T, Mao X, Yu H, Xu T, Chen Y, Huang W, Che J, Zhang B, Liu T, Lin N, Dong X. Discovery of a potent PARP1 PROTAC as a chemosensitizer for the treatment of colorectal cancer. Eur J Med Chem 2025; 282:117062. [PMID: 39602992 DOI: 10.1016/j.ejmech.2024.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Given the vulnerability of colorectal cancer (CRC) patients could not obtain a sustained benefit from chemotherapy, combination therapy is frequently employed as a treatment strategy. Targeting PARP1 blockade exhibit specific toxicity towards tumor cells with BRCA1 or BRCA2 mutations through synthetic lethality. This study focuses on developing a series of potent PROTACs targeting PARP1 in order to enhance the sensitivity of CRC cells with BRCA1 or BRCA2 mutations to chemotherapy. Compound C6, obtained based on precise structural optimization of the linker, has been shown to effectively degrade PARP1 with a DC50 value of 58.14 nM. Furthermore, C6 significantly increased the cytotoxic efficacy of SN-38, an active metabolite of Irinotecan, in BRCA-mutated CRC cells, achieving a favorable combination index (CI) of 0.487. In conclusion, this research underscores the potential benefits of employing a combination therapy that utilizes PAPRP1 degrader C6 alongside Irinotecan for CRC patients harboring BRCA mutations in CRC.
Collapse
Affiliation(s)
- Mingfei Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Jiang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daoming Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiquan Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinfei Mao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Jinxin Che
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| | - Nengming Lin
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China.
| | - Xiaowu Dong
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
134
|
Chen H, Tan F, Zhang Y, Xie B, Luo A. Enhancing PARP inhibitor efficacy using reduction-responsive nanoparticles encapsulating NADP. J Mater Chem B 2025; 13:955-964. [PMID: 39624987 DOI: 10.1039/d4tb01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown success in cancer chemotherapy; however, not all tumors respond effectively to PARPi treatment, even in the presence of BRCA1/2 mutations or homologous recombination (HR) repair defects. NADP+ was recently identified as an endogenous inhibitor of ADP-ribosylation with the potential to sensitize cancer cells to PARPi, yet its lack of membrane permeability poses a significant challenge to its clinical application. In this study, we developed reduction-responsive nanoparticles (NPs) containing disulfide bonds, which can be cleaved in the reductive environment of tumor cells. These NPs encapsulate NADP+ and the commercially available PARP inhibitor olaparib. The uptake of these NPs significantly increases the intracellular concentration of NADP+, which negatively regulates DNA damage-induced PARylation and impairs DNA damage repair. The combined effects of elevated NADP+ levels and olaparib synergistically suppress tumor cell growth. Overall, our study offers a promising strategy for the clinical application of NADP+.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Fan Tan
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yukui Zhang
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
135
|
Belmontes B, Slemmons KK, Su C, Liu S, Policheni AN, Moriguchi J, Tan H, Xie F, Aiello DA, Yang Y, Lazaro R, Aeffner F, Rees MG, Ronan MM, Roth JA, Vestergaard M, Cowland S, Andersson J, Sarvary I, Chen Q, Sharma P, Lopez P, Tamayo N, Pettus LH, Ghimire-Rijal S, Mukund S, Allen JR, DeVoss J, Coxon A, Rodon J, Ghiringhelli F, Penel N, Prenen H, Glad S, Chuang CH, Keyvanjah K, Townsley DM, Butler JR, Bourbeau MP, Caenepeel S, Hughes PE. AMG 193, a Clinical Stage MTA-Cooperative PRMT5 Inhibitor, Drives Antitumor Activity Preclinically and in Patients with MTAP-Deleted Cancers. Cancer Discov 2025; 15:139-161. [PMID: 39282709 PMCID: PMC11726016 DOI: 10.1158/2159-8290.cd-24-0887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 01/30/2025]
Abstract
One of the most robust synthetic lethal interactions observed in multiple functional genomic screens has been the dependency on protein arginine methyltransferase 5 (PRMT5) in cancer cells with MTAP deletion. We report the discovery of the clinical stage MTA-cooperative PRMT5 inhibitor AMG 193, which preferentially binds PRMT5 in the presence of MTA and has potent biochemical and cellular activity in MTAP-deleted cells across multiple cancer lineages. In vitro, PRMT5 inhibition induces DNA damage, cell cycle arrest, and aberrant alternative mRNA splicing in MTAP-deleted cells. In human cell line and patient-derived xenograft models, AMG 193 induces robust antitumor activity and is well tolerated with no impact on normal hematopoietic cell lineages. AMG 193 synergizes with chemotherapies or the KRAS G12C inhibitor sotorasib in vitro and combination treatment in vivo substantially inhibits tumor growth. AMG 193 is demonstrating promising clinical activity, including confirmed partial responses in patients with MTAP-deleted solid tumors from an ongoing phase 1/2 study. Significance: AMG 193 preferentially inhibits the growth of MTAP-deleted tumor cells by inhibiting PRMT5 when in complex with MTA, thus sparing MTAP wild-type normal cells. AMG 193 shows promise as a targeted therapy in a clinically defined patient population.
