101
|
Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Appl Microbiol Biotechnol 2011; 93:859-69. [DOI: 10.1007/s00253-011-3624-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/12/2011] [Accepted: 09/30/2011] [Indexed: 11/26/2022]
|
102
|
Morimoto S, Ogawa N, Hasebe A, Fujii T. Isolation of effective 3-chlorobenzoate-degraders in soil using community analyses by PCR-DGGE. Microbes Environ 2011; 23:285-92. [PMID: 21558720 DOI: 10.1264/jsme2.me08526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The screening of pollutant degraders by relying solely on cultivation techniques such as liquid enrichment often fails to isolate the actual degraders in the environment. Community analyses by PCR-denaturing gradient gel electrophoresis (DGGE) were performed to isolate bacteria that can degrade 3-chlorobenzoate (3CB) effectively in soil. A forest soil sample was repeatedly dosed with 3CB (500 mg kg(-1)) to enrich it with indigenous 3CB-degraders, and changes in the bacterial community were monitored by PCR-DGGE of the 16S rRNA gene and benzoate 1,2-dioxygenase alpha subunit gene (benA). Initially, it required about 3 weeks to degrade 3CB in the soil, whereas it took only 3 days after the third dose. With this accelerated degradation, several intensified bands appeared in the DGGE profiles of both 16S rRNA gene and benA. We succeeded in isolating five 3CB-degrading Burkholderia strains corresponding to these bands by direct plating, while most of them were eliminated by liquid enrichment. Inoculation of the strains into the soil demonstrated that the five strains could degrade 3CB effectively in the soil. This study clearly shows significant bias during the liquid enrichment process and the advantage of using PCR-DGGE in screening effective degraders under environmental conditions.
Collapse
Affiliation(s)
- Sho Morimoto
- National Institute for Agro-Environmental Sciences, 3-1-3 Kannodai, Tsukuba, Ibaraki 305-9604, Japan
| | | | | | | |
Collapse
|
103
|
Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation. Appl Environ Microbiol 2011; 77:4728-35. [PMID: 21602394 DOI: 10.1128/aem.05188-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloropropham-degrading cultures were obtained from sludge and soil samples by using two different enrichment techniques: (i) planktonic enrichments in shaken liquid medium and (ii) biofilm enrichments on two types of solid matrixes (plastic chips and gravel). Denaturing gradient gel electrophoresis fingerprinting showed that planktonic and biofilm cultures had a different community composition depending on the presence and type of added solid matrix during enrichment. This was reflected in the unique chloropropham-degrading species that could be isolated from the different cultures. Planktonic and biofilm cultures also differed in chloropropham-degrading activity. With biofilm cultures, slower chloropropham removal was observed, but with less build-up of the toxic intermediate 3-chloroaniline. Disruption of the biofilm architecture resulted in degradation characteristics shifting toward those of the free suspensions, indicating the importance of a well-established biofilm structure for good performance. These results show that biofilm-mediated enrichment techniques can be used to select for pollutant-degrading microorganisms that like to proliferate in a biofilm and that cannot be isolated using conventional shaken-liquid procedures. Furthermore, the influence of the biofilm architecture on the pesticide degradation characteristics suggests that for bioaugmentation the use of biofilm catabolic communities might be a proficient alternative to using planktonic freely suspended cultures.
Collapse
|
104
|
Pollet T, Tadonléké RD, Humbert JF. Comparison of primer sets for the study of Planctomycetes communities in lentic freshwater ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:254-261. [PMID: 23761258 DOI: 10.1111/j.1758-2229.2010.00219.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In search of a primer set that could be used to study Planctomycetes dynamics in lakes and especially via fingerprinting methods, e.g. denaturing gradient gel electrophoresis (DGGE), three existing specific primer sets, developed for marine and soil systems, have been tested on water samples from four freshwater ecosystems. The first primer set (PLA46F/PLA886R) allowed PCR amplification of Planctomycetes sequences in only one of the four ecosystems, whereas the second primer set (PLA40F/P518R) amplified Planctomycetes sequences in all the studied ecosystems but with a low specificity, since sequences belonging to Verrucomicrobiales and Chlamydiales clades were also amplified. Finally, the third primer set (PLA352F/PLA920R) allowed amplification of Planctomycetes sequences in the four ecosystems with a very high specificity. It amplified all known Planctomycetes genera and yielded the highest Operational Taxonomic Unit (OTU) richness and diversity estimates. In silico analyses supported these results. Further experiments comparing PLA352F/PLA920R to PLA46F/P1390R (a primer set generating a longer PCR fragment, also used to study Planctomycetes) yielded very similar results. Our findings suggest that the primer set PLA352F/PLA920R provides good estimates of Planctomycetes richness and diversity compared with other, and can thus be used to study Planctomycetes dynamics in lentic freshwater ecosystems.
Collapse
Affiliation(s)
- Thomas Pollet
- INRA-UMR CARRTEL, 74203 Thonon les Bains cedex, France. INRA, UMR 7618 BIOEMCO, Site de l'ens, 75005 Paris, France
| | | | | |
Collapse
|
105
|
Analysis of denitrifier community in a bioaugmented sequencing batch reactor for the treatment of coking wastewater containing pyridine and quinoline. Appl Microbiol Biotechnol 2011; 90:1485-92. [DOI: 10.1007/s00253-011-3139-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/25/2022]
|
106
|
De Gusseme B, Vanhaecke L, Verstraete W, Boon N. Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. WATER RESEARCH 2011; 45:1829-37. [PMID: 21167545 DOI: 10.1016/j.watres.2010.11.040] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 05/17/2023]
Abstract
The incidence and fate of pharmaceuticals in the water cycle impose a growing concern for the future reuse of treated water. Because of the recurrent global use of drugs such as Acetaminophen (APAP), an analgesic and antipyretic drug, they are often detected in wastewater treatment plant (WWTP) effluents, receiving surface waters and drinking water resources. In this study, the removal of APAP has been demonstrated in a membrane bioreactor (MBR) fed with APAP as the sole carbon source. After 16 days of operation, at a hydraulic retention time (HRT) of 5 days, more than 99.9% removal was obtained when supplying a synthetic WWTP effluent with 100 μg APAP L(-1). Batch experiments indicated no sorption of APAP to the biomass, no influence of the WWTP effluent matrix, and the capability of the microbial consortium to remove APAP at environmentally relevant concentrations (8.3 μg APAP L(-1)). Incubation with allylthiourea, an ammonia monooxygenase inhibitor, demonstrated that the APAP removal was mainly associated with heterotrophic bacteria and not with the ammonia-oxidizing bacteria. Two APAP degrading strains were isolated from the MBR biomass and identified as Delftia tsuruhatensis and Pseudomonas aeruginosa. During incubation of the isolates, hydroquinone - a potentially toxic transformation product - was temporarily formed but further degraded and/or metabolized. These results suggest that the specific enrichment of a microbial consortium in an MBR operated at a high sludge age might be a promising strategy for post-treatment of WWTP effluents containing pharmaceuticals.
