101
|
Grebely J, Prins M, Hellard M, Cox AL, Osburn WO, Lauer G, Page K, Lloyd AR, Dore GJ. Hepatitis C virus clearance, reinfection, and persistence, with insights from studies of injecting drug users: towards a vaccine. THE LANCET. INFECTIOUS DISEASES 2012; 12:408-14. [PMID: 22541630 DOI: 10.1016/s1473-3099(12)70010-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) was discovered more than two decades ago, but progress towards a vaccine has been slow. HCV infection will spontaneously clear in about 25% of people. Studies of spontaneous HCV clearance in chimpanzees and human beings have identified host and viral factors that could be important in the control of HCV infection and the design of HCV vaccines. Although data from studies of chimpanzees suggest that protection against reinfection is possible after spontaneous clearance, HCV is a human disease. Results from studies of reinfection risk after spontaneous clearance in injecting drug users are conflicting, but some people seem to have protection against HCV persistence. To guide future vaccine development, we assess data from studies of HCV reinfection after spontaneous clearance, discuss flaws in the methods of previous human studies, and suggest essential components for future investigations of control of HCV infection.
Collapse
Affiliation(s)
- Jason Grebely
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Sasayama M, Shoji I, Adianti M, Jiang DP, Deng L, Saito T, Watanabe H, Kawata S, Aoki C, Hotta H. A point mutation at Asn-534 that disrupts a conserved N-glycosylation motif of the E2 glycoprotein of hepatitis C virus markedly enhances the sensitivity to antibody neutralization. J Med Virol 2012; 84:229-34. [PMID: 22170542 DOI: 10.1002/jmv.22257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The molecular basis of antibody neutralization against hepatitis C virus (HCV) is poorly understood. The E2 glycoprotein of HCV is critically involved in viral infectivity through specific binding to the principal virus receptor component CD81, and is targeted by anti-HCV neutralizing antibodies. A previous study showed that a mutation at position 534 (N534H) within the sixth N-glycosylation motif of E2 of the J6/JFH1 strain of HCV genotype 2a (HCV-2a) was responsible for more efficient access of E2 to CD81 so that the mutant virus could infect the target cells more efficiently. The purpose of this study was to analyze the sensitivity of the parental J6/JFH1, its cell culture-adapted variant P-47 possessing 10 amino acid mutations and recombinant viruses with the adaptive mutations to neutralization by anti-HCV antibodies in sera of HCV-infected patients. The J6/JFH1 virus was neutralized by antibodies in sera of patients infected with HCV-2a and -1b, with mean 50% neutralization titers being 1:670 and 1:200, respectively (P < 0.00001). On the other hand, the P-47 variant showed 50- to 200-times higher sensitivity to antibody neutralization than the parental J6/JFH1 without genotype specificity. The N534H mutation, and another one at position 416 (T416A) near the first N-glycosylation motif to a lesser extent, were shown to be responsible for the enhanced sensitivity to antibody neutralization. The present results suggest that the residues 534, and 416 to a lesser extent, of the E2 glycoprotein are critically involved in the HCV infectivity and antibody neutralization.
Collapse
Affiliation(s)
- Mikiko Sasayama
- Division of Microbiology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Keck ZY, Xia J, Wang Y, Wang W, Krey T, Prentoe J, Carlsen T, Li AYJ, Patel AH, Lemon SM, Bukh J, Rey FA, Foung SKH. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 2012; 8:e1002653. [PMID: 22511875 PMCID: PMC3325216 DOI: 10.1371/journal.ppat.1002653] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/05/2012] [Indexed: 12/16/2022] Open
Abstract
The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1-6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1-6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418-446 and aa611-616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434-446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410-425. The isolation of four HC-84 HMAbs binding to the peptide, aa434-446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus.