Collapse
Affiliation(s)
| | | | - Chun Su
- Amgen Research, South San Francisco, California
| | - Siyuan Liu
- Amgen Research, Thousand Oaks, California
| | | | | | - Hong Tan
- Amgen Research, Thousand Oaks, California
| | - Fang Xie
- Amgen Research, South San Francisco, California
| | | | | | | | | | - Matthew G. Rees
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | | | | | - Qing Chen
- Amgen Research, Thousand Oaks, California
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hans Prenen
- Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Liu X, Wang S, Lv H, Chen E, Yan L, Yu J. Advances in the relationship of immune checkpoint inhibitors and DNA damage repair. Curr Res Transl Med 2025; 73:103494. [PMID: 39824061 DOI: 10.1016/j.retram.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy, alongside surgery, radiation therapy, and chemotherapy, has emerged as a key treatment modality. Immune checkpoint inhibitors (ICIs) represent a promising immunotherapy that plays a critical role in the management of various solid tumors. However, the limited efficacy of ICI monotherapy and the development of primary or secondary resistance to combination therapy remain a challenge. Consequently, identifying molecular markers for predicting ICI efficacy has become an area of active clinical research. Notably, the correlation between DNA damage repair (DDR) mechanisms and the effectiveness of ICI treatment has been established. This review outlines the two primary pathways of DDR, namely, the homologous recombination repair pathway and the mismatch repair pathway. The relationship between these key genes and ICIs has been discussed and the potential of these genes as molecular markers for predicting ICI efficacy summarized.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Li Yan
- School of Humanities, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
137
|
Wang Y, Zhang J, Wu X, Huang L, Xiao W, Guo C. The Potential of PARP Inhibitors as Antitumor Drugs and the Perspective of Molecular Design. J Med Chem 2025; 68:18-48. [PMID: 39723587 DOI: 10.1021/acs.jmedchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors. For example, the approved PARPis have shown significant potential in cancer treatment, particularly in breast cancer and cancers associated with BRCA1/BRCA2 deficiencies. However, the clinical efficacy and safety of PARP inhibitors in different cancers remain issues that cannot be overlooked. The design of PARPis aims to eliminate their resistance and broaden their application scope. Designing selective PARP-1 inhibitors is also a potential strategy. PROTACs (Proteolysis Targeting Chimeras) to degrade PARP have become a potential novel cancer treatment strategy.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingtao Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjing Xiao
- Department of Radiation Therapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
138
|
Kawai-Kawachi A, Lenormand MM, Astier C, Herbel N, Cutrona MB, Ngo C, Garrido M, Eychenne T, Dorvault N, Bordelet L, Song F, Bouyakoub R, Loktev A, Romo-Morales A, Henon C, Colmet-Daage L, Vibert J, Drac M, Brough R, Schwob E, Martella O, Pinna G, Shipley JM, Mittnacht S, Zimmermann A, Gulati A, Mir O, Le Cesne A, Faron M, Honoré C, Lord CJ, Chabanon RM, Postel-Vinay S. Replication Stress Is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors. Cancer Res 2025; 85:154-170. [PMID: 39412947 DOI: 10.1158/0008-5472.can-23-3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma subtype that is driven by the EWS-WT1 chimeric transcription factor. The prognosis for DSRCT is poor, and major advances in treating DSRCT have not occurred for over two decades. To identify effective therapeutic approaches to target DSRCT, we conducted a high-throughput drug sensitivity screen in a DSRCT cell line assessing chemosensitivity profiles for 79 small-molecule inhibitors. DSRCT cells were sensitive to PARP inhibitors (PARPi) and ataxia-telangiectasia and Rad3-related inhibitors (ATRi), as monotherapies and in combination. These effects were recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, clinically relevant models of DSRCT, including cell lines, a patient-derived xenograft-derived organoid model, and a cell line-derived xenograft mouse model. Mechanistically, exposure to a combination of PARPi and ATRi caused increased DNA damage, G2-M checkpoint activation, micronuclei accumulation, replication stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes and was epistatic with exogenous expression of the R-loop resolution enzyme RNase H1 in reversing sensitivity to PARPi and ATRi monotherapies. The combination of PARPi and ATRi also induced EWS-WT1-dependent cell-autonomous activation of the cyclic GMP-AMP synthase-stimulator of IFN genes innate immune pathway and cell-surface expression of PD-L1. Taken together, these findings point toward a role for EWS-WT1 in generating R-loop-dependent replication stress that leads to a targetable vulnerability, providing a rationale for the clinical assessment of PARPi and ATRi in DSRCT. Significance: EWS-WT1, the unique oncogenic driver of desmoplastic small round cell tumors, confers sensitivity to PARP and ATR inhibitors, supporting the potential of these drugs in treating patients with this aggressive sarcoma subtype.