Collapse
Affiliation(s)
- Bart De Gusseme
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
107
|
Quan X, Tang H, Ma J. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:689-695. [PMID: 20951494 DOI: 10.1016/j.jhazmat.2010.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/23/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.
Collapse
Affiliation(s)
- Xiangchun Quan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | | | | |
Collapse
|
108
|
Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Appl Microbiol Biotechnol 2010; 89:855-65. [DOI: 10.1007/s00253-010-3068-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
109
|
Bacterial colonization of pellet softening reactors used during drinking water treatment. Appl Environ Microbiol 2010; 77:1041-8. [PMID: 21148700 DOI: 10.1128/aem.02068-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m(3) of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product.
Collapse
|
110
|
Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J, Butaye P, Catry B, Haesebrouck F, Herman L, Heyndrickx M. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J Appl Microbiol 2010; 110:541-9. [DOI: 10.1111/j.1365-2672.2010.04907.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
111
|
De Weirdt R, Possemiers S, Vermeulen G, Moerdijk-Poortvliet TCW, Boschker HTS, Verstraete W, Van de Wiele T. Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol Ecol 2010; 74:601-11. [PMID: 20946352 DOI: 10.1111/j.1574-6941.2010.00974.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Significant amounts of glycerol reach the colon microbiota daily through the diet and/or by in situ microbial production or release from desquamated epithelial cells. Some gut microorganisms may anaerobically reduce glycerol to 1,3-propanediol (1,3-PDO), with 3-hydroxypropanal as an intermediate. Accumulation of the latter intermediate may result in the formation of reuterin, which is known for its biological activity (e.g. antimicrobial properties). To date, glycerol metabolism in mixed cultures from the human colon has received little attention. Using in vitro batch incubations of faeces from 10 human individuals, we demonstrated that glycerol addition (140 mM) significantly affects the metabolism and composition of the microbial community. About a third of the samples exhibited rapid glycerol conversion, yielding proportionally higher levels of acetate and 1,3-PDO. In contrast, a slower glycerol metabolism resulted in higher levels of propionate. Furthermore, rapid glycerol metabolism correlated with significant shifts in the Lactobacillus-Enterococcus community, which were not observed in slower glycerol-metabolizing samples. As the conversion of glycerol to 1,3-PDO is a highly reducing process, we infer that the glycerol metabolism may act as an effective hydrogen sink. Given the importance of hydrogen-consuming processes in the gut, this work suggests that glycerol may have potential as a tool for modulating fermentation kinetics and profiles in the gastrointestinal tract.
Collapse
Affiliation(s)
- Rosemarie De Weirdt
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
112
|
Barr JJ, Slater FR, Fukushima T, Bond PL. Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge. FEMS Microbiol Ecol 2010; 74:631-42. [DOI: 10.1111/j.1574-6941.2010.00967.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
113
|
Slater FR, Johnson CR, Blackall LL, Beiko RG, Bond PL. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP). WATER RESEARCH 2010; 44:4908-4923. [PMID: 20701946 DOI: 10.1016/j.watres.2010.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/26/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
The role of Candidatus "Accumulibacter phosphatis" (Accumulibacter) in enhanced biological phosphorus removal (EBPR) is well established but the relevance of different Accumulibacter clades to the performance of EBPR systems is unknown. We developed a terminal-restriction fragment length polymorphism (T-RFLP) technique to monitor changes in the relative abundance of key members of the bacterial community, including Accumulibacter clades, in four replicate mini-sequencing batch reactors (mSBRs) operated for EBPR over a 35-day period. The ability of the T-RFLP technique to detect trends was confirmed using fluorescence in situ hybridisation (FISH). EBPR performance varied between reactors and over time; by day 35, performance was maintained in mSBR2 whilst it had deteriorated in mSBR1. However, reproducible trends in structure-function relationships were detected in the mSBRs. EBPR performance was strongly associated with the relative abundance of total Accumulibacter. A shift in the ratio of the dominant Accumulibacter clades was also detected, with Type IA associated with good EBPR performance and Type IIC associated with poor EBPR performance. Changes in ecosystem function of the mSBRs in the early stages of the experiment were more closely associated with changes in the abundance of (unknown) members of the flanking community than of either Accumulibacter or Candidatus "Competibacter phosphatis". This study therefore reveals a hitherto unrecorded and complex relationship between Accumulibacter clades, the flanking community and ecosystem function of laboratory-scale EBPR systems.
Collapse
Affiliation(s)
- F R Slater
- The University of Queensland, Advanced Water Management Centre (AWMC), Qld 4072, Australia.
| | | | | | | | | |
Collapse
|
114
|
Falk MW, Wuertz S. Effects of the toxin 3-chloroaniline at low concentrations on microbial community dynamics and membrane bioreactor performance. WATER RESEARCH 2010; 44:5109-5115. [PMID: 20864141 DOI: 10.1016/j.watres.2010.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
The effects of toxins at ambient concentrations on microbial activity and community dynamics are poorly understood. We operated 4 membrane bioreactors (MBRs) in parallel; two reactors were continuously exposed to the toxin 3-chloroaniline (3-CA) at environmentally relevant levels, representing 25% of the total chemical oxygen demand (COD; Total COD = 400 mg l(-1) d(-1)), and two reactors received no 3-CA. During the 70 d exposure to 3-CA the microbial communities never adapted as evidenced by a 48% and 14% reduction in COD and ammonia removal, respectively, compared to over 92% reduction for both measurements in the controls. The bacterial 16S rRNA gene was monitored using terminal restriction fragment length polymorphism (T-RFLP) analysis (n = 15 temporal grab samples per reactor) over the 70 d period. T-RFLP spectra analysis compared the rapid species turnover rate (STR) approach with the more computationally intensive non-metric multi-dimensional scaling (NMS) complemented with multi-response permutation procedure (MRPP). The methods revealed comparable findings and the presence of 3-CA selected for a more convergent community with less bacterial turnover. In contrast, the control MBRs were more divergent as evidenced by greater bacterial turnover variability. The importance of studying replicate reactors is highlighted by the fact that one of the two controls was significantly different from the treatment MBRs (p-value = 0.01, α = 0.05) whereas the other one was not (p-value = 0.24, α = 0.05). The study suggests that analysis of community dynamics with the rapid STR approach and with NMS/MRPP can lead to comparable results when targeting the 16S rRNA gene. The use of replicate bioreactors is essential for meaningful interpretation of microbial community patterns.
