101
|
Sestito LF, Thomas SN. Biomaterials for Modulating Lymphatic Function in Immunoengineering. ACS Pharmacol Transl Sci 2019; 2:293-310. [PMID: 32259064 DOI: 10.1021/acsptsci.9b00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Immunoengineering is a rapidly growing and interdisciplinary field focused on developing tools to study and understand the immune system, then employing that knowledge to modulate immune response for the treatment of disease. Because of its roles in housing a substantial fraction of the body's lymphocytes, in facilitating immune cell trafficking, and direct immune modulatory functions, among others, the lymphatic system plays multifaceted roles in immune regulation. In this review, the potential for biomaterials to be applied to regulate the lymphatic system and its functions to achieve immunomodulation and the treatment of disease are described. Three related processes-lymphangiogenesis, lymphatic vessel contraction, and lymph node remodeling-are specifically explored. The molecular regulation of each process and their roles in pathologies are briefly outlined, with putative therapeutic targets and the lymphatic remodeling that can result from disease highlighted. Applications of biomaterials that harness these pathways for the treatment of disease via immunomodulation are discussed.
Collapse
Affiliation(s)
- Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Department of Biomedical Engineering, Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering, and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.,Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NW, Atlanta, Georgia 30322, United States
| |
Collapse
|
102
|
Stephens CJ, Spector JA, Butcher JT. Biofabrication of thick vascularized neo-pedicle flaps for reconstructive surgery. Transl Res 2019; 211:84-122. [PMID: 31170376 PMCID: PMC6702068 DOI: 10.1016/j.trsl.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Wound chronicity due to intrinsic and extrinsic factors perturbs adequate lesion closure and reestablishment of the protective skin barrier. Immediate and proper care of chronic wounds is necessary for a swift recovery and a reduction of patient vulnerability to infection. Advanced therapies supplemented with standard wound care procedures have been clinically implemented to restore aberrant tissue; however, these treatments are ineffective if local vasculature is too compromised to support minimally-invasive strategies. Autologous "flaps", which are tissues equipped with their own hierarchical vascular supply, can be harvested from one region of the patient and transplanted to the wound where it is reperfused upon microsurgical anastomosis to appropriate recipient vessels. Despite the success of autologous flap transfer, these procedures are extremely invasive, incur obligatory donor-site morbidity, and require sufficient donor-tissue availability, microsurgical expertise, and specialized equipment. 3D-bioprinting modalities, such as extrusion-based bioprinting, can be used to address the clinical constraints of autologous flap transfer, primarily addressing donor-site morbidity and tissue availability. This advancement in regenerative medicine allows the biofabrication of heterogeneous tissue structures with high shape fidelity and spatial resolution to generate biomimetic constructs with the anatomically-precise geometries of native tissue to ensure tissue-specific function. Yet, meaningful progress toward this clinical application has been limited by the lack of vascularization required to meet the nutrient and oxygen demands of clinically relevant tissue volumes. Thus, various criteria for the fabrication of functional tissues with hierarchical, patent vasculature must be considered when implementing 3D-bioprinting technologies for deep, chronic wounds.
Collapse
Affiliation(s)
- Chelsea J Stephens
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jason A Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Division of Plastic Surgery, Weill Cornell Medical College, New York, New York
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
103
|
Herron LA, Hansen CS, Abaci HE. Engineering tissue-specific blood vessels. Bioeng Transl Med 2019; 4:e10139. [PMID: 31572797 PMCID: PMC6764806 DOI: 10.1002/btm2.10139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular diversity among organs has recently become widely recognized. Several studies using mouse and human fetal tissues revealed distinct characteristics of organ-specific vasculature in molecular and functional levels. Thorough understanding of vascular heterogeneities in human adult tissues is significant for developing novel strategies for targeted drug delivery and tissue regeneration. Recent advancements in microfabrication techniques, biomaterials, and differentiation protocols allowed for incorporation of microvasculature into engineered organs. Such vascularized organ models represent physiologically relevant platforms that may offer innovative tools for dissecting the effects of the organ microenvironment on vascular development and expand our present knowledge on organ-specific human vasculature. In this article, we provide an overview of the current structural and molecular evidence on microvascular diversity, bioengineering methods used to recapitulate the microenvironmental cues, and recent vascularized three-dimensional organ models from the perspective of tissue-specific vasculature.
Collapse
Affiliation(s)
- Lauren A. Herron
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNY10032
| | - Corey S. Hansen
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNY10032
| | - Hasan E. Abaci
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNY10032
| |
Collapse
|
104
|
Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials 2019; 216:119267. [DOI: 10.1016/j.biomaterials.2019.119267] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/25/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
|
105
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
106
|
Rethinking automated skin fabrication for regeneration: adapting to commercial challenges. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
107
|
Rivera KR, Yokus MA, Erb PD, Pozdin VA, Daniele M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 2019; 144:3190-3215. [PMID: 30968094 PMCID: PMC6564678 DOI: 10.1039/c8an02201a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns. Regulating oxygen content inside MPS necessitates a sensitive biological sensor to quantify oxygen content in real-time. Measuring oxygen in a microdevice is a non-trivial requirement for studies focused on understanding how oxygen impacts cellular processes, including angiogenesis and tumorigenesis. Quantifying oxygen inside a microdevice can be achieved via an array of technologies, with each method having benefits and limitations in terms of sensitivity, limits of detection, and invasiveness that must be considered and optimized. This article will review oxygen physiology in organ systems and offer comparisons of organ-specific MPS that do and do not consider oxygen microenvironments. Materials used in microphysiological models will also be analyzed in terms of their ability to control oxygen. Finally, oxygen sensor technologies are critically compared and evaluated for use in MPS.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
108
|
Ling C, Nishimoto K, Rolfs Z, Smith LM, Frey BL, Welham NV. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. SCIENCE ADVANCES 2019; 5:eaav7384. [PMID: 31086819 PMCID: PMC6506241 DOI: 10.1126/sciadv.aav7384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 05/27/2023]
Abstract
Fibrocytes (FCs) are hematopoietic lineage cells that migrate to sites of injury, transition to a mesenchymal phenotype, and help to mediate wound repair. Despite their relevance to human fibrotic disorders, there are few data characterizing basic FC biology. Herein, using proteomic, bioenergetic, and bioengineering techniques, we conducted deep phenotypic characterization of differentiating and mature FCs. Differentiation was associated with metabolic reprogramming that favored oxidative phosphorylation. Mature FCs had distinct proteomes compared to classic mesenchymal cells, formed functional stromae that supported epithelial maturation during in vitro organotypic culture, and exhibited in vivo survival and self-tolerance as connective tissue isografts. In an in vitro scratch assay, FCs promoted fibroblast migration and wound closure by paracrine signaling via the chemokine CXCL8 (interleukin-8). These findings characterize important aspects of FC differentiation and show that, in addition to their role in wound healing, FCs hold potential as an easily isolated autologous cell source for regenerative medicine.
