101
|
Heide M, Huttner WB. Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. Cells 2021; 10:1209. [PMID: 34063381 PMCID: PMC8156310 DOI: 10.3390/cells10051209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past few years, human-specific genes have received increasing attention as potential major contributors responsible for the 3-fold difference in brain size between human and chimpanzee. Accordingly, mutations affecting these genes may lead to a reduction in human brain size and therefore, may cause or contribute to microcephaly. In this review, we will concentrate, within the brain, on the cerebral cortex, the seat of our higher cognitive abilities, and focus on the human-specific gene ARHGAP11B and on the gene family comprising the three human-specific genes NOTCH2NLA, -B, and -C. These genes are thought to have significantly contributed to the expansion of the cerebral cortex during human evolution. We will summarize the evolution of these genes, as well as their expression and functional role during human cortical development, and discuss their potential relevance for microcephaly. Furthermore, we will give an overview of other human-specific genes that are expressed during fetal human cortical development. We will discuss the potential involvement of these genes in microcephaly and how these genes could be studied functionally to identify a possible role in microcephaly.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, D-01307 Dresden, Germany
| |
Collapse
|
102
|
Stepien BK, Vaid S, Huttner WB. Length of the Neurogenic Period-A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:676911. [PMID: 34055808 PMCID: PMC8155536 DOI: 10.3389/fcell.2021.676911] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex, a six-layer neuronal brain structure that arose during the evolution of, and is unique to, mammals, is the seat of higher order brain functions responsible for human cognitive abilities. Despite its recent evolutionary origin, it shows a striking variability in size and folding complexity even among closely related mammalian species. In most mammals, cortical neurogenesis occurs prenatally, and its length correlates with the length of gestation. The evolutionary expansion of the neocortex, notably in human, is associated with an increase in the number of neurons, particularly within its upper layers. Various mechanisms have been proposed and investigated to explain the evolutionary enlargement of the human neocortex, focussing in particular on changes pertaining to neural progenitor types and their division modes, driven in part by the emergence of human-specific genes with novel functions. These led to an amplification of the progenitor pool size, which affects the rate and timing of neuron production. In addition, in early theoretical studies, another mechanism of neocortex expansion was proposed—the lengthening of the neurogenic period. A critical role of neurogenic period length in determining neocortical neuron number was subsequently supported by mathematical modeling studies. Recently, we have provided experimental evidence in rodents directly supporting the mechanism of extending neurogenesis to specifically increase the number of upper-layer cortical neurons. Moreover, our study examined the relationship between cortical neurogenesis and gestation, linking the extension of the neurogenic period to the maternal environment. As the exact nature of factors promoting neurogenic period prolongation, as well as the generalization of this mechanism for evolutionary distinct lineages, remain elusive, the directions for future studies are outlined and discussed.
Collapse
Affiliation(s)
- Barbara K Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany.,Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| |
Collapse
|
103
|
Xing L, Kubik-Zahorodna A, Namba T, Pinson A, Florio M, Prochazka J, Sarov M, Sedlacek R, Huttner WB. Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility. EMBO J 2021; 40:e107093. [PMID: 33938018 PMCID: PMC8246068 DOI: 10.15252/embj.2020107093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neocortex expansion during human evolution provides a basis for our enhanced cognitive abilities. Yet, which genes implicated in neocortex expansion are actually responsible for higher cognitive abilities is unknown. The expression of human-specific ARHGAP11B in embryonic/foetal mouse, ferret and marmoset neocortex was previously found to promote basal progenitor proliferation, upper-layer neuron generation and neocortex expansion during development, features commonly thought to contribute to increased cognitive abilities. However, a key question is whether this phenotype persists into adulthood and if so, whether cognitive abilities are indeed increased. Here, we generated a transgenic mouse line with physiological ARHGAP11B expression that exhibits increased neocortical size and upper-layer neuron numbers persisting into adulthood. Adult ARHGAP11B-transgenic mice showed altered neurobehaviour, notably increased memory flexibility and a reduced anxiety level. Our data are consistent with the notion that neocortex expansion by ARHGAP11B, a gene implicated in human evolution, underlies some of the altered neurobehavioural features observed in the transgenic mice, such as the increased memory flexibility, a neocortex-associated trait, with implications for the increase in cognitive abilities during human evolution.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
104
|
Shew CJ, Carmona-Mora P, Soto DC, Mastoras M, Roberts E, Rosas J, Jagannathan D, Kaya G, O'Geen H, Dennis MY. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol Biol Evol 2021; 38:3060-3077. [PMID: 34009325 PMCID: PMC8321529 DOI: 10.1093/molbev/msab131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD genes from 30 families between humans and chimpanzees and found expression patterns consistent with relaxed selection on or neofunctionalization of derived paralogs. In general, ancestral paralogs exhibited greatest expression conservation with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant ancestral functions. Concordantly, analysis of long-read isoform sequencing data sets from diverse human tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell lines (LCLs) and found no relationship between paralogous expression divergence and post-transcriptional regulation, sequence divergence, or copy-number variation. Considering cis-regulation, we reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene duplicates in humans.
