101
|
Huang L, Li QP, Li H, Yuan X. Microplastic pollution and regulating factors in the surface sediment of the Xuande Atolls in the South China Sea. MARINE POLLUTION BULLETIN 2023; 196:115562. [PMID: 37769406 DOI: 10.1016/j.marpolbul.2023.115562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Microplastics are widely present in the marine environment, but their pollution and potential risk assessment in the seabed sediments have not been well addressed in remote sea areas. In this study, microplastics in 50 surface sediment samples from the Xuande Atolls at the Xisha of the South China Sea were studied. There were 20 samples with detectable microplastics of 5-20 items kg-1. They were all fibers in shapes and blue/transparent in colors with the dominant chemical component of polyester and the typical size of 0.02-3 mm. We found a large spatial variability of microplastic abundance in the surface sediment with generally low or undetectable levels in the lagoon deposits and the offshore deep-sea sediments but elevated abundances in the slope sediments of the Xuande Atolls. Correlation analyses suggested that microplastic variability in the Xisha sediment was less affected by local environmental parameters such as water depth, sediment particle size, organic carbon content, and sediment types. We also found that elevated microplastics in the seabed sediments on various sides of the Xuande Atolls could be related to the seasonal change in monsoon-driven currents. Finally, a low risk of microplastic pollution in the surface sediment of the Xisha is concluded based on the assessments of the polymer hazard index and the pollution load index. These findings provide not only a baseline understanding of microplastics but also their dynamics in the surface sediment of the remote Xisha area of the South China Sea.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510760, China; College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian P Li
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaojie Yuan
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510760, China
| |
Collapse
|
102
|
Thacharodi A, Meenatchi R, Hassan S, Hussain N, Bhat MA, Arockiaraj J, Ngo HH, Le QH, Pugazhendhi A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119433. [PMID: 39492398 DOI: 10.1016/j.jenvman.2023.119433] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Microplastics are small plastic pieces ranging in size from 1μ to <5 mm in diameter, are water-soluble, and can be either primary as they are initially created in small sizes or secondary as they develop due to plastic degradation. Approximately 360 million tons of plastic are produced globally every year, with only 7% recycled, leaving the majority of waste to accumulate in the environment and pose a serious threat in the form of microplastics. All ecosystems, particularly freshwater ecosystems, experience microplastic accumulation and are also prone to degrading processes. Degraded microplastics accumulate in many aquatic systems, contaminate them, and enter the food chain as a result of the excessive discharge of plastic trash annually from the domestic to the industrial sector. Due to their pervasiveness, these tiny plastic particles are constantly present in freshwater environments, which are essential to human life. In this sense, microplastic pollution is seen as a worldwide problem that has a detrimental impact on every component of the freshwater environment. Microplastics act as carriers for various toxic components such as additives and other hazardous substances from industrial and urbanized areas. These microplastic-contaminated effluents are ultimately transferred into water systems and directly ingested by organisms associated with a particular ecosystem. The microplastics components also pose an indirect threat to aquatic ecosystems by adsorbing surrounding water pollutants. This review mainly focuses on the sources of microplastics, the ecotoxicity of microplastics and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the Government to combat microplastic pollution are also discussed in this review.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, Eskişehir, 26555, Turkey
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
103
|
Pellegrini C, Saliu F, Bosman A, Sammartino I, Raguso C, Mercorella A, Galvez DS, Petrizzo A, Madricardo F, Lasagni M, Clemenza M, Trincardi F, Rovere M. Hotspots of microplastic accumulation at the land-sea transition and their spatial heterogeneity: The Po River prodelta (Adriatic Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164908. [PMID: 37385497 DOI: 10.1016/j.scitotenv.2023.164908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Deltas are the locus of river-borne sediment accumulation, however, their role in sequestering plastic pollutants is still overlooked. By combining geomorphological, sedimentological, and geochemical analyses, which include time-lapse multibeam bathymetry, sediment provenance, and μFT-IR analyses, we investigate the fate of plastic particles after a river flood event providing an unprecedented documentation of the spatial distribution of sediment as well as of microplastics (MPs), including particles fibers, and phthalates (PAEs) abundances in the subaqueous delta. Overall sediments are characterized by an average of 139.7 ± 80 MPs/kg d.w., but display spatial heterogeneity of sediment and MPs accumulation: MPs are absent within the active sandy delta lobe, reflecting dilution by clastic sediment (ca. 1.3 Mm3) and sediment bypass. The highest MP concentration (625 MPs/kg d.w.) occurs in the distal reaches of the active lobe where flow energy dissipates. In addition to MPs, cellulosic fibers are relevant (of up to 3800 fibers/kg d.w.) in all the analyzed sediment samples, and dominate (94 %) with respect to synthetic polymers. Statistically significant differences in the relative concentration of fiber fragments ≤0.5 mm in size were highlighted between the active delta lobe and the migrating bedforms in the prodelta. Fibers were found to slightly follow a power law size distribution coherent with a one-dimensional fragmentation model and thus indicating the absence of a size dependent selection mechanism during burial. Multivariate statistical analysis suggests traveling distance and bottom-transport regime as the most relevant factors controlling particle distribution. Our findings suggest that subaqueous prodelta should be considered hot spots for the accumulation of MPs and associated pollutants, albeit the strong lateral heterogeneity in their abundances reflects changes in the relative influence of fluvial and marine processes.
Collapse
Affiliation(s)
- C Pellegrini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy.
| | - F Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - A Bosman
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Geologia Ambientale e Geoingegneria (IGAG), Italy
| | - I Sammartino
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - C Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - A Mercorella
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - D S Galvez
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - A Petrizzo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - F Madricardo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| | - M Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Milano, Italy
| | - M Clemenza
- INFN Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - F Trincardi
- Consiglio Nazionale delle Ricerche (CNR), Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente (DSSTTA), Rome, Italy
| | - M Rovere
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR-CNR), Italy
| |
Collapse
|
104
|
Li Y, Hou Y, Hou Q, Long M, Wang Z, Rillig MC, Liao Y, Yong T. Soil microbial community parameters affected by microplastics and other plastic residues. Front Microbiol 2023; 14:1258606. [PMID: 37901816 PMCID: PMC10601715 DOI: 10.3389/fmicb.2023.1258606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The impact of plastics on terrestrial ecosystems is receiving increasing attention. Although of great importance to soil biogeochemical processes, how plastics influence soil microbes have yet to be systematically studied. The primary objectives of this study are to evaluate whether plastics lead to divergent responses of soil microbial community parameters, and explore the potential driving factors. Methods We performed a meta-analysis of 710 paired observations from 48 published articles to quantify the impact of plastic on the diversity, biomass, and functionality of soil microbial communities. Results and discussion This study indicated that plastics accelerated soil organic carbon loss (effect size = -0.05, p = 0.004) and increased microbial functionality (effect size = 0.04, p = 0.003), but also reduced microbial biomass (effect size = -0.07, p < 0.001) and the stability of co-occurrence networks. Polyethylene significantly reduced microbial richness (effect size = -0.07, p < 0.001) while polypropylene significantly increased it (effect size = 0.17, p < 0.001). Degradable plastics always had an insignificant effect on the microbial community. The effect of the plastic amount on microbial functionality followed the "hormetic dose-response" model, the infection point was about 40 g/kg. Approximately 3564.78 μm was the size of the plastic at which the response of microbial functionality changed from positive to negative. Changes in soil pH, soil organic carbon, and total nitrogen were significantly positively correlated with soil microbial functionality, biomass, and richness (R2 = 0.04-0.73, p < 0.05). The changes in microbial diversity were decoupled from microbial community structure and functionality. We emphasize the negative impacts of plastics on soil microbial communities such as microbial abundance, essential to reducing the risk of ecological surprise in terrestrial ecosystems. Our comprehensive assessment of plastics on soil microbial community parameters deepens the understanding of environmental impacts and ecological risks from this emerging pollution.
Collapse
Affiliation(s)
- Yüze Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yuting Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Quanming Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mei Long
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Taiwen Yong
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
105
|
You Y, Della Penna A, Thrush SF. Modelled broad-scale shifts on seafloor ecosystem functioning due to microplastic impacts on bioturbation. Sci Rep 2023; 13:17121. [PMID: 37816828 PMCID: PMC10564913 DOI: 10.1038/s41598-023-44425-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
Bioturbating species play an essential role in regulating nutrient cycling in marine sediments, but their interaction with microplastics (MP) remains poorly understood. Here we investigated the linkage between MP and ecosystem functioning using experimental observations of luminophore distribution in the sediment to parametrize bioturbation coefficients (Db). this information as fed into a simplified transport-reaction model, allowing us to upscale our experimental results. We found that the composition of bioturbators modulated shifts in the ecosystem functioning under microplastic stress. Maldanid worms (Macroclymenella stewartensis), functionally deep burrowing and upward-conveyor belt feeders, became less active. The Db of M. stewartensis reduced by 25% with the addition of 0.002 g MP cm-2 at surface sediment, causing accumulation of organic matter in the oxic sediment zone and stimulating aerobic respiration by 18%. In contract, the tellinid bivalve Macomona liliana, functionally a surface -deposit feeder that excretes at depth, maintained particle mixing behaviour in MP-contaminated systems. This study provides a mechanistic insight into the impacts of MP and indicates that the functional role of bioturbating species should be involved in assessing the global impact of MP. The model allowed us to understand the broad-scale impact of MP on seafloor habitat.