Collapse
Affiliation(s)
- Asuka Kawai-Kawachi
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Madison M Lenormand
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Department of Genomes and Genetics, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Clémence Astier
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Noé Herbel
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- Viroxis SAS Biotech, Gustave Roussy, Villejuif, France
| | | | - Carine Ngo
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Thomas Eychenne
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nicolas Dorvault
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Laetitia Bordelet
- Experimental and Translational Pathology (PETRA) Platform, AMMICa Unit (CNRS Unit UMS 3655, Inserm Unit US 23), Gustave Roussy, Villejuif, France
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ryme Bouyakoub
- Organoid Core Facility, Gustave Roussy, Villejuif, France
| | - Anastasia Loktev
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Henon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | | | - Guillaume Pinna
- RNA Interference Platform PARi, IRCM/IBFJ/CEA UMRE008, Fontenay-aux-Roses, France
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Astrid Zimmermann
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Olivier Mir
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | | | | | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Roman M Chabanon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophie Postel-Vinay
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
139
|
Cai SX, Ma N, Wang X, Guo M, Jiang Y, Tian YE. The Discovery of a Potent PARP1 Inhibitor Senaparib. Mol Cancer Ther 2025; 24:47-55. [PMID: 38920409 DOI: 10.1158/1535-7163.mct-23-0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024]
Abstract
PARP1 is a critical enzyme involved in DNA damage repair. It belongs to a superfamily of proteins and catalyzes poly(ADP-ribosyl)ation (PARylation). PARP1 inhibitors are effective to treat tumors that have homologous recombination deficiency such as those with BRCA1/2 mutations. The PARP1 inhibitors that have been approved by FDA inhibit both PARP1 and PARP2. PARP2 has also been suggested to play a similar function in DNA repair as PARP1. In addition to inhibiting PARP1 enzymatic activities, PARP1 inhibitors cause the PARP1 enzyme to be "trapped" on DNA, stalling the DNA replication fork and eventually causing double-strand DNA breaks and cell death. Here, we report a PARP1 inhibitor, Senaparib, which has a novel chemical structure and high potency inhibiting PARP1/2 enzymes. Senaparib was highly potent in cell viability tests against tumor cells with BRCA1/2 mutations. It was efficacious in cell line-derived and patient-derived xenograft models in tumors harboring BRCA1/2 mutations. In combination studies, Senaparib used with temozolomide had shown strong synergistic cytotoxicity in both in vitro and in vivo experiments. Senaparib represents a novel class of PARP1 inhibitors that can be used for the treatment of cancer. A phase III clinical study of Senaparib for maintenance treatment following first-line chemotherapy in patients with advanced ovarian cancer has met its primary endpoint, and a new drug application of Senaparib has been accepted by the National Medical Products Administration of China for review.
Collapse
Affiliation(s)
- Sui X Cai
- IMPACT Therapeutics Inc., Shanghai, China
| | - Ning Ma
- IMPACT Therapeutics Inc., Shanghai, China
| | | | | | | | - Ye E Tian
- IMPACT Therapeutics Inc., Shanghai, China
| |
Collapse
|
140
|
Roberto M, Di Civita MA, Marinelli D, Torchia A, Cara N, Maltese G, Speranza I, Santini D. PARP inhibitor-based treatment in metastatic, castration-resistant prostate cancer (mCRPC): A systematic review and meta-analysis. BJUI COMPASS 2025; 6:e455. [PMID: 39877569 PMCID: PMC11771493 DOI: 10.1002/bco2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 01/31/2025] Open
Abstract
Background We present a systematic review and meta-analysis of randomized clinical trials (RCTs) with PARPi either as monotherapy or in combination with an androgen receptor-targeted agent (ARTA) in first- and second-line settings. Methods Primary endpoints are radiographic progression free survival (rPFS) and overall survival (OS) in patients with mCRPC and either unselected, homologous recombination repair wild-type (HRR-), homologous recombination repair mutated (HRR+) or with BRCA1, BRCA2, or ATM mutation. The effect of PARPi + ARTA in the second-line setting is also explored. Safety is a secondary end-point. Results A total of five phase III (first line: MAGNITUDE, PROpel, TALAPRO-2; second line: PROfound, TRITON3) and two phase II RCTs (second line: NCT01972217, NCT01576172) were selected. In the first-line setting, rPFS was significantly improved in PARPi + ARTA arm in all comers (HR 0.70, p < 0.00001), HRR- (HR 0.76, p = 0.005), HRR+ (HR 0.57, p = 0.0003), and BRCA1/2-mutated patients (HR: 0.33, p < 0.00001). OS was improved in the population with HRR+ status (HR 0.76, p = 0.02) but not statistically significant in BRCA1/2-mutated patients (HR 0.57, 95% CI 0.30-1.08, p = 0.08). In the second line, PARPi improves rPFS (HR for BRCA2 0.31, p = 0.002) and OS (HR for BRCA1/2 0.71, p = 0.01) only in such patients. In this setting, no advantage was reported by adding a PARPi to an ARTA. The arm with PARPi either as monotherapy or in combination with ARTA showed a significantly higher toxicity profile. Conclusions PARPi-based therapy represents a compelling treatment option for HRR+ mCRPC, mainly BRCA1/2-mutated patients. However, further biomarker analysis are needed in order to identify other responsive patients across the different disease settings.