Collapse
Affiliation(s)
- Colin J Shew
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Paulina Carmona-Mora
- Genome Center, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Mira Mastoras
- Genome Center, University of California Davis, CA, USA
| | | | - Joseph Rosas
- Genome Center, University of California Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA
| | | | - Gulhan Kaya
- Genome Center, University of California Davis, CA, USA
| | | | - Megan Y Dennis
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA.,Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
105
|
Bernardi P. Looking Back to the Future of Mitochondrial Research. Front Physiol 2021; 12:682467. [PMID: 33995132 PMCID: PMC8119648 DOI: 10.3389/fphys.2021.682467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
106
|
Ferrari R, Grandi N, Tramontano E, Dieci G. Retrotransposons as Drivers of Mammalian Brain Evolution. Life (Basel) 2021; 11:life11050376. [PMID: 33922141 PMCID: PMC8143547 DOI: 10.3390/life11050376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Retrotransposons, a large and diverse class of transposable elements that are still active in humans, represent a remarkable force of genomic innovation underlying mammalian evolution. Among the features distinguishing mammals from all other vertebrates, the presence of a neocortex with a peculiar neuronal organization, composition and connectivity is perhaps the one that, by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success. Among mammals, hominids and especially humans display an extraordinarily expanded cortical volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers of gene regulation in the brain, from transcriptional and post-transcriptional control to both local and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of neurodevelopmental and neurodegenerative conditions are being recognized to be associated with retrotransposon dysregulation. We review here a large body of recent studies lending support to the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of mammalian, primate and human peculiarities of brain morphology and function.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Monserrato, Italy
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence:
| |
Collapse
|
107
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
108
|
Fernando MB. Cross-Platform Validation of 15q13.3 Microdeletion Network Effects in Human Neurons. Biol Psychiatry 2021; 89:e25-e27. [PMID: 33541528 DOI: 10.1016/j.biopsych.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science and the Nash Family Department of Neuroscience, Friedman Brain Institute, Pamela Sklar Division of Psychiatric Genomics, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
109
|
Drummer C, Vogt EJ, Heistermann M, Roshani B, Becker T, Mätz-Rensing K, Kues WA, Kügler S, Behr R. Generation and Breeding of EGFP-Transgenic Marmoset Monkeys: Cell Chimerism and Implications for Disease Modeling. Cells 2021; 10:505. [PMID: 33673402 PMCID: PMC7996964 DOI: 10.3390/cells10030505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction. We generated three male and one female enhanced green fluorescent protein (EGFP)-transgenic founder marmosets via lentiviral transduction of natural preimplantation embryos. All founders accomplished germline transmission of the transgene by natural mating, yielding 20 transgenic offspring together (in total, 45 pups; 44% transgenic). This demonstrates that the transgenic gametes are capable of natural fertilization even when in competition with wildtype gametes. Importantly, 90% of the transgenic offspring showed transgene silencing, which is in sharp contrast to rodents, where the identical transgene facilitated robust EGFP expression. Furthermore, we consistently discovered somatic, but so far, no germ cell chimerism in mixed wildtype/transgenic litters. Somatic cell chimerism resulted in false-positive genotyping of the respective wildtype littermates. For the discrimination of transgenic from transgene-chimeric animals by polymerase chain reaction on skin samples, a chimeric cell depletion protocol was established. In summary, it is possible to establish a cohort of genetically modified marmosets by natural mating, but specific requirements including careful promoter selection are essential.
