101
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024; 43:1165-1183. [PMID: 38963567 PMCID: PMC11554904 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
102
|
Zhang Y, Wang C, Cheng S, Xu Y, Gu S, Zhao Y, Yang J, Wang Y. A Neutrophil Extracellular Traps-Related Signature Predicts Clinical Outcomes and Identifies Immune Landscape in Ovarian Cancer. J Cell Mol Med 2024; 28:e70302. [PMID: 39730971 DOI: 10.1111/jcmm.70302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Ovarian cancer (OvCa) is the most lethal gynaecology malignancies worldwide. Neutrophil extracellular traps (NETs), net-like protein structures produced by activated neutrophils and DNA-histone complexes, have a central role in tumours, though haven't been fully explored in OvCa. We obtained transcriptome data from TCGA-OvCa database (n = 376) as training, ICGC-OvCa database (n = 111) as validation and GTEx database (n = 180) as controls. Through LASSO-COX Regression analysis, we identified an eight-gene signature among 87 NETs-related genes, which was significantly related to poor prognosis in both TCGA-OvCa and ICGC-OvCa cohorts (Log-rank p-value = 0.0003 and 0.0014). Next, we constructed and validated a prognostic nomogram, consist of NETs-related signature and clinical features (C-index = 0.82). We evaluated 22 typical immune cell infiltration through CIBERSORT analysis, which implied upregulation of memory CD4 + T cells, follicular helper T cells and neutrophils in high-risk group. Additionally, we predicted therapy sensitivity through TIDE algorithm, indicating that high NETs-riskscore exhibited more sensitivity towards Sorafenib and less sensitivity towards immunotherapy. We initially reported that RAC2 upregulation was associated with NETs formation and poor prognosis (p-value < 0.05) through IHC analysis of tissue microarrays (n = 125). Conclusively, NETs-related signature was reliable for OvCa prognosis prediction and therapy assessment. Especially, RAC2 was predominantly related to NETs formation, thus providing hints towards anti-tumour mechanism of NETs in OvCa.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Shanshan Cheng
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Yanna Xu
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yaqian Zhao
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Jiani Yang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Yu Wang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| |
Collapse
|
103
|
Song C, Tong T, Dai B, Zhu Y, Chen E, Zhang M, Zhang W. Osteoimmunology in bone malignancies: a symphony with evil. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:354-368. [PMID: 39735445 PMCID: PMC11674455 DOI: 10.1016/j.jncc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 12/31/2024] Open
Abstract
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality. These tumors set off a series of interactions among cancer, bone, and immune cells, and disrupt the BME locally or distantly. However, the drivers, participants, and underlying molecules of these interactions are not fully understood. This review explores the crosstalk between bone metabolism and immune responses, synthesizing current knowledge on the intersection of cancer and osteoimmune biology. It outlines how bone marrow immune cells can either facilitate or hinder tumor progression by interacting with bone cells and pinpoints the molecules responsible for immunosuppression within bone tumors. Moreover, it discusses how primary tumors remotely alter the BME, leading to systemic immune suppression in cancer patients. This knowledge provides critical rationales for emerging immunotherapies in the treatment of bone-related tumors. Taken together, by summarizing the intricate relationship between tumor cells and the BME, this review aims to deepen the understanding of the diversity, complexity, and dynamics at play during bone tumor progression. Ultimately, it highlights the potential of targeting bone-tumor interactions to correct aberrant immune functions, thereby inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Churui Song
- Department of Breast Surgery and Oncology, Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tie Tong
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Biqi Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yue Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Elina Chen
- College of Natural Sciences, University of Texas at Austin, 110 Inner Campus Drive, Austin, USA
| | - Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
104
|
Zhang X, Zhang B, He Y, Xiong W, Du Y, Shang P. A nomogram based on preoperative NLR predicts distant metastasis of urothelial carcinoma of the bladder. Cancer Biomark 2024; 41:18758592241296279. [PMID: 40095506 DOI: 10.1177/18758592241296279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundDistant metastasis (DM) remains the most commonly reported cause of death in patients with urothelial carcinoma of the bladder (UCB).ObjectiveWe aimed to develop a robust prognostic model to assess the risk of DM in patients with UCB.MethodsWe collected clinical data of 206 UCB patients treated with RC. Patients treated with RC between 2011-2015 that were enrolled as the training cohort (n = 105), while the patients between 2016-2019 were enrolled as the validation cohort (n = 101). Univariate and multivariate Cox regression models were used to identify independent risk factors associated with DM. We identified the variables by stepwise regression and established nomogram. We evaluated the nomograms using C-index, calibration and ROC curves. Decision curve analysis was performed to compare the net benefits between the nomogram and TNM staging. We divided the patients into high and low risk groups according to the nomogram and compared the DM between the groups.ResultsThe neutrophil-lymphocyte ratio (NLR) was an independent predictor of DM. We established nomogram by T-stage, N-stage and NLR. The C-index of the nomogram was 0.766 and 0.739 respectively in the two cohorts. In the training cohort, AUC for the nomogram at 1, 2 and 3 years was 0.816, 0.812 and 0.812, respectively. In the validation cohort, the AUC for the nomogram at 1, 2 and 3 years was 0.751, 0.757 and 0.716, respectively. The calibration curve was satisfactory. The nomogram has a higher clinical benefit compared to the TNM staging system. Kaplan-Meier curves showed that patients from the high-risk group had a higher probability of DM than patients from the low-risk group.ConclusionsNomograms established by NLR, T-stage and N-stage can accurately predict distant metastases in patients with UCB.
Collapse
Affiliation(s)
- Xingxing Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Bin Zhang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang He
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Xiong
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yuelin Du
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
105
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
106
|
Kang DH, Lee J, Im S, Chung C. Navigating the Complexity of Resistance in Lung Cancer Therapy: Mechanisms, Organoid Models, and Strategies for Overcoming Treatment Failure. Cancers (Basel) 2024; 16:3996. [PMID: 39682183 DOI: 10.3390/cancers16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The persistence of chemotherapy-resistant and dormant cancer cells remains a critical challenge in the treatment of lung cancer. Objectives: This review focuses on non-small cell lung cancer and small cell lung cancer, examining the complex mechanisms that drive treatment resistance. Methods: This review analyzed current studies on chemotherapy resistance in NSCLC and SCLC, focusing on tumor microenvironment, genetic mutations, cancer cell heterogeneity, and emerging therapies. Results: Conventional chemotherapy and targeted therapies, such as tyrosine kinase inhibitors, often fail due to factors including the tumor microenvironment, genetic mutations, and cancer cell heterogeneity. Dormant cancer cells, which can remain undetected in a quiescent state for extended periods, pose a significant risk of recurrence upon reactivation. These cells, along with intrinsic resistance mechanisms, greatly complicate treatment efforts. Understanding these pathways is crucial for the development of more effective therapies. Emerging strategies, including combination therapies that target multiple pathways, are under investigation to improve treatment outcomes. Innovative approaches, such as antibody-drug conjugates and targeted protein degradation, offer promising solutions by directly delivering cytotoxic agents to cancer cells or degrading proteins that are essential for cancer survival. The lung cancer organoid model shows substantial promise to advance both research and clinical applications in this field, enhancing the ability to study resistance mechanisms and develop personalized treatments. The integration of current research underscores the need for continuous innovation in treatment modalities. Conclusions: Personalized strategies that combine novel therapies with an in-depth understanding of tumor biology are essential to overcome the challenges posed by treatment-resistant and dormant cancer cells in lung cancer. A multifaceted approach has the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jisoo Lee
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
107
|
Lenart NA, Rao SS. Cell-cell interactions mediating primary and metastatic breast cancer dormancy. Cancer Metastasis Rev 2024; 44:6. [PMID: 39585533 DOI: 10.1007/s10555-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer remains one of the leading causes of death in women around the world. A majority of deaths from breast cancer occur due to cancer cells colonizing distant organ sites. When colonizing these distant organ sites, breast cancer cells have been known to enter into a state of dormancy for extended periods of time. However, the mechanisms that promote dormancy as well as dormant-to-proliferative switch are not fully understood. The tumor microenvironment plays a key role in mediating cancer cell phenotype including regulation of the dormant state. In this review, we highlight cell-cell interactions in the tumor microenvironment mediating breast cancer dormancy at the primary and metastatic sites. Specifically, we describe how immune cells from the lymphoid lineage, tumor-associated myeloid lineage cells, and stromal cells of non-hematopoietic origin as well as tissue resident stromal cells impact dormancy vs. proliferation in breast cancer cells as well as the associated mechanisms. In addition, we highlight the importance of developing model systems and the associated considerations that will be critical in unraveling the mechanisms that promote primary and metastatic breast cancer dormancy mediated via cell-cell interactions.