Collapse
Affiliation(s)
- Michael W Falk
- Department of Civil & Environmental Engineering, University of California, Davis, Gausi Hall, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
115
|
Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods. Appl Microbiol Biotechnol 2010; 88:299-307. [PMID: 20652692 DOI: 10.1007/s00253-010-2770-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were determined using real-time PCR targeting the bacterial 16S rDNA gene. Microbial community fingerprints were assessed by automated ribosomal intergenic spacer analysis. The resulting community profiles were analyzed with canonical correspondence analysis. Our results clearly demonstrate that direct DNA extraction methods can significantly influence the DNA quantity, purity, and observed community patterns of microbiota in activated sludge. Fast and Mobio generated high amounts of good quality DNA compared to Bead and Qiagen. Mobio also resulted in the detection of the highest number of species while Fast scored the best in discriminating between the community patterns of different activated sludge types. With respect to the characterization of community profiles, our analyses demonstrated a strong sludge type dependent variability among methods. Taking into account our results, we recommend Fast as the most suitable DNA extraction method for activated sludge samples used for bacterial community studies.
Collapse
|
116
|
Zhang LL, He D, Chen JM, Liu Y. Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:875-882. [PMID: 20417029 DOI: 10.1016/j.jhazmat.2010.03.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 05/29/2023]
Abstract
A new strain Delftia tsuruhatensis H1 able to degrade several chloroanilines (CAs) as individual compounds or a mixture was isolated from a CA-degrading mixed bacterial culture. The isolated strain could completely degrade 3-CA and 4-CA as growth substrates, while concurrently metabolize 2-CA by growing on other CA compounds. The strain could also efficiently degrade all the three CA components when presented as a mixture. Following CA consumption, stoichiometric amounts of chloride were released and small amount of soluble metabolites accumulated in the medium, indicating that the loss of CA was mainly via mineralization and incorporation into cell material. The additions of yeast extract, citrate or succinate appeared to accelerate CA degradation. In contrast, aniline strongly inhibited the CA degradation. The strain H1 could also decompose other substituted aniline compounds such as 3,4-dichloroaniline, 4-methylaniline, 2,3-dichloroaniline and 2,4-dichloroaniline. The elimination of these CA compounds seemed to occur via an ortho-cleavage pathway.
Collapse
Affiliation(s)
- Li-li Zhang
- School of Biological and Environmental Engineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | | | | | | |
Collapse
|
117
|
van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 2010; 87:2355-63. [DOI: 10.1007/s00253-010-2702-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022]
|
118
|
Li BZ, Xu XY, Zhu L. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds. J Zhejiang Univ Sci B 2010; 11:177-89. [PMID: 20205304 DOI: 10.1631/jzus.b0900291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD(5)) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m(3)xd), with hydraulic retention time (HRT)=10 h and temperature (30+/-2) degrees C, the average removal efficiencies of NH(3)-N, COD, BOD(5), TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs.
Collapse
Affiliation(s)
- Bing-zhi Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
119
|
Bioaugmentation treatment for coking wastewater containing pyridine and quinoline in a sequencing batch reactor. Appl Microbiol Biotechnol 2010; 87:1943-51. [PMID: 20490786 DOI: 10.1007/s00253-010-2670-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Two pyridine-degrading bacteria and two quinoline-degrading bacteria were introduced for bioaugmentation to treat the coking wastewater. Sequencing batch reactors (SBRs) were used for a comparative study on the treatment efficiency of pyridine, quinoline, and chemical oxygen demand. Results showed that the treatment efficiency with coking-activated sludge plus a mixture of the four degrading bacteria was much better than that ones with coking-activated sludge only or mixed degrading bacteria only. Moreover, a 52-day continuous operation of the bioaugmented and general SBRs was investigated. The bioaugmented SBR showed better treatment efficiency and stronger capacity to treat high pyridine and quinoline shock loading. The general SBR failed to cope with the shock loading, and the biomass of the activated sludge decreased significantly. In order to monitor the microbial ecological variation during the long-term treatment, the bacterial community in both reactors was monitored by the amplicon length heterogeneity polymerase chain reaction technique. The diversity of the bacterial community decreased in both reactors, but the introduced highly efficient bacteria were dominant in the bioaugmented SBR. Our experiment showed clearly that the use of highly efficient bacteria in SBR process could be a feasible method to treat wastewater containing pyridine or/and quinoline.
Collapse
|
120
|
Inhibition of Salmonella typhimurium by medium-chain fatty acids in an in vitro simulation of the porcine cecum. Vet Microbiol 2010; 141:73-80. [DOI: 10.1016/j.vetmic.2009.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 01/12/2023]
|
121
|
Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Appl Environ Microbiol 2010; 76:2002-8. [PMID: 20097806 DOI: 10.1128/aem.02432-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By placing the anode of a sediment microbial fuel cell (SMFC) in the rhizosphere of a rice plant, root-excreted rhizodeposits can be microbially oxidized with concomitant current generation. Here, various molecular techniques were used to characterize the composition of bacterial and archaeal communities on such anodes, as influenced by electrical circuitry, sediment matrix, and the presence of plants. Closed-circuit anodes in potting soil were enriched with Desulfobulbus-like species, members of the family Geobacteraceae, and as yet uncultured representatives of the domain Archaea.
Collapse
|
122
|
Wojnowska-Baryła I, Cydzik-Kwiatkowska A, Zielińska M. The application of molecular techniques to the study of wastewater treatment systems. Methods Mol Biol 2010; 599:157-183. [PMID: 19882286 DOI: 10.1007/978-1-60761-439-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wastewater treatment systems tend to be engineered to select for a few functional microbial groups that may be organized in various spatial structures such as activated sludge flocs, biofilm or granules and represented by single coherent phylogenic groups such as ammonia-oxidizing bacteria (AOB) and polyphosphate-accumulating organisms (PAO). In order to monitor and control engineered microbial structure in wastewater treatment systems, it is necessary to understand the relationships between the microbial community structure and the process performance. This review focuses on bacterial communities in wastewater treatment processes, the quantity of microorganisms and structure of microbial consortia in wastewater treatment bioreactors. The review shows that the application of molecular techniques in studies of engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in wastewater treatment systems.