Collapse
Affiliation(s)
- Charis Drummer
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37099 Göttingen, Germany
| | - Edgar-John Vogt
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Berit Roshani
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Tamara Becker
- Primate Husbandry, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center–Leibniz-Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, 31535 Neustadt, Germany;
| | - Sebastian Kügler
- Center for Nanoscale Microscopy and Physiology of the Brain (CNMPB) at Department of Neurology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany;
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center–Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37099 Göttingen, Germany
| |
Collapse
|
110
|
Mora-Bermúdez F, Taverna E, Huttner WB. From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS J 2021; 289:1524-1535. [PMID: 33638923 DOI: 10.1111/febs.15793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023]
Abstract
Comparing the biology of humans to that of other primates, and notably other hominids, is a useful path to learn more about what makes us human. Some of the most interesting differences among hominids are closely related to brain development and function, for example behaviour and cognition. This makes it particularly interesting to compare the hominid neural cells of the neocortex, a part of the brain that plays central roles in those processes. However, well-preserved tissue from great apes is usually extremely difficult to obtain. A variety of new alternative tools, for example brain organoids, are now beginning to make it possible to search for such differences and analyse their potential biological and biomedical meaning. Here, we present an overview of recent findings from comparisons of the neural stem and progenitor cells (NSPCs) and neurons of hominids. In addition to differences in proliferation and differentiation of NSPCs, and maturation of neurons, we highlight that the regulation of the timing of these processes is emerging as a general foundational difference in the development of the neocortex of hominids.
Collapse
Affiliation(s)
- Felipe Mora-Bermúdez
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Taverna
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
111
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
112
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
113
|
|
114
|
Vezoli J, Magrou L, Goebel R, Wang XJ, Knoblauch K, Vinck M, Kennedy H. Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. Neuroimage 2021; 225:117479. [PMID: 33099005 PMCID: PMC8244994 DOI: 10.1016/j.neuroimage.2020.117479] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Hierarchy is a major organizational principle of the cortex and underscores modern computational theories of cortical function. The local microcircuit amplifies long-distance inter-areal input, which show distance-dependent changes in their laminar profiles. Statistical modeling of these changes in laminar profiles demonstrates that inputs from multiple hierarchical levels to their target areas show remarkable consistency, allowing the construction of a cortical hierarchy based on a principle of hierarchical distance. The statistical modeling that is applied to structure can also be applied to laminar differences in the oscillatory coherence between areas thereby determining a functional hierarchy of the cortex. Close examination of the anatomy of inter-areal connectivity reveals a dual counterstream architecture with well-defined distance-dependent feedback and feedforward pathways in both the supra- and infragranular layers, suggesting a multiplicity of feedback pathways with well-defined functional properties. These findings are consistent with feedback connections providing a generative network involved in a wide range of cognitive functions. A dynamical model constrained by connectivity data sheds insight into the experimentally observed signatures of frequency-dependent Granger causality for feedforward versus feedback signaling. Concerted experiments capitalizing on recent technical advances and combining tract-tracing, high-resolution fMRI, optogenetics and mathematical modeling hold the promise of a much improved understanding of lamina-constrained mechanisms of neural computation and cognition. However, because inter-areal interactions involve cortical layers that have been the target of important evolutionary changes in the primate lineage, these investigations will need to include human and non-human primate comparisons.
Collapse
Affiliation(s)
- Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Loïc Magrou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Xiao-Jing Wang
- Center for Neural Science, New York University (NYU), New York, NY 10003, USA
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai 200031, China.
| |
Collapse
|
115
|
Imaizumi K, Okano H. Modeling neurodevelopment in a dish with pluripotent stem cells. Dev Growth Differ 2021; 63:18-25. [PMID: 33141454 PMCID: PMC7984205 DOI: 10.1111/dgd.12699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Pluripotent stem cells (PSCs) can differentiate into all cell types in the body, and their differentiation procedures recapitulate the developmental processes of embryogenesis. Focusing on neurodevelopment, we describe here the application of knowledge gained from embryology to the neural induction of PSCs. Furthermore, PSC-based neural modeling provides novel insights into neurodevelopmental processes. In particular, human PSC cultures are a powerful tool for the study of human-specific neurodevelopmental processes and could even enable the elucidation of the mechanisms of human brain evolution. We also discuss challenges and potential future directions in further improving PSC-based neural modeling.