Collapse
Affiliation(s)
- Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jinming Xia
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Wenyan Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Krey
- Institut Pasteur, CNRS URA3015, Unite de Virologie Structurale, Paris, France
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Carlsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Angela Ying-Jian Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Arvind H. Patel
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix A. Rey
- Institut Pasteur, CNRS URA3015, Unite de Virologie Structurale, Paris, France
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
104
|
Garrone P, Fluckiger AC, Mangeot PE, Gauthier E, Dupeyrot-Lacas P, Mancip J, Cangialosi A, Du Chéné I, LeGrand R, Mangeot I, Lavillette D, Bellier B, Cosset FL, Tangy F, Klatzmann D, Dalba C. A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. Sci Transl Med 2011; 3:94ra71. [PMID: 21813755 DOI: 10.1126/scitranslmed.3002330] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic hepatitis C virus (HCV) infection, with its cohort of life-threatening complications, affects more than 200 million persons worldwide and has a prevalence of more than 10% in certain countries. Preventive and therapeutic vaccines against HCV are thus much needed. Neutralizing antibodies (NAbs) are the foundation for successful disease prevention for most established vaccines. However, for viruses that cause chronic infection such as HIV or HCV, induction of broad NAbs from recombinant vaccines has remained elusive. We developed a vaccine platform specifically aimed at inducing NAbs based on pseudotyped virus-like particles (VLPs) made with retroviral Gag. We report that VLPs pseudotyped with E2 and/or E1 HCV envelope glycoproteins induced high-titer anti-E2 and/or anti-E1 antibodies, as well as NAbs, in both mouse and macaque. The NAbs, which were raised against HCV 1a, cross-neutralized the five other genotypes tested (1b, 2a, 2b, 4, and 5). Thus, the described VLP platform, which can be pseudotyped with a vast array of virus envelope glycoproteins, represents a new approach to viral vaccine development.
Collapse
|
105
|
Sabo MC, Luca VC, Ray SC, Bukh J, Fremont DH, Diamond MS. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature. Virology 2011; 422:174-84. [PMID: 22078164 DOI: 10.1016/j.virol.2011.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 01/22/2023]
Abstract
A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation modulate epitope exposure on the conformational ensembles of HCV virions and thus, alter the potency of antibody neutralization.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
106
|
Wang Y, Keck ZY, Foung SKH. Neutralizing antibody response to hepatitis C virus. Viruses 2011; 3:2127-45. [PMID: 22163337 PMCID: PMC3230844 DOI: 10.3390/v3112127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 12/14/2022] Open
Abstract
A critical first step in a "rational vaccine design" approach for hepatitis C virus (HCV) is to identify the most relevant mechanisms of immune protection. Emerging evidence provides support for a protective role of virus neutralizing antibodies, and the ability of the B cell response to modify the course of acute HCV infection. This has been made possible by the development of in vitro cell culture models, based on HCV retroviral pseudotype particles expressing E1E2 and infectious cell culture-derived HCV virions, and small animal models that are robust tools in studies of antibody-mediated virus neutralization. This review is focused on the immunogenic determinants on the E2 glycoprotein mediating virus neutralization and the pathways in which the virus is able to escape from immune containment. Encouraging findings from recent studies provide support for the existence of broadly neutralization antibodies that are not associated with virus escape. The identification of conserved epitopes mediating virus neutralization that are not associated with virus escape will facilitate the design of a vaccine immunogen capable of eliciting broadly neutralizing antibodies against this highly diverse virus.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
107
|
Di Lorenzo C, Angus AGN, Patel AH. Hepatitis C virus evasion mechanisms from neutralizing antibodies. Viruses 2011; 3:2280-2300. [PMID: 22163345 PMCID: PMC3230852 DOI: 10.3390/v3112280] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major public health problem, affecting 3% of the world's population. The majority of infected individuals develop chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. To date, a vaccine is not available and current therapy is limited by resistance, adverse effects and high costs. Although it is very well established that cell-mediated immunity is necessary for viral clearance, the importance of host antibodies in clearing HCV infection is being increasingly recognized. Indeed, recent studies indicate that neutralizing antibodies are induced in the early phase of infection by patients who subsequently clear viral infection. Conversely, patients who do not clear the virus develop high titers of neutralizing antibodies during the chronic stage. Surprisingly, these antibodies are not able to control HCV infection. HCV has therefore developed mechanisms to evade immune elimination, allowing it to persist in the majority of infected individuals. A detailed understanding of the mechanisms by which the virus escapes immune surveillance is therefore necessary if novel preventive and therapeutic treatments have to be designed. This review summarizes the current knowledge of the mechanisms used by HCV to evade host neutralizing antibodies.
Collapse
Affiliation(s)
- Caterina Di Lorenzo
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| | - Allan G. N. Angus
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| | - Arvind H. Patel
- MRC - University of Glasgow Centre for Virus Research, Church Street, Glasgow, G11 5JR, UK; E-Mails: (C.D.L.); (A.G.N.A.)
| |
Collapse
|
108
|
Keck ZY, Saha A, Xia J, Wang Y, Lau P, Krey T, Rey FA, Foung SKH. Mapping a region of hepatitis C virus E2