Collapse
Affiliation(s)
- Nicholas A Lenart
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA.
| |
Collapse
|
108
|
Xi Y, Yang L, Burtness B, Wang H. Vaping and tumor metastasis: current insights and progress. Cancer Metastasis Rev 2024; 44:4. [PMID: 39581913 PMCID: PMC11792352 DOI: 10.1007/s10555-024-10221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related mortality and remains a major hurdle in cancer treatment. Traditional cigarette smoking has been extensively studied for its role in promoting metastasis. However, the impact of e-cigarette (e-cig) on cancer metastasis is not well understood despite their increasing popularity as a supposedly safer alternative. This mini review synthesizes current literature on the effects of e-cig on cancer metastasis, focusing on the processes of dissemination, dormancy, and colonization. It also incorporates recent findings from our laboratory regarding the role of e-cig in tumor progression. E-cig exposure enhances metastatic potential through various mechanisms: it induces epithelial-mesenchymal transition (EMT), increasing cell migratory and invasive capabilities; promotes lymphangiogenesis, aiding tumor cell spread; and alters the pre-metastatic niche to support dormant tumor cells, enhancing their reactivation and colonization. Furthermore, e-cig induce significant epigenetic changes, such as DNA methylation and histone modifications, which regulate genes involved in metastasis. Our data suggest that e-cig upregulate histone demethylases like KDM6B in macrophages, impacting the TME and promoting metastasis. These findings underscore the need for further research to understand the long-term health implications of e-cig use and inform public health policies to reduce e-cig use.
Collapse
Affiliation(s)
- Yibo Xi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Lei Yang
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Barbara Burtness
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - He Wang
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
109
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
110
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
111
|
Panesso-Gómez S, Cole AJ, Wield A, Anyaeche VI, Shah J, Jiang Q, Ebai T, Sharrow AC, Tseng G, Yoon E, Brown DD, Clark AM, Larsen SD, Eder I, Gau D, Roy P, Dahl KN, Tran L, Jiang H, McAuliffe PF, Lee AV, Buckanovich RJ. Identification of the MRTFA/SRF pathway as a critical regulator of quiescence in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623825. [PMID: 39605642 PMCID: PMC11601311 DOI: 10.1101/2024.11.15.623825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chemoresistance is a major driver of cancer deaths. One understudied mechanism of chemoresistance is quiescence. We used single cell culture to identify, retrieve, and RNA-Seq profile primary quiescent ovarian cancer cells (qOvCa). We found that many qOvCa differentially expressed genes are transcriptional targets of the Myocardin Related Transcription Factor/Serum Response Factor (MRTF/SRF) pathway. We also found that genetic disruption of MRTF-SRF interaction, or an MRTF/SRF inhibitor (CCG257081) impact qOvCa gene expression and induce a quiescent state in cancer cells. Suggesting a broad role for this pathway in quiescence, CCG257081 treatment induced quiescence in breast, lung, colon, pancreatic and ovarian cancer cells. Furthermore, CCG081 (i) maintained a quiescent state in patient derived breast cancer organoids and, (ii) induced tumor growth arrest in ovarian cancer xenografts. Together, these data suggest that MRTF/SRF pathway is a critical regulator of quiescence in cancer and a possible therapeutic target.
Collapse
Affiliation(s)
- Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Wield
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vivian I Anyaeche
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Sharrow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Euisik Yoon
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel D Brown
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Eder
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Adrian V Lee
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
112
|
Kim MJ. Tracing Quiescent Cancer Cells In Vivo. Cancers (Basel) 2024; 16:3822. [PMID: 39594777 PMCID: PMC11593267 DOI: 10.3390/cancers16223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
QCCs have long gained significant interest as potential "seeds" for recurrent cancers. Clinical evidence suggests that a subset of cancer cells exits the cell cycle and enters a quiescent state following anti-cancer treatment. These microscopic-residual QCCs are extremely challenging to trace and detect within patients. Additionally, QCCs resist conventional anti-cancer therapies due to the lack of cell activity. Notably, upon the unknown environmental cues in unknown time points, sometimes decades later, QCCs can reactivate, triggering cancer relapse at primary or secondary sites. Currently, no targeted therapies or diagnostic tools exist for QCCs, and their molecular regulatory mechanisms remain largely unknown. The major challenge in understanding QCCs lies in the limited availability of human-relevant pre-clinical models that trace and collect QCCs in vivo. This review provides an overview of existing QCC tracing systems and analyzes their limitations. It also cautiously proposes potential improvements for tracing QCCs in vivo based on recent advancements in QCC studies and lineage-tracing techniques. Developing human-relevant and easily accessible in vivo tracing systems will be a crucial step in advancing QCC diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
113
|
Dalla E, Papanicolaou M, Park MD, Barth N, Hou R, Segura-Villalobos D, Valencia Salazar L, Sun D, Forrest ARR, Casanova-Acebes M, Entenberg D, Merad M, Aguirre-Ghiso JA. Lung-resident alveolar macrophages regulate the timing of breast cancer metastasis. Cell 2024; 187:6631-6648.e20. [PMID: 39378878 PMCID: PMC11568918 DOI: 10.1016/j.cell.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Breast disseminated cancer cells (DCCs) can remain dormant in the lungs for extended periods, but the mechanisms limiting their expansion are not well understood. Research indicates that tissue-resident alveolar macrophages suppress breast cancer metastasis in lung alveoli by inducing dormancy. Through ligand-receptor mapping and intravital imaging, it was found that alveolar macrophages express transforming growth factor (TGF)-β2. This expression, along with persistent macrophage-cancer cell interactions via the TGF-βRIII receptor, maintains cancer cells in a dormant state. Depleting alveolar macrophages or losing the TGF-β2 receptor in cancer cells triggers metastatic awakening. Aggressive breast cancer cells are either suppressed by alveolar macrophages or evade this suppression by avoiding interaction and downregulating the TGF-β2 receptor. Restoring TGF-βRIII in aggressive cells reinstates TGF-β2-mediated macrophage growth suppression. Thus, alveolar macrophages act as a metastasis immune barrier, and downregulation of TGF-β2 signaling allows cancer cells to overcome macrophage-mediated growth suppression.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Papanicolaou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Matthew D Park
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Barth
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Deisy Segura-Villalobos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Luis Valencia Salazar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Dan Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Maria Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - David Entenberg
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
114
|
Kim YS, Kimball SR, Piskounova E, Begley TJ, Hempel N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc Natl Acad Sci U S A 2024; 121:e2317846121. [PMID: 39495917 PMCID: PMC11572934 DOI: 10.1073/pnas.2317846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Elena Piskounova
- Department of Dermatology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Thomas J. Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY12222
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| |
Collapse
|
115
|
Xie SZ, Yang LY, Wei R, Shen XT, Pan JJ, Yu SZ, Zhang C, Xu H, Xu JF, Zheng X, Wang H, Su YH, Sun HT, Lu L, Lu M, Zhu WW, Qin LX. Targeting SPP1-orchestrated neutrophil extracellular traps-dominant pre-metastatic niche reduced HCC lung metastasis. Exp Hematol Oncol 2024; 13:111. [DOI: https:/doi.org/10.1186/s40164-024-00571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 01/07/2025] Open
Abstract
Abstract
Background
The mechanisms by which tumor-derived factors remodel the microenvironment of target organs to facilitate cancer metastasis, especially organ-specific metastasis, remains obscure. Our previous studies have demonstrated that SPP1 plays a key role in promoting metastasis of hepatocellular carcinoma (HCC). However, the functional roles and mechanisms of tumor-derived SPP1 in shaping the pre-metastatic niche (PMN) and promoting lung-specific metastasis are unclear.