Collapse
Affiliation(s)
- Yuxi You
- Institute of Marine Science, The University of Auckland, Auckland, 1010, New Zealand.
| | - Alice Della Penna
- Institute of Marine Science, The University of Auckland, Auckland, 1010, New Zealand
- School of Biology Science, The University of Auckland, Auckland, 1010, New Zealand
| | - Simon Francis Thrush
- Institute of Marine Science, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
106
|
Wu Y, Cheng Z, Wu M, Hao Y, Lu G, Mo C, Li Q, Wu J, Wu J, Hu BX. Quantification of two-site kinetic transport parameters of polystyrene nanoplastics in porous media. CHEMOSPHERE 2023; 338:139506. [PMID: 37453519 DOI: 10.1016/j.chemosphere.2023.139506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a combination of column experiments, interface chemistry theory and transport model with two-site kinetics was used to systematically investigate the effect of pH on the transport of polystyrene nanoparticles (PSNPs) in porous media. The porous media containing quartz sand (QS) and three kinds of clay minerals (CMs)-kaolinite (KL), illite (IL) and montmorillonite (MT), was used in column experiments to simulate the porous media in the soil-groundwater systems. Experimental results showed that the inhibitory effect of CMs on the transport of PSNPs is weakened as pH increases. The two-dimensional (2D) surface of the DLVO interaction energy (2D-pH-DLVO) was built to calculate the interactions between PSNPs and CMs under different conditions of pH. Results suggested the inflection point of PSNP-QS, PSNP-KL, PSNP-IL and PSNP-MT are 2.42, 3.30, 2.84 and 3.69, respectively. Most importantly, there was a significant correlation between the two-site kinetic parameters related to PSNPs transport and the DLVO energy barrier (DB). The contributions of the interactions of PSNPs-PSNPs and PSNPs-minerals were determined for PSNPs transport in porous media. The critical values of pH related to the migration ability of PSNPs in porous media could be determined by a combination of column experiments, 2D-pH-DLVO and PSNPs transport model. The critical values of pH were 2.95-3.01, 3.22-3.51, 2.98-3.02, 3.31-3.33 for the migration ability of PSNPs in QS, QS + KL, QS + IL and QS + MT porous media, respectively. The stronger migration ability of PSNPs under high pH conditions is attributed to the enhanced deprotonation of the media surface and increased negative surface charge, which increases the electrostatic repulsion between PSNPs and porous media (QS, CMs). Moreover, the agglomeration of PSNPs usually is weaker and the average particle size of agglomerates is smaller under the condition of high pH, thus leading to the stronger migration ability of PSNPs under high pH conditions.
Collapse
Affiliation(s)
- Yuheng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China; Guangdong Yixin Ecological Technology Co., Ltd, Guangzhou, 510055, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
107
|
Li S, Liu L, Luo G, Yuan Y, Hu D, Xiao F. The crosstalk between M1 macrophage polarization and energy metabolism disorder contributes to polystyrene nanoplastics-triggered testicular inflammation. Food Chem Toxicol 2023; 180:114002. [PMID: 37634612 DOI: 10.1016/j.fct.2023.114002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Ubiquitous microplastics have become a threat to animal and human health, due to their potential toxicity, persistent nature and consequent bioaccumulation. Supporting evidence elucidates that polystyrene nanoplastics (PS-NPs) can destroy blood-testis barrier integrity, thus causing testicular hypoplasia and impairment of spermatogenesis. Nevertheless, how PS-NPs modulate macrophage polarization-energy metabolism crosstalk has not been fully investigated in testicular tissue. Here, we observed that polystyrene PS-NPs exposure contributes to severe vacuolization in the seminiferous tubules, accompanied by apoptosis of testicular tissue and infiltration of M1 macrophages. Meanwhile, we found that PS-NPs could trigger the M1 polarization phenotype, which activated ROS-macrophage migration inhibitory factor (MIF)/NF-κB signaling that in turn induced apoptosis of GC2 cells in the GC2-macrophage cell coculture model. Simultaneously, we confirmed that PS-NPs exposure increased 3-phospho-D-glycerate, phosphoenolpyruvate and lactate concentrations, accompanied by decreased pyruvate and adenosine triphosphate (ATP) production, likely due to downregulated pyruvate kinase M2 (PKM2) dimer expression. In conclusion, the mechanism of PS-NPs-induced testicular inflammation can be mediated by promoting the infiltration of M1 macrophages, thereby resulting in an ROS burst and subsequent induction of energy metabolism disorders. The current study will provide new insights into PS-NPs-induced male reproductive toxicity and highlight the context-specific roles of testicular macrophages.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Lemei Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yu Yuan
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Die Hu
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
108
|
Jiang Y, Li Q, Wang Y, Jin J, Wei W, Zhang Y, Yang H. Polyester microplastic fibers induce mitochondrial damage, apoptosis and oxidative stress in Daphnia carinata, accompanied by changes in apoptotic and ferroptosis pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106690. [PMID: 37708703 DOI: 10.1016/j.aquatox.2023.106690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
With the widespread utilization of plastic products, microplastics (MPs) have merged as a newfound environmental contaminant in the United States, and the bulk of these MPs in the environment manifest as fibrous structures. Concerns have also been voiced regarding the potential hazards posed by microplastic fibers (MFs). However, research examining the toxicity of MFs, particularly in relation to planktonic organisms, remains severely limited. Meanwhile, polyester fiber materials find extensive applications across diverse industries. As a result, this investigation delved into the toxicology of polyester microplastic fibers (PET-MFs) with a focus on their impact on Daphnia carinata (D. carinata), a freshwater crustacean. Newly hatched D. carinata were subjected to varying concentrations of PET-MFs (0, 50, and 500 MFs/mL) to scrutinize the accumulation of PET-MFs within these organisms and their resultant toxicity. The outcomes revealed that D. carinata was capable of ingesting PET-MFs, leading to diminished rates of survival and reproduction. These effects were accompanied by mitochondrial impairment, heightened mitochondrial count, apoptosis, escalated generation of reactive oxygen species, augmented activity of antioxidant enzymes, and distinct patterns of gene expression. Interestingly, when comparing the group exposed to 50 MFs/mL with the one exposed to 500 MFs/mL, it was observed that the former triggered a more pronounced degree of mitochondrial damage, apoptosis, and oxidative stress. This phenomenon could be attributed to the fact that brief exposure to 500 MFs/mL resulted in greater mortality, eliminating individuals with lower adaptability. Those that survived managed to regulate elevated in vivo reactive oxygen species levels through an increase in glutathione S-transferase content, thereby establishing an adaptive mechanism. Low concentrations did not induce direct mortality, yet PET-MFs continued to inflict harm within the organism. RNA-seq analysis unveiled significant alterations in 279 and 55 genes in the 50 MFs/mL and 500 MFs/mL exposure groups, respectively. Functional enrichment analysis of the 50 MFs/mL group indicated involvement of the apoptosis pathway and ferroptosis pathway in the toxic effects exerted by PET-MFs on D. carinata. This study imparts valuable insights into the toxicological ramifications of PET-MFs on D. carinata, underscoring their potential risks within aquatic ecosystems.
Collapse
Affiliation(s)
- Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Qing Li
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Yuting Wang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Jiaqi Jin
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
109
|
Wright S, Levermore J, Ishikawa Y. Application of Infrared and Near-Infrared Microspectroscopy to Microplastic Human Exposure Measurements. APPLIED SPECTROSCOPY 2023; 77:1105-1128. [PMID: 37792505 PMCID: PMC10566227 DOI: 10.1177/00037028231199772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/05/2023] [Indexed: 10/06/2023]
Abstract
Microplastic pollution is a global issue for the environment and human health. The potential for human exposure to microplastic through drinking water, dust, food, and air raises concern, since experimental in vitro and in vivo toxicology studies suggest there is a level of hazard associated with high microplastic concentrations. However, to infer the likelihood of hazards manifesting in the human population, a robust understanding of exposure concentrations is needed. Infrared and near-infrared microspectroscopies have routinely been used to analyze microplastic in different exposure matrices (air, dust, food, and water), with technological advances coupling multivariate and machine learning algorithms to spectral data. This focal point article will highlight the application of infrared and Raman modes of spectroscopy to detect, characterize, and quantify microplastic particles, with a focus on human exposure to microplastic. Methodologies and state-of-the-art approaches will be reported and potential confounding variables and challenges in microplastic analysis discussed. The article provides an up-to-date review of the literature on microplastic exposure measurement using (near) infrared spectroscopies as an analytical tool, highlighting the recent advances in this rapidly advancing field.
Collapse
Affiliation(s)
- Stephanie Wright
- Environmental Research Group, School of Public Health, Imperial College London, London UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, London UK
| | - Joseph Levermore
- Environmental Research Group, School of Public Health, Imperial College London, London UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
| | - Yukari Ishikawa
- Environmental Research Group, School of Public Health, Imperial College London, London UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London UK
| |
Collapse
|
110
|
Abel SM, Wu F, Primpke S, Gerdts G, Brandt A. Journey to the deep: plastic pollution in the hadal of deep-sea trenches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122078. [PMID: 37379878 DOI: 10.1016/j.envpol.2023.122078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The global increase of plastic production, linked with an overall plastic misuse and waste mismanagement, leads to an inevitable increase of plastic debris that ends up in our oceans. One of the major sinks of this pollution is the deep-sea floor, which is hypothesized to accumulate in its deepest points, the hadal trenches. Little is known about the magnitude of pollution in these trenches, given the remoteness of these environments, numerous factors influencing the input and sinking behavior of plastic debris from shallower environments. This study represents to the best of our knowledge the largest survey of (macro)plastic debris sampled at hadal depths, down to 9600 m. Industrial packaging and material assignable to fishing activities were the most common debris items in the Kuril Kamchatka trench, most likely deriving from long-distance transport by the Kuroshio extension current (KE) or from regional marine traffic and fishing activities. The chemical analysis by (Attenuated Total Reflection Fourier transform infrared (ATR-FTIR) spectroscopy revealed that the main polymers detected were polyethylene (PE), polypropylene (PP) and nylon. Plastic waste is reaching the depths of the trench, although some of the items were only partially broken down. This finding suggests that complete breakdown into secondary microplastics (MP) may not always occur at the sea surface or though the water column. Due to increased brittleness, plastic debris may break apart upon reaching the hadal trench floor where plastic degrading factors were thought to be, coming off. The KKT's remote location and high sedimentation rates make it a potential site for high levels of plastic pollution, potentially making it one of the world's most heavily contaminated marine areas and an oceanic plastic deposition zone.