Collapse
Affiliation(s)
- Changying Ling
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kohei Nishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zach Rolfs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V. Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
109
|
Schneider J, Pultar M, Holnthoner W. Ex vivo engineering of blood and lymphatic microvascular networks. VASCULAR BIOLOGY 2019; 1:H17-H22. [PMID: 32923949 PMCID: PMC7439851 DOI: 10.1530/vb-19-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Upon implantation, engineered tissues rely on the supply with oxygen and nutrients as well as the drainage of interstitial fluid. This prerequisite still represents one of the current challenges in the engineering and regeneration of tissues. Recently, different vascularization strategies have been developed. Besides technical approaches like 3D printing or laser processing and de-/recelluarization of natural scaffolds, mainly co-cultures of endothelial cells (ECs) with supporting cell types are being used. This mini-review provides a brief overview of different co-culture systems for the engineering of blood and lymphatic microvascular networks.
Collapse
Affiliation(s)
- Jaana Schneider
- Ludwig-Boltzmann-Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marianne Pultar
- Ludwig-Boltzmann-Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig-Boltzmann-Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
110
|
Wu H, Li F, Shao W, Gao J, Ling D. Promoting Angiogenesis in Oxidative Diabetic Wound Microenvironment Using a Nanozyme-Reinforced Self-Protecting Hydrogel. ACS CENTRAL SCIENCE 2019; 5:477-485. [PMID: 30937375 PMCID: PMC6439452 DOI: 10.1021/acscentsci.8b00850] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 05/02/2023]
Abstract
Impaired diabetic wound healing represents a devastating and rapidly growing clinical problem associated with high morbidity, mortality, and recurrence rates. Engineering therapeutic angiogenesis in the wounded tissue is critical for successful wound healing. However, stimulating functional angiogenesis of the diabetic wound remains a great challenge, due to the oxidative damage and denaturation of bio-macromolecule-based angiogenic agents in the oxidative diabetic wound microenvironment. Here, we present a unique "seed-and-soil" strategy that circumvents the limitation by simultaneously reshaping the oxidative wound microenvironment into a proregenerative one (the "soil") and providing proangiogenic miRNA cues (the "seed") using an miRNA-impregnated, redox-modulatory ceria nanozyme-reinforced self-protecting hydrogel (PCN-miR/Col). The PCN-miR/Col not only reshapes the hostile oxidative wound microenvironment, but also ensures the structural integrity of the encapsulated proangiogenic miRNA in the oxidative microenvironment. Diabetic wounds treated with the PCN-miR/Col demonstrate a remarkably accelerated wound closure and enhanced quality of the healed wound as featured by highly ordered alignment of collagen fiber, skin appendage morphogenesis, functional new blood vessel growth, and oxygen saturation.
Collapse
Affiliation(s)
- Haibin Wu
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fangyuan Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Hangzhou
Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, P. R.
China
| | - Wei Shao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianqing Gao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Dr.
Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative
Medicine, Zhejiang University, Hangzhou 310058, P. R. China
- E-mail:
| | - Daishun Ling
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Hangzhou
Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, P. R.
China
- Key
Laboratory of Biomedical Engineering of the Ministry of Education,
College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, P. R.
China
- E-mail:
| |
Collapse
|
111
|
Mazio C, Casale C, Imparato G, Urciuolo F, Attanasio C, De Gregorio M, Rescigno F, Netti PA. Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials 2019; 192:159-170. [DOI: 10.1016/j.biomaterials.2018.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
|
112
|
Wang K, Lin RZ, Melero-Martin JM. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell Mol Life Sci 2019; 76:421-439. [PMID: 30315324 PMCID: PMC6349493 DOI: 10.1007/s00018-018-2939-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Tissue engineering holds great promise in regenerative medicine. However, the field of tissue engineering faces a myriad of difficulties. A major challenge is the necessity to integrate vascular networks into bioengineered constructs to enable physiological functions including adequate oxygenation, nutrient delivery, and removal of waste products. The last two decades have seen remarkable progress in our collective effort to bioengineer human-specific vascular networks. Studies have included both in vitro and in vivo investigations, and multiple methodologies have found varying degrees of success. What most approaches to bioengineer human vascular networks have in common, however, is the synergistic use of both (1) endothelial cells (ECs)-the cells used to line the lumen of the vascular structures and (2) perivascular cells-usually used to support EC function and provide perivascular stability to the networks. Here, we have highlighted trends in the use of various cellular sources over the last two decades of vascular network bioengineering research. To this end, we comprehensively reviewed all life science and biomedical publications available at the MEDLINE database up to 2018. Emphasis was put on selective studies that definitively used human ECs and were specifically related to bioengineering vascular networks. To facilitate this analysis, all papers were stratified by publication year and then analyzed according to their use of EC and perivascular cell types. This study provides an illustrating discussion on how each alternative source of cells has come to be used in the field. Our intention was to reveal trends and to provide new insights into the trajectory of vascular network bioengineering with regard to cellular sources.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
113
|
Induction of angiogenic and inflammation-associated dermal biomarkers following acute UVB exposure on bio-engineered pigmented dermo-epidermal skin substitutes in vivo. Pediatr Surg Int 2019; 35:129-136. [PMID: 30430280 DOI: 10.1007/s00383-018-4384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Ultraviolet (UV) radiation adversely affects skin health at cellular and molecular levels. Hence, UV radiation can directly induce inflammatory responses in the dermis by inducing erythema, edema, inflammation, dermal fibroblasts alterations, and extracellular matrix modifications. METHODS Human keratinocytes, melanocytes, and fibroblasts were isolated from skin biopsies, cultured, and expanded in vitro. Fibroblasts were seeded into collagen type I hydrogels that were subsequently covered by keratinocytes and melanocytes. These pigmented dermo-epidermal skin substitutes (pigmDESS) were transplanted for 5 weeks onto full-thickness skin wounds on the back of immuno-incompetent rats, exposed to a single UVB dose of 250 mJ/cm2 or unexposed and excised after 1 week. The effects onto the dermis were assessed regarding cell number, cell phenotype, and cell proliferation. Local inflammation by granulocytes (HIS48) or macrophages (CD11b, iNOS) was analyzed by immunohistochemistry staining. RESULTS We observed a significantly enhanced ingrowth rate of blood capillaries, but not of lymphatic capillaries at 1 week post-irradiation. Moreover, the enhanced vascularization of pigmDESS after UVB exposure was concomitant with a high infiltration of granulocytes and monocytes/macrophages to the dermal part of grafts. In addition, a heterogeneous expression of HIF-1α and TNFα was detected at this early phase after UVB exposure. In local cellular response examination, results only show a moderate cell proliferation in the dermis. CONCLUSIONS We were able to define early markers of UVB-induced effects in the dermis of pigmDESS. Overall, a single UVB dose induces temporary acute angiogenic and immune responses during the early post-irradiation phase in vivo.