Methods
Orthotopic metastasis models, experimental metastasis models, CyTOF and flow cytometry were conducted to explore the function of SPP1 in shaping neutrophil-dominant PMN and promoting HCC lung metastasis. The main source of CXCL1 in lung tissues was investigated via fluorescence activated cell sorting and immunofluorescence staining. The expression of neutrophils and neutrophil extracellular traps (NETs) markers was detected in the lung metastatic lesions of HCC patients and mouse lung specimens. The therapeutic significance was explored via in vivo DNase I and CXCR2 inhibitor assays.
Results
SPP1 promoted HCC lung colonization and metastasis by modifying pulmonary PMN in various murine models, and plasma SPP1 levels were closely associated with lung metastasis in HCC patients. Mechanistically, SPP1 binded to CD44 on lung alveolar epithelial cells to produce CXCL1, thereby attracting and forming neutrophil-abundant PMN in the lung. The recruited neutrophils were activated by SPP1 and then formed NETs-dominant PMN to trap the disseminated tumor cells and promote metastatic colonization. Moreover, early intervention of SPP1-orchestrated PMN by co-targeting the CXCL1-CXCR2 axis and NETs formation could efficiently inhibit the lung metastasis of HCC.
Conclusions
Our study illustrates that HCC-lung host cell-neutrophil interactions play important roles in PMN formation and SPP1-induced HCC lung metastasis. Early intervention in SPP1-orchestrated PMN via CXCR2 inhibitor and DNase I is a potential therapeutic strategy to combat HCC lung metastasis.
Collapse
|
116
|
Xie SZ, Yang LY, Wei R, Shen XT, Pan JJ, Yu SZ, Zhang C, Xu H, Xu JF, Zheng X, Wang H, Su YH, Sun HT, Lu L, Lu M, Zhu WW, Qin LX. Targeting SPP1-orchestrated neutrophil extracellular traps-dominant pre-metastatic niche reduced HCC lung metastasis. Exp Hematol Oncol 2024; 13:111. [PMID: 39529085 PMCID: PMC11556024 DOI: 10.1186/s40164-024-00571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The mechanisms by which tumor-derived factors remodel the microenvironment of target organs to facilitate cancer metastasis, especially organ-specific metastasis, remains obscure. Our previous studies have demonstrated that SPP1 plays a key role in promoting metastasis of hepatocellular carcinoma (HCC). However, the functional roles and mechanisms of tumor-derived SPP1 in shaping the pre-metastatic niche (PMN) and promoting lung-specific metastasis are unclear. METHODS Orthotopic metastasis models, experimental metastasis models, CyTOF and flow cytometry were conducted to explore the function of SPP1 in shaping neutrophil-dominant PMN and promoting HCC lung metastasis. The main source of CXCL1 in lung tissues was investigated via fluorescence activated cell sorting and immunofluorescence staining. The expression of neutrophils and neutrophil extracellular traps (NETs) markers was detected in the lung metastatic lesions of HCC patients and mouse lung specimens. The therapeutic significance was explored via in vivo DNase I and CXCR2 inhibitor assays. RESULTS SPP1 promoted HCC lung colonization and metastasis by modifying pulmonary PMN in various murine models, and plasma SPP1 levels were closely associated with lung metastasis in HCC patients. Mechanistically, SPP1 binded to CD44 on lung alveolar epithelial cells to produce CXCL1, thereby attracting and forming neutrophil-abundant PMN in the lung. The recruited neutrophils were activated by SPP1 and then formed NETs-dominant PMN to trap the disseminated tumor cells and promote metastatic colonization. Moreover, early intervention of SPP1-orchestrated PMN by co-targeting the CXCL1-CXCR2 axis and NETs formation could efficiently inhibit the lung metastasis of HCC. CONCLUSIONS Our study illustrates that HCC-lung host cell-neutrophil interactions play important roles in PMN formation and SPP1-induced HCC lung metastasis. Early intervention in SPP1-orchestrated PMN via CXCR2 inhibitor and DNase I is a potential therapeutic strategy to combat HCC lung metastasis.
Collapse
Affiliation(s)
- Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Lu-Yu Yang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Ran Wei
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xiao-Tian Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Jun-Jie Pan
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Shi-Zhe Yu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Chen Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Hao Xu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Jian-Feng Xu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xin Zheng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Hao Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ying-Han Su
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Hao-Ting Sun
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Lu Lu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wen-Wei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
117
|
Bertran MT, Walmsley R, Cummings T, Aramburu IV, Benton DJ, Mora Molina R, Assalaarachchi J, Chasampalioti M, Swanton T, Joshi D, Federico S, Okkenhaug H, Yu L, Oxley D, Walker S, Papayannopoulos V, Suga H, Christophorou MA, Walport LJ. A cyclic peptide toolkit reveals mechanistic principles of peptidylarginine deiminase IV regulation. Nat Commun 2024; 15:9746. [PMID: 39528459 PMCID: PMC11555231 DOI: 10.1038/s41467-024-53554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Peptidylarginine deiminase IV (PADI4, PAD4) deregulation promotes the development of autoimmunity, cancer, atherosclerosis and age-related tissue fibrosis. PADI4 additionally mediates immune responses and cellular reprogramming, although the full extent of its physiological roles is unexplored. Despite detailed molecular knowledge of PADI4 activation in vitro, we lack understanding of its regulation within cells, largely due to a lack of appropriate systems and tools. Here, we develop and apply a set of potent and selective PADI4 modulators. Using the mRNA-display-based RaPID system, we screen >1012 cyclic peptides for high-affinity, conformation-selective binders. We report PADI4_3, a cell-active inhibitor specific for the active conformation of PADI4; PADI4_7, an inert binder, which we functionalise for the isolation and study of cellular PADI4; and PADI4_11, a cell-active PADI4 activator. Structural studies with PADI4_11 reveal an allosteric binding mode that may reflect the mechanism that promotes cellular PADI4 activation. This work contributes to our understanding of PADI4 regulation and provides a toolkit for the study and modulation of PADI4 across (patho)physiological contexts.
Collapse
Affiliation(s)
- M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert Walmsley
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Thomas Cummings
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK
- MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Iker Valle Aramburu
- Antimicrobial Defense Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Donald J Benton
- Structural Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | | | - Tessa Swanton
- Antimicrobial Defense Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Lu Yu
- Proteomics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - David Oxley
- Proteomics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Walker
- Imaging, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Hiroaki Suga
- The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria A Christophorou
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK.
- MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Imperial College London, Department of Chemistry, London, W12 0BZ, UK.