Collapse
Affiliation(s)
- Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Sloneczna, Poland
| | | | | |
Collapse
|
123
|
Khalid A, Arshad M, Crowley D. Bioaugmentation of Azo Dyes. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2010. [DOI: 10.1007/698_2009_42] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
124
|
Boon N, Windt W, Verstraete W, Top EM. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 2009; 39:101-12. [PMID: 19709189 DOI: 10.1111/j.1574-6941.2002.tb00911.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The diversity of bacterial groups of activated sludge samples that received wastewater from four different types of industry was investigated by a nested PCR-DGGE (denaturing gradient gel electrophoresis) approach. Specific 16S rRNA primers were chosen for large bacterial groups (Bacteria and alpha-Proteobacteria in particular), which dominate activated sludge communities, as well as for actinomycetes, ammonium oxidisers and methanotrophs (types I and II). In addition primers for the new Acidobacterium kingdom were used to observe their community structure in activated sludge. After this first PCR amplification, a second PCR with bacterial primers yielded 16S rRNA gene fragments that were subsequently separated by DGGE, thus generating 'group-specific DGGE patterns'. The community structure and diversity of the bacterial groups from the different samples was further analysed using different techniques, such as statistical analysis and Shannon diversity index evaluation of the band patterns. By combining the seven DGGE gels, cluster analysis, multidimensional scaling and principal component analysis clearly clustered two of the four activated sludge types separately. It was shown that the combination of molecular and statistical methods can be very useful to differentiate microbial communities.
Collapse
Affiliation(s)
- Nico Boon
- Ghent University, Faculty of Agricultural and Applied Biological Sciences, Laboratory of Microbial Ecology and Technology, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
125
|
Jernberg C, Jansson JK. Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol Ecol 2009; 42:387-97. [PMID: 19709298 DOI: 10.1111/j.1574-6941.2002.tb01028.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L (chromosomally tagged with the firefly luciferase gene, luc) was inoculated into 4-chlorophenol-contaminated soil to assess the impact of bioaugmentation with a biodegrading strain on the indigenous microbiota. Simultaneously, the impact of 4-chlorophenol alone, or inoculation with A. chlorophenolicus into non-contaminated soil, was addressed. Using terminal restriction fragment length polymorphism (T-RFLP) several significant changes were detected in community fingerprint patterns obtained from soil microcosms treated under the different conditions. The relative abundances of some populations, as judged by the relative intensity of terminal restriction fragments, were significantly impacted by either 4-chlorophenol, A. chlorophenolicus inoculation, or by a combination of both inoculation and 4-chlorophenol contamination. Some populations were significantly stimulated and others were significantly repressed when compared to control soil with no additions. For several peaks, the positive or negative impact imposed by the treatments increased over the 13-day incubation period. Some members of the bacterial community were specifically sensitive to A. chlorophenolicus inoculation or to 4-chlorophenol contamination, whereas other populations remained relatively unaffected by any of the treatments. The A. chlorophenolicus inoculum was also monitored by T-RFLP and was found to have a significantly higher relative abundance in soil contaminated with 4-chlorophenol. These results were substantiated by a high correlation to luciferase activity measurements and the number of colony forming units of the inoculum. Therefore, the A. chlorophenolicus A6L population was positively stimulated by the presence of the 4-chlorophenol substrate (180 microg g(-1) soil) that it catabolized during the first 8 days of the incubation period as a carbon and energy source. Together, these results demonstrate that specific populations in the soil bacterial community rapidly fluctuated in response to specific disturbances and the resulting shifts in the community may therefore represent an adjustment in community structure favoring those populations best capable of responding to novel stress scenarios.
Collapse
Affiliation(s)
- Cecilia Jernberg
- Södertörn University College, Section for Natural Sciences, P.O. Box 4101, S-141 04 Huddinge, Sweden
| | | |
Collapse
|
126
|
Juhanson J, Truu J, Heinaru E, Heinaru A. Survival and catabolic performance of introducedPseudomonasstrains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 2009; 70:446-55. [PMID: 19732146 DOI: 10.1111/j.1574-6941.2009.00754.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jaanis Juhanson
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
127
|
Zhao S, Ramette A, Niu GL, Liu H, Zhou NY. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiol Ecol 2009; 70:159-67. [DOI: 10.1111/j.1574-6941.2009.00773.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
128
|
Vanbroekhoven K, Ryngaert A, Wattiau P, Mot R, Springael D. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. FEMS Microbiol Ecol 2009; 50:37-50. [PMID: 19712375 DOI: 10.1016/j.femsec.2004.05.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A primer pair was designed to selectively amplify a fragment of the Acinetobacter 16S rRNA gene from environmental samples by PCR. 16S rRNA gene products were only obtained in PCRs with DNA from members of the genus Acinetobacter and not with DNA from other bacterial species. Denaturing gradient gel electrophoresis (DGGE) of the Acinetobacter 16S rRNA gene amplicons enabled discrimination between different Acinetobacter species. PCR using the Acinetobacter primer pair allowed detection of Acinetobacter in soil with a detection limit of 10(4) cells g(-1) soil, but attachment of the GC-clamp to the forward primer resulted in a 100-fold decrease in sensitivity. Using a nested PCR approach, the detection limit could be lowered to at least 10 cells g(-1) of soil. The method was applied to assess Acinetobacter diversity in soil samples originating from different historically hydrocarbon-contaminated sites. In addition, for one oil-contaminated soil, the dynamics of the Acinetobacter community in response to different treatments was monitored over time in a laboratory biostimulation experimental set-up. In all cases, bands in the DGGE fingerprints were cloned and sequenced. Environmental samples taken from a mineral oil-contaminated site and from a kerosene-contaminated site demonstrated relatively simple Acinetobacter 16S rRNA gene fingerprints with A. lwoffii and A. johnsonii as dominant members. In contrast, soils derived from MTBE- and BTEX-contaminated sites did not harbor detectable Acinetobacter populations. Although Acinetobacter was detected in the soil employed for the biostimulation experiment prior to treatment, substantial changes in its populations were observed depending on the treatment.