Collapse
|
114
|
Alderfer L, Wei A, Hanjaya-Putra D. Lymphatic Tissue Engineering and Regeneration. J Biol Eng 2018; 12:32. [PMID: 30564284 PMCID: PMC6296077 DOI: 10.1186/s13036-018-0122-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Alicia Wei
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46656 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556 USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
115
|
Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Front Bioeng Biotechnol 2018; 6:154. [PMID: 30430109 PMCID: PMC6220074 DOI: 10.3389/fbioe.2018.00154] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation.
Collapse
Affiliation(s)
- Matthew J Randall
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, Switzerland
| | - Markus Rimann
- Competence Center TEDD, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Waedenswil, Switzerland.,Center for Cell Biology & Tissue Engineering, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Waedenswil, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland.,Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), Munich, Germany.,Department of Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
116
|
Bourland J, Fradette J, Auger FA. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Sci Rep 2018; 8:13191. [PMID: 30181613 PMCID: PMC6123405 DOI: 10.1038/s41598-018-31502-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
While being the rarest skin cancer, melanoma is also the deadliest. To further drug discovery and improve clinical translation, new human cell-based in vitro models are needed. Our work strives to mimic the melanoma microenvironment in vitro as an alternative to animal testing. We used the self-assembly method to produce a 3D human melanoma model exempt of exogenous biomaterial. This model is based on primary human skin cells and melanoma cell lines while including a key feature for tumor progression: blood and lymphatic capillaries. Major components of the tumor microenvironment such as capillaries, human extracellular matrix, a stratified epidermis (involucrin, filaggrin) and basement membrane (laminin 332) are recapitulated in vitro. We demonstrate the persistence of CD31+ blood and podoplanin+/LYVE-1+ lymphatic capillaries in the engineered tissue. Chronic treatment with vemurafenib was applied to the model and elicited a dose-dependent response on proliferation and apoptosis, making it a promising tool to test new compounds in a human-like environment.
Collapse
Affiliation(s)
- Jennifer Bourland
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, Québec, Qc, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Qc, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, Québec, Qc, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Qc, Canada
| | - François A Auger
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada.
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, Québec, Qc, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Qc, Canada.
| |
Collapse
|
117
|
Savoji H, Godau B, Hassani MS, Akbari M. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Front Bioeng Biotechnol 2018; 6:86. [PMID: 30094235 PMCID: PMC6070628 DOI: 10.3389/fbioe.2018.00086] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tremendous progress has been made over the past few decades to develop skin substitutes for the management of acute and chronic wounds. With the advent of tissue engineering and the ability to combine advanced manufacturing technologies with biomaterials and cell culture systems, more biomimetic tissue constructs have been emerged. Synthetic and natural biomaterials are the main constituents of these skin-like constructs, which play a significant role in tissue grafting, the body's immune response, and the healing process. The act of implanting biomaterials into the human body is subject to the body's immune response, and the complex nature of the immune system involves many different cell types and biological processes that will ultimately determine the success of a skin graft. As such, a large body of recent studies has been focused on the evaluation of the performance and risk assessment of these substitutes. This review summarizes the past and present advances in in vitro, in vivo and clinical applications of tissue-engineered skins. We discuss the role of immunomodulatory biomaterials and biomaterials risk assessment in skin tissue engineering. We will finally offer a roadmap for regulating tissue engineered skin substitutes.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
118
|
Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep 2018; 8:10977. [PMID: 30030486 PMCID: PMC6054621 DOI: 10.1038/s41598-018-29252-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Split-thickness skin grafts (STSG) are still the gold standard for the treatment of most skin defects. Hence, there is an ongoing need to improve this procedure. For this purpose, we herein analyzed dermal matrices seeded with adipose tissue-derived microvascular fragments (ad-MVF) in a bradythrophic wound model. In additional experiments, the matrices were covered with autologous STSG 10 days after implantation. Green fluorescence protein (GFP)+ ad-MVF were isolated from C57BL/6-Tg(CAG-EGFP)1Osb/J mice and seeded onto collagen-glycosaminoglycan matrices. Non-seeded and prevascularized matrices were implanted into full-thickness skin defects on the skull of CD1 nu/nu mice for 21 days. Vascularization, lymphangiogenesis and incorporation of the matrices were analyzed using photo-acoustic imaging, trans-illumination stereomicroscopy, histology, and immunohistochemistry. The survival rate of STSG was assessed by planimetry. After 21 days, the density of microvascular and lymphatic networks was significantly higher in prevascularized matrices when compared to controls. This was associated with an improved implant integration. Moreover, prevascularization with ad-MVF allowed successful autologous skin grafting already at day 10, while coverage of non-seeded controls at day 10 resulted in STSG necrosis. In conclusion, ad-MVF represent powerful vascularization units. Seeded on dermal substitutes, they accelerate and enhance the healing of full-thickness skin defects and allow early coverage with STSG.
Collapse
|
119
|
Hu H, Tang Y, Pang L, Lin C, Huang W, Wang D, Jia W. Angiogenesis and Full-Thickness Wound Healing Efficiency of a Copper-Doped Borate Bioactive Glass/Poly(lactic- co-glycolic acid) Dressing Loaded with Vitamin E in Vivo and in Vitro. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22939-22950. [PMID: 29924595 DOI: 10.1021/acsami.8b04903] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is an urgent demand for wound healing biomaterials because of the increasing frequency of traffic accidents, industrial contingencies, and natural disasters. Borate bioactive glass has potential applications in bone tissue engineering and wound healing; however, its uncontrolled release runs a high risk of rapid degradation and transient biotoxicity. In this study, a novel organic-inorganic dressing of copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) loaded with vitamin E (0-3.0 wt % vitamin E) was fabricated to evaluate its efficiency for angiogenesis in cells and full-thickness skin wounds healing in rodents. In vitro results showed the dressing was an ideal interface for the organic-inorganic mixture and a controlled release system for Cu2+ and vitamin E. Cell culture suggested the ionic dissolution product of the copper-doped and vitamin E-loaded dressing showed the best migration, tubule formation, and vascular endothelial growth factor (VEGF) secretion in human umbilical vein endothelial cells (HUVECs) and higher expression levels of angiogenesis-related genes in fibroblasts in vitro. Furthermore, this dressing also suggested a significant improvement in the epithelialization of wound closure and an obvious enhancement in vessel sprouting and collagen remodeling in vivo. These results indicate that the copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) dressing loaded with vitamin E is effective in stimulating angiogenesis and healing full-thickness skin defects and is a promising wound dressing in the reconstruction of full-thickness skin injury.