| |
Collapse
|
118
|
Bakhshandeh S, Heras U, Taïeb HM, Varadarajan AR, Lissek SM, Hücker SM, Lu X, Garske DS, Young SAE, Abaurrea A, Caffarel MM, Riestra A, Bragado P, Contzen J, Gossen M, Kirsch S, Warfsmann J, Honarnejad K, Klein CA, Cipitria A. Dormancy-inducing 3D engineered matrix uncovers mechanosensitive and drug-protective FHL2-p21 signaling axis. SCIENCE ADVANCES 2024; 10:eadr3997. [PMID: 39504377 PMCID: PMC11540038 DOI: 10.1126/sciadv.adr3997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Solid cancers frequently relapse with distant metastasis, despite local and systemic treatment. Cellular dormancy has been identified as an important mechanism underlying drug resistance enabling late relapse. Therefore, relapse from invisible, minimal residual cancer of seemingly disease-free patients call for in vitro models of dormant cells suited for drug discovery. Here, we explore dormancy-inducing 3D engineered matrices, which generate mechanical confinement and induce growth arrest and survival against chemotherapy in cancer cells. We characterized the dormant phenotype of solitary cells by P-ERKlow:P-p38high dormancy signaling ratio, along with Ki67- expression. As underlying mechanism, we identified stiffness-dependent nuclear localization of the four-and-a-half LIM domain 2 (FHL2) protein, leading to p53-independent high p21Cip1/Waf1 nuclear expression, validated in murine and human tissue. Suggestive of a resistance-causing role, cells in the dormancy-inducing matrix became sensitive against chemotherapy upon FHL2 down-regulation. Thus, our biomaterial-based approach will enable systematic screens for previously unidentified compounds suited to eradicate potentially relapsing dormant cancer cells.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Hubert M. Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Adithi R. Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Susanna M. Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Sarah M. Hücker
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Daniela S. Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sarah A. E. Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andrea Abaurrea
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Maria M Caffarel
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ana Riestra
- Department of Pharmacy, Fundación Onkologikoa Fundazioa, San Sebastian, Spain
- Department of Medicine, University of Deusto, Bilbao, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Jörg Contzen
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Stefan Kirsch
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kamran Honarnejad
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christoph A. Klein
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
119
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
120
|
Bun M, Kawano M, Yamamoto G, Sakata M, Shimura K, Toda A, Nakamura K, Kinose Y, Kodama M, Hashimoto K, Kobayashi E, Sawada K, Kimura T. G-CSF induces neutrophil extracellular traps formation and promotes ovarian cancer peritoneal dissemination. J Leukoc Biol 2024; 116:1157-1168. [PMID: 39082070 DOI: 10.1093/jleuko/qiae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/16/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Epithelial ovarian cancer is characterized by aggressive peritoneal dissemination. Neutrophils are mobilized to peritoneal cavity in some patients with ovarian cancer dissemination; however, its pathological significance remains unknown. This study aimed to investigate the role of neutrophil extracellular traps (NETs) in ovarian cancer dissemination. We conducted a retrospective analysis of clinical data and samples from 340 patients with ovarian cancer who underwent primary surgery between 2007 and 2016 at the Osaka University Hospital. In vitro, NETs formation was induced by stimulating human peripheral neutrophils. The human ovarian cancer cell line, OVCAR8, was cocultured with NETs. For an ovarian cancer dissemination mouse model, we performed an intraperitoneal injection of OVCAR8 cells into nude mice. The association between NETs and peritoneal dissemination was explored, and model mice were treated with the PAD4 inhibitor GSK484 to assess antitumor efficacy. Neutrophilia (neutrophil count >7000/mm3) correlated with shorter survival, advanced peritoneal dissemination, elevated granulocyte colony-stimulating factor (G-CSF) levels, increased neutrophil count in ascites, and augmented NETs foci in peritoneal dissemination sites. In vitro assays revealed that G-CSF stimulated neutrophils to form NETs, promoting cancer cell adhesion. In vivo investigations revealed that G-CSF-producing tumor-bearing mice had accelerated peritoneal dissemination and poor prognosis. NETs formation was pathologically observed at the peritoneal dissemination sites. Inhibition of NETs formation by GSK484 significantly delayed peritoneal dissemination in vivo. In conclusion, G-CSF was associated with intra-abdominal NETs formation and increased peritoneal dissemination. NETs represent potential therapeutic targets for ovarian cancer, particularly in patients with neutrophilia.
Collapse
Affiliation(s)
- Michiko Bun
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mahiru Kawano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Gaku Yamamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mina Sakata
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kotaro Shimura
- Department of Obstetrics and Gynecology, Osaka Rosai Hospital, 1179-3, Nakasone, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Aska Toda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiji Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
121
|
Seo Y, Kim SI, Song SH, Kim JG, Gu JY, Jeon HW, Lee M, Kim HK. Elevation of circulating neutrophil extracellular traps in endometrial cancer: Poor prognostic value of cell-free double-stranded DNA. Transl Oncol 2024; 49:102072. [PMID: 39128260 PMCID: PMC11366898 DOI: 10.1016/j.tranon.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE Neutrophils produce neutrophil extracellular traps (NETs) by releasing nuclear contents into the extracellular environment. NETs are associated with systemic inflammation and cancer development and progression. We aimed to investigate whether NET markers are associated with the prognosis of endometrial cancer. METHODS Circulating levels of three NET markers (histone-DNA complex, cell-free double-stranded DNA (dsDNA), and neutrophil elastase) were measured in 98 patients with endometrial cancer who underwent surgery as primary treatment between January 2015 and June 2018 and 45 healthy women. Area under the receiver operating characteristic curve (AUC) analyses were conducted to investigate the diagnostic and prognostic utility of the markers for endometrial cancer. RESULTS Patients with endometrial cancer showed significantly higher levels of the three NET markers than those in healthy controls. In discriminating endometrial cancer patients from healthy controls, the three NET markers showed AUC values in the following order: cell-free dsDNA (0.832; 95 % CI, 0.760-0.889), histone-DNA complex (0.740; 95 % CI, 0.660-0.809), and neutrophil elastase (0.689; 95 % CI, 0.607-0.764), comparable to those of CA-125 (0.741; 95 % CI, 0.659-0.813). Multivariate analysis adjusting for FIGO stage, histology, and lymphovascular space invasion, and lymph node involvement revealed that cell-free dsDNA level (cutoff: 95.2 ng/mL) was an independent prognostic marker for poor progression-free (adjusted HR, 2.75; 95 % CI, 1.096.92; P = 0.032) and overall survival (adjusted HR, 11.51; 95 % CI, 2.0664.22; P = 0.005) for patients with endometrial cancer. CONCLUSION High levels of circulating NET markers were observed in patients with endometrial cancer. Cell-free dsDNA levels may play a role as prognostic markers for endometrial cancer.
Collapse
Affiliation(s)
- Yeonju Seo
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jisoo G Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Won Jeon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea.
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
122
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
123
|
Lin Y, Coppo R, Onuma K, Endo H, Kondo J, Iwabuchi S, Hashimoto S, Itatani Y, Obama K, Inoue M. Growth pattern of de novo small clusters of colorectal cancer is regulated by Notch signaling at detachment. Cancer Sci 2024; 115:3648-3659. [PMID: 39300760 PMCID: PMC11531966 DOI: 10.1111/cas.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer cell clusters have a higher capacity for metastasis than single cells, suggesting cancer cell clusters have biological properties different from those of single cells. The nature of de novo cancer cell clusters that are newly formed from tumor masses is largely unknown. Herein, we generated small cell clusters from colorectal cancer organoids and tracked the growth patterns of the clusters up to four cells. Growth patterns were classified into actively growing and poorly growing spheroids (PG). Notch signaling was robustly activated in small clusters immediately after dissociation, and Notch signaling inhibition markedly increased the proportion of PG spheroids. Only a limited number of PG spheroids grew under growth-permissive conditions in vitro, but xenograft tumors derived from Notch inhibited clusters showed growth rates comparable to those of untreated spheroids. Thus, de novo clusters are composed of cells with interchangeable growth fates, which are regulated in a context-dependent manner by Notch signaling.
Collapse
Affiliation(s)
- Yi‐Kai Lin
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Roberto Coppo
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Kunishige Onuma
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Hiroko Endo
- Department of BiochemistryOsaka International Cancer InstituteOsakaJapan
- Present address:
Carna Biosciences Inc.HyogoJapan
| | - Jumpei Kondo
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Present address:
Division of Health Sciences, Department of Molecular Biology and Clinical InvestigationGraduate School of Medicine, Osaka UniversityOsakaJapan
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyInstitute of Advanced Medicine, Wakayama Medical UniversityWakayamaJapan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Inoue
- Department of Clinical Bio‐resource Research and DevelopmentGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
124
|
Chen W, Ye Q, Zhang B, Ma Z, Tu H. Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification. J Proteome Res 2024; 23:5122-5130. [PMID: 39417528 DOI: 10.1021/acs.jproteome.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.
Collapse
Affiliation(s)
- Wujie Chen
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Qihua Ye
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Biying Zhang
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Zhenhua Ma
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Hanxiao Tu
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| |
Collapse
|
125
|
Wang K, Wang X, Song L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol Clin Oncol 2024; 21:85. [PMID: 39347476 PMCID: PMC11428085 DOI: 10.3892/mco.2024.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lymphoma, a malignancy of the lymphatic system, which is critical for maintaining the body's immune defenses, has become a focal point in recent research due to its intricate interplay with neutrophils-white blood cells essential for combating infections and inflammation. Unlike prior perceptions associating neutrophils only with tumor support, contemporary studies underscore their intricate and multifaceted involvement in the immune response to lymphoma. Recognizing the nuanced participation of neutrophils in lymphoma is crucial for developing innovative treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Engineering, School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao Wang
- Reproduction Medicine Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Li Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
126
|
Hu C, Long L, Lou J, Leng M, Yang Q, Xu X, Zhou X. CTC-neutrophil interaction: A key driver and therapeutic target of cancer metastasis. Biomed Pharmacother 2024; 180:117474. [PMID: 39316968 DOI: 10.1016/j.biopha.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream, where they can seed new metastatic lesions in distant organs. CTCs are often associated with white blood cells (WBCs), especially neutrophils, the most abundant and versatile immune cells in the blood. Neutrophils can interact with CTCs through various mechanisms, such as cell-cell adhesion, cytokine secretion, protease release, and neutrophil extracellular traps (NETs) formation. These interactions can promote the survival, proliferation, invasion, and extravasation of CTCs, as well as modulate the pre-metastatic niche and the tumor microenvironment. Therefore, inhibiting CTC-neutrophils interaction could be a potential strategy to reduce tumor metastasis and improve the prognosis of cancer patients. In this review, we summarize the current literature on CTC-neutrophils interaction' role in tumor metastasis and discuss the possible therapeutic approaches to target this interaction.