Collapse
Affiliation(s)
- Serena M Abel
- Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany; Department of Environmental Sciences, Man-Society-Environment Program, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| | - Fangzhu Wu
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany
| | - Sebastian Primpke
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
111
|
Chen CF, Ju YR, Lim YC, Wang MH, Chen CW, Dong CD. Microplastics in coastal farmed oyster (Crassostrea angulata) shells: Abundance, characteristics, and diversity. MARINE POLLUTION BULLETIN 2023; 194:115228. [PMID: 37544062 DOI: 10.1016/j.marpolbul.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
One of the most concerning emerging pollutants is microplastics (MPs), which can infiltrate soft tissues of organisms by ingestion, adhesion, and fusing and may even become embedded in biominerals. However, very little evidence is available about MPs in biominerals found in the wild. This study detected the abundance and characteristics of MPs in the shells of farmed oysters (Crassostrea angulata) off the coast of Taiwan and discussed the distribution, accumulation, and diversity in the oyster shells. The results showed that MPs were ubiquitous in oyster shells, with an average abundance of 0.70 ± 0.40 MPs/g. MPs abundance was significantly (p < 0.01) higher in small oyster shells (shell length < 6.5 cm, weight 5-10 g) and inorganic (CaCO3) fraction (HCl digestion) than in large oyster shells (>6.5 cm, 10-25 g) and an organic fraction (H2O2 digestion), respectively. However, there was no significant difference in MPs abundance between the top and bottom shells (p > 0.05). MPs with a size <2 mm accounted for 78.5 %, fibrous MPs for 93.7 %, and rayon for 89.5 %. The MPs diversity integrated index (MPDII) in oyster shells was low (0.27), and the small and fibrous MPs seemed more easily embedded in biominerals. The findings confirm the presence of MPs in oyster shells in coastal environments. In addition, oyster shells may contain higher amounts of MPs than soft tissues 4-5 times, which needs to be confirmed. Further revealing the distribution and accumulation of MPs in water/terrestrial biominerals will help to understand the fate of MPs in the environment.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
112
|
Li P, Jiang L, Lan L, Liu F, Liu Z, Huang Y, Dan Y. Sustainable polylactide materials with the function of blocking a specific wavelength of light based on aloe-emodin. Int J Biol Macromol 2023; 247:125744. [PMID: 37423438 DOI: 10.1016/j.ijbiomac.2023.125744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Polylactide, a biodegradable polymer, can alleviate white pollution, but the use of polylactide in food packaging is limited by high transmittance to light with a specific wavelength, UV (185-400 nm) and short-wavelength visible (400-500 nm) light. Herein, the polylactide end-capped with renewable light absorber aloe-emodin (PLA-En), is blended with commercial polylactide (PLA) to fabricate the polylactide film with the function of blocking light with a specific wavelength, PLA/PLA-En film. Only 40 % of light around 287 and 430 nm transmits through PLA/PLA-En film incorporating 3 mass% of PLA-En, while the film still maintains good mechanical properties and high transparency more than 90 % at 660 nm because of the good compatibility with PLA. The PLA/PLA-En film exhibits stable light-blocking properties under light irradiation and anti-solvent migration under the immersion of fat simulant. Almost no PLA-En migrated out of the film with the molecular weight of PLA-En only 2.89 × 104 g/mol. Compared with PLA film and commercial PE plastic wrap, the designed PLA/PLA-En film exhibits a better preservative effect on riboflavin and milk for inhibiting the production of 1O2. This study offers a green strategy for developing UV and short-wavelength light protective food package film based on renewable resource.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Fei Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhi Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
113
|
Liang S, Wang K, Wang K, Wang T, Guo C, Wang W, Wang J. Adsorption Behavior of Diclofenac on Polystyrene and Poly(butylene adipate- co-terephthalate) Microplastics: Influencing Factors and Adsorption Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12216-12225. [PMID: 37581507 PMCID: PMC10469442 DOI: 10.1021/acs.langmuir.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Indexed: 08/16/2023]
Abstract
To unveil the intricacies surrounding the interaction between microplastics (MPs) and pollutants, diligent investigation is warranted to mitigate the environmental perils they pose. This exposition delves into the sorption behavior and mechanism of diclofenac sodium (DCF), a contaminant, upon two distinct materials: polystyrene (PS) and poly(butylene adipate-co-terephthalate) (PBAT). Experimental adsorption endeavors solidify the observation that the adsorption capacity of DCF onto the designated MPs amounts to Q(PBAT) = 9.26 mg g-1 and Q(PS) = 9.03 mg g-1, respectively. An exploration of the factors governing these discrepant adsorption phenomena elucidates the influence of MPs and DCF properties, environmental factors, as well as surfactants. Fitting procedures underscore the suitability of the pseudo-second-order kinetic and Freundlich models in capturing the intricacies of the DCF adsorption process onto MPs, corroborating the notion that the mentioned process is characterized by non-homogeneous chemisorption. Moreover, this inquiry unveils that the primary adsorption mechanisms of DCF upon MPs encompass electrostatic interaction, hydrogen bonding, and halo hydrogen bonding. An additional investigation concerns the impact of commonly encountered surfactants in aqueous environments on the adsorption of DCF onto MPs. The presence of surfactants elicits modifications in the surface charge properties of MPs, consequently influencing their adsorption efficacy vis-à-vis DCF.
Collapse
Affiliation(s)
- Siqi Liang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Kangkang Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Kefu Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Tao Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Changyan Guo
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Wei Wang
- Department
of Chemistry, University of Bergen, Bergen 5007, Norway
- Centre
for Pharmacy, University of Bergen, Bergen 5020, Norway
| | - Jide Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
114
|
Feng J, Liu L, Zhang Y, Wang Q, Liang H, Wang H, Song P. Rethinking the pathway to sustainable fire retardants. EXPLORATION (BEIJING, CHINA) 2023; 3:20220088. [PMID: 37933239 PMCID: PMC10624375 DOI: 10.1002/exp.20220088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/10/2023] [Indexed: 11/08/2023]
Abstract
Flame retardants are currently used in a wide range of industry sectors for saving lives and property by mitigating fire hazards. The growing fire safety requirements for materials boost an escalating demand for consumption of fire retardants. This has significantly driven both the industry and scientific community to pursue sustainable fire retardants, but what makes a sustainable flame retardant? Here an overview of recent advances in sustainable flame retardants is offered, and their renewable raw materials, green synthesis and life cycle assessments are highlighted. A discussion on key challenges that hinder the innovation of fire retardants and design principles for creating truly sustainable yet cost-effective fire retardants are also presented. This short work is expected to help drive the development of sustainable, cost-effective fire retardants, and expedite the creation of a more sustainable and safer society.
Collapse
Affiliation(s)
- Jiabing Feng
- China‐Australia Institute for Advanced Materials and ManufacturingJiaxing UniversityJiaxingChina
| | - Lei Liu
- College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Yan Zhang
- Laboratory of Polymer Materials and EngineeringNingboTech UniversityNingboChina
| | - Qingsheng Wang
- Department of Chemical EngineeringTexas A&M UniversityTexasUSA
| | - Hong Liang
- Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityTexasUSA
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldAustralia
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldAustralia
- School of Agriculture and Environmental ScienceUniversity of Southern QueenslandSpringfieldAustralia
| |
Collapse
|
115
|
Zhang ZA, Qin X, Zhang Y. Using Data-Driven Methods and Aging Information to Quantitatively Identify Microplastic Environmental Sources and Establish a Comprehensive Discrimination Index. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37465930 DOI: 10.1021/acs.est.3c03048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The global distribution of microplastics (MPs) across various environmental compartments has garnered significant attention. However, the differences in the characteristics of MPs in different environments remain unclear, and there is still a lack of quantitative analysis of their environmental sources. In addition, the inclusion of aging in source apportionment is a novel approach that has not been widely explored. In this study, we conducted a meta-analysis of the literature from the past 10 years and extracted conventional and aging characteristic data of MPs from 321 sampling points across 7 environmental compartments worldwide. We established a data-driven analysis framework using these data sets to identify different MP communities across environmental compartments, screen key MP features, and develop an environmental source analysis model for MPs. Our results indicate significant differences in the characteristics of MP communities across environments. The key features of differentiation were identified using the LEfSe method and include the carbonyl index, hydroxyl index, fouling index, proportions of polypropylene, white, black/gray, and film/sheet. These features were screened for each environmental compartment. An environmental source identification model was established based on these features with an accuracy of 75.1%. In order to accurately represent the single/multisource case in a more probabilistic manner, we proposed the MP environmental source index (MESI) to provide a probability estimation of the sample having multiple sources. Our findings contribute to a better understanding of MP migration trends and fluxes in the plastic cycle and inform effective prevention and control strategies for MP pollution.
Collapse
Affiliation(s)
- Zhan-Ao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinran Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
116
|
Russell CE, Fernández R, Parsons DR, Gabbott SE. Plastic pollution in riverbeds fundamentally affects natural sand transport processes. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:255. [PMID: 38665182 PMCID: PMC11041772 DOI: 10.1038/s43247-023-00820-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2024]
Abstract
Over the past 50 years, rivers have become increasingly important vectors for plastic pollution. Lowland riverbeds exhibit coherent morphological features including ripple and dune bedforms, which transport sediment downstream via well-understood processes, yet the impact of plastic on sediment transport mechanics is largely unknown. Here we use flume tank experiments to show that when plastic particles are introduced to sandy riverbeds, even at relatively low concentrations, novel bedform morphologies and altered processes emerge, including irregular bedform stoss erosion and dune "washout", causing topographic bedform amplitudes to decline. We detail (i) new mechanisms of plastic incorporation and transport in riverbed dunes, and (ii) how sedimentary processes are fundamentally influenced. Our laboratory flume tank experiments suggest that plastic is not a passive component of river systems but directly affects bed topography and locally increases the proportion of sand suspended in the water column, which at larger scales, has the potential to impact river ecosystems and wider landscapes. The resulting plastic distribution in the sediment is heterogeneous, highlighting the challenge of representatively sampling plastic concentrations in river sediments. Our insights are part of an ongoing suite of efforts contributing to the establishment of a new branch of process sedimentology: plastic - riverbed sand interactions.
Collapse
Affiliation(s)
- Catherine E. Russell
- School of Geography, Geology, and the Environment, University of Leicester, Leicester, LE1 7RH UK
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
- University of New Orleans, New Orleans, 2000 Lakeshore Drive, LA 70148 USA
| | - Roberto Fernández
- Department of Civil and Environmental Engineering, Penn State University, State College, University Park, PA 16802 USA
- Energy and Environment Institute, University of Hull, Hull, HU6 7RX UK
| | - Daniel R. Parsons
- Energy and Environment Institute, University of Hull, Hull, HU6 7RX UK
- Loughborough University, Loughborough, LE11 3TU UK
| | - Sarah E. Gabbott
- School of Geography, Geology, and the Environment, University of Leicester, Leicester, LE1 7RH UK
| |
Collapse
|
117
|
Hu C, Lei F, Zhang X, Shi J, Li J, Zuo X, Li S, Ouyang Z, Guo X. Black carbon derived from pyrolysis of maize straw and polystyrene microplastics affects soil biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163398. [PMID: 37061062 DOI: 10.1016/j.scitotenv.2023.163398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Understanding the environmental correlation of microbial community under external stimulation is significant for ecological restoration. However, few studies focused on the response of soil biodiversity induced by black carbon (BC) derived from pyrolysis of straw and microplastics (MPs) due to their widespread existence in natural environment. In this study, polystyrene MPs (PS) and maize straw with different mass ratios were used as raw materials to prepare BC by pyrolysis. The surface morphology, chemical composition and sequential variations of different functional groups of BC were systematically analyzed. The leachate from BC was identified by three-dimensional excitation emission matrice (3D-EEM). The corresponding results showed that yield, value of O/C and N element content of BC decreased with more PS. The changed C content and oxygen-containing functional groups occurred. The order of functional groups of BC formed by co-pyrolysis was: C=C > C-O > C-H > Si-O-Si. The main component of leaching from BC was humic-like and fulvic-like acid. Simultaneously, the input of exogenous BC into soil affected abundance, composition and metabolic pathways of microorganisms. The study helps to understand environmental implication of BC which was pyrolyzed from maize straw and MPs, providing an idea for improving biogeochemical cycle process in soil.