Collapse
Affiliation(s)
- Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai Jiao Tong University , Shanghai 200233 , China
| | - Yue Tang
- School of Material Science and Engineering , Tongji University , Caoan Road , Shanghai 201800 , China
| | - Libin Pang
- School of Material Science and Engineering , Tongji University , Caoan Road , Shanghai 201800 , China
| | - Cunlong Lin
- School of Material Science and Engineering , Tongji University , Caoan Road , Shanghai 201800 , China
| | - Wenhai Huang
- School of Material Science and Engineering , Tongji University , Caoan Road , Shanghai 201800 , China
| | - Deping Wang
- School of Material Science and Engineering , Tongji University , Caoan Road , Shanghai 201800 , China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai Jiao Tong University , Shanghai 200233 , China
| |
Collapse
|
120
|
Blache U, Ehrbar M. Inspired by Nature: Hydrogels as Versatile Tools for Vascular Engineering. Adv Wound Care (New Rochelle) 2018; 7:232-246. [PMID: 29984113 PMCID: PMC6032659 DOI: 10.1089/wound.2017.0760] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
Significance: Diseases related to vascular malfunction, hyper-vascularization, or lack of vascularization are among the leading causes of morbidity and mortality. Engineered, vascularized tissues as well as angiogenic growth factor-releasing hydrogels could replace defective tissues. Further, treatments and testing of novel vascular therapeutics will benefit significantly from models that allow for the study of vascularized tissues under physiological relevant in vitro conditions. Recent Advances: Inspired by fibrin, the provisional matrix during wound healing, naturally derived and synthetic hydrogel scaffolds have been developed for vascular engineering. Today, engineers and biologists use commercially available hydrogels to pre-vascularize tissues, to control the delivery of angiogenic growth factors, and to establish vascular diseases models. Critical Issue: For clinical translation, pre-vascularized tissue constructs must be sufficiently large and stable to substitute function-relevant tissue defects and integrate with host vascular perfusion. Moreover, the continuous integration of knowhow from basic vascular biology with innovative, tailorable materials and advanced manufacturing technologies is key to achieving near-physiological tissue models and new treatments to control vascularization. Future Directions: For transplantation, engineered tissues must comprise hierarchically organized vascular trees of different caliber and function. The development of novel vascularization-promoting or -inhibiting therapeutics will benefit from physiologically relevant vessel models. In addition, tissue models representing treatment-relevant vascular tissue functions will increase the capacity to screen for therapeutic compounds and will significantly reduce the need for animals for their validation.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University and University Hospital Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
121
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
122
|
Nüesch U, Mauracher AA, Opitz L, Volkmer B, Michalak-Mićka K, Kamarashev J, Hartwig T, Reichmann E, Becher B, Vavassori S, Pachlopnik Schmid J. Epithelial proliferation in inflammatory skin disease is regulated by tetratricopeptide repeat domain 7 (Ttc7) in fibroblasts and lymphocytes. J Allergy Clin Immunol 2018; 143:292-304.e8. [PMID: 29775636 DOI: 10.1016/j.jaci.2018.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Mutations in tetratricopeptide repeat domain 7A (TTC7A) and its mouse orthologue, Ttc7, result in a multisystemic disease, mostly affecting the epithelial barriers and immune system. Despite successful hematopoietic stem cell transplantation, ongoing progression of gastrointestinal manifestations can be life-threatening in TTC7A-deficient patients. OBJECTIVE We sought to identify whether TTC7A mutations dysregulate epithelial cells only or whether a cell-intrinsic defect in lymphocytes or other cells contributes to disease manifestations. METHODS Ttc7-mutated (Ttc7fsn/fsn) mice were crossed to generate double-mutant (Rag2-/-Ttc7fsn/fsn) and triple-mutant (Rag2-/-IL2rg-/-Ttc7fsn/fsn) mice. These models, together with bone marrow chimeras, were used to explore the role of adaptive and innate lymphocytes in the flaky skin phenotype. The effect of the Ttc7fsn/fsn mutation on stromal cells was tested in a xenograft model in conjunction with transcriptomic analysis of Ttc7fsn/fsn fibroblasts. RESULTS We observed that the severity of epithelial hyperproliferation was accentuated by lymphocytes, whereas the phenotype was not induced by transfer of Ttc7-mutated hematopoietic cells. Furthermore, mice completely lacking the lymphocytic compartment were not protected from epithelial hyperproliferation. Ttc7-mutated mouse fibroblasts expressed increased transcript levels of insulin-like growth factor 1 (Igf1) and the antimicrobial protein regenerating islet-derived protein 3γ (Reg3γ). In a xenograft model Ttc7-mutated fibroblasts markedly increased epithelial proliferation of keratinocytes. Thus Ttc7-mutated fibroblasts were identified as potent instigators of epithelial hyperproliferation. CONCLUSION Our results reveal a previously unsuspected fundamental cell-extrinsic role of Ttc7. We have identified potential candidates for molecularly targeted treatment strategies that will need to be evaluated in future preclinical studies.
Collapse
Affiliation(s)
- Ursina Nüesch
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andrea A Mauracher
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Functional Genomics Center Zürich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Benjamin Volkmer
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | | | - Jivko Kamarashev
- Division of Dermatopathology, University Hospital Zurich, Zurich, Switzerland
| | - Tom Hartwig
- Institute of Experimental Immunology-Inflammation Research, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology-Inflammation Research, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Pediatric Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
123
|
Zimoch J, Padial JS, Klar AS, Vallmajo-Martin Q, Meuli M, Biedermann T, Wilson CJ, Rowan A, Reichmann E. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater 2018; 70:129-139. [PMID: 29454158 DOI: 10.1016/j.actbio.2018.01.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
Molecular and mechanical interactions with the 3D extracellular matrix are essential for cell functions such as survival, proliferation, migration, and differentiation. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. This is a synthetic, thermo-responsive and stress-stiffening material synthesized via polymerization of the corresponding monomers using a nickel perchlorate as a catalyst. It can be tailored to meet various demands of cells by modulating its stiffness and through the decoration of the polymer with short GRGDS peptides using copper free click chemistry. These peptides make the hydrogels biocompatible by mimicking the binding sites of certain integrins. This study focuses on the optimization of the PIC polymer properties for efficient cell, tissue and organ development. Screening for the optimal stiffness of the hydrogel and the ideal concentration of the GRGDS ligand conjugated with the polymer, enabled cell proliferation, migration and differentiation of various primary cell types of human origin. We demonstrate that fibroblasts, endothelial cells, adipose-derived stem cells and melanoma cells, do survive, thrive and differentiate in optimized PIC hydrogels. Importantly, these hydrogels support the spontaneous formation of complex structures like blood capillaries in vitro. Additionally, we utilized the thermo-responsive properties of the hydrogels for a rapid and gentle recovery of viable cells. Finally, we show that organotypic structures of human origin grown in PIC hydrogels can be successfully transplanted subcutaneously onto immune-compromised rats, on which they survive and integrate into the surrounding tissue. STATEMENT OF SIGNIFICANCE Molecular and mechanical interactions with the surrounding environment are essential for cell functions. Although 2D culture systems greatly contributed to our understanding of complex biological phenomena, they cannot substitute for crucial interaction that take place in 3D. 3D culture systems aim to overcome limitations of the 2D cultures and answer new questions about cell functions. Thermo-responsive biomimetic polyisocyanopeptide (PIC) hydrogels are promising new candidates for 3D cell, tissue, and organ cultures. They are synthetic and can be tailor to meet certain experimental demands. Additionally, they are characterized by strain-stiffening, a feature crucial for cell behaviour, but rare in hydrogels. Their thermos-responsive properties enable quick recovery of the cells by a simple procedure of lowering the temperature.