Collapse
Affiliation(s)
- Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China
| | - Ling Long
- School of Pharmacy, Kunming Medical University, Kunming 650500, PR China; Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Mingjing Leng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qingqing Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiang Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China; Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
127
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
128
|
Zheng W, Li J, Li J, Bie N, Wei Z, Qin J, Li S, Yong T, Du Q, Yang X, Gan L. In-situ nanoplatform with synergistic neutrophil intervention and chemotherapy to prevent postoperative tumor recurrence and metastasis. J Control Release 2024; 375:316-330. [PMID: 39251139 DOI: 10.1016/j.jconrel.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.
Collapse
Affiliation(s)
- Wenxia Zheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaojiao Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nana Bie
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Qin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Du
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
129
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
130
|
Fan W, Gui B, Zhou X, Li L, Chen H. A narrative review on lung injury: mechanisms, biomarkers, and monitoring. Crit Care 2024; 28:352. [PMID: 39482752 PMCID: PMC11526606 DOI: 10.1186/s13054-024-05149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Lung injury is closely associated with the heterogeneity, severity, mortality, and prognosis of various respiratory diseases. Effective monitoring of lung injury is crucial for the optimal management and improved outcomes of patients with lung diseases. This review describes acute and chronic respiratory diseases characterized by significant lung injury and current clinical tools for assessing lung health. Furthermore, we summarized the mechanisms of lung cell death observed in these diseases and highlighted recently identified biomarkers in the plasma indicative of injury to specific cell types and scaffold structure in the lung. Last, we propose an artificial intelligence-driven lung injury monitoring model to assess disease severity, and predict mortality and prognosis, aiming to achieve precision and personalized medicine.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Biyu Gui
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
131
|
Wei JR, Zhang B, Zhang Y, Chen WM, Zhang XP, Zeng TT, Li Y, Zhu YH, Guan XY, Li L. QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci U S A 2024; 121:e2407506121. [PMID: 39432781 PMCID: PMC11536095 DOI: 10.1073/pnas.2407506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Dormant cancer stem cells (DCSCs) exhibit characteristics of chemotherapy resistance and immune escape, and they are a crucial source of tumor recurrence and metastasis. However, the underlying mechanisms remain unrevealed. We demonstrate that enriched Gzmk+ CD8+ T cells within the niche of esophageal DCSCs restrict the outgrowth of tumor mass. Nonetheless, DCSCs can escape immune elimination by enhancing PD-L1 signaling, thereby maintaining immune equilibrium. Quiescent fibroblast-derived quiescin sulfhydryl oxidase 1 (QSOX1) promotes the expression of PD-L1 and its own expression in DCSCs by elevating the level of reactive oxygen species. Additionally, high QSOX1 in the dormant tumor niche contributes to the exclusion of CD8+ T cells. Conversely, blocking QSOX1 with Ebselen in combination with anti-PD-1 and chemotherapy can effectively eradicate residual DCSCs by reducing PD-L1 expression and promoting CD8+ T cell infiltration. Clinically, high expression of QSOX1 predicts a poor response to anti-PD-1 treatment in patients with esophageal cancer. Thus, our findings reveal a mechanism whereby QSOX1 promotes PD-L1 upregulation and T cell exclusion, facilitating the immune escape of DCSCs, and QSOX1 inhibition, combined with immunotherapy and chemotherapy, represents a promising therapeutic approach for eliminating DCSCs and preventing recurrence.
Collapse
Affiliation(s)
- Jia-Ru Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
| | - Baifeng Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Wo-Ming Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Xiao-Ping Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| |
Collapse
|
132
|
Zhang H, Wu M, Sumadi FAN, Fu C, Meng Q, Alanazi M, Zhang Z, Xu ZP, Ta HT, Zhang R. Responsive Theranostic Nanoprobe for Ratiometric Photoacoustic Monitoring of Hypochlorous Acid‐Mediated Inflammation in Cancer Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202414788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractCancer detection and inflammation monitoring during photothermal therapy (PTT) enable timely cancer intervention and precise inflammation control, advancing to address inflammation‐related tumor recurrence and metastasis associated with PTT. This can be achieved through real‐time monitoring biomarker for cancer and inflammation, like hypochlorous acid (HOCl), a highly reactive oxygen species (hROS) in body with elevated levels in inflammation. Here, a HOCl‐responsive theranostic nanoprobe is introduced, AuNRs@SiO2‐CAA for ratiometric photoacoustic (PA) cancer detection and inflammation monitoring during PTT. AuNRs@SiO2‐CAA emits PA signals at 680 and 820 nm, with only PA680 undergoing changes in the presence of HOCl, enabling precise HOCl imaging via recording changes of ratiometric PA signals (PA680/PA820). AuNRs@SiO2‐CAA exhibits high selectivity and sensitivity, with a detection limit of 0.34 µM for ratiometric PA imaging of HOCl. In vivo, it effectively detects tumor, drives PTT, and monitors inflammation during PTT by sensing HOCl. The successful development of AuNRs@SiO2‐CAA offers a novel theranostic nanoprobe system for cancer diagnosis, poised to enhance PTT through precise inflammation control.
Collapse
Affiliation(s)
- Huayue Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| | - Firasti Agung Nugrahening Sumadi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| | - Qingtao Meng
- Key Laboratory of Functional Materials in Universities of Liaoning Province School of Chemical Engineering University of Science and Technology Liaoning Anshan Liaoning Province 114051 China
| | - Mazen Alanazi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen 518107 China
| | - Hang Thu Ta
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
- Queensland Micro‐ and Nanotechnology Griffith University Nathan Campus Brisbane Queensland 4111 Australia
- School of Environment and Science Griffith University Nathan Queensland 4111 Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
133
|
Cheng Y, Yang Y, Bai L, Cui J. Microplastics: an often-overlooked issue in the transition from chronic inflammation to cancer. J Transl Med 2024; 22:959. [PMID: 39438955 PMCID: PMC11494930 DOI: 10.1186/s12967-024-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The presence of microplastics within the human body has raised significant concerns about their potential health implications. Numerous studies have supported the hypothesis that the accumulation of microplastics can trigger inflammatory responses, disrupt the microbiome, and provoke immune reactions due to their physicochemical properties. Chronic inflammation, characterized by tissue damage, angiogenesis, and fibrosis, plays a crucial role in cancer development. It influences cancer progression by altering the tumor microenvironment and impairing immune surveillance, thus promoting tumorigenesis and metastasis. This review explores the fundamental properties and bioaccumulation of microplastics, as well as their potential role in the transition from chronic inflammation to carcinogenesis. Additionally, it provides a comprehensive overview of the associated alterations in signaling pathways, microbiota disturbances, and immune responses. Despite this, the current understanding of the toxicity and biological impacts of microplastics remains limited. To mitigate their harmful effects on human health, there is an urgent need to improve the detection and removal methods for microplastics, necessitating further research and elucidation.