Collapse
Affiliation(s)
- Changlu Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fadan Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiabao Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuxing Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
118
|
Vaksmaa A, Polerecky L, Dombrowski N, Kienhuis MVM, Posthuma I, Gerritse J, Boekhout T, Niemann H. Polyethylene degradation and assimilation by the marine yeast Rhodotorula mucilaginosa. ISME COMMUNICATIONS 2023; 3:68. [PMID: 37423910 PMCID: PMC10330194 DOI: 10.1038/s43705-023-00267-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
Ocean plastic pollution is a severe environmental problem but most of the plastic that has been released to the ocean since the 1950s is unaccounted for. Although fungal degradation of marine plastics has been suggested as a potential sink mechanism, unambiguous proof of plastic degradation by marine fungi, or other microbes, is scarce. Here we applied stable isotope tracing assays with 13C-labeled polyethylene to measure biodegradation rates and to trace the incorporation of plastic-derived carbon into individual cells of the yeast Rhodotorula mucilaginosa, which we isolated from the marine environment. 13C accumulation in the CO2 pool during 5-day incubation experiments with R. mucilaginosa and UV-irradiated 13C-labeled polyethylene as a sole energy and carbon source translated to degradation rates of 3.8% yr-1 of the initially added substrate. Furthermore, nanoSIMS measurements revealed substantial incorporation of polyethylene-derived carbon into fungal biomass. Our results demonstrate the potential of R. mucilaginosa to mineralize and assimilate carbon from plastics and suggest that fungal plastic degradation may be an important sink for polyethylene litter in the marine environment.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
| | - Lubos Polerecky
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Michiel V M Kienhuis
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Ilsa Posthuma
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
119
|
Kim SK, Kim JS, Kim SY, Song NS, La HS, Yang EJ. Arctic Ocean sediments as important current and future sinks for marine microplastics missing in the global microplastic budget. SCIENCE ADVANCES 2023; 9:eadd2348. [PMID: 37406127 DOI: 10.1126/sciadv.add2348] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
To better understand unexpectedly low plastic loads at the ocean's surface compared with inputs, unidentified sinks must be located. Here, we present the microplastic (MP) budget for multi-compartments in the western Arctic Ocean (WAO) and demonstrate that Arctic sediments serve as important current and future sinks for MPs missing from the global budget. We identified an increase of 3% year-1 in MP deposition from sediment core observations. Relatively elevated MP abundances were found in seawater and surface sediments around the summer sea ice retreat region, implying enhanced MP accumulation and deposition facilitated by the ice barrier. We estimate 15.7 ± 2.30 × 1016 N and 0.21 ± 0.14 MT as total MP loads in the WAO with 90% (by mass) buried in the post-1930 sediments, which exceeds the global average of the current marine MP load. The slower increase in plastic burial versus production implies a lag in plastic delivery to the Arctic, indicating more pollution in the future.
Collapse
Affiliation(s)
- Seung-Kyu Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Yellow Sea Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ji-Su Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - So-Young Kim
- Division of Ocean Sciences, Korea Polar Research Institute, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Nan-Seon Song
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyoung Sul La
- Division of Ocean Sciences, Korea Polar Research Institute, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Eun Jin Yang
- Division of Ocean Sciences, Korea Polar Research Institute, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
120
|
Leila B, Sedláček P, Anastasopoulou A. Plastic pollution in the deep-sea Giant red shrimp, Aristaeomorpha foliacea, in the Eastern Ionian Sea; an alarm point on stock and human health safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162783. [PMID: 36907401 DOI: 10.1016/j.scitotenv.2023.162783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Plastic litter, including microplastics, is an ever-growing threat adversely affecting a variety of marine organisms; however, their known effects on marine organisms are still lacking. Aristaeomorpha foliacea is a valuable commercial deep-sea species in the Mediterranean Sea. Hence, due to its importance to human consumption, the investigation of plastic impact on these animals is vitally necessary. In this study the occurrence of ingested plastics has been studied in the giant red shrimp for the first time in the eastern Ionian Sea, as well as any possible differences regarding the plastic ingestion per sex, size, year and its relation to shrimp's health condition. A total of 621 individuals were collected from the Essential Habitat of this species in the eastern Ionian Sea. Plastics were contained in the stomachs of 14.65 % of the examined individuals, with an average of 2.97 ± 0.3 items per stomach. The occurrence of plastics was higher in males than in females. The ingested plastics detected were exclusively fibers of different sizes, colors, and shapes (single form or tangled balls). Plastic items size ranged from 0.75 to 110.59 mm. Significant differences in the occurrence of plastic in the stomachs of A. foliacea were found among years, stations and sex, whereas no considerable effect on shrimp's health condition factors was found. The chemical analysis of plastics showed that 83.82 % of fibers were polyester (PET). Among the shrimps with ingested plastics, the immature individuals were predominant (85.18 %). The results of this study aspire to increase the knowledge on plastics ingestion in the Mediterranean, and highlight the various factors that may be involved in this process. This study demonstrates the obvious threats of plastics in commonly edible shrimps and emphasizes the role of this decapod at the trophic chain by transferring plastics to humans.
Collapse
Affiliation(s)
- Bordbar Leila
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7km Athens-Sounio, Anavissos, Attiki 19013, Greece.
| | - Petr Sedláček
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic
| | - Aikaterini Anastasopoulou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7km Athens-Sounio, Anavissos, Attiki 19013, Greece.
| |
Collapse
|
121
|
Zhu H, Fan X, Zou H, Guo RB, Fu SF. Effects of size and surface charge on the sedimentation of nanoplastics in freshwater. CHEMOSPHERE 2023:139194. [PMID: 37315858 DOI: 10.1016/j.chemosphere.2023.139194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/20/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The environmental issues caused by nanoplastics (NPs) are increasingly noticeable. Environmental behavior study of the NPs could provide vital information for their environmental impact assessment. However, associations between NPs' inherent properties and their sedimentation behaviors were seldom investigated. In this study, six types of PSNPs (polystyrene nanoplastics) with different charges (positive and negative) and particle sizes (20-50 nm, 150-190 nm and 220-250 nm) were synthesized, and their sedimentations under different environmental factors, (e.g., pH value, ionic strength (IS), electrolyte type and natural organic matter) were investigated. Results displayed that both particle size and surface charge would affect the sedimentation of PSNPs. The maximum sedimentation ratio of 26.48% was obtained in positive charged PSNPs with size of 20-50 nm, while the minimum sedimentation ratio of 1.02% was obtained in negative charged PSNPs with size of 220-250 nm at pH 7.6. The pH value shift (range of 5-10) triggered negligible changes of sedimentation ratio, the average particle size and the Zeta potential. Small size PSNPs (20-50 nm) showed higher sensitivity to IS, electrolyte type and HA condition than large size PSNPs. At high IS value ( [Formula: see text] = 30 mM or ISNaCl = 100 mM), the sedimentation ratios of the PSNPs all increased differently according to their properties, and the sedimentation promoting effect of CaCl2 was more significant on negative charged PSNPs than positive charged PSNPs. When [Formula: see text] increased from 0.9 to 9 mM, the sedimentation ratios of negative charged PSNPs increased by 0.53%-23.49%, while that of positive charged PSNPs increased by less than 10%. Besides, humic acid (HA) addition (1-10 mg/L) would lead to a stable suspension status for PSNPs in water with different degree and perhaps different mechanism due to their charge characteristics. These results showed new light on influence factor studies of NPs' sedimentation and would be helpful for further knowledge of NPs' environmental behaviors.
Collapse
Affiliation(s)
- Honglu Zhu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiaolei Fan
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| | - Shan-Fei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| |
Collapse
|
122
|
Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM. Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162557. [PMID: 36898539 DOI: 10.1016/j.scitotenv.2023.162557] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Irene Martins
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
123
|
Xia F, Wang Y, Wang D, Cai Y, Zhang J. Seasonal pulse effect of microplastics in the river catchment-From tributary catchment to mainstream. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118316. [PMID: 37290303 DOI: 10.1016/j.jenvman.2023.118316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Rivers have received extensive attention as a major pathway for microplastics (<5000 μm) from land to ocean. This study investigated the seasonal variation of microplastic contamination in surface water of the Liangfeng River catchment, a tributary of the Li River in China, based on a fluorescence-based protocol, and further explored the migration process of microplastic in the river catchment. The abundance of microplastics (50-5000 μm) was (6.20 ± 0.57)-(41.93 ± 8.13) items/L, of which 57.89-95.12% were small-sized microplastics (<330 μm). The microplastic fluxes in the upper Liangfeng River, lower Liangfeng River, and upper Li River were (14.89 ± 1.24) × 1012, (5.71 ± 1.15) × 1012, and (1.54 ± 0.55) × 1014 items/year, respectively. The 3.70% of microplastic load in the mainstream came from the tributary input. Fluvial processes can effectively retain 61.68% of microplastics in the surface water of river catchments, especially for small-sized microplastics. The rainy season is the main period of microplastic retention (91.87%) in the tributary catchment by fluvial processes, while exporting 77.42% of one-year microplastic emissions from the tributary catchment into the mainstream. This study is the first to reveal the transport characteristics of small-sized microplastics in river catchments based on flux variation, which not only can partly explain the "missing small-sized microplastic fraction" in the ocean, but also contribute to improving microplastic model.