Collapse
Affiliation(s)
- Jakub Zimoch
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland
| | - Joan Simó Padial
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, the Netherlands; Noviotech B.V., Molenveldlaan 43, 6523 RJ Nijmegen, the Netherlands
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland
| | - Queralt Vallmajo-Martin
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Schmelzbergstr. 12, 8091 Zurich, Switzerland
| | - Martin Meuli
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland
| | | | - Alan Rowan
- Department of Molecular Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 Nijmegen, the Netherlands
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel Str. 7, CH-8008 Zurich, Switzerland.
| |
Collapse
|
124
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
125
|
Multipotent Adult Progenitor Cells Support Lymphatic Regeneration at Multiple Anatomical Levels during Wound Healing and Lymphedema. Sci Rep 2018; 8:3852. [PMID: 29497054 PMCID: PMC5832783 DOI: 10.1038/s41598-018-21610-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Lymphatic capillary growth is an integral part of wound healing, yet, the combined effectiveness of stem/progenitor cells on lymphatic and blood vascular regeneration in wounds needs further exploration. Stem/progenitor cell transplantation also emerged as an approach to cure lymphedema, a condition caused by lymphatic system deficiency. While lymphedema treatment requires lymphatic system restoration from the capillary to the collector level, it remains undetermined whether stem/progenitor cells support a complex regenerative response across the entire anatomical spectrum of the system. Here, we demonstrate that, although multipotent adult progenitor cells (MAPCs) showed potential to differentiate down the lymphatic endothelial lineage, they mainly trophically supported lymphatic endothelial cell behaviour in vitro. In vivo, MAPC transplantation supported blood vessel and lymphatic capillary growth in wounds and restored lymph drainage across skin flaps by stimulating capillary and pre-collector vessel regeneration. Finally, human MAPCs mediated survival and functional reconnection of transplanted lymph nodes to the host lymphatic network by improving their (lymph)vascular supply and restoring collector vessels. Thus, MAPC transplantation represents a promising remedy for lymphatic system restoration at different anatomical levels and hence an appealing treatment for lymphedema. Furthermore, its combined efficacy on lymphatic and blood vascular growth is an important asset for wound healing.
Collapse
|
126
|
Smolar J, Horst M, Sulser T, Eberli D. Bladder regeneration through stem cell therapy. Expert Opin Biol Ther 2018; 18:525-544. [DOI: 10.1080/14712598.2018.1439013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jakub Smolar
- Department of Urology, University Hospital Zurich, Schlieren, Switzerland
| | - Maya Horst
- Department of Urology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Tulio Sulser
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
127
|
Rauniyar K, Jha SK, Jeltsch M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front Bioeng Biotechnol 2018; 6:7. [PMID: 29484295 PMCID: PMC5816233 DOI: 10.3389/fbioe.2018.00007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Because virtually all tissues contain blood vessels, the importance of hemevascularization has been long recognized in regenerative medicine and tissue engineering. However, the lymphatic vasculature has only recently become a subject of interest. Central to the task of growing a lymphatic network are lymphatic endothelial cells (LECs), which constitute the innermost layer of all lymphatic vessels. The central molecule that directs proliferation and migration of LECs during embryogenesis is vascular endothelial growth factor C (VEGF-C). VEGF-C is therefore an important ingredient for LEC culture and attempts to (re)generate lymphatic vessels and networks. During its biosynthesis VEGF-C undergoes a stepwise proteolytic processing, during which its properties and affinities for its interaction partners change. Many of these fundamental aspects of VEGF-C biosynthesis have only recently been uncovered. So far, most—if not all—applications of VEGF-C do not discriminate between different forms of VEGF-C. However, for lymphatic regeneration and engineering purposes, it appears mandatory to understand these differences, since they relate, e.g., to important aspects such as biodistribution and receptor activation potential. In this review, we discuss the molecular biology of VEGF-C as it relates to the growth of LECs and lymphatic vessels. However, the properties of VEGF-C are similarly relevant for the cardiovascular system, since both old and recent data show that VEGF-C can have a profound effect on the blood vasculature.
Collapse
Affiliation(s)
- Khushbu Rauniyar
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Michael Jeltsch
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
128
|
Gerli MFM, Guyette JP, Evangelista-Leite D, Ghoshhajra BB, Ott HC. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery. PLoS One 2018; 13:e0191497. [PMID: 29352303 PMCID: PMC5774802 DOI: 10.1371/journal.pone.0191497] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacques Paul Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniele Evangelista-Leite
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian Burns Ghoshhajra
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Harald Christian Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
129
|
Rogic A, Auger F, Skobe M. Isolation of Human Skin Lymphatic Endothelial Cells and 3D Reconstruction of the Lymphatic Vasculature In Vitro. Methods Mol Biol 2018; 1846:279-290. [PMID: 30242766 DOI: 10.1007/978-1-4939-8712-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies of lymphangiogenesis and lymphatic endothelial biology in vitro require pure cultures of lymphatic endothelial cells and 3D vascular constructs, which closely resemble native human lymphatic vasculature. We describe a method for the isolation of human dermal microvascular lymphatic endothelial cells and generation of a 3D lymphatic capillary network. The lymphatic vascular construct is generated by coculturing primary lymphatic endothelial cells and fibroblasts in their native matrix, without the use of synthetic scaffolds or exogenous factors. The tissue is stable over many weeks and accurately recapitulates features of human dermal lymphatic microvasculature.