Collapse
Affiliation(s)
- Karolien Vanbroekhoven
- Environmental and Process Technology, Vlaamse Instelling voor Technologisch Onderzoek, Boeretang 200, B-2400 Mol, Belgium
| | | | | | | | | |
Collapse
|
129
|
Wittebolle L, Verstraete W, Boon N. The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors. WATER RESEARCH 2009; 43:4149-4158. [PMID: 19596129 DOI: 10.1016/j.watres.2009.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/14/2009] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
Three identical sequential batch reactors (SBRs) were each inoculated with sludge from a full-scale wastewater treatment plant (WWTP) treating a waste stream of different origin, i.e. a hospital, a meat processing company, and a municipal WWTP. The SBRs were run in parallel for 84 consecutive days to investigate whether the reactors would become more phylogenetically similar or stay separated concerning their functionality and microbial communities. Overall, the nitrification functionality was high throughout the experiment, and the size and structure of the sludge flocs were very similar. The total bacterial and ammonia-oxidizing bacterial (AOB) communities were analyzed by PCR-DGGE. Cluster analysis demonstrated very distinct bacterial communities in the three SBRs, not showing any trend becoming more similar. The carrying capacity, dynamics and functional organization of the communities were assessed by DGGE analysis and based on these patterns the range-weighted richness, moving window analysis, and constructing Pareto-Lorenz evenness distribution curves were calculated. Between the SBRs, highly comparable internal structure and dynamics of the AOB communities were observed, although they had only one AOB DGGE band in common. These observations indicate that community characteristics such as the extent of biodiversity and dynamics are more important indicators of good microbial functionality than the presence of certain specific species.
Collapse
Affiliation(s)
- Lieven Wittebolle
- Laboratory of Microbial Ecology & Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | |
Collapse
|
130
|
Bazot S, Lebeau T. Effect of immobilization of a bacterial consortium on diuron dissipation and community dynamics. BIORESOURCE TECHNOLOGY 2009; 100:4257-4261. [PMID: 19386487 DOI: 10.1016/j.biortech.2009.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 05/27/2023]
Abstract
This work intended to study the relationship between diuron herbicide dissipation and the population dynamics of co-cultivated Delftia acidovorans WDL34 (WDL34) and Arthrobacter sp. N4 (N4) for different cell formulations: free cells or immobilization in Ca-alginate beads of one or both strains. GFP-tagged WDL34 and N4 Gram staining allowed analyzing the cell growth and distribution of each strain in both beads and culture medium in the course of the time. Compared to the free cell co-culture of WDL34 and N4, immobilization of WDL34 in Ca-alginate beads co-cultivated with free N4 increased the dissipation rate of diuron by 53% (0.141 mg ml(-1) h(-1)). In that case, immobilization strongly modified the final equilibrium among both strains (highest total N4 to WDL34 ratio). Our results demonstrated that the inoculant formulation played a major role in the cell growth of each cultivated strain possibly increasing diuron dissipation. This optimized cell formulation may allow improving water and soil treatment.
Collapse
Affiliation(s)
- Stéphane Bazot
- Laboratoire Ecologie, Systématique et Evolution, UMR8079, UPS-CNRS-ENGREF, Département Ecophysiologie Végétale, Université Paris-sud XI, 91405 Orsay Cedex, France
| | | |
Collapse
|
131
|
Wang M, Yang G, Min H, Lv Z, Jia X. Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: degradation study and analysis of its mechanisms. WATER RESEARCH 2009; 43:4187-4196. [PMID: 19665163 DOI: 10.1016/j.watres.2009.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 05/28/2023]
Abstract
The highly effective nicotine-degrading bacterium Pseudomonas sp. HF-1 was augmented in an SBR system that is used to treat tobacco wastewater. Compared to the non-bioaugmented (non-BA) system, the bioaugmented (BA) system exhibited considerably stronger pollution disposal abilities, with 100% nicotine degradation and more than 84% chemical oxygen demand (COD) removal within 12h. Nicotine degradation had a significant effect on COD removal in SBRs (r=0.928, p<0.01). The mechanisms of bioaugmentation were systematically investigated using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and a toxicity assay (protein carbonyl (PC) and DNA-protein crosslinking (DPC)). DGGE fingerprint profiles showed that the number of bands and the Shannon-Wiener index decreased at a nicotine load of 250mg/L compared to a 40-130mg/L nicotine load in the non-BA system. However, a stepwise increase in the Shannon-Wiener index was found during all periods in the BA system. A comparison of sequences excised from DGGE gels demonstrated significant differences in the dominant microbial species between the two SBRs. This result suggested that bioaugmentation of strain HF-1 could select cooperators for treating complicated tobacco wastewater. The PC content and the DPC coefficient increased significantly at levels higher than 80mg/L in the non-BA system; nevertheless, no increase was observed in the BA system during the stepwise nicotine load. This indicated that bioaugmentation of strain HF-1 resulted in the maintenance of high treatment activity by minimizing the nicotine toxicity for other microbes in the BA system. In conclusion, the rapid nicotine degradation of strain HF-1 performed a vital function in SBR by influencing the microbial community structure, dynamics and activity of the activated sludge system.
Collapse
Affiliation(s)
- Meizhen Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
132
|
Wang J, Lu H, Jin R, Zhou J, Liu G, Xing L. Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid in bioaugmented membrane bioreactor. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
133
|
Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2009; 69:231-42. [PMID: 19508502 DOI: 10.1111/j.1574-6941.2009.00712.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, the prebiotic potential of arabinoxylan oligosaccharides (AXOS) was compared with inulin in two simulators of the human intestinal microbial ecosystem. Microbial breakdown of both oligosaccharides and short-chain fatty acid production was colon compartment specific, with ascending and transverse colon being the predominant site of inulin and AXOS degradation, respectively. Lactate levels (+5.5 mM) increased in the ascending colon during AXOS supplementation, while propionate levels (+5.1 mM) increased in the transverse colon. The concomitant decrease in lactate in the transverse colon suggests that propionate was partially formed over the acrylate pathway. Furthermore, AXOS supplementation strongly decreased butyrate in the ascending colon, this in parallel with a decrease in Roseburia spp. and Bacteroides/Prevotella/Porphyromonas (-1.4 and -2.0 log CFU) levels. Inulin treatment had moderate effects on lactate, propionate and butyrate levels. Denaturing gradient gel electrophoresis analysis revealed that inulin changed microbial metabolism by modulating the microbial community composition. In contrast, AXOS primarily affected microbial metabolism by 'switching on' AXOS-degrading enzymes (xylanase, arabinofuranosidase and xylosidase), without significantly affecting microbial community composition. Our results demonstrate that AXOS has a higher potency than inulin to shift part of the sugar fermentation toward the distal colon parts. Furthermore, due to its stronger propionate-stimulating effect, AXOS is a candidate prebiotic capable of lowering cholesterol and beneficially affecting fat metabolism of the host.