Collapse
Affiliation(s)
- Yicong Cheng
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
| | - Ling Bai
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 1 Xinmin Road, 130021, Changchun, P. R. China.
| |
Collapse
|
134
|
Baldassarri I, Tavakol DN, Graney PL, Chramiec AG, Hibshoosh H, Vunjak-Novakovic G. An engineered model of metastatic colonization of human bone marrow reveals breast cancer cell remodeling of the hematopoietic niche. Proc Natl Acad Sci U S A 2024; 121:e2405257121. [PMID: 39374382 PMCID: PMC11494322 DOI: 10.1073/pnas.2405257121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Incomplete understanding of metastatic disease mechanisms continues to hinder effective treatment of cancer. Despite remarkable advancements toward the identification of druggable targets, treatment options for patients in remission following primary tumor resection remain limited. Bioengineered human tissue models of metastatic sites capable of recreating the physiologically relevant milieu of metastatic colonization may strengthen our grasp of cancer progression and contribute to the development of effective therapeutic strategies. We report the use of an engineered tissue model of human bone marrow (eBM) to identify microenvironmental cues regulating cancer cell proliferation and to investigate how triple-negative breast cancer (TNBC) cell lines influence hematopoiesis. Notably, individual stromal components of the bone marrow niche (osteoblasts, endothelial cells, and mesenchymal stem/stromal cells) were each critical for regulating tumor cell quiescence and proliferation in the three-dimensional eBM niche. We found that hematopoietic stem and progenitor cells (HSPCs) impacted TNBC cell growth and responded to cancer cell presence with a shift of HSPCs (CD34+CD38-) to downstream myeloid lineages (CD11b+CD14+). To account for tumor heterogeneity and show proof-of-concept ability for patient-specific studies, we demonstrate that patient-derived tumor organoids survive and proliferate in the eBM, resulting in distinct shifts in myelopoiesis that are similar to those observed for aggressively metastatic cell lines. We envision that this human tissue model will facilitate studies of niche-specific metastatic progression and individualized responses to treatment.
Collapse
Affiliation(s)
- Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Pamela L. Graney
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Alan G. Chramiec
- Department of Biomedical Engineering, Columbia University, New York, NY10025
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Medicine, Columbia University, New York, NY10032
- College of Dental Medicine, Columbia University, New York, NY10032
| |
Collapse
|
135
|
Li Z, Qin C, Zhao B, Li T, Zhao Y, Zhang X, Wang W. Circulating tumor cells in pancreatic cancer: more than liquid biopsy. Ther Adv Med Oncol 2024; 16:17588359241284935. [PMID: 39421679 PMCID: PMC11483845 DOI: 10.1177/17588359241284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that slough off the primary lesions and extravasate into the bloodstream. By forming CTC clusters and interacting with other circulating cells (platelets, NK cells, macrophage, etc.), CTCs are able to survive in the circulatory system of tumor patients and colonize to metastatic organs. In recent years, the potential of CTCs in diagnosis, prognostic assessment, and individualized therapy of various types of tumors has been gradually explored, while advances in biotechnology have made it possible to extract CTCs from patient blood samples. These biological features of CTCs provide us with new insights into cancer vulnerabilities. With the advent of new immunotherapies and personalized medicines, disrupting the heterotypical interaction between CTCs and circulatory cells as well as direct CTCs targeting hold great promise. Pancreatic cancer (PC) is one of the most malignant cancers, in part because of early metastasis, difficult diagnosis, and limited treatment options. Although there is significant potential for CTCs as a biomarker to impact PC from diagnosis to therapy, there still remain a number of challenges to the routine implementation of CTCs in the clinical management of PC. In this review, we summed up the progress made in understanding biological characteristics and exceptional technological advances of CTCs and provided insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing Street Dongcheng District Beijing China, Beijing 100730, China
| |
Collapse
|
136
|
Xiao C, Feng X, Aini W, Zhao Z, Ding G, Gao Y. Knowledge landscape of tumor-associated neutrophil: a bibliometric and visual analysis from 2000-2024. Front Immunol 2024; 15:1448818. [PMID: 39430756 PMCID: PMC11486681 DOI: 10.3389/fimmu.2024.1448818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Background Neutrophils have long been consistently adjudged to hold a dominant position in acute inflammation, which once led people to undervalue their role in chronic malignancy. It is now acknowledged that neutrophils also infiltrate into the tumor microenvironment in substantial quantities and form a highly abundant immune population within the tumor, known as tumor-associated neutrophils (TANs). There has been a surge of interest in researching the eminent heterogeneity and plasticity of TANs in recent years, and scholars increasingly cotton on to the multifaceted functions of TANs so that strenuous endeavors have been devoted to enunciating their potential as therapeutic targets. Yet it remains much left to translate TAN-targeted immunotherapies into clinical practice. Therefore, there is great significance to comprehensively appraise the research status, focal point, and evolution trend of TAN by using bibliometric analysis. Methods Publications related to TAN research from 2000 to 2024 are extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were performed by tools encompassing Microsoft Excel, VOSviewer, CiteSpace, R-bibliometrix, and so on. Results The bibliometric analysis included a total of 788 publications authored by 5291 scholars affiliated with 1000 institutions across 58 countries/regions, with relevant articles published in 324 journals. Despite China's maximum quantity of publications and top 10 institutions, the United States is the leading country with the most high-quality publications and is also the global cooperation center. FRONTIERS IN IMMUNOLOGY published the most papers, whereas CANCER RESEARCH is the highest co-cited journal. Israeli professor Fridlender, Zvi G. is the founder, pioneer, and cultivator with the highest citation counts and H-index in the TAN area. Our analysis prefigures the future trajectories: TAN heterogeneity, neutrophil extracellular trap, the crosstalk between TANs and immunocytes, and immunotherapy will likely be the focus of future research. Conclusion A comprehensive bibliometric and visual analysis is first performed to map the current landscape and intellectual structure of TAN, which proffers fresh perspectives for further research. The accurate identification of distinct TAN subpopulations and the precise targeting of key pro-tumor/anti-tumor subpopulations hold immense potential to develop into a TAN-targeted immunotherapy.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wufuer Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengyi Zhao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gouping Ding
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
137
|
Herre M, Vemuri K, Cedervall J, Nissl S, Saupe F, Micallef J, Lindman H, Maguire CA, Tetz G, Tetz V, Olsson A. AAV-mouse DNase I sustains long-term DNase I expression in vivo and suppresses breast cancer metastasis. FASEB Bioadv 2024; 6:454-466. [PMID: 39372124 PMCID: PMC11452440 DOI: 10.1096/fba.2024-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have been implicated in the pathology of various inflammatory conditions. In cancer, NETs have been demonstrated to induce systemic inflammation, impair peripheral vessel and organ function and promote metastasis. Here we show that the plasma level of NETs is significantly higher in patients with metastatic breast cancer compared to those with local disease, or those that were considered cured at a 5-year follow-up, confirming NETs as interesting therapeutic targets in metastatic breast cancer. Administration of DNase I is one strategy to eliminate NETs but long-term treatment requires repeated injections and species-specific versions of the enzyme. To enhance administration and therapeutic efficacy, we have developed an adeno-associated virus (AAV) vector system for delivery of murine DNase I and addressed its potential to counteract cancer-associated pathology in the murine MMTV-PyMT model for metastatic mammary carcinoma. The AAV vector is comprised of capsid KP1 and an expression cassette encoding hyperactive murine DNase I (AAV-mDNase I) under the control of a liver-specific promotor. This AAV-mDNase I vector could support elevated expression and serum activity of murine DNase I over at least 8 months. Neutrophil Gelatinase-Associated Lipocalin (NGAL), a biomarker for kidney hypoperfusion that is upregulated in urine from MMTV-PyMT mice, was suppressed in mice receiving AAV-mDNase I compared to an AAV-null control group. Furthermore, the proportion of mice that developed lung metastasis was reduced in the AAV-mDNase I group. Altogether, our data indicate that AAV-mDNase I has the potential to reduce cancer-associated impairment of renal function and development of metastasis. We conclude that AAV-mDNase I could represent a promising therapeutic strategy in metastatic breast cancer.
Collapse
Affiliation(s)
- Melanie Herre
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Kalyani Vemuri
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Stefanie Nissl
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | - Falk Saupe
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| | | | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
| | - Casey A. Maguire
- Department of NeurologyHarvard Medical School, Massachusetts General HospitalBostonMassachusettsUSA
- Molecular Neurogenetics UnitMassachusetts General HospitalCharlestownMassachusettsUSA
| | - George Tetz
- CLS TherapeuticsNew YorkNew YorkUSA
- Human Microbiology InstituteDepartment of Systems BiologyNew YorkNew YorkUSA
| | - Victor Tetz
- Human Microbiology InstituteDepartment of Systems BiologyNew YorkNew YorkUSA
| | - Anna‐Karin Olsson
- Department of Medical Biochemistry and Microbiology, Biomedical CenterUppsala UniversityUppsalaSweden
| |
Collapse
|
138
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh SA, Farjadfar A. Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment. Int J Biol Macromol 2024; 278:134576. [PMID: 39127273 DOI: 10.1016/j.ijbiomac.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In 1958, the presence of citrulline in the structure of the proteins was discovered for the first time. Several years later they found that Arginine converted to citrulline during a post-translational modification process by PAD enzyme. Each PAD is expressed in a certain tissue developing a series of diseases such as inflammation and cancers. Among these, PAD2 and PAD4 play a role in the development of rheumatoid arthritis (RA) by producing citrullinated autoantigens and increasing the production of inflammatory cytokines. PAD4 is also associated with the formation of NET structures and thrombosis. In the crystallographic structure, PAD has several calcium binding sites, and the active site of the enzyme consists of different amino acids. Various PAD inhibitors have been developed divided into pan-PAD and selective PAD inhibitors. F-amidine, Cl-amidine, and BB-Cl-amidine are some of pan-PAD inhibitors. AFM-30a and JBI589 are selective for PAD2 and PAD4, respectively. There is a need to evaluate the effectiveness of existing inhibitors more accurately in the coming years, as well as design and production of novel inhibitors targeting highly specific isoforms.