Collapse
Affiliation(s)
- Michela Roberto
- Division of Medical Oncology APoliclinico Umberto IRomeItaly
| | - Mattia Alberto Di Civita
- Division of Medical Oncology APoliclinico Umberto IRomeItaly
- Department of Radiological, Oncological and Anatomopathological SciencesSapienza UniversityRomeItaly
- Department of Experimental MedicineSapienza UniversityRomeItaly
| | - Daniele Marinelli
- Department of Experimental MedicineSapienza UniversityRomeItaly
- Division of Medical Oncology BPoliclinico Umberto IRomeItaly
| | - Andrea Torchia
- Division of Medical Oncology APoliclinico Umberto IRomeItaly
- Department of Radiological, Oncological and Anatomopathological SciencesSapienza UniversityRomeItaly
| | - Nertila Cara
- Division of Medical Oncology APoliclinico Umberto IRomeItaly
- Department of Radiological, Oncological and Anatomopathological SciencesSapienza UniversityRomeItaly
| | - Giulia Maltese
- Division of Medical Oncology APoliclinico Umberto IRomeItaly
- Department of Radiological, Oncological and Anatomopathological SciencesSapienza UniversityRomeItaly
| | | | - Daniele Santini
- Division of Medical Oncology APoliclinico Umberto IRomeItaly
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
| |
Collapse
|
141
|
Huang X, Luo J, Gu L. Efficacy and safety of different angiogenesis inhibitors combined with PARP inhibitors in the treatment of ovarian cancer: A systematic review and meta‑analysis. Oncol Lett 2025; 29:36. [PMID: 39512502 PMCID: PMC11542167 DOI: 10.3892/ol.2024.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer is a leading cause of mortality among women with gynecological malignancies, largely due to its asymptomatic nature in early stages and frequent late diagnosis. Targeted therapies, such as angiogenesis inhibitors and poly(ADP-ribose) polymerase inhibitors (PARPi), have emerged as promising treatments by disrupting tumor vasculature and impairing DNA repair mechanisms, particularly in patients with BRCA mutations. The objective of the present study was to comprehensively evaluate the combined use of different angiogenesis inhibitors and PARPi in ovarian cancer treatment by meta-analysis. This included assessing their impact on objective response rate (ORR) and progression-free survival (PFS), understanding the role of BRCA mutation status, and comparing the effects of various angiogenesis inhibitors when used in combination with PARPi. The PubMed, Embase and Cochrane databases were searched from inception to February 2024. Only studies on the combined treatment of ovarian cancer with angiogenesis inhibitors and PARPi were included. Duplicate studies, studies with incomplete data, animal studies, literature reviews and systematic studies were excluded. The results underscored a noteworthy improvement in the ORR and median PFS (mPFS) among patients receiving combination therapy compared with those on monotherapy. Specifically, the pooled ORR for combination therapy was significantly higher than that of monotherapy, indicating a substantial benefit in terms of tumor response. Furthermore, combination therapy was found to significantly prolong PFS, offering patients a longer duration without disease progression. Subgroup analyses of patients treated with angiogenesis inhibitors combined with PARPi provided deeper insights, revealing that patients with BRCA mutations exhibited an ORR of 90% compared with 61% in those without BRCA mutations. Additionally, when different angiogenesis inhibitors were compared, patients treated with anti-VEGF agents combined with PARPi showed a longer mPFS (15.53 months) than those treated with TKIs combined with PARPi (7.49 months). In conclusion, the present study demonstrates that combinations of angiogenesis inhibitors and PARPi show great potential for improving treatment outcomes in ovarian cancer, particularly in patients with BRCA mutations. The observed differences in efficacy between various angiogenesis inhibitors highlight the importance of personalized treatment approaches. Further research is warranted to explore the long-term benefits of these combination strategies and refine them to obtain optimal patient outcomes.