Collapse
Affiliation(s)
- Anita Rogic
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francois Auger
- Centre LOEX de l'Université Laval, Regenerative Medicine Section of the FRQS Research Center of the CHU de Québec, Quebec, QC, Canada
| | - Mihaela Skobe
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
130
|
|
131
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
132
|
Asano Y, Shimoda H, Matsusaki M, Akashi M. Transplantation of artificial human lymphatic vascular tissues fabricated using a cell‐accumulation technique and their engraftment in mouse tissue with vascular remodelling. J Tissue Eng Regen Med 2017; 12:e1501-e1510. [DOI: 10.1002/term.2570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 07/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
- Department of Anatomical ScienceHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of EngineeringOsaka University Osaka Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier BiosciencesOsaka University Osaka Japan
| |
Collapse
|
133
|
Desmet E, Ramadhas A, Lambert J, Van Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 2017; 242:1158-1169. [PMID: 28585891 DOI: 10.1177/1535370217710637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Anesh Ramadhas
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Mireille Van Gele
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|
134
|
Abaci HE, Guo Z, Doucet Y, Jacków J, Christiano A. Next generation human skin constructs as advanced tools for drug development. Exp Biol Med (Maywood) 2017; 242:1657-1668. [PMID: 28592171 DOI: 10.1177/1535370217712690] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various specialized cell types and performs many roles including barrier, immune, and sensory functions. For human-relevant drug testing, there has been a growing interest in building more physiological skin constructs by incorporating different skin components, such as vasculature, appendages, pigment, innervation, and adipose tissue. This paper provides an overview of the strategies to build complex human skin constructs that can faithfully recapitulate human skin and thus can be used in drug development targeting skin diseases. In particular, we discuss recent developments and remaining challenges in incorporating various skin components, availability of iPSC-derived skin cell types and in vitro skin disease models. In addition, we provide insights on the future integration of these complex skin models with other organs on microfluidic platforms as well as potential readout technologies for high-throughput drug screening.
Collapse
Affiliation(s)
- H E Abaci
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zongyou Guo
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yanne Doucet
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanna Jacków
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA
| | - Angela Christiano
- 1 Department of Dermatology, Columbia University Medical Center, New York, NY 10032, USA.,2 Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
135
|
Akagi T, Nagura M, Hiura A, Kojima H, Akashi M. Construction of Three-Dimensional Dermo–Epidermal Skin Equivalents Using Cell Coating Technology and Their Utilization as Alternative Skin for Permeation Studies and Skin Irritation Tests. Tissue Eng Part A 2017; 23:481-490. [DOI: 10.1089/ten.tea.2016.0529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mayuka Nagura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- BioMedical Technology HYBRID Co., Ltd., Kagoshima, Japan
| | - Ayami Hiura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hajime Kojima
- Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
136
|
Gibot L, Galbraith T, Bourland J, Rogic A, Skobe M, Auger FA. Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nat Protoc 2017; 12:1077-1088. [DOI: 10.1038/nprot.2017.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
137
|
Knezevic L, Schaupper M, Mühleder S, Schimek K, Hasenberg T, Marx U, Priglinger E, Redl H, Holnthoner W. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. Front Bioeng Biotechnol 2017; 5:25. [PMID: 28459049 PMCID: PMC5394507 DOI: 10.3389/fbioe.2017.00025] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/28/2017] [Indexed: 01/20/2023] Open
Abstract
Vascular network engineering is essential for nutrient delivery to tissue-engineered constructs and, consequently, their survival. In addition, the functionality of tissues also depends on tissue drainage and immune cell accessibility, which are the main functions of the lymphatic system. Engineering both the blood and lymphatic microvasculature would advance the survival and functionality of tissue-engineered constructs. The aim of this study was to isolate pure populations of lymphatic endothelial cells (LEC) and blood vascular endothelial cells (BEC) from human dermal microvascular endothelial cells and to study their network formation in our previously described coculture model with adipose-derived stromal cells (ASC) in fibrin scaffolds. We could follow the network development over a period of 4 weeks by fluorescently labeling the cells. We show that LEC and BEC form separate networks, which are morphologically distinguishable and sustainable over several weeks. In addition, lymphatic network development was dependent on vascular endothelial growth factor (VEGF)-C, resulting in denser networks with increasing VEGF-C concentration. Finally, we confirm the necessity of cell–cell contact between endothelial cells and ASC for the formation of both blood and lymphatic microvascular networks. This model represents a valuable platform for in vitro drug testing and for the future in vivo studies on lymphatic and blood microvascularization.
Collapse
Affiliation(s)
- Lea Knezevic
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mira Schaupper
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Katharina Schimek
- Technische Universität Berlin, Medical Biotechnology, Berlin, Germany.,TissUse GmbH, Berlin, Germany
| | | | | | - Eleni Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
138
|
Klar AS, Biedermann T, Simmen-Meuli C, Reichmann E, Meuli M. Comparison of in vivo immune responses following transplantation of vascularized and non-vascularized human dermo-epidermal skin substitutes. Pediatr Surg Int 2017; 33:377-382. [PMID: 27999947 DOI: 10.1007/s00383-016-4031-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE Autologous bio-engineered dermo-epidermal skin substitutes (DESS) represent an alternative therapeutic option for a definitive treatment of skin defects in human patients. Largely, the interaction of host immune cells with transplanted DESS is considered to be essential for the granulation tissue formation, graft take, and its functionality. The aim of this study was to compare the spatiotemporal distribution and density of host-derived monocytes/macrophages and granulocytes in vascularized (vascDESS) versus non-vascularized DESS (non-vascDESS) in a rat model. METHODS Keratinocytes and the stromal vascular fraction (SVF) were derived from human skin or human adipose tissue, respectively. Human SVF containing both endothelial and mesenchymal/stromal progenitors was used to develop a vascularized collagen type I-based dermal component in vitro. The donor-matched, monolayer-expanded adipose stromal cells lacking endothelial cells were used as a negative control. Subsequently, human keratinocytes were seeded on top of hydrogels to build dermo-epidermal skin grafts. After transplantation onto full-thickness skin wounds on the back of immuno-incompetent rats, grafts were excised and analyzed after 1 and 3 weeks. The expression of distinct inflammatory cell markers specific for host-derived monocytes/macrophages (CD11b, CD68) or granulocytes (HIS48) was analyzed by immunofluorescence microscopy. RESULTS All skin grafts were infiltrated by host-derived monocytes/macrophages (CD11b+, CD68+) and granulocytes (HIS48+) between 1-3 week post-transplantation. When compared to non-vascDESS, the vascDESS showed an increased granulocyte infiltration at all time points analyzed with the majority of cells scattered throughout the whole dermal part. Whereas a moderate number of rat monocytes/macrophages (CD11b+, CD68+) were found in vascDESS at 1 week, only a few cells were detected in non-vascDESS. We observed a time-dependent decrease of monocytes/macrophages in all transplants at 3 weeks. CONCLUSIONS These results demonstrate a distinct spatiotemporal distribution of monocytes/macrophages as well as granulocytes in our transplants that closely resemble the one observed during physiological wound healing. The differences identified between vascDESS and non-vascDESS may indicate that human endothelial cells lining blood capillaries of vascDESS accelerate infiltration of monocytes and leukocytes.