Collapse
Affiliation(s)
- Feiyang Xia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yelin Wang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
124
|
Berlino M, Sarà G, Mangano MC. Functional Trait-Based Evidence of Microplastic Effects on Aquatic Species. BIOLOGY 2023; 12:811. [PMID: 37372096 PMCID: PMC10294819 DOI: 10.3390/biology12060811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Microplastics represent an ever-increasing threat to aquatic organisms. We merged data from two global scale meta-analyses investigating the effect of microplastics on benthic organisms' and fishes' functional traits. Results were compared, allowing differences related to vertebrate and invertebrate habitat, life stage, trophic level, and experimental design to be explored. Functional traits of aquatic organisms were negatively affected. Metabolism, growth, and reproduction of benthic organisms were impacted, and fish behaviour was significantly affected. Responses differed by trophic level, suggesting negative effects on trophic interactions and energy transfer through the trophic web. The experimental design was found to have the most significant impact on results. As microplastics impact an organism's performance, this causes indirect repercussions further up the ecological hierarchy on the ecosystem's stability and functioning, and its associated goods and services are at risk. Standardized methods to generate salient targets and indicators are urgently needed to better inform policy makers and guide mitigation plans.
Collapse
Affiliation(s)
- M. Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - G. Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - M. C. Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
| |
Collapse
|
125
|
Villafañe AB, Ronda AC, Rodríguez Pirani LS, Picone AL, Lucchi LD, Romano RM, Pereyra MT, Arias AH. Microplastics and anthropogenic debris in rainwater from Bahia Blanca, Argentina. Heliyon 2023; 9:e17028. [PMID: 37383205 PMCID: PMC10293668 DOI: 10.1016/j.heliyon.2023.e17028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Concern about atmospheric microplastic (MP) contamination has increased in recent years. This study assessed the abundance of airborne anthropogenic particles, including MPs, deposited in rainfall in Bahia Blanca, southwest Buenos Aires, Argentina. Rainwater samples were collected monthly from March to December 2021 using an active wet-only collector consisting of a glass funnel and a PVC pipe that is only open during rain events. Results obtained show that all rain samples contained anthropogenic debris. The term "anthropogenic debris" is used to refer to the total number of particles as not all the particles found could be determined as plastic. Among all the samples, an average deposition of 77 ± 29 items (anthropogenic debris) m-2d-1 was found. The highest deposition was observed in November (148 items m-2d-1) while the lowest was found in March (46 items m-2d-1). Anthropogenic debris ranged in size from 0.1 mm to 3.87 mm with the most abundant particles being smaller than 1 mm (77.8%). The dominant form of particles found were fibers (95%), followed by fragments (3.1%). Blue color predominated (37.2%) in the total number of samples, followed by light blue (23.3%) and black (21.7%). Further, small particles (<2 mm), apparently composed of mineral material and plastic fibers, were recognized. The chemical composition of suspected MPs was examined by Raman microscopy. The analysis of μ-Raman spectra confirmed the presence of polystyrene, polyethylene terephthalate, and polyethylene vinyl acetate fibers and provided evidence of fibers containing industrial additives such as indigo dye. This is the first assessment of MP pollution in rain in Argentina.
Collapse
Affiliation(s)
- A. Belén Villafañe
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
| | - Ana C. Ronda
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Lucas S. Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - A. Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - Leandro D. Lucchi
- Comité Técnico Ejecutivo, Municipalidad de Bahía Blanca, Av. Gral. San Martín 3474 , Bahía Blanca, Argentina
| | - Rosana M. Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - Marcelo T. Pereyra
- INQUISUR-Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca, Argentina
| | - Andrés H. Arias
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca, Argentina
| |
Collapse
|
126
|
Baudena A, Kiko R, Jalón-Rojas I, Pedrotti ML. Low-Density Plastic Debris Dispersion beneath the Mediterranean Sea Surface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7503-7515. [PMID: 37125732 DOI: 10.1021/acs.est.2c08873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastic is a widespread marine pollutant, with most studies focusing on the distribution of floating plastic debris at the sea surface. Recent evidence, however, indicates a significant presence of such low density plastic in the water column and at the seafloor, but information on its origin and dispersion is lacking. Here, we studied the pathways and fate of sinking plastic debris in the Mediterranean Sea, one of the most polluted world seas. We used a recent Lagrangian plastic-tracking model, forced with realistic parameters, including a maximum estimated sinking speed of 7.8 m/d. Our simulations showed that the locations where particles left the surface differed significantly from those where they reached the seafloor, with lateral transport distances between 119 and 282 km. Furthermore, 60% of particles deposited on the bottom coastal strip (20 km wide) were released from vessels, 20% from the facing country, and 20% from other countries. Theoretical considerations furthermore suggested that biological activities potentially responsible for the sinking of low density plastic occur throughout the water column. Our findings indicate that the responsibility for seafloor plastic pollution is shared among Mediterranean countries, with potential impact on pelagic and benthic biota.
Collapse
Affiliation(s)
- Alberto Baudena
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093 LOV, Villefranche-sur-Mer 06230, France
| | - Rainer Kiko
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093 LOV, Villefranche-sur-Mer 06230, France
- GEOMAR Helmholtz Centre for Ocean Research 24148 Kiel, Germany
| | - Isabel Jalón-Rojas
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Maria Luiza Pedrotti
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, UMR 7093 LOV, Villefranche-sur-Mer 06230, France
| |
Collapse
|
127
|
Yang L, Ma C. Toward a better understanding of microalgal photosynthesis in medium polluted with microplastics: a study of the radiative properties of microplastic particles. Front Bioeng Biotechnol 2023; 11:1193033. [PMID: 37214287 PMCID: PMC10192614 DOI: 10.3389/fbioe.2023.1193033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Due to the wide presence of microplastics in water, the interaction between microplastic particles and microalgae cells in medium merits the attention of researchers. Microplastic particles can impact the original transmission of light radiation in water bodies since the refractive index of microplastics is different from that of water bodies. Accordingly, the accumulation of microplastics in water bodies will certainly impact microalgal photosynthesis. Therefore, experimental measurements and theoretical studies characterizing the radiative properties of the interaction between light and microplastic particles are highly significant. The extinction and absorption coefficient/cross-section of polyethylene terephthalate and polypropylene were experimentally measured using transmission and integrating methods in the spectral range of 200-1,100 nm. The absorption cross-section of PET shows remarkable absorption peaks in the vicinity of 326 nm, 700 nm, 711 nm, 767 nm, 823 nm, 913 nm, and 1,046 nm. The absorption cross-section of PP has distinctive absorption peaks near 334 nm, 703 nm, and 1,016 nm. The measured scattering albedo of the microplastic particles is above 0.7, indicating that both microplastics are scattering dominant media. Based on the results of this work, an in-depth understanding of the interaction between microalgal photosynthesis and microplastic particles in the medium will be obtained.
Collapse
Affiliation(s)
- Limin Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunyang Ma
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
128
|
Janakiram R, Keerthivasan R, Janani R, Ramasundaram S, Martin MV, Venkatesan R, Ramana Murthy MV, Sudhakar T. Seasonal distribution of microplastics in surface waters of the Northern Indian Ocean. MARINE POLLUTION BULLETIN 2023; 190:114838. [PMID: 37002963 DOI: 10.1016/j.marpolbul.2023.114838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seven expeditions were carried out during pre-monsoon, monsoon and post monsoon in 2018-2019 for marine plastic collection in surface waters of Northern Indian Ocean. PE and PP (83 %) is the dominant type of polymer found in the surface waters. Colored particles account for 67 % of all particles, with fibre/line accounting for 86 %. The average (Mean ± SD) microplastics concentration in the Northern Indian Ocean during pre-monsoon is 15,200 ± 7999 no./km2, Monsoon is 18,223 ± 14,725 no./km2 and post monsoon is 72,381 ± 77,692 no./km2. BoB during pre-monsoon and post monsoon the microplastic concentration remains same except in the northern BoB this change is caused due to weak winds. Microplastics concentration varied both spatially, temporal and heterogeneity in nature. These differences are caused by effect of wind and seasonal reversal of currents. Microplastics collected in the anticyclonic eddy are 129,000 no./km2.
Collapse
Affiliation(s)
- R Janakiram
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - R Keerthivasan
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - R Janani
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - S Ramasundaram
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - M V Martin
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - R Venkatesan
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, India.
| | - Tata Sudhakar
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| |
Collapse
|
129
|
Zeng Y, Deng B, Kang Z, Araujo P, Mjøs SA, Liu R, Lin J, Yang T, Qu Y. Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114871. [PMID: 37030048 DOI: 10.1016/j.ecoenv.2023.114871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs) pose one of the major environmental threats to marine organisms and ecosystems on a global scale. Although many marine crustaceans are highly susceptible to MPs pollution, the toxicological effects and mechanisms of MPs on crustaceans are poorly understood. The current study focused on the impacts of MPs accumulation in shrimp Litopenaeus vannamei at the behavioral, histological and biochemical levels. The results demonstrated the accumulation of polystyrene MPs in various organs of L. vannamei, with highest MPs abundance in the hepatopancreas. The MPs accumulated in shrimp caused growth inhibition, abnormal swimming behavior and reduced swimming performance of L. vannamei. Following MPs exposure, oxidative stress and lipid peroxidation were also observed, which were strongly linked to attenuated swimming activity of L. vannamei. The above MPs-induced disruption in balance of antioxidant system triggered the hepatopancreatic damage in L. vannamei, which was exacerbated with increasing MPs concentrations (from 0.02 to 1 mg L-1). Furthermore, metabolomics revealed that MPs exposure resulted in alterations of metabolic profiles and disturbed glycolysis, lipolysis and amino acid metabolism pathways in hepatopancreas of L. vannamei. This work confirms and expands the knowledge on the sublethal impacts and toxic modes of action of MPs in L. vannamei.
Collapse
Affiliation(s)
- Yingxu Zeng
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China.