Collapse
Affiliation(s)
- Xuemei Huang
- Department of Gynecology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianxiu Luo
- Department of Gynecology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| | - Liqin Gu
- Department of Gynecology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
142
|
Egea‐Rodriguez S, Váraljai R, Nordmann TM, Lubis R, Philip M, Rambow F, Roesch A, Flaig M, Horn S, Stoll R, Zhao F, Paschen A, Klebl B, Hickson ID, Schadendorf D, Mann M, Helfrich I. RECQL4 affects MHC class II-mediated signalling and favours an immune-evasive signature that limits response to immune checkpoint inhibitor therapy in patients with malignant melanoma. Clin Transl Med 2025; 15:e70094. [PMID: 39812592 PMCID: PMC11734436 DOI: 10.1002/ctm2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear. METHODS We analysed whole exome and bulk RNA sequencing data from a pan-cancer cohort of 25 775 patients and cutaneous melanoma cohorts (untreated: n = 471, anti-progressive disease [PD]-1 treated: n = 212). RECQL4 copy number variations and expression levels were assessed for patient outcomes. We performed gene set enrichment analysis to identify RECQL4-dependent signalling pathways and explored the association between RECQL4 levels and immunoscores. We evaluated the interplay of ICI response and RECQL4 expression in melanoma cohorts of 95 responders and 85 non-responders prior to and after ICI-targeted therapy and tested the prognostic power of RECQL4. Finally, we generated genetically engineered RECQL4 variants and conducted comprehensive multi-omic profiling, employing techniques such as liquid chromatography with tandem mass spectrometry, to elucidate mechanistic insights. RESULTS We identified RECQL4 as a critical negative regulator of poor prognosis and response to ICI therapy, but also demonstrated its suitability as an independent biomarker in melanoma. High tumour purity and limited signatures of tumour immunogenicity associated with response to anti-PD-1 correlated with high RECQL4 activity. We found alterations in the secretion profile of immune regulatory factors and immune-related pathways robustly suppressed in tumours with high RECQL4 levels, underscoring its crucial role in fostering immune evasion. Mechanistically, we identified RECQL4-mediated regulation of major histocompatibility complex class II molecule expression and uncovered class II major histocompatibility complex transactivator as a mediator bridging this regulation. CONCLUSIONS Our findings unraveled the pivotal role of RECQL4 in immune modulation and its potential as both a predictive biomarker and therapeutic target for optimising immunotherapeutic strategies across various cancer types. HIGHLIGHTS High RECQL4 expression limits survival and can act as an independent prognostic factor in melanoma patients. RECQL4 has the potential to act as a negative feedback mediator of immune checkpoint-targeted therapy by limiting signatures associated with therapeutic efficacy. RECQL4 favours an immune-evasive phenotype by downregulating major histocompatibility complex class II molecules.
Collapse
Affiliation(s)
- Sara Egea‐Rodriguez
- Department of Dermatology and AllergyUniversity Hospital of MunichLudwig‐Maximilian‐UniversityMunichGermany
- German Cancer Consortium (DKTK)Partner Site MunichMunichGermany
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
| | - Renáta Váraljai
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Thierry M. Nordmann
- Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Manuel Philip
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Florian Rambow
- Department of Applied Computational Cancer ResearchInstitute for AI in Medicine (IKIM)University Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Alexander Roesch
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Michael Flaig
- Department of Dermatology and AllergyUniversity Hospital of MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Susanne Horn
- Rudolf Schönheimer Institute of BiochemistryMedical Faculty of the University of LeipzigLeipzigGermany
- Present address:
Research Center for Environmental HealthHelmholtz Center MunichIngolstädter Landstraße 1Neuherberg85764Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospecNMR, Faculty of Chemistry and BiochemistryRuhr University of BochumBochumGermany
| | - Fang Zhao
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Annette Paschen
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Bert Klebl
- Lead Discovery Center GmbHDortmundGermany
| | - Ian D. Hickson
- Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagen NDenmark
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Matthias Mann
- Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Iris Helfrich
- Department of Dermatology and AllergyUniversity Hospital of MunichLudwig‐Maximilian‐UniversityMunichGermany
- German Cancer Consortium (DKTK)Partner Site MunichMunichGermany
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
143
|
Caggiano R, Prokhorova E, Duma L, Schützenhofer K, Lauro R, Catara G, Melillo RM, Celetti A, Smith R, Weroha SJ, Kaufmann SH, Ahel I, Palazzo L. Suppression of ADP-ribosylation reversal triggers cell vulnerability to alkylating agents. Neoplasia 2025; 59:101092. [PMID: 39615107 PMCID: PMC11648251 DOI: 10.1016/j.neo.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The ADP-ribosyl hydrolases PARG and ARH3 counteract PARP enzymatic activity by removing ADP-ribosylation. PARG and ARH3 activities have a synthetic lethal effect; however, the specific molecular mechanisms underlying this response remain unknown. Here, we show that the PARG and ARH3 synthetic lethality is enhanced further in the presence of DNA alkylating agents, suggesting that the inability to revert ADP-ribosylation primarily affects the repair of alkylated DNA bases. ARH3 knockout cells, treated with PARG inhibitor and alkylating genotoxins, accumulated single-stranded DNA and DNA damage, resulting in G2/M cell cycle arrest and apoptosis. Furthermore, we reveal a reduction in PARP1/PARP2 levels in ARH3-deficient cells treated with PARG inhibitor due to excessive ADP-ribosylation, which may contribute to alkylating agents' vulnerability. Collectively, these results uncover the potential of targeting ADP-ribosyl hydrolases in combination with alkylating agents for cancer therapy and provide insights into the mechanisms underlying the synthetic lethal effect.