Collapse
Affiliation(s)
- Charlotte Grootaert
- Laboratory of Microbial Ecology and Technology (LabMET), Universiteit Ghent, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Pham H, Boon N, Marzorati M, Verstraete W. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. WATER RESEARCH 2009; 43:2936-2946. [PMID: 19443006 DOI: 10.1016/j.watres.2009.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
1,2-Dichloroethane (1,2-DCA) is a well-known recalcitrant groundwater contaminant. New environment-friendly approaches for the removal of 1,2-DCA that does not bring about volatilization of the compound are required. In this study, different anodophilic consortia enriched in microbial fuel cells (MFCs) operated under airtight conditions were shown to effectively degrade 1,2-DCA (up to 102mg per liter reactor volume per day), while concomitantly generating a current. An anodophilic consortium previously enriched with acetate as the electron donor changed its composition at the rate of 48% per week and increased its richness (Rr) 3-fold, upon adapting to 1,2-DCA as the new electron donor. After being stable, during 1month of operation, it removed up to 95% of the 1,2-DCA amount in the medium in the first 2weeks, while converting 43+/-4% of electrons available from the removal to electricity. A natural consortium from a 1,2-DCA contaminated site changed its composition at the rate of 9% per week and increased its Rr 2-fold, upon adapting to the MFC anode conditions with 1,2-DCA as the electron donor. After being stable, during 1month of operation, it removed up to 85% of the 1,2-DCA amount in the medium in the first 2weeks and the coulombic efficiency was 25+/-4%. The operation of the MFCs under closed circuit conditions resulted in higher 1,2-DCA removal rates than the operation under open circuit conditions, indicating that bioelectrochemical activities enhanced the removal of 1,2-DCA in the MFC anode. The production of ethylene glycol, acetate and carbon dioxide indicated that the anodophilic bacteria oxidatively metabolized 1,2-DCA, probably by means of a hydrolysis-based pathway. The results show that MFCs can be potentially used as a practically convenient technology for the biological removal of 1,2-DCA.
Collapse
Affiliation(s)
- Hai Pham
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Gent, Belgium
| | | | | | | |
Collapse
|
135
|
Bathe S, Schwarzenbeck N, Hausner M. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. BIORESOURCE TECHNOLOGY 2009; 100:2902-2909. [PMID: 19268574 DOI: 10.1016/j.biortech.2009.01.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/29/2009] [Accepted: 01/31/2009] [Indexed: 05/27/2023]
Abstract
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.
Collapse
Affiliation(s)
- Stephan Bathe
- Institute of Water Quality Control and Waste Management, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | | | | |
Collapse
|
136
|
Wittebolle L, Van Vooren N, Verstraete W, Boon N. High reproducibility of ammonia-oxidizing bacterial communities in parallel sequential batch reactors. J Appl Microbiol 2009; 107:385-94. [PMID: 19486432 DOI: 10.1111/j.1365-2672.2009.04222.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate whether the ammonia-oxidizing bacterial (AOB) communities of replicate nitrifying bioreactors (i) co-evolve or diverge over time and (ii) are stable or dynamic during periods of complete nitrification. METHODS AND RESULTS Three sequential batch reactors (SBR) were inoculated with sludge from a municipal wastewater treatment plant, fed with ammonium-enriched tap water and operated in parallel for 134 days. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) demonstrated co-evolvement of the AOB communities over time. During start-up, temporary decreases in nitrification were noticed, and the AOB community rate of change values (Delta(t(week))) were medium to high (12-22%). During the adjacent period of complete nitrification, low AOB community dynamics were observed (Delta(t(week)) < 5%). Further pragmatic processing of the DGGE profiles revealed a high range-weighted richness and a medium functional organization of the AOB communities. CONCLUSIONS After a start-up period, high functional stability and low dynamics of the AOB communities were observed. Deterministic rather than stochastic driving forces led to AOB community co-evolvement in the replicate SBR. SIGNIFICANCE AND IMPACT OF THE STUDY Replicates in identical set-ups are reproducible, and pragmatic processing of DGGE patterns is a straightforward tool to score and compare the functionality of the bacterial communities.
Collapse
Affiliation(s)
- L Wittebolle
- Laboratory of Microbial Ecology & Technology, Ghent University, Gent, Belgium
| | | | | | | |
Collapse
|
137
|
Ruberto L, Dias R, Lo Balbo A, Vazquez S, Hernandez E, Mac Cormack W. Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol 2009; 106:1101-10. [DOI: 10.1111/j.1365-2672.2008.04073.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
138
|
Venkata Mohan S, Falkentoft C, Venkata Nancharaiah Y, Sturm BSM, Wattiau P, Wilderer PA, Wuertz S, Hausner M. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. BIORESOURCE TECHNOLOGY 2009; 100:1746-53. [PMID: 19010662 DOI: 10.1016/j.biortech.2008.09.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effectiveness of bioaugmentation and transfer of plasmid pWWO (TOL plasmid) to mixed microbial populations in pilot and laboratory scale sequencing batch biofilm reactors (SBBRs) treating synthetic wastewater containing benzyl alcohol (BA) as a model xenobiotic. The plasmid donor was a Pseudomonas putida strain chromosomally tagged with the gene for the red fluorescent protein carrying a green fluorescent protein labeled TOL plasmid, which confers degradation capacity for several compounds including toluene and BA. In the pilot scale SBBR donor cells were disappeared 84 h after inoculation while transconjugants were not detected at all. In contrast, both donor and transconjugant cells were detected in the laboratory scale reactor where the ratio of transconjugants to donors fluctuated between 1.9 x 10(-1) and 8.9 x 10(-1) during an experimental period of 32 days. BA degradation rate was enhanced after donor inoculation from 0.98 mg BA/min prior to inoculation to 1.9 mg BA/min on the seventeenth day of operation. Survival of a bioaugmented strain, conjugative plasmid transfer and enhanced BA degradation was demonstrated in the laboratory scale SBBR but not in the pilot scale SBBR.