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zixin Kang
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Pedro Araujo
- Institute of Marine Research, 5817 Bergen, Norway
| | - Svein Are Mjøs
- Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
| | - Ruina Liu
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Jianhui Lin
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Tao Yang
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Yuangao Qu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
130
|
Zhang S, Wang W, Yan P, Wang J, Yan S, Liu X, Aurangzeib M. Microplastic migration and distribution in the terrestrial and aquatic environments: A threat to biotic safety. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117412. [PMID: 36758402 DOI: 10.1016/j.jenvman.2023.117412] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plastics production has been increasing over years, while their recycling rate is lower, resulting in huge amounts of microplastics (MP) accumulating in the environment. Although the environmental behaviors of MPs have been focused on in recent years, the migration, distribution and adverse effects of MPs in terrestrial and aquatic environments are still not systematically understood. In this review, based on the newest publications from the core database of the Web of Science, both the migration and distribution of MPs were summarized, as well as MPs transfer in biota and their biological effects were also focused on. Generally, the complicated and numerous pathways of MPs migration lead to their distribution throughout or nearly all environments on a global scale. However, the migration mechanisms of MPs with various sizes, shapes, and colors by physicochemical and biological processes, and the prediction models of MP migration and distribution, are deficient, despite these properties being highly related to MPs migration and bio-safety. Although MPs have already invaded microorganisms, plants, animals, and even human beings, the biological effects still need more study, so far as their sizes and shapes and also their composition and adsorption are concerned. Moreover, based on the highlights and deficiencies of current studies, further studies have also been proposed. This review aims to help people re-evaluate the uncertain behaviors of MPs in various environments, and could be helpful to fully understand their biological effects in different environmental conditions.
Collapse
Affiliation(s)
- Shaoliang Zhang
- Northeast Agricultural University, Harbin, 150030, PR China.
| | - Wan Wang
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Pengke Yan
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiuqi Wang
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Sihua Yan
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaobing Liu
- Northeast Institute of Geography and Agroecology, CAS, Harbin, 150081, PR China
| | | |
Collapse
|
131
|
Celik M, Nakano H, Uchida K, Isobe A, Arakawa H. Comparative evaluation of the carbonyl index of microplastics around the Japan coast. MARINE POLLUTION BULLETIN 2023; 190:114818. [PMID: 36989597 DOI: 10.1016/j.marpolbul.2023.114818] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
The carbonyl index (CI) of polyethylene and polypropylene microplastics (MPs) (2950 particles) collected in coastal waters around Japan was investigated. The CI of MPs was calculated by the specified area under band technique. The mean MP CI in all samples (regardless of shape and color) was 0.69 ± 0.34 and 0.70 ± 0.34 for polyethylene and polypropylene, respectively, and there was no significant difference in the color or shape of the MPs. The polyethylene, white, and fragment MPs CI was negatively (p < 0.05) correlated with the major length of the MPs. Large MPs with relatively little deterioration were distributed along the west coast of the Sea of Japan, whereas small MPs were distributed along the east coast. Our findings of this gradual change in the deterioration of MPs, based on geographical distribution, are in accordance with literature CI-size and MP degradation hypotheses.
Collapse
Affiliation(s)
- Murat Celik
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Haruka Nakano
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Keiichi Uchida
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hisayuki Arakawa
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
132
|
Corti A, La Nasa J, Biale G, Ceccarini A, Manariti A, Petri F, Modugno F, Castelvetro V. Microplastic pollution in the sediments of interconnected lakebed, seabed, and seashore aquatic environments: polymer-specific total mass through the multianalytical "PISA" procedure. Anal Bioanal Chem 2023:10.1007/s00216-023-04664-0. [PMID: 37071143 DOI: 10.1007/s00216-023-04664-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
The total mass of individual synthetic polymers present as microplastic (MP < 2 mm) pollutants in the sediments of interconnected aquatic environments was determined adopting the Polymer Identification and Specific Analysis (PISA) procedure. The investigated area includes a coastal lakebed (Massaciuccoli), a coastal seabed (Serchio River estuarine), and a sandy beach (Lecciona), all within a natural park area in Tuscany (Italy). Polyolefins, poly(styrene) (PS), poly(vinyl chloride) (PVC), polycarbonate (PC), poly(ethylene terephthalate) (PET), and the polyamides poly(caprolactame) (Nylon 6) and poly(hexamethylene adipamide) (Nylon 6,6) were fractionated and quantified through a sequence of selective solvent extractions followed by either analytical pyrolysis or reversed-phase HPLC analysis of the products of hydrolytic depolymerizations under acidic and alkaline conditions. The highest concentrations of polyolefins (highly degraded, up to 864 µg/kg of dry sediment) and PS (up to 1138 µg/kg) MPs were found in the beach dune sector, where larger plastic debris are not removed by the cyclic swash action and are thus prone to further aging and fragmentation. Surprisingly, low concentrations of less degraded polyolefins (around 30 µg/kg) were found throughout the transect zones of the beach. Positive correlation was found between polar polymers (PVC, PC) and phthalates, most likely absorbed from polluted environments. PET and nylons above their respective LOQ values were found in the lakebed and estuarine seabed hot spots. The pollution levels suggest a significant contribution from riverine and canalized surface waters collecting urban (treated) wastewaters and waters from Serchio River and the much larger Arno River aquifers, characterized by a high anthropogenic pressure.
Collapse
Affiliation(s)
- Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Antonella Manariti
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Filippo Petri
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy.
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
133
|
Nyberg B, Harris PT, Kane I, Maes T. Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161821. [PMID: 36708835 DOI: 10.1016/j.scitotenv.2023.161821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Mismanaged plastic waste (MPW) entering the riverine environment is concerning, given that most plastic pollution never reaches the oceans, and it has a severe negative impact on terrestrial ecosystems. However, significant knowledge gaps on the storage and remobilization of MPW within different rivers over varying timescales remain. Here we analyze the exposure of river systems to MPW to better understand the sedimentary processes that control the legacy of plastic waste. Using a conservative approach, we estimate 0.8 million tonnes of MPW enter rivers annually in 2015, affecting an estimated 84 % of rivers by surface area, globally. By 2060, the amount of MPW input to rivers is expected to increase nearly 3-fold, however improved plastic waste strategies through better governance can decrease plastic pollution by up to 72 %. Currently, most plastic input occurs along anthropogenically modified rivers (49 %) yet these represent only 23 % of rivers by surface area. Another 17 % of MPW occur in free-flowing actively migrating meandering rivers that likely retain most plastic waste within sedimentary deposits, increasing retention times and likelihood of biochemical weathering. Active braided rivers receive less MPW (14 %), but higher water discharge will also increase fragmentation to form microplastics. Only 20 % of plastic pollution is found in non-migrating and free-flowing rivers; these have the highest probability of plastics remaining within the water column and being transferred downstream. This study demonstrates the spatial variability in MPW affecting different global river systems with different retention, fragmentation, and biochemical weathering rates of plastics. Targeted mitigation strategies and environmental risk assessments are needed at both international and national levels that consider river system dynamics.
Collapse
Affiliation(s)
- Björn Nyberg
- Department of Earth Sciences, University of Bergen, Allegaten 41, 5020 Bergen, Norway; Bjerknes Centre for Climate Research, Allegaten 70, 5020 Bergen, Norway.
| | | | - Ian Kane
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Thomas Maes
- GRID-Arendal, P.O. Box 183, N-4802 Arendal, Norway
| |
Collapse
|
134
|
Feng J, Li C, Tang L, Wu X, Wang Y, Yang Z, Yuan W, Sun L, Hu W, Zhang S. Tracing the Century-Long Evolution of Microplastics Deposition in a Cold Seep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206120. [PMID: 36737848 PMCID: PMC10074074 DOI: 10.1002/advs.202206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) pollution is one of the greatest threats to marine ecosystems. Cold seeps are characterized by methane-rich fluid seepage fueling one of the richest ecosystems on the seafloor, and there are approximately more than 900 cold seeps globally. While the long-term evolution of MPs in cold seeps remains unclear. Here, how MPs have been deposited in the Haima cold seep since the invention of plastics is demonstrated. It is found that the burial rates of MPs in the non-seepage areas significantly increased since the massive global use of plastics in the 1930s, nevertheless, the burial rates and abundance of MPs in the methane seepage areas are much lower than the non-seepage area of the cold seep, suggesting the degradation potential of MPs in cold seeps. More MP-degrading microorganism populations and functional genes are discovered in methane seepage areas to support this discovery. It is further investigated that the upwelling fluid seepage facilitated the fragmentation and degradation behaviors of MPs. Risk assessment indicated that long-term transport and transformation of MPs in the deeper sediments can reduce the potential environmental and ecological risks. The findings illuminated the need to determine fundamental strategies for sustainable marine plastic pollution mitigation in the natural deep-sea environments.
Collapse
Affiliation(s)
- Jing‐Chun Feng
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Can‐Rong Li
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Li Tang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiao‐Nan Wu
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Yi Wang
- Key Laboratory of Gas HydrateGuangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhou510640P. R. China
- Guangzhou Center for Gas Hydrate ResearchChinese Academy of SciencesGuangzhou510640P. R. China
| | - Zhifeng Yang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Weiyu Yuan
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Liwei Sun
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Weiqiang Hu
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Si Zhang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhou510301P. R. China
| |
Collapse
|
135
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
136
|
Nunes BZ, Moreira LB, Xu EG, Castro ÍB. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161293. [PMID: 36592906 DOI: 10.1016/j.scitotenv.2022.161293] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) become ubiquitous contaminants in Marine Protected Areas (MPA) that have been planned as a conservation strategy. The present study provides a comprehensive overview of the occurrence, abundance, and distribution of MPs potentially affecting MPA worldwide. Data on MP occurrence and levels in sediment and biota samples were collected from recent peer-reviewed literature and screened using a GIS-based approach overlapping MP records with MPA boundaries. MPs were found in 186 MPAs, with levels ranging from 0 to 9187.5 items/kg in sediment and up to 17,461.9 items/kg in organisms. Peaked MPs concentrations occurred within multiple-use areas, and no-take MPAs were also affected. About half of MP levels found within MPA fell into the higher concentration quartiles, suggesting potential impacts on these areas. In general, benthic species were likely more affected than pelagic ones due to the higher concentrations of MP reported in the tissues of benthic species. Alarmingly, MPs were found in tissues of two threatened species on the IUCN Red List. The findings denote urgent concerns about the effectiveness of the global system of protected areas and their proposed conservation goals.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Programa de pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil
| | - Lucas Buruaem Moreira
- Instituto do Mar, Universidade Federal de São Paulo (IMAR -UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Ítalo Braga Castro
- Programa de pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR -UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil.
| |
Collapse
|
137
|
Huang Z, Cui Q, Yang X, Wang F, Zhang X. An evaluation model to predict microplastics generation from polystyrene foams and experimental verification. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130673. [PMID: 36580782 DOI: 10.1016/j.jhazmat.2022.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have caused global concerns due to their detrimental effects on ecosystems and even humans. Recycling aged plastic products ahead of MPs generation can be an effective approach to mitigate increasingly serious microplastic pollution. However, predicting MPs generation remains a great challenge. In this regard, we report a simulation method through associating plastics aging with mechanical failure on a time scale to predict MPs generation and give an experimental verification. The results indicate that the proposed evaluation method has high accuracy for predicting MPs generation from aged polystyrene foams. Under conditions of ultraviolet (UV) irradiation and heat for 1000 h, the aged polystyrene foam generate significant microplastics (6.78 × 106 particles/cm3) by water scouring force after the expected aging time (400 h). Furthermore, the experiment results verify the synergistic effect of UV irradiation and heat on polystyrene MPs generation. This work suggests a new strategy to predict MPs generation from aged plastics in complex environments, which provides meaningful guidance for the use and recycling of plastic products.