Collapse
Affiliation(s)
- Pegah Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
139
|
Zhang Q, Zhang J, Gu H, Yang Y, Zhang H, Miao C. Perioperative NETosis and Cancer Progression: Current Evidence and Future Perspectives. Curr Oncol Rep 2024; 26:1169-1175. [PMID: 39012468 DOI: 10.1007/s11912-024-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, an ongoing and exaggerated NETs formation may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between NETosis and cancer progression. RECENT FINDINGS NETs exhibits cancer-promoting effects by causing cancer metastaisis and tumor-associated thrombosis. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although NETs may have anti-bacteria effects, it is necessary to inhibit an excessive NETs formation, mostly showing cancer-promoting effects. The contribution of NETs to cancer progression has gained a growing appreciation and the approaches to targeting NETs deposition exhibited beneficial effects both in primary and metastatic tumors, which, however, has been challenged by a recent finding demonstrating an opposite effect of NETs to suppress tumor growth via the activation of immune response against tumor. This seeming discrepancy reflects we are in the early stage of NETs study facing fundamental questions and a better understanding of the underlying mechanism is urgently needed.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Haiyun Gu
- Department of Anesthesiology, Rizhao People's Hospital, Shandong, China
| | - Yan Yang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
140
|
Li Y, Liu W, Wang Y, Liu T, Feng Y. Nanotechnology-Mediated Immunomodulation Strategy for Inflammation Resolution. Adv Healthc Mater 2024; 13:e2401384. [PMID: 39039994 DOI: 10.1002/adhm.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Inflammation serves as a common characteristic across a wide range of diseases and plays a vital role in maintaining homeostasis. Inflammation can lead to tissue damage and the onset of inflammatory diseases. Although significant progress is made in anti-inflammation in recent years, the current clinical approaches mainly rely on the systemic administration of corticosteroids and antibiotics, which only provide short-term relief. Recently, immunomodulatory approaches have emerged as promising strategies for facilitating the resolution of inflammation. Especially, the advanced nanosystems with unique biocompatibility and multifunctionality have provided an ideal platform for immunomodulation. In this review, the pathophysiology of inflammation and current therapeutic strategies are summarized. It is mainly focused on the nanomedicines that modulate the inflammatory signaling pathways, inflammatory cells, oxidative stress, and inflammation targeting. Finally, the challenges and opportunities of nanomaterials in addressing inflammation are also discussed. The nanotechnology-mediated immunomodulation will open a new treatment strategy for inflammation therapy.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
| |
Collapse
|
141
|
Lohse S, Mink JN, Eckhart L, Hans MC, Jusufi L, Zwick A, Mohr T, Bley IA, Khalmurzaev O, Matveev VB, Loertzer P, Pryalukhin A, Hartmann A, Geppert CI, Loertzer H, Wunderlich H, Lenhof HP, Naumann CM, Kalthoff H, Junker K. The impact of the tumor microenvironment on the survival of penile cancer patients. Sci Rep 2024; 14:22050. [PMID: 39333233 PMCID: PMC11436934 DOI: 10.1038/s41598-024-70855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
PeCa is a rare entity with rising incidence rates due to increased infections with human papillomaviruses (HPV). The distinct subtypes of PeCa with an individual pathogenesis demand biomarkers for a precise patient risk assessment regarding disease progression and therapeutic susceptibility. We recently identified promising candidates associated with an HPV-instructed tumor microenvironment (TME) using HPV-positive PeCa cell lines and tissue microarrays (TMA). The capacity of HPV + p63 + PeCa cells to release neutrophil-attracting CXCL-8 provided a molecular link explaining the infiltration of CD15 + myeloid cells in PeCa specimens. The candidate biomarkers HPV, p63, CD15, DKK1, and CD147 linked a tumor-promoting TME with a higher TNM classification reflecting more aggressive and metastasizing cancers. Based on immune-reactive scores (IRS) from TMA staining for these biomarkers, we calculated correlations and conducted association analyses to assess the degree of relationship between all biomarkers. We then conducted Kaplan-Meier survival estimates and Cox regression analyses to delineate the impact on PeCa patient survival. There is a notable predictive potential regarding the survival of patients with biomarker profiles beyond the potency of the individual biomarker. From all candidate biomarkers and biomarker profiles, the combination of CD147 and infiltrating CD15 + cells linked to an active HPV-driven transformation displayed cancer-immune dynamics with dismal prognosis for patients. After deciphering relevant interdependencies, the HPV + CD147 + CD15 + status was the most potent profile predicting metastasis-free survival of PeCa patients. The results of this report underscore the need for analysis of the TME and the development of multi-parameter composite scores that reflect fundamental cancer-immune relationships to tailor therapeutic interventions based on actual cancer immune dynamics.
Collapse
Affiliation(s)
- Stefan Lohse
- Institute for Virology, Saarland University Medical Center, Saarland University, Kirrberger Str. Building 47, 66421, Homburg, Germany.
- Current Address: Leibniz-Institute for New Materials (INM), Campus D2.2, 66123, Saarbrücken, Germany.
| | - Jan Niklas Mink
- Department of Urology and Pediatric Urology, Saarland University, 66421, Homburg, Germany
| | - Lea Eckhart
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Muriel Charlotte Hans
- Institute for Virology, Saarland University Medical Center, Saarland University, Kirrberger Str. Building 47, 66421, Homburg, Germany
| | - Leuart Jusufi
- Institute for Virology, Saarland University Medical Center, Saarland University, Kirrberger Str. Building 47, 66421, Homburg, Germany
| | - Anabel Zwick
- Institute for Virology, Saarland University Medical Center, Saarland University, Kirrberger Str. Building 47, 66421, Homburg, Germany
| | - Tobias Mohr
- Institute for Virology, Saarland University Medical Center, Saarland University, Kirrberger Str. Building 47, 66421, Homburg, Germany
| | - Isabelle Ariane Bley
- Institute for Virology, Saarland University Medical Center, Saarland University, Kirrberger Str. Building 47, 66421, Homburg, Germany
| | - Oybek Khalmurzaev
- Department of Urology and Pediatric Urology, Saarland University, 66421, Homburg, Germany
- Department of Urology, Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Moscow, 115478, Russian Federation
| | - Vsevolod Borisovich Matveev
- Department of Urology, Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Moscow, 115478, Russian Federation
| | - Philine Loertzer
- Department of Urology and Pediatric Urology, Westpfalz-Klinikum, Kaiserslautern, Germany
| | - Alexey Pryalukhin
- Institute of Pathology, Saarland University Medical Centre, 66421, Homburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | | | - Hagen Loertzer
- Department of Urology and Pediatric Urology, Westpfalz-Klinikum, Kaiserslautern, Germany
| | - Heiko Wunderlich
- Clinic of Urology and Pediatric Urology, St. Georg Klinikum, 99817, Eisenach, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Carsten Maik Naumann
- Department of Urology and Pediatric Urology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, Christian Albrecht University, Kiel, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
142
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
143
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
144
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
145
|
Sun N, Jiang J, Chen B, Chen Y, Wu H, Wang H, Chen J. Neutrophil extracellular trap genes predict immunotherapy response in gastric cancer. Heliyon 2024; 10:e37357. [PMID: 39296112 PMCID: PMC11409185 DOI: 10.1016/j.heliyon.2024.e37357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Neutrophil extracellular trap (NET) is associated with host response, tumorigenesis, and immune dysfunction. However, the link between NET and the tumor microenvironment (TME) of gastric cancer (GC) remains unclear. Our study aims to characterize the expression patterns of NET-related genes and their relationships with clinicopathological characteristics, prognosis, TME features, and immunotherapy efficacy in GC cohorts. Methods Transcriptomic and single-cell RNA sequencing profiles of GC with annotated clinicopathological data were obtained from TCGA-STAD (n = 415), GSE62254 (n = 300), GSE15459 (n = 192), and GSE183904 (n = 26). The consensus cluster algorithm was used to classify tumor samples into different NET-related clusters. A NET-related signature was constructed using LASSO regression and verified in four immunotherapy cohorts. ROC and Kaplan-Meier analyses were conducted to evaluate the predictive and prognostic value of the model for immunotherapy efficacy. Results This study identified two NET-related clusters with distinct clinicopathological features, prognosis, and TME landscapes. The high NET-related cluster, characterized by increased NET-related gene expression, exhibited more aggressive behavior and a worse prognosis (HR = 1.63, P = 0.004) than the low NET-related cluster. DEGs were primarily involved in the chemokine/cytokine-associated pathways. Moreover, the high NET-related cluster had significantly higher levels of TME scores, immune infiltration, and immune effectors (all P < 0.001). The NET-related signature displayed a high predictive accuracy for immunotherapy response (AUC = 0.939, P < 0.001). Furthermore, patients with high NET-related scores consistently harbored a more favorable prognosis in different immunotherapy cohorts (all P < 0.05). Conclusions This study identified the NET-related signature as a robust model for predicting immunotherapy response in GC, which can help clinicians make appropriate immunotherapy decisions.