Collapse
Affiliation(s)
- S Venkata Mohan
- Institute of Water Quality Control and Waste Management, Technical University of Munich, Am Coulombwall, Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Vanhaecke L, Grootaert C, Verstraete W, Van de Wiele T. Chemopreventive effects from prebiotic inulin towards microbial 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine bioactivation. J Appl Microbiol 2009; 106:474-85. [PMID: 19200315 DOI: 10.1111/j.1365-2672.2008.04015.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME), we investigated the chemopreventive potential of prebiotic chicory inulin towards the in vitro bioactivation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by human intestinal microbiota. METHODS AND RESULTS HPLC data revealed that inulin significantly decreased the formation of the genotoxic PhIP-M1 metabolite, with the highest inhibitory activity in the colon ascendens (87% decrease). Interestingly, this chemopreventive effect correlated with alterations of bacterial community composition and metabolism in the different colon compartments. Conventional culture-based techniques and PCR-DGGE analysis on the SHIME colon suspension revealed significant bifidogenic effects during inulin treatment, whereas the overall microbial community kept relatively unchanged. Additionally, the production of short-chain fatty acids increased with 12%, 3% and 7%, while ammonia concentrations decreased with 3%, 4% and 3% in the ascending, transverse and descending colon compartments, respectively. CONCLUSIONS These results indicate that the prebiotic effects from inulin may also purport protective effects towards microbial PhIP bioactivation. SIGNIFICANCE AND IMPACT OF THE STUDY As the colonic microbiota may contribute significantly to the carcinogenic potential of PhIP, the search for dietary constituents that decrease the formation of this harmful metabolite, may help in preventing its risk towards human health.
Collapse
Affiliation(s)
- L Vanhaecke
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University - UGent, Coupure Links 653, Ghent, Belgium
| | | | | | | |
Collapse
|
140
|
Ma F, Guo JB, Zhao LJ, Chang CC, Cui D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. BIORESOURCE TECHNOLOGY 2009; 100:597-602. [PMID: 18768314 DOI: 10.1016/j.biortech.2008.06.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 06/29/2008] [Accepted: 06/30/2008] [Indexed: 05/15/2023]
Abstract
In this paper, bioaugmentation was applied to upgrade a full-scale activated sludge system (S2) into a contact oxidation system (S1). Results showed that when chemical oxygen demand (COD) and ammonia nitrogen (NH(4)(+)-N) concentration of the petrochemical wastewater were 320-530 mg/L and 8-25mg/L, respectively, the bioaugmented process (S1) took only 20 days when they were below 80 mg/L and 10mg/L, respectively. However, the unbioaugmented conventional activated sludge process (S2) spent 30 days to reach the similar effluent quality. As the organic loading rate (OLR) increased from 0.6 to 0.9 and finally up to 1.10 kg COD/m(3)d, S1 showed strong resistance to shock loadings and restored after three days compared to the seven days required by S2. Based on the results of this paper, it shows that bioaugementation application is feasible and efficient for the process upgrade due to the availability of the bioaugmented specialized consortia.
Collapse
Affiliation(s)
- Fang Ma
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China.
| | | | | | | | | |
Collapse
|
141
|
De Gusseme B, De Schryver P, De Cooman M, Verbeken K, Boeckx P, Verstraete W, Boon N. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal. FEMS Microbiol Ecol 2009; 67:151-61. [DOI: 10.1111/j.1574-6941.2008.00598.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
142
|
Erguder TH, Boon N, Vlaeminck SE, Verstraete W. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:8715-8720. [PMID: 19192787 DOI: 10.1021/es801391u] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A nitrifying sequential batch reactor operated under 2-day cyclic aerobic and anoxic conditions was pulse dosed with incremental sulfide concentrations during anoxic conditions. The nitrite-oxidizing bacteria were found to be more sensitive to sulfide than the ammonia oxidizers. A maximum of nitrite-N to (nitrite-N + nitrate-N) accumulation ratio of 0.75 was obtained at an initial pulse sulfide-S concentration of 45 mg/L under pH control at 7.5 +/- 0.2 and fully mixing conditions. Total ammonium nitrogen was removed almost 100% at a removal rate of 0.73 +/- 0.05 g/L x day, achieved during the aerobic days of the cycles. Denaturing gradientgel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) analyses indicated the shift in the ammonia- and nitrite-oxidizing populations triggered by sulfide addition, partial nitrification, and subsequent recovery to complete nitrification. Interestingly, archaeal amoA genes were retrieved under the conditions of sulfide addition. These results indicate that the pulse sulfide application can be used as a tool to accumulate nitrite, which is of importance for the subsequent anaerobic ammonium oxidation (anammox) process in the achievement of complete nitrogen removal.
Collapse
Affiliation(s)
- Tuba H Erguder
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
143
|
Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. WATER RESEARCH 2008; 42:4578-4588. [PMID: 18786690 DOI: 10.1016/j.watres.2008.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Concern is growing over contamination of the environment with pharmaceuticals because of their widespread use and incomplete removal during wastewater treatment, where microorganisms drive the key processes. The influence of pharmaceuticals on bacterial community structure in activated sludge was assessed in small-scale wastewater treatment bioreactors containing different concentrations (5, 50, 200 and 500microgL(-1)) of several commonly used pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). T-RFLP analyses of the bacterial 16S rRNA genes indicated a minor but consistent shift in the bacterial community structure in the bioreactor R50 supplied with pharmaceuticals at a concentration of 50microgL(-1), compared to the control reactor R0, which was operated without addition of pharmaceuticals. In the reactors operated with higher concentrations of pharmaceuticals, a greater structural divergence was observed. Bacterial community composition was further investigated by preparation of two clone libraries of bacterial 16S rRNA genes from reactors R0 and R50. Most clones in both libraries belonged to the Betaproteobacteria, among which Thauera, Sphaerotilus, Ideonella and Acidovorax-related spp. dominated. Nitrite-oxidizing bacteria of the genus Nitrospira sp., which are key organisms for the second stage of nitrification in wastewater treatment plants, were found only in the clone library of the reactor without pharmaceuticals. In addition, diversity indices were calculated for the two clone libraries, indicating a reduced diversity of activated sludge bacterial community in the reactor supplied with 50microgL(-1) of each of selected pharmaceuticals.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/metabolism
- Bioreactors
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Drug Residues/metabolism
- Escherichia coli/genetics
- Escherichia coli/isolation & purification
- Genetic Variation
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Sewage/microbiology
- Waste Disposal, Fluid/methods
- Water Purification/methods
Collapse
Affiliation(s)
- Barbara Kraigher
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
144
|
Pham HT, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Van Oostveldt P, Verbeken K, Rabaey K, Verstraete W. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. Microb Biotechnol 2008; 1:487-96. [PMID: 21261869 PMCID: PMC3815290 DOI: 10.1111/j.1751-7915.2008.00049.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/21/2008] [Accepted: 06/04/2008] [Indexed: 11/30/2022] Open
Abstract
In many microbial bioreactors, high shear rates result in strong attachment of microbes and dense biofilms. In this study, high shear rates were applied to enrich an anodophilic microbial consortium in a microbial fuel cell (MFC). Enrichment at a shear rate of about 120 s(-1) resulted in the production of a current and power output two to three times higher than those in the case of low shear rates (around 0.3 s(-1)). Biomass and biofilm analyses showed that the anodic biofilm from the MFC enriched under high shear rate conditions, in comparison with that under low shear rate conditions, had a doubled average thickness and the biomass density increased with a factor 5. The microbial community of the former, as analysed by DGGE, was significantly different from that of the latter. The results showed that enrichment by applying high shear rates in an MFC can result in a specific electrochemically active biofilm that is thicker and denser and attaches better, and hence has a better performance.