Collapse
Affiliation(s)
- Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Qinke Cui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
138
|
Short-Term Microplastic Exposure Impairs Cognition in Hermit Crabs. Animals (Basel) 2023; 13:ani13061055. [PMID: 36978596 PMCID: PMC10044271 DOI: 10.3390/ani13061055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
We tested whether acute microplastic exposure impacts information gathering and processing (cognition) in hermit crabs (Pagurus bernhardus). For five days, we kept 51 hermit crabs in tanks containing either polyethylene microspheres (n = 27) or no plastic (n = 24). We then transferred individuals into an intermediate-quality shell and presented them with two vials containing either a better or worse shell. Because touching both shell vials required an equivalent behavioural response, this design controlled for general activity. Plastic-exposed hermit crabs were less likely and slower than controls to touch the better shell vial, instead preferring the worse shell vial. Microplastics, therefore, impaired assessments and decision-making, providing direct evidence of acute microplastic exposure disrupting hermit crab cognition.
Collapse
|
139
|
Nanehkaran YA, Licai Z, Azarafza M, Talaei S, Jinxia X, Chen J, Derakhshani R. The predictive model for COVID-19 pandemic plastic pollution by using deep learning method. Sci Rep 2023; 13:4126. [PMID: 36914765 PMCID: PMC10009853 DOI: 10.1038/s41598-023-31416-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Pandemic plastics (e.g., masks, gloves, aprons, and sanitizer bottles) are global consequences of COVID-19 pandemic-infected waste, which has increased significantly throughout the world. These hazardous wastes play an important role in environmental pollution and indirectly spread COVID-19. Predicting the environmental impacts of these wastes can be used to provide situational management, conduct control procedures, and reduce the COVID-19 effects. In this regard, the presented study attempted to provide a deep learning-based predictive model for forecasting the expansion of the pandemic plastic in the megacities of Iran. As a methodology, a database was gathered from February 27, 2020, to October 10, 2021, for COVID-19 spread and personal protective equipment usage in this period. The dataset was trained and validated using training (80%) and testing (20%) datasets by a deep neural network (DNN) procedure to forecast pandemic plastic pollution. Performance of the DNN-based model is controlled by the confusion matrix, receiver operating characteristic (ROC) curve, and justified by the k-nearest neighbours, decision tree, random forests, support vector machines, Gaussian naïve Bayes, logistic regression, and multilayer perceptron methods. According to the comparative modelling results, the DNN-based model was found to predict more accurately than other methods and have a significant predominance over others with a lower errors rate (MSE = 0.024, RMSE = 0.027, MAPE = 0.025). The ROC curve analysis results (overall accuracy) indicate the DNN model (AUC = 0.929) had the highest score among others.
Collapse
Affiliation(s)
- Yaser A Nanehkaran
- School of Information Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Zhu Licai
- School of Information Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, People's Republic of China
| | | | - Sona Talaei
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Xu Jinxia
- School of Information Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, People's Republic of China
| | - Junde Chen
- School of Informatics, Xiamen University, Xiamen, 361005, Fujian, People's Republic of China
| | - Reza Derakhshani
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
140
|
Zhang Y, Wu P, Xu R, Wang X, Lei L, Schartup AT, Peng Y, Pang Q, Wang X, Mai L, Wang R, Liu H, Wang X, Luijendijk A, Chassignet E, Xu X, Shen H, Zheng S, Zeng EY. Plastic waste discharge to the global ocean constrained by seawater observations. Nat Commun 2023; 14:1372. [PMID: 36914656 PMCID: PMC10011382 DOI: 10.1038/s41467-023-37108-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Marine plastic pollution poses a potential threat to the ecosystem, but the sources and their magnitudes remain largely unclear. Existing bottom-up emission inventories vary among studies for two to three orders of magnitudes (OMs). Here, we adopt a top-down approach that uses observed dataset of sea surface plastic concentrations and an ensemble of ocean transport models to reduce the uncertainty of global plastic discharge. The optimal estimation of plastic emissions in this study varies about 1.5 OMs: 0.70 (0.13-3.8 as a 95% confidence interval) million metric tons yr-1 at the present day. We find that the variability of surface plastic abundance caused by different emission inventories is higher than that caused by model parameters. We suggest that more accurate emission inventories, more data for the abundance in the seawater and other compartments, and more accurate model parameters are required to further reduce the uncertainty of our estimate.
Collapse
Affiliation(s)
- Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, 210023, Nanjing, China.
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
| | - Ruochong Xu
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
| | - Xuantong Wang
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
| | - Lili Lei
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China.
| | - Amina T Schartup
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Yiming Peng
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
| | - Qiaotong Pang
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
| | - Xinle Wang
- School of Atmospheric Sciences, Nanjing University, 210023, Nanjing, China
| | - Lei Mai
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Ruwei Wang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Huan Liu
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing, China
| | - Xiaotong Wang
- State Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing, China
| | - Arjen Luijendijk
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands
- Hydraulic Engineering, Deltares, Delft, Netherlands
| | - Eric Chassignet
- Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University, Tallahassee, FL, USA
| | - Xiaobiao Xu
- Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University, Tallahassee, FL, USA
| | - Huizhong Shen
- School of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuxiu Zheng
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
141
|
Segal Y, Lubinevsky H. Spatiotemporal distribution of seabed litter in the SE Levantine Basin during 2012-2021. MARINE POLLUTION BULLETIN 2023; 188:114714. [PMID: 36860013 DOI: 10.1016/j.marpolbul.2023.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
This study explores the first record of spatiotemporal distributions of macro and micro-litter on the seafloor in the Southeastern (SE) Levantine Basin (LB) during 2012-2021. Macro-litter was surveyed by bottom trawls in water depths of 20-1600 m and micro-litter by sediment box corer/grab at a depths range of 4-1950 m. Maximal macro-litter concentrations were recorded at the upper continental slope (200 m), averaging 4700 ± 3000 items/km2. Plastic bags and packages were the most abundant items (77 ± 9 %) with a maximum of 89 % at 200 m depth, and their size decreased with increasing water depth. Micro-litter debris were found mainly in shelf sediments (≤30 m water depth) with an average concentration of 40 ± 50 items/kg, while shit particles transferred to the deep sea. These findings suggest an extensive distribution of plastic bags and packages in the SE LB, predominantly accumulating in the upper continental slope and deeper, based on their size.
Collapse
Affiliation(s)
- Yael Segal
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Hadas Lubinevsky
- Israel Oceanographic & Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
142
|
Askham C, Pauna VH, Boulay AM, Fantke P, Jolliet O, Lavoie J, Booth AM, Coutris C, Verones F, Weber M, Vijver MG, Lusher A, Hajjar C. Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160038. [PMID: 36395847 PMCID: PMC9760571 DOI: 10.1016/j.scitotenv.2022.160038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.
Collapse
Affiliation(s)
- Cecilia Askham
- Norwegian Institute for Sustainability Research (NORSUS), Stadion 4, 1671 Kråkerøy, Norway.
| | - Valentina H Pauna
- Norwegian Institute for Sustainability Research (NORSUS), Stadion 4, 1671 Kråkerøy, Norway; International PhD Programme/UNESCO Chair "Environment, Resources and Sustainable Development", Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, 80143 Naples, Italy
| | - Anne-Marie Boulay
- CIRAIG, Chemical Engineering Department, Polytechnique Montreal, Canada
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, Kgs. Lyngby, Denmark
| | - Olivier Jolliet
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, Kgs. Lyngby, Denmark
| | - Jérôme Lavoie
- CIRAIG, UQÀM/ISE-Institute of Environmental Sciences, Montreal, Canada
| | | | - Claire Coutris
- NIBIO Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Ås, Norway
| | - Francesca Verones
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Martina G Vijver
- Leiden University, Institute of Environmental Sciences, the Netherlands
| | - Amy Lusher
- Norwegian Institute of Water Research (NIVA), Oslo, Norway; Department of Biological Science, University of Bergen, Bergen, Norway
| | - Carla Hajjar
- CIRAIG, Chemical Engineering Department, Polytechnique Montreal, Canada
| |
Collapse
|
143
|
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
144
|
Österlund H, Blecken G, Lange K, Marsalek J, Gopinath K, Viklander M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159781. [PMID: 36309285 DOI: 10.1016/j.scitotenv.2022.159781] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Urban areas play a key role in the production of microplastics (MPs) and their entry into water bodies. This article reviews the literature on the sources, transport, and control of MPs in urban environments with the aim of clarifying the mechanisms underlying these processes. Major MP sources include atmospheric deposition, micro-litter, and tire and road wear particles (TRWPs). MPs deposited from the atmosphere are mostly fibers and may be particularly important in catchments without traffic. Littering and attrition of textiles and plastic products is another important MP source. However, the quantities of MPs originating from this source may be hard to estimate. TRWPs are a significant source of MPs in urban areas and are arguably the best quantified source. The mobilization of MPs in urban catchments is poorly understood but it appears that dry unconsolidated sediments and MP deposits are most readily mobilized. Sequestration of MPs occurs in green areas and is poorly understood. Consequently, some authors consider green/pervious parts of urban catchments to be MP sinks. Field studies have shown that appreciable MP removal occurs in stormwater quality control facilities. Street cleaning and snow removal also remove MPs (particularly TRWPs), but the efficacy of these measures is unknown. Among stormwater management facilities, biofiltration/retention units seem to remove MPs more effectively than facilities relying on stormwater settling. However, knowledge of MP removal in stormwater facilities remains incomplete. Finally, although 13 research papers reported MP concentrations in stormwater, the total number of field samples examined in these studies was only 189. Moreover, the results of these studies are not necessarily comparable because they are based on relatively small numbers of samples and differ widely in terms of their objectives, sites, analytical methods, size fractions, examined polymers, and even terminology. This area of research can thus be considered "data-poor" and offers great opportunities for further research in many areas.