Collapse
Affiliation(s)
- Rocco Caggiano
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Raffaella Lauro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Angela Celetti
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - Luca Palazzo
- Institute of Experimental Endocrinology and Oncology, National Research Council of Italy, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
144
|
Bryce AH, Agarwal N, Beltran H, Hussain MH, Sartor O, Shore N, Antonarakis ES, Armstrong AJ, Calais J, Carducci MA, Dorff TB, Efstathiou JA, Gleave M, Gomella LG, Higano C, Hope TA, Iagaru A, Morgans AK, Morris DS, Morris MJ, Petrylak DP, Reiter RE, Rettig MB, Ryan CJ, Sellinger SB, Spratt DE, Srinivas S, Tagawa ST, Taplin M, Yu EY, Zhang T, McKay RR, Koo PJ, Crawford ED. Implementing evidence-based strategies for men with biochemically recurrent and advanced prostate cancer: Consensus recommendations from the US Prostate Cancer Conference 2024. Cancer 2025; 131:e35612. [PMID: 39616467 PMCID: PMC11694557 DOI: 10.1002/cncr.35612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 01/03/2025]
Abstract
Current US clinical practice guidelines for advanced prostate cancer management contain recommendations based on high-level evidence from randomized controlled trials; however, these guidelines do not address the nuanced clinical questions that are unanswered by prospective trials but nonetheless encountered in day-to-day practice. To address these practical questions, the 2024 US Prostate Cancer Conference (USPCC 2024) was created to generate US-focused expert clinical decision-making guidance for circumstances in which level 1 evidence is lacking. At the second annual USPCC meeting (USPCC 2024), a multidisciplinary panel of experts convened to discuss ongoing clinical challenges related to 5 topic areas: biochemical recurrence; metastatic, castration-sensitive prostate cancer; poly [ADP-ribose] polymerase inhibitors; prostate-specific membrane antigen radioligand therapy; and metastatic, castration-resistant prostate cancer. Through a modified Delphi process, 34 consensus recommendations were developed and are intended to provide clinicians who manage prostate cancer with guidance related to the implementation of novel treatments and technologies. In this report, the authors review the areas of consensus identified by the USPCC 2024 experts and evaluate ongoing unmet needs regarding translational application of the current clinical evidence.
Collapse
Affiliation(s)
- Alan H. Bryce
- Department of Medical Oncology and Therapeutics ResearchCity of Hope PhoenixPhoenixArizonaUSA
| | - Neeraj Agarwal
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Himisha Beltran
- Department of Medical OncologyDana‐Farber Cancer Institute and Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Maha H. Hussain
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| | - Oliver Sartor
- Department of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | - Neal Shore
- Carolina Urologic Research CenterMyrtle BeachSouth CarolinaUSA
| | | | - Andrew J. Armstrong
- Duke Cancer Institute Center for Prostate and Urologic CancersDurhamNorth CarolinaUSA
| | - Jeremie Calais
- Ahmanson Translational Theranostics DivisionDepartment of Molecular and Medical PharmacologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | | | | - Jason A. Efstathiou
- Department of Radiation OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Martin Gleave
- Urological SciencesVancouver Prostate CenterUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Leonard G. Gomella
- Department of UrologySidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Thomas A. Hope
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular ImagingDepartment of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Alicia K. Morgans
- Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Michael J. Morris
- Genitourinary Oncology ServiceDepartment of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | - Robert E. Reiter
- Jonsson Comprehensive Cancer CenterUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Matthew B. Rettig
- Division of Hematology‐OncologyDepartment of MedicineVA Greater Los AngelesLos AngelesCaliforniaUSA
- Department of MedicineDavid Geffen School of Medicine at the University of California Los AngelesLos AngelesCaliforniaUSA
- Department of UrologyDavid Geffen School of Medicine at the University of California Los AngelesLos AngelesCaliforniaUSA
| | - Charles J. Ryan
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | | | - Sandy Srinivas
- Division of Medical OncologyStanford University Medical CenterStanfordCaliforniaUSA
| | - Scott T. Tagawa
- Division of Hematology and Medical OncologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Mary‐Ellen Taplin
- Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
| | - Evan Y. Yu
- Division of Hematology and OncologyDepartment of MedicineUniversity of Washington and Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Tian Zhang
- Division of Hematology and OncologyDepartment of Internal MedicineSimmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Rana R. McKay
- Department of UrologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - E. David Crawford
- Department of UrologyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
145
|
Zhang H, Rutkowska A, González-Martín A, Mirza MR, Monk BJ, Vergote I, Pothuri B, Graybill WAS, Goessel C, Barbash O, Bergamini G, Feng B. Potential Synergistic Effect between Niraparib and Statins in Ovarian Cancer Clinical Trials. CANCER RESEARCH COMMUNICATIONS 2025; 5:178-186. [PMID: 39636225 PMCID: PMC11775730 DOI: 10.1158/2767-9764.crc-24-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE The presented retrospective analysis suggests, to the best of our knowledge for the first time, a potential significant interaction between statins and niraparib in clinical settings. Nevertheless, further investigations are required to gain a better understanding of the potential clinical benefit.