Collapse
Affiliation(s)
- Agnes S Klar
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudia Simmen-Meuli
- Department of Plastic, Reconstructive, Aesthetical, and Hand Surgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Meuli
- Department of Surgery, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
139
|
Skin Tissue Engineering: Application of Adipose-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9747010. [PMID: 28337463 PMCID: PMC5350314 DOI: 10.1155/2017/9747010] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/23/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023]
Abstract
Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.
Collapse
|
140
|
Frueh FS, Später T, Lindenblatt N, Calcagni M, Giovanoli P, Scheuer C, Menger MD, Laschke MW. Adipose Tissue-Derived Microvascular Fragments Improve Vascularization, Lymphangiogenesis, and Integration of Dermal Skin Substitutes. J Invest Dermatol 2017; 137:217-227. [DOI: 10.1016/j.jid.2016.08.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/01/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023]
|
141
|
Mori N, Morimoto Y, Takeuchi S. Skin integrated with perfusable vascular channels on a chip. Biomaterials 2016; 116:48-56. [PMID: 27914266 DOI: 10.1016/j.biomaterials.2016.11.031] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
This paper describes a method for fabricating perfusable vascular channels coated with endothelial cells within a cultured skin-equivalent by fixing it to a culture device connected to an external pump and tubes. A histological analysis showed that vascular channels were constructed in the skin-equivalent, which showed a conventional dermal/epidermal morphology, and the endothelial cells formed tight junctions on the vascular channel wall. The barrier function of the skin-equivalent was also confirmed. Cell distribution analysis indicated that the vascular channels supplied nutrition to the skin-equivalent. Moreover, the feasibility of a skin-equivalent containing vascular channels as a model for studying vascular absorption was demonstrated by measuring test molecule permeation from the epidermal layer into the vascular channels. The results suggested that this skin-equivalent can be used for skin-on-a-chip applications including drug development, cosmetics testing, and studying skin biology.
Collapse
Affiliation(s)
- Nobuhito Mori
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuya Morimoto
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Takeuchi Biohybrid Innovation Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology (JST), Komaba Open Laboratory (KOL) Room M202, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
142
|
Schaupper M, Jeltsch M, Rohringer S, Redl H, Holnthoner W. Lymphatic Vessels in Regenerative Medicine and Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:395-407. [DOI: 10.1089/ten.teb.2016.0034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mira Schaupper
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michael Jeltsch
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | | | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
143
|
Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci 2016; 73:3453-72. [PMID: 27154041 PMCID: PMC4982839 DOI: 10.1007/s00018-016-2252-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022]
Abstract
The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Marc G Jeschke
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
144
|
Abaci HE, Guo Z, Coffman A, Gillette B, Lee WH, Sia SK, Christiano AM. Human Skin Constructs with Spatially Controlled Vasculature Using Primary and iPSC-Derived Endothelial Cells. Adv Healthc Mater 2016; 5:1800-7. [PMID: 27333469 PMCID: PMC5031081 DOI: 10.1002/adhm.201500936] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/03/2016] [Indexed: 12/28/2022]
Abstract
Vascularization of engineered human skin constructs is crucial for recapitulation of systemic drug delivery and for their long-term survival, functionality, and viable engraftment. In this study, the latest microfabrication techniques are used and a novel bioengineering approach is established to micropattern spatially controlled and perfusable vascular networks in 3D human skin equivalents using both primary and induced pluripotent stem cell (iPSC)-derived endothelial cells. Using 3D printing technology makes it possible to control the geometry of the micropatterned vascular networks. It is verified that vascularized human skin equivalents (vHSEs) can form a robust epidermis and establish an endothelial barrier function, which allows for the recapitulation of both topical and systemic delivery of drugs. In addition, the therapeutic potential of vHSEs for cutaneous wounds on immunodeficient mice is examined and it is demonstrated that vHSEs can both promote and guide neovascularization during wound healing. Overall, this innovative bioengineering approach can enable in vitro evaluation of topical and systemic drug delivery as well as improve the potential of engineered skin constructs to be used as a potential therapeutic option for the treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Hasan E. Abaci
- Department of Dermatology, Columbia University Medical Center, New York
| | - Zongyou Guo
- Department of Dermatology, Columbia University Medical Center, New York
| | - Abigail Coffman
- Department of Dermatology, Columbia University Medical Center, New York
| | - Brian Gillette
- Department of Biomedical Engineering, Columbia University, New York
| | - Wen-han Lee
- Department of Biomedical Engineering, Columbia University, New York
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Medical Center, New York
- Department of Genetics and Development, Columbia University Medical Center, New York
| |
Collapse
|
145
|
Tam J, Wang Y, Vuong LN, Fisher JM, Farinelli WA, Anderson RR. Reconstitution of full-thickness skin by microcolumn grafting. J Tissue Eng Regen Med 2016; 11:2796-2805. [PMID: 27296503 PMCID: PMC5697650 DOI: 10.1002/term.2174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/23/2022]
Abstract
In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long-standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm-scale, full-thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General HospitalBostonMAUSA
- Department of DermatologyHarvard Medical SchoolBostonMAUSA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General HospitalBostonMAUSA
- Department of DermatologyHarvard Medical SchoolBostonMAUSA
| | - Linh N. Vuong
- Wellman Center for Photomedicine, Massachusetts General HospitalBostonMAUSA
| | - Jeremy M. Fisher
- Wellman Center for Photomedicine, Massachusetts General HospitalBostonMAUSA
| | | | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General HospitalBostonMAUSA
- Department of DermatologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
146
|
Chua AWC, Khoo YC, Tan BK, Tan KC, Foo CL, Chong SJ. Skin tissue engineering advances in severe burns: review and therapeutic applications. BURNS & TRAUMA 2016; 4:3. [PMID: 27574673 PMCID: PMC4963933 DOI: 10.1186/s41038-016-0027-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes: a class of products that is still fraught with limitations for clinical use. Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium (within 3 to 4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, sub-normal skin microstructure and inconsistent engraftment, especially in full thickness burns. Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes, usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice.