Collapse
Affiliation(s)
- Hai The Pham
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| | - Peter Aelterman
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| | - Peter Clauwaert
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| | - Liesje De Schamphelaire
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| | - Patrick Van Oostveldt
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| | - Kim Verbeken
- Department of Metallurgy and Materials Science, Ghent University, Technology park 903, 9052 Zwijnaarde, Belgium
| | - Korneel Rabaey
- Advanced Water Management Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Willy Verstraete
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B 9000 Ghent, Belgium
| |
Collapse
|
145
|
Tako E, Glahn RP, Welch RM, Lei X, Yasuda K, Miller DD. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br J Nutr 2008; 99:472-80. [PMID: 17868492 DOI: 10.1017/s0007114507825128] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inulin, a linear β fructan, is present in a variety of plants including chicory root and wheat. It exhibits prebiotic properties and has been shown to enhance mineral absorption and increase beneficial bacteria in the colon. The aim of the present study was to assess the effect of dietary inulin on the gene expression of selected intestinal Fe transporters and binding proteins. Anaemic piglets at age 5 weeks were allocated to a standard maize–soya diet (control) or the same diet supplemented with inulin at a level of 4 %. After 6 weeks, the animals were killed and caecum contents and sections of the duodenum and colon were removed. Segments of the genes encoding for the pig divalent metal transporter 1 (DMT1) and duodenal cytochrome-b reductase (Dcytb) were isolated and sequenced. Semi-quantitative RT-PCR analyses were performed to evaluate the expression of DMT1, Dcytb, ferroportin, ferritin, transferrin receptor (TfR) and mucin genes. DMT1, Dcytb, ferroportin, ferritin and TfR mRNA levels in duodenal samples were significantly higher in the inulin group (P ≤ 0·05) compared with the control. In colon, DMT1, TfR and ferritin mRNA levels significantly increased in the inulin group. Additionally, the caecal content microflora was examined using 16S rDNA targeted probes from bacterial DNA. TheLactobacillusandBifidobacteriumpopulations were significantly increased in the inulin group (P ≤ 0·05) compared with the control group. These results indicate that dietary inulin might trigger an up regulation of genes encoding for Fe transporters in the enterocyte. The specific mechanism for this effect remains to be elucidated.
Collapse
Affiliation(s)
- E Tako
- Department of Food Science, Cornell University, Itacha, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
146
|
Nancharaiah YV, Joshi HM, Hausner M, Venugopalan VP. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. CHEMOSPHERE 2008; 71:30-35. [PMID: 18076969 DOI: 10.1016/j.chemosphere.2007.10.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 05/25/2023]
Abstract
This paper describes results of a successful bioaugmentation experiment on aerobic granular sludge using Pseudomonas putida KT2442 cells bearing the TOL (pWWO) plasmid. The methodology was designed to monitor incorporation of the added donor cells into pre-existent microbial granules and the subsequent plasmid transfer to the autochthonous microbial community using shake flask microcosms. Expression of reporter proteins (GFP and DsRed) allowed in situ monitoring of donor cell attachment and plasmid transfer to the recipient cells using confocal laser scanning microscopy. Concomitant with donor integration and transconjugant proliferation in the granules, a significant increase in degradation of benzyl alcohol (used as sole substrate) was observed in the augmented microcosms. In contrast, control microcosms (with non-augmented granules) did not show any noticeable increase in the degradation of the substrate. This study shows that bioaugmentation of aerobic granular sludge via donor colonization and plasmid transfer is feasible for enhanced biodegradation.
Collapse
Affiliation(s)
- Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603 102, Tamil Nadu, India
| | | | | | | |
Collapse
|
147
|
Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. J Ind Microbiol Biotechnol 2008; 35:619-28. [DOI: 10.1007/s10295-008-0326-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/29/2008] [Indexed: 11/27/2022]
|
148
|
Isolation and characterization of human intestinal bacteria capable of transforming the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Appl Environ Microbiol 2008; 74:1469-77. [PMID: 18192423 DOI: 10.1128/aem.02064-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogenic heterocyclic aromatic amine formed in meat products during cooking. Although the formation of hazardous PhIP metabolites by mammalian enzymes has been extensively reported, research on the putative involvement of the human intestinal microbiota in PhIP metabolism remains scarce. In this study, the in vitro conversion of PhIP into its microbial derivate, 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3',2':4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1), by fecal samples from 18 human volunteers was investigated. High-performance liquid chromatography analysis showed that all human fecal samples transformed PhIP but with efficiencies ranging from 1.8 to 96% after 72 h of incubation. Two PhIP-transforming strains, PhIP-M1-a and PhIP-M1-b, were isolated from human feces and identified by fluorescent amplified fragment length polymorphism and pheS sequence analyses as Enterococcus faecium strains. Some strains from culture collections belonging to the species E. durans, E. avium, E. faecium, and Lactobacillus reuteri were also able to perform this transformation. Yeast extract, special peptone, and meat extract supported PhIP transformation by the enriched E. faecium strains, while tryptone, monomeric sugars, starch, and cellulose did not. Glycerol was identified as a fecal matrix constituent required for PhIP transformation. Abiotic synthesis of PhIP-M1 and quantification of the glycerol metabolite 3-hydroxypropionaldehyde (3-HPA) confirmed that the anaerobic fermentation of glycerol via 3-HPA is the critical bacterial transformation process responsible for the formation of PhIP-M1. Whether it is a detoxification is still a matter of debate, since PhIP-M1 has been shown to be cytotoxic toward Caco-2 cells but is not mutagenic in the Ames assay.
Collapse
|
149
|
Liu J, Min H, Ye L. The negative interaction between the degradation of phenanthrene and tricyclazole in medium, soil and soil/compost mixture. Biodegradation 2008; 19:695-703. [DOI: 10.1007/s10532-007-9174-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
150
|
Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Höfte M, Verstraete W, Rabaey K. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 2008; 77:1119-29. [DOI: 10.1007/s00253-007-1248-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/30/2022]
|