Collapse
Affiliation(s)
- Hailei Zhang
- Precision Medicine, R&D, GSK, Waltham, Massachusetts
| | | | - Antonio González-Martín
- Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain
- Center for Applied Medical Research (CIMA), Pamplona, Spain
- Grupo Español de Investigación en Cáncer de Ovario (GEICO), Madrid, Spain
| | - Mansoor R. Mirza
- Nordic Society of Gynaecological Oncology (NSGO) and Department of Oncology Rigshospitalet–Copenhagen University Hospital, Copenhagen, Denmark
| | - Bradley J. Monk
- Florida Cancer Specialists and Research Institute, West Palm Beach, Florida
| | - Ignace Vergote
- Gynecologic Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bhavana Pothuri
- Department of Obstetrics and Gynecology, NYU School of Medicine, New York City, New York
| | | | | | - Olena Barbash
- Precision Medicine, GSK, Collegeville, Pennsylvania, Philadelphia
| | | | - Bin Feng
- Precision Medicine, R&D, GSK, Waltham, Massachusetts
| |
Collapse
|
146
|
Li W, Chen G, Wang Y, Jiang Y, Wu N, Hu M, Wu T, Yue W. Functional Analysis of BARD1 Missense Variants on Homology-Directed Repair in Ovarian and Breast Cancers. Mol Carcinog 2025; 64:91-107. [PMID: 39387837 DOI: 10.1002/mc.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Women with germline BRCA1 mutations face an increased risk of developing breast and ovarian cancers. BARD1 (BRCA1 associated RING domain 1) is an essential heterodimeric partner of BRCA1, and mutations in BARD1 are also associated with these cancers. While BARD1 mutations are recognized for their cancer susceptibility, the exact roles of numerous BARD1 missense mutations remain unclear. In this study, we conducted functional assays to assess the homology-directed DNA repair (HDR) activity of all BARD1 missense substitutions identified in 55 breast and ovarian cancer samples, using the real-world data from the COSMIC and cBioPortal databases. Seven BARD1 variants (V85M, P187A, G491R, R565C, P669L, T719R, and Q730L) were confirmed to impair DNA damage repair. Furthermore, cells harboring these BARD1 variants exhibited increased sensitivity to the chemotherapeutic drugs, cisplatin, and olaparib, compared to cells expressing wild-type BARD1. These findings collectively suggest that these seven missense BARD1 variants are likely pathogenic and may respond well to cisplatin-olaparib combination therapy. This study not only enhances our understanding of BARD1's role in DNA damage repair but also offers valuable insights into predicting therapy responses in patients with specific BARD1 missense mutations.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guansheng Chen
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Nanlin Wu
- Department of Pathology, Chuzhou First People's Hospital, Anhui, China
| | - Mingjie Hu
- School of Life Science, Bengbu Medical University, Anhui, China
| | - Taju Wu
- School of Life Science, Bengbu Medical University, Anhui, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Interdisciplinary Eye Research Institute (EYE-X Institute), Bengbu Medical University, Anhui, China
| |
Collapse
|
147
|
Choi S, Shin M, Kim WY. Targeting the DNA damage response (DDR) of cancer cells with natural compounds derived from Panax ginseng and other plants. J Ginseng Res 2025; 49:1-11. [PMID: 39872282 PMCID: PMC11764321 DOI: 10.1016/j.jgr.2024.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 01/30/2025] Open
Abstract
DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments. Natural compounds from traditional medicine, renowned for their anti-aging and anticarcinogenic properties, have garnered attention. Ginseng-derived compounds, in particular, exhibit anti-carcinogenic effects by suppressing reactive oxygen species (ROS) and protecting cells from DNA damage-induced carcinogenesis. However, the anticancer therapeutic effect of ginseng compounds has also been demonstrated by inducing DNA damage and blocking DDR. This review concentrates on the biphasic effects of ginseng compounds on DNA mutations-both inhibiting mutation accumulation and impairing DNA repair. Additionally, it explores other natural compounds targeting DDR directly, providing potential insights into enhancing cancer therapy efficacy.