Collapse
Affiliation(s)
- Kent Imaizumi
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
116
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
117
|
Meyerink BL, Tiwari NK, Pilaz LJ. Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells 2020; 10:E3. [PMID: 33375033 PMCID: PMC7822038 DOI: 10.3390/cells10010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
118
|
Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020; 14:617513. [PMID: 33390896 PMCID: PMC7775536 DOI: 10.3389/fnins.2020.617513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
An expanded cortex is a hallmark of human neurodevelopment and endows increased cognitive capabilities. Recent work has shown that the cell cycle-related gene NDE1 is essential for proper cortical development. Patients who have mutations in NDE1 exhibit congenital microcephaly as a primary phenotype. At the cellular level, NDE1 is essential for interkinetic nuclear migration and mitosis of radial glial cells, which translates to an indispensable role in neurodevelopment. The nuclear migration function of NDE1 is well conserved across Opisthokonta. In mammals, multiple isoforms containing alternate terminal exons, which influence the functionality of NDE1, have been reported. It has been noted that the pattern of terminal exon usage mirrors patterns of cortical complexity in mammals. To provide context to these findings, here, we provide a comprehensive review of the literature regarding NDE1, its molecular biology and physiological relevance at the cellular and organismal levels. In particular, we outline the potential roles of NDE1 in progenitor cell behavior and explore the spectrum of NDE1 pathogenic variants. Moreover, we assessed the evolutionary conservation of NDE1 and interrogated whether the usage of alternative terminal exons is characteristic of species with gyrencephalic cortices. We found that gyrencephalic species are more likely to express transcripts that use the human-associated terminal exon, whereas lissencephalic species tend to express transcripts that use the mouse-associated terminal exon. Among gyrencephalic species, the human-associated terminal exon was preferentially expressed by those with a high order of gyrification. These findings underscore phylogenetic relationships between the preferential usage of NDE1 terminal exon and high-order gyrification, which provide insight into cortical evolution underlying high-order brain functions.
Collapse
Affiliation(s)
- Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | | - Rahul N. Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
119
|
Namba T, Nardelli J, Gressens P, Huttner WB. Metabolic Regulation of Neocortical Expansion in Development and Evolution. Neuron 2020; 109:408-419. [PMID: 33306962 DOI: 10.1016/j.neuron.2020.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
The neocortex, the seat of our higher cognitive abilities, has expanded in size during the evolution of certain mammals such as primates, including humans. This expansion occurs during development and is linked to the proliferative capacity of neural stem and progenitor cells (NPCs) in the neocortex. A number of cell-intrinsic and cell-extrinsic factors have been implicated in increasing NPC proliferative capacity. However, NPC metabolism has only recently emerged as major regulator of NPC proliferation. In this Perspective, we summarize recent insights into the role of NPC metabolism in neocortical development and neurodevelopmental disorders and its relevance for neocortex evolution. We discuss certain human-specific genes and microcephaly-implicated genes that operate in, or at, the mitochondria of NPCs and stimulate their proliferation by promoting glutaminolysis. We also discuss other metabolic pathways and develop a perspective on how metabolism mechanistically regulates NPC proliferation in neocortical development and how this contributed to neocortex evolution.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
120
|
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations (CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation, primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India, with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are deposited at the Simons Foundation Autism Research Initiative (SFARI) database.
Results
The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs added severity to the condition.
Conclusion
These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy cohorts, indicating their impact on secondary sites for manifestation.
Collapse
|
121
|
Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron 2020; 107:1000-1013. [PMID: 32970995 DOI: 10.1016/j.neuron.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Human organoid models of the central nervous system, including the neural retina, are providing unprecedented opportunities to explore human neurodevelopment and neurodegeneration in controlled culture environments. In this Perspective, we discuss how the single-cell multi-omic toolkit has been used to identify features and limitations of brain and retina organoids and how these tools can be deployed to study congenital brain malformations and vision disorders in organoids. We also address how to improve brain and retina organoid protocols to revolutionize in vitro disease modeling.