Collapse
Affiliation(s)
- Ningjie Sun
- Department of Gastrointestinal Surgery, Yiwu Central Hospital, Yiwu, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Biying Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiming Wu
- Department of Gastrointestinal Surgery, Yiwu Central Hospital, Yiwu, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Chen
- Department of Gastrointestinal Surgery, Yiwu Central Hospital, Yiwu, China
| |
Collapse
|
146
|
Qi L, Gao T, Bai C, Guo Z, Zhou L, Yang X, Fan Z, Zhang G. AOC3 accelerates lung metastasis of osteosarcoma by recruiting tumor-associated neutrophils, neutrophil extracellular trap formation and tumor vascularization. Heliyon 2024; 10:e37070. [PMID: 39296147 PMCID: PMC11408840 DOI: 10.1016/j.heliyon.2024.e37070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Osteosarcoma (OS) has strong invasiveness, early metastasis, high drug resistance, and poor prognosis. At present, OS still lacks reliable biomarkers, which makes early diagnosis of OS more difficult. AOC3 is highly expressed in OS and highly correlated with lung metastasis. qRT-PCR could identify mRNA levels of genes. Immunohistochemistry and Western blot assays could detect protein levels. Immunofluorescence and ELISA assays were applied to evaluate the activation of neutrophils. Additionally, transwell and wound healing assays evaluated cell migration and invasion abilities. Tube formation and sphere-forming assays were applied to detect the angiogenesis. C57BL/6 mice were injected with OS cells to establish a xenograft tumor model to observe the lung metastasis of OS. Flow cytometry is used to evaluate the ability of tumor cells to recruit neutrophils. AOC3 was significantly overexpressed in OS, and down-regulation of AOC3 could inhibit OS migration, invasion, and angiogenesis. AOC3 could increase tumor development and lung metastasis of OS in vivo experiments. The promoting effect of AOC3 on tumor lung metastasis was achieved by recruiting tumor neutrophils. Activated NETs could up-regulate the metastatic ability of OS cells. Tumor neovascularization also played a role in metastasis, and AOC3 supported tumor neovascularization. AOC3 accelerates lung metastasis of OS by recruiting tumor-related neutrophils and utilizing NETs and tumor vascularization formation.
Collapse
Affiliation(s)
- Luxia Qi
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Chujie Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhanfei Guo
- Department of Rheumatology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Linjing Zhou
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Xiaodong Yang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Zhengfu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Guifang Zhang
- Department of Medical Oncology, Xinxiang Central Hospital, Xinxiang, 453000, China
| |
Collapse
|
147
|
Tharani PV, Rao KVB. A comprehensive review on microbial diversity and anticancer compounds derived from seaweed endophytes: a pharmacokinetic and pharmacodynamic approach. Arch Microbiol 2024; 206:403. [PMID: 39276253 DOI: 10.1007/s00203-024-04121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024]
Abstract
Seaweed endophytes are a rich source of microbial diversity and bioactive compounds. This review provides a comprehensive analysis of the microbial diversity associated with seaweeds and their interaction between them. These diverse bacteria and fungi have distinct metabolic pathways, which result in the synthesis of bioactive compounds with potential applications in a variety of health fields. We examine many types of seaweed-associated microorganisms, their bioactive metabolites, and their potential role in cancer treatment using a comprehensive literature review. By incorporating recent findings, we hope to highlight the importance of seaweed endophytes as a prospective source of novel anticancer drugs and promote additional studies in this area. We also investigate the pharmacokinetic and pharmacodynamic profiles of these bioactive compounds because understanding their absorption, distribution, metabolism, excretion (ADMET), and toxicity profiles is critical for developing bioactive compounds with anticancer potential into effective cancer drugs. This knowledge ensures the safety and efficacy of proposed medications prior to clinical trials. This study not only provides promise for novel and more effective treatments for cancer with fewer side effects, but it also emphasizes the necessity of sustainable harvesting procedures and ethical considerations for protecting the delicate marine ecology during bioprospecting activities.
Collapse
Affiliation(s)
- P V Tharani
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
148
|
Teijeira A, Garasa S, Ochoa MC, Sanchez-Gregorio S, Gomis G, Luri-Rey C, Martinez-Monge R, Pinci B, Valencia K, Palencia B, Barbés B, Bolaños E, Azpilikueta A, García-Cardosa M, Burguete J, Eguren-Santamaría I, Garate-Soraluze E, Berraondo P, Perez-Gracia JL, de Andrea CE, Rodriguez-Ruiz ME, Melero I. Low-Dose Ionizing γ-Radiation Elicits the Extrusion of Neutrophil Extracellular Traps. Clin Cancer Res 2024; 30:4131-4142. [PMID: 38630754 PMCID: PMC11393545 DOI: 10.1158/1078-0432.ccr-23-3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Patients with cancer frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NET), we have investigated the mechanisms, consequences, and occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN NETosis was analyzed in cultures of neutrophils isolated from healthy donors, patients with cancer, and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes, and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice for assessing their effects on metastasis. Circulating NETs in irradiated patients with cancer were measured using ELISA methods for detecting MPO-DNA complexes and citrullinated histone 3. RESULTS Irradiation of neutrophils with very low γ-radiation doses (0.5-1 Gy) elicits NET formation in a manner dependent on oxidative stress, NADPH oxidase activity, and autocrine IL8. Radiation-induced NETs interfere with NK cell and T-cell cytotoxicity. As a consequence, preinjection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion, and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments. See related commentary by Mowery and Luke, p. 3965.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Rafael Martinez-Monge
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Beatrice Pinci
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Karmele Valencia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Solid Tumors Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Benigno Barbés
- Department of Radiation Physics and Radiation Protection, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marina García-Cardosa
- Department of Physics and Applied Mathematics, Universidad de Navarra, Pamplona, Spain
| | - Javier Burguete
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Physics and Applied Mathematics, Universidad de Navarra, Pamplona, Spain
| | - Iñaki Eguren-Santamaría
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Medical Oncology, Universidad de Navarra, Pamplona, Spain
| | - Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose L Perez-Gracia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Medical Oncology, Universidad de Navarra, Pamplona, Spain
| | - Carlos E de Andrea
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Anatomy, Physiology and Pathology, Universidad de Navarra, Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
149
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
150
|
Ren L, Wan J, Li X, Yao J, Ma Y, Meng F, Zheng S, Han W, Wang H. Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity. Nat Commun 2024; 15:7664. [PMID: 39227567 PMCID: PMC11372058 DOI: 10.1038/s41467-024-51945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.
Collapse
Affiliation(s)
- Lulu Ren
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiaoyan Li
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Jie Yao
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Yan Ma
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Fanchao Meng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Shusen Zheng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Weidong Han
- Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, PR China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|