Collapse
Affiliation(s)
- Alvin Wen Choong Chua
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Yik Cheong Khoo
- Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Bien Keem Tan
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Kok Chai Tan
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore
| | - Chee Liam Foo
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore
| | - Si Jack Chong
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| |
Collapse
|
147
|
Klar AS, Güven S, Zimoch J, Zapiórkowska NA, Biedermann T, Böttcher-Haberzeth S, Meuli-Simmen C, Martin I, Scherberich A, Reichmann E, Meuli M. Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute. Pediatr Surg Int 2016; 32:17-27. [PMID: 26621500 DOI: 10.1007/s00383-015-3808-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE The need for clinically applicable skin substitutes continues to be a matter of fact. Hypothetically, a laboratory grown autologous skin analog with near normal architecture might be a suitable approach to yield both satisfactory functional and cosmetic long-term results. In this study, we explored the use of human endothelial cells derived from freshly isolated adipose stromal vascular fraction (SVF) in a three-dimensional (3D) co-culture model of vascularized bio-engineered skin substitute. METHODS The SVF was isolated from human white adipose tissue samples and keratinocytes from human skin biopsies. The SVF, in particular endothelial cells, were characterized using flow cytometry and immuofluorescence analysis. Endothelial and mesenchymal progenitors from the SVF formed blood capillaries after seeding into a 3D collagen type I hydrogel in vitro. Subsequently, human keratinocytes were seeded on the top of those hydrogels to develop a vascularized dermo-epidermal skin substitute. RESULTS Flow cytometric analysis of surface markers of the freshly isolated SVF showed the expression of endothelial markers (CD31, CD34, CD146), mesenchymal/stromal cell-associated markers (CD44, CD73, CD90, CD105), stem cell markers (CD49f, CD117, CD133), and additionally hematopoietic markers (CD14, CD15, CD45). Further analysis of white adipose-derived endothelial cells (watECs) revealed the co-expression of CD31, CD34, CD90, CD105, and partially CD146 on these cells. WatECs were separated from adipose-stromal cells (watASCs) using FACS sorting. WatASCs and watECs cultured separately in a 3D hydrogel for 3 weeks did not form any vascular structures. Only if co-cultured, both cell types aligned to develop a ramified vascular network in vitro with continuous endothelial lumen formation. Transplantation of those 3D-hydrogels onto immuno-incompetent rats resulted in a rapid connection of human capillaries with the host vessels and formation of functional, blood-perfused mosaic human-rat vessels within only 3-4 days. CONCLUSIONS Adipose tissue represents an attractive cell source due to the ease of isolation and abundance of endothelial as well as mesenchymal cell lineages. Adipose-derived SVF cells exhibit the ability to form microvascular structures in vitro and support the accelerated blood perfusion in skin substitutes in vivo when transplanted.
Collapse
Affiliation(s)
- Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sinan Güven
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Jakub Zimoch
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Natalia A Zapiórkowska
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sophie Böttcher-Haberzeth
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Surgery, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Claudia Meuli-Simmen
- Department of Plastic, Reconstructive, Esthetical and Hand Surgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Meuli
- Department of Surgery, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
| |
Collapse
|
148
|
Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 2015; 78:129-39. [PMID: 26694987 DOI: 10.1016/j.biomaterials.2015.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
Abstract
Regeneration of lymphatic vessels is important for treatment of various disorders of lymphatic system and for restoration of lymphatic function after surgery. We have developed a method for generating a human 3D lymphatic vascular construct. In this system, human lymphatic endothelial cells, co-cultured with fibroblasts, spontaneously organized into a stable 3D lymphatic capillary network without the use of any exogenous factors. In vitro-generated lymphatic capillaries exhibited the major molecular and ultra-structural features of native, human lymphatic microvasculature: branches in the three dimensions, wide lumen, blind ends, overlapping borders, adherens and tight junctions, anchoring filaments, lack of mural cells, and poorly developed basement membrane. Furthermore, we show that fibroblast-derived VEGF-C and HGF cooperate in the formation of lymphatic vasculature by activating ERK1/2 signaling, and demonstrate distinct functions of HGF/c-Met and VEGF-C/VEGFR-3 in lymphangiogenesis. This lymphatic vascular construct is expected to facilitate studies of lymphangiogenesis in vitro and it holds promise as a strategy for regeneration of lymphatic vessels and treatment of lymphatic disorders in various conditions.
Collapse
|
149
|
Huethorst E, Krebber MM, Fledderus JO, Gremmels H, Xu YJ, Pei J, Verhaar MC, Cheng C. Lymphatic Vascular Regeneration: The Next Step in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015. [PMID: 26204330 DOI: 10.1089/ten.teb.2015.0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces quality of life of patients on a physical, mental, social, and economic basis. Current therapeutic approaches in treatment of lymphatic disease are limited. Over the last decades, great progress has been made in the development of therapeutic strategies to enhance vascular regeneration. These solutions to treat vascular disease may also be applicable in the treatment of lymphatic diseases. Comparison of the organogenic process and biological organization of the vascular and lymphatic systems and studies in the regulatory mechanisms involved in lymphangiogenesis and angiogenesis show many common features. In this study, we address the similarities between both transport systems, and focus in depth on the biology of lymphatic development. Based on the current advances in vascular regeneration, we propose different strategies for lymphatic tissue engineering that may be used for treatment of primary and secondary lymphedema.
Collapse
Affiliation(s)
- Eline Huethorst
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Merle M Krebber
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Joost O Fledderus
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Hendrik Gremmels
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Yan Juan Xu
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Jiayi Pei
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marianne C Verhaar
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Caroline Cheng
- 1 Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht , Utrecht, The Netherlands .,2 Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter , Rotterdam, The Netherlands
| |
Collapse
|
150
|
Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials 2015; 78:115-28. [PMID: 26691234 DOI: 10.1016/j.biomaterials.2015.11.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 02/07/2023]
Abstract
Formation of new lymphatic vessels, termed lymphangiogenesis, is central for diverse biological processes during development, inflammation and tumor metastasis. However, reliable in vitro model is still under demand for detailed elucidation of how sprouting lymphangiogenesis is initiated and coordinated. Here, we describe a microfluidic platform optimized for close reconstitution of lymphangiogenesis, achieved by on-chip integration of salient constituents of lymphatic microenvironment found in vivo. With flexible and precise control over the factors that include biochemical cues, interstitial flow (IF), and endothelial-stromal interactions, we found that orchestrated efforts of multiple environmental factors are necessary for robust lymphatic sprouting in 3D extracellular matrix. Especially, we demonstrate that IF serves as a central regulatory cue which defines lymphangiogenic responses and phenotypes of lymphatic endothelial cells. When synergized with pro-lymphangiogenic factors, IF significantly augmented initiation and outgrowth of lymphatic sprouts toward upstream of the flow while suppressing downstream-directed sprouting. In an appropriate synergism, lymphatic sprouts exhibited structural, molecular signatures and cellular phenotypes that closely approximate sprouting lymphatic neovessels in vivo, and precisely reflected the modulatory effects of pro- and anti-lymphangiogenic stimuli. Our study not only reveals critical but unappreciated role of mechanical cue that regulates lymphangiogenic sprouting, but also provides a novel biomimetic model that may leverage further biological studies as well as phenotypic drug screening.
Collapse
|