Collapse
Affiliation(s)
- Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Kalpana Gopinath
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
145
|
Do T, Park Y, Lim B, Kim S, Chae MY, Chun CH. Effect of the first-flush phenomenon on the quantification of microplastics in rainwater. MARINE POLLUTION BULLETIN 2023; 187:114559. [PMID: 36603237 DOI: 10.1016/j.marpolbul.2022.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Precipitation of airborne microplastics (MPs) by rainfall is one of the major transport pathways of MPs from land-to-marine. While most studies examining wet precipitation of MPs collect surface runoffs, direct investigations of MPs in rainwater are hardly reported. In this study, high-frequency and direct rainwater sampling methodology considering the first-flush effect was demonstrated. The variations in MP abundance were evaluated by the inlet size of rainwater collector, time, and duration of sampling. As a result, a stable abundance of MPs was obtained when samplings were conducted at the same time and duration even with different collectors. On the other hand, the abundance increased as much as 4.5 times in samples collected at different times due to the first-flush effect of rainfall. Thus, our methodology that presents MPs concentration versus time curves based on high-frequency sampling would be helpful for easy comparison between similar rainfall studies.
Collapse
Affiliation(s)
- Taegu Do
- Chemical Business R&D Department, Institute of Science, CESCO Co., 46 Sangil-ro 10-gil, Gangdong-gu, Seoul 05288, Republic of Korea; Construction Materials Center, Korea Testing and Research Institute (KTR), 98 Guoyukwon-ro, Gwacheon-si, Gyeonggi-do 13810, Republic of Korea.
| | - Yujeong Park
- Chemical Business R&D Department, Institute of Science, CESCO Co., 46 Sangil-ro 10-gil, Gangdong-gu, Seoul 05288, Republic of Korea
| | - Byungchul Lim
- Chemical Business R&D Department, Institute of Science, CESCO Co., 46 Sangil-ro 10-gil, Gangdong-gu, Seoul 05288, Republic of Korea
| | - Soyoun Kim
- Chemical Business R&D Department, Institute of Science, CESCO Co., 46 Sangil-ro 10-gil, Gangdong-gu, Seoul 05288, Republic of Korea; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Min-Young Chae
- Chemical Business R&D Department, Institute of Science, CESCO Co., 46 Sangil-ro 10-gil, Gangdong-gu, Seoul 05288, Republic of Korea
| | - Chi-Hwan Chun
- Chemical Business R&D Department, Institute of Science, CESCO Co., 46 Sangil-ro 10-gil, Gangdong-gu, Seoul 05288, Republic of Korea.
| |
Collapse
|
146
|
The measurement of food safety and security risks associated with micro- and nanoplastic pollution. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
147
|
Delre A, Goudriaan M, Morales VH, Vaksmaa A, Ndhlovu RT, Baas M, Keijzer E, de Groot T, Zeghal E, Egger M, Röckmann T, Niemann H. Plastic photodegradation under simulated marine conditions. MARINE POLLUTION BULLETIN 2023; 187:114544. [PMID: 36640499 DOI: 10.1016/j.marpolbul.2022.114544] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Ocean plastic pollution is a problem of increasing magnitude; yet, the amount of plastic at the sea surface is much lower than expected. Solar ultraviolet (UV) radiation can induce photodegradation, but its importance in determining the longevity of floating plastic remains unconstrained. Here, we measured photodegradation rates of different plastic types slightly larger than microplastics (virgin polymers and floating plastic debris) under simulated marine conditions. UV irradiation caused all plastic types to leach dissolved organic carbon, and to a lesser degree carbon dioxide, carbon monoxide, methane, and other hydrocarbon gases. The release of photodegradation products translates to degradation rates of 1.7-2.3 % yr-1 of the tested plastic particles normalized to conditions as found in the subtropical surface ocean. Modelling the accumulation of floating plastic debris, our results show that solar UV radiation could already have degraded 7 to 22 % of all floating plastic that has ever been released to the sea.
Collapse
Affiliation(s)
- Annalisa Delre
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Maaike Goudriaan
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Victor Hernando Morales
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands; University of Vigo, Biological Oceanography Group, Vigo (Pontevedra), Spain
| | - Annika Vaksmaa
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Rachel Tintswalo Ndhlovu
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Marianne Baas
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Edwin Keijzer
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Tim de Groot
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Emna Zeghal
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands
| | - Matthias Egger
- The Ocean Cleanup, Rotterdam, the Netherlands; Egger Research and Consulting, St. Gallen, Switzerland
| | - Thomas Röckmann
- Utrecht University, Faculty of Science, Institute for Marine and Atmospheric Research, Utrecht, the Netherlands
| | - Helge Niemann
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology & Biogeochemistry, 't Horntje (Texel), the Netherlands; Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Utrecht, the Netherlands; University of Tromsø, CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Tromsø, Norway.
| |
Collapse
|
148
|
Jiang S, Wang J, Wu F, Xu S, Liu J, Chen J. Extensive abundances and characteristics of microplastic pollution in the karst hyporheic zones of urban rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159616. [PMID: 36308806 DOI: 10.1016/j.scitotenv.2022.159616] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cities are potential areas for microplastic pollution due to large-scale production and the use of plastic products. The karst ecosystem in southwestern China is fragile, and pollutants are more likely to be transported over long distance, resulting in higher pollution risks. Understanding the abundance and composition of microplastics in karst urban water systems is crucial for microplastic pollution management in a karst region. This study investigates the abundances and characteristics of microplastics typically found in river sediments in 10 cities in karst regions of Southwest China. The results show that the abundance of microplastics in sediments ranged from 800 items·kg-1 to 4400 items·kg-1, with an average of 2273 ± 775 items·kg-1 (n = 30), indicating high abundance. Polyamide (PA) was the most common plastic polymer types in all sediment samples. The abundance of microplastics in the downstream (2527 ± 698 items·kg-1) was higher than that in the midstream (2350 ± 999 items·kg-1) and upstream areas (1943 ± 370 items·kg-1), indicating a gradual accumulation effect in the karst water systems. Microplastic abundance in cities (2119 ± 838 items·kg-1) was lower than in counties (2427 ± 671 items·kg-1). No significant correlation was found between microplastic abundance in rivers of urban areas and the level of regional population and economy, but significantly negatively correlated with the efficiency of urban sewage treatment. The results obtained from this study provided insights into the management of microplastic pollution in urban river of a karst region.
Collapse
Affiliation(s)
- Shihao Jiang
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Fengxue Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shu Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China.
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
149
|
Nash R, Joyce H, Pagter E, Frias J, Guinan J, Healy L, Kavanagh F, Deegan M, O'Sullivan D. Deep Sea Microplastic Pollution Extends Out to Sediments in the Northeast Atlantic Ocean Margins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:201-213. [PMID: 36563299 DOI: 10.1021/acs.est.2c05926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous emerging contaminants found in every habitat surveyed, building upon international databases globally. Costs and accessibility often correlate to few deep sea sediment surveys, restricting the number of stations within a given sampling area. An extensive survey of the Porcupine Seabight, Porcupine Bank, the Goban Spur, and south-western canyons resulted in identifying microplastics in deep sea sediment surface layers from 33 of the 44 stations sampled (75%), with a total of 83 particles (74 synthetic and 9 natural) recorded. No microplastic hotspots were identified, and abundances (kg d.w.-1) were not correlated with distance from land, depth, or the presence of macrolitter on the seafloor. Understanding the sources of deep sea microplastics, such as marine traffic, is crucial to developing effective mitigation strategies as well as further monitoring campaigns targeting microplastic pollution in areas with significant deep sea biodiversity such as the Porcupine Seabright.
Collapse
Affiliation(s)
- Róisín Nash
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University, Galway (ATU, Galway), Old Dublin Road, Galway H91 T8NW, Ireland
| | - Haleigh Joyce
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University, Galway (ATU, Galway), Old Dublin Road, Galway H91 T8NW, Ireland
| | - Elena Pagter
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University, Galway (ATU, Galway), Old Dublin Road, Galway H91 T8NW, Ireland
- Marine Institute, Rinville, Oranmore, Co., Galway H91 R673, Ireland
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University, Galway (ATU, Galway), Old Dublin Road, Galway H91 T8NW, Ireland
| | - Janine Guinan
- Geological Survey Ireland, Block 1, Booterstown Hall, Booterstown, Blackrock, Co., Dublin A94 N2R6, Ireland
| | - Louise Healy
- Marine Institute, Rinville, Oranmore, Co., Galway H91 R673, Ireland
| | - Fiona Kavanagh
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University, Galway (ATU, Galway), Old Dublin Road, Galway H91 T8NW, Ireland
| | | | - David O'Sullivan
- Marine Institute, Rinville, Oranmore, Co., Galway H91 R673, Ireland
- INFOMAR, Marine Institute, Rinville, Oranmore, Co., Galway H91 R673, Ireland
| |
Collapse
|
150
|
Bi D, Wang B, Li Z, Zhang Y, Ke X, Huang C, Liu W, Luo Y, Christie P, Wu L. Occurrence and distribution of microplastics in coastal plain soils under three land-use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159023. [PMID: 36167126 DOI: 10.1016/j.scitotenv.2022.159023] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Microplastic pollution is an issue of major environmental concern worldwide. Land-use type may affect the abundance, polymer types, and distribution characteristics of soil microplastics but their distribution remains unknown on the coastal plain of east China. Here, the abundance of microplastics in farmland (FL), plantation (P), and orchard/secondary forest (OSF) soils was determined on the east China coastal plain, and characteristics of the microplastics (shape, size, colour, and polymer composition) were analysed in soil samples collected from 33 sites. The average abundances of microplastics in FL, P, and OSF soils on the coastal plain of the east China coast were 185, 109, and 150 items kg-1, respectively. Small particles, fibres and transparent particles were the main characteristics of the microplastics observed. The polymer types were mainly PP and PET. The abundance of microplastics in farmland was positively correlated with population density in the study area. Therefore, agricultural activities associated with high population density are the main factors leading to the high abundance of microplastics in farmland soil.
Collapse
Affiliation(s)
- De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Beibei Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhu Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yabing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Ke
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengwang Huang
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wuxing Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|