Collapse
|
122
|
Kennedy H, Wianny F, Dehay C. Determinants of primate neurogenesis and the deployment of top-down generative networks in the cortical hierarchy. Curr Opin Neurobiol 2020; 66:69-76. [PMID: 33099180 DOI: 10.1016/j.conb.2020.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 01/12/2023]
Abstract
What I cannot create I do not understand - Richard Feynman 1978 Because primate cortical development exhibits numerous specific features, the mouse is an imperfect model for human cortical development. Expansion of supragranular neurons is an evolutionary feature characterizing the primate cortex. Increased production of supragranular neurons is supported by a germinal zone innovation of the primate cortex: the Outer SubVentricular Zone, which along with supragranular neurons constitute privileged targets of primate brain-specific gene evolution. The resulting cell-type diversity of human supragranular neurons link cell and molecular evolutionary changes in progenitors with the emergence of distinctive architectural features in the primate cortex. We propose that these changes are required for the expansion of the primate cortical hierarchy deploying top-down generative networks with potentially important consequences for the neurobiology of human psychiatric disorders.
Collapse
Affiliation(s)
- Henry Kennedy
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Key Laboratory of Primate Neurobiology, Shanghai 200031, China.
| | - Florence Wianny
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France.
| |
Collapse
|
123
|
Liu Y, Konopka G. An integrative understanding of comparative cognition: lessons from human brain evolution. Integr Comp Biol 2020; 60:991-1006. [PMID: 32681799 PMCID: PMC7608741 DOI: 10.1093/icb/icaa109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A comprehensive understanding of animal cognition requires the integration of studies on behavior, electrophysiology, neuroanatomy, development, and genomics. Although studies of comparative cognition are receiving increasing attention from organismal biologists, most current studies focus on the comparison of behaviors and anatomical structures to understand their adaptative values. However, to understand the most potentially complex cognitive program of the human brain a greater synthesis of a multitude of disciplines is needed. In this review, we start with extensive neuroanatomic comparisons between humans and other primates. One likely specialization of the human brain is the expansion of neocortex, especially in regions for high-order cognition (e.g., prefrontal cortex). We then discuss how such an expansion can be linked to heterochrony of the brain developmental program, resulting in a greater number of neurons and enhanced computational capacity. Furthermore, alteration of gene expression in the human brain has been associated with positive selection in DNA sequences of gene regulatory regions. These results not only imply that genes associated with brain development are a major factor in the evolution of cognition, but also that high-quality whole-genome sequencing and gene manipulation techniques are needed for an integrative and functional understanding of comparative cognition in non-model organisms.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
124
|
Feng G, Jensen FE, Greely HT, Okano H, Treue S, Roberts AC, Fox JG, Caddick S, Poo MM, Newsome WT, Morrison JH. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proc Natl Acad Sci U S A 2020; 117:24022-24031. [PMID: 32817435 PMCID: PMC7533691 DOI: 10.1073/pnas.2006515117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.
Collapse
Affiliation(s)
- Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Henry T Greely
- Center for Law and the Biosciences, Stanford University, Stanford, CA 94305
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjukuku, 160-8592 Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 351-0106 Saitama, Wakoshi, Japan
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, 37073 Goettingen, Germany
| | - Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sarah Caddick
- The Gatsby Charitable Foundation, SW1V 1AP London, United Kingdom
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - William T Newsome
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - John H Morrison
- California National Primate Research Center, University of California, Davis, CA 95616;
- Department of Neurology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
125
|
Kalebic N, Huttner WB. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci 2020; 43:843-853. [PMID: 32828546 DOI: 10.1016/j.tins.2020.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
The evolutionary expansion of the mammalian neocortex is widely considered to be a basis of increased cognitive abilities. This expansion is a consequence of the enhanced production of neurons during the fetal/embryonic development of the neocortex, which in turn reflects an increased proliferative capacity of neural progenitor cells; in particular basal progenitors (BPs). The remarkable heterogeneity of BP subtypes across mammals, notably their various morphotypes and molecular fingerprints, which has recently been revealed, corroborates the importance of BPs for neocortical expansion. Here, we argue that the morphology of BPs is a key cell biological basis for maintaining their high proliferative capacity and therefore plays crucial roles in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Human Technopole, Milan, Italy.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
126
|
Affiliation(s)
- Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Henry Kennedy
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France. .,Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Key Laboratory of Primate Neurobiology, Shanghai 200031, China
| |
Collapse
|