Collapse
Affiliation(s)
- SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minwook Shin
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
148
|
Zhao Z, Zhu L, Luo Y, Xu H, Zhang Y. Collateral lethality: A unique type of synthetic lethality in cancers. Pharmacol Ther 2025; 265:108755. [PMID: 39581504 DOI: 10.1016/j.pharmthera.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Genetic interactions play crucial roles in cell-essential functions. Intrinsic genetic defects in tumors typically involve gain-of- and loss-of-function mutations in tumor suppressor genes (TSGs) and oncogenes, respectively, providing potential antitumor vulnerabilities. Moreover, tumor cells with TSG deficiencies exhibit heightened sensitivity to the inhibition of compensatory pathways. Synthetic and collateral lethality are two strategies used for exploiting novel drug targets in multiple types of cancer. Collateral lethality is a unique type of synthetic lethality that occurs when passenger genes are co-deleted in neighboring TSGs. Although synthetic lethality has already been successfully demonstrated in clinical practice, antitumor therapeutics based on collateral lethality are predominantly still in the preclinical phase. Therefore, screening for potential genetic interactions within the cancer genome has emerged as a promising approach for drug development. Here, the two conceptual therapeutic strategies that involve the deletion or inactivation of cancer-specific TSGs are discussed. Moreover, existing approaches for screening and identifying potential gene partners are also discussed. Particularly, this review highlights the current advances of "collateral lethality" in the preclinical phase and addresses the challenges involved in translating them into therapeutic applications. This review provides insights into these strategies as new opportunities for the development of personalized antitumor therapies.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Luo
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Heng Xu
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
149
|
Bullock E, Brunton VG. E-Cadherin-Mediated Cell-Cell Adhesion and Invasive Lobular Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:259-275. [PMID: 39821030 DOI: 10.1007/978-3-031-70875-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton. Functional AJs maintain epithelial tissue identity and integrity. Transcriptional downregulation of E-cadherin is the first step in epithelial-to-mesenchymal transition (EMT), a process essential in development and tissue repair, which, in breast cancer, can contribute to tumour progression and metastasis. In addition, loss-of-function mutations in E-cadherin are a defining feature of invasive lobular breast cancer (also known as invasive lobular carcinoma (ILC)), the second most common histological subtype of breast cancer. ILC displays a discohesive, single-file invasive growth pattern due to the loss of functional AJs. Despite being so prevalent, until recently there has been limited ILC-focused research and historically ILC patients have often been excluded from clinical trials. Despite displaying a number of good prognostic indicators, such as low grade and high rates of estrogen receptor positivity, ILC patients tend to have similar or poorer outcomes relative to the most common subtype of breast cancer, invasive ductal carcinoma (IDC). In ILC, E-cadherin loss promotes hyperactivation of growth factor receptors, in particular insulin-like growth factor 1 receptor, anoikis resistance and synthetic lethality with ROS1 inhibition. These features introduce clinical vulnerabilities that could potentially be exploited to improve outcomes for ILC patients, for whom there are currently limited tailored treatments available.
Collapse
Affiliation(s)
- Esme Bullock
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
150
|
Gai M, Zhao L, Li H, Jin G, Li W, Wang F, Liu M. LCP1 promotes ovarian cancer cell resistance to olaparib by activating the JAK2/STAT3 signalling pathway. Cancer Biol Ther 2024; 25:2432117. [PMID: 39588922 PMCID: PMC11601053 DOI: 10.1080/15384047.2024.2432117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Resistance to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) remain a major challenge in ovarian cancer (OC) treatment. However, the underlying mechanism of PARPi resistance is still poorly characterized. Increasing evidence has proven that lymphocyte cytosolic protein 1 (LCP1) promotes tumor progression. The JAK2/STAT3 signaling pathway plays an important role in increasing tumor metastatic ability and chemoresistance in cancer by promoting epithelial - mesenchymal transition (EMT). METHODS We established an olaparib-resistant OC cell line and studied its toxicologic effects through cell survival, Transwell, colony formation, western blotting and flow cytometry assays. RNA sequencing and screening were then performed to identify genes associated with olaparib resistance. Lymphocyte cytosolic protein 1 (LCP1) was found to be overexpressed in olaparib-resistant OC cells. RESULTS The inhibition of cell survival and promotion of cell apoptosis induced by olaparib in parental cells were significantly attenuated in olaparib-resistant cells. LCP1 was upregulated in olaparib-resistant cells compared with parental OC cells. Moreover, we found that the protein levels of JAK2/STAT3 signaling pathway components and EMT markers were increased in olaparib-resistant cells. Overexpression of LCP1 increased olaparib resistance in OC cells, and knockdown of LCP1 attenuated olaparib resistance. The changes in the protein levels of JAK2/STAT3 signaling pathway members and EMT markers between the cell types were similar to the changes in the levels of LCP1. CONCLUSIONS These findings indicate that LCP1 expression may play an important role in the resistance of OC to olaparib by activating the JAK2/STAT3 signaling pathway and EMT. LCP1 could be a potential therapeutic target for patients with OC who are resistant to olaparib. Our study provides a new mechanism of olaparib resistance.
Collapse
Affiliation(s)
- Minxue Gai
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
| | - Lanlan Zhao
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Hongqi Li
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Guoyu Jin
- Department of Gynecology, Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Wang
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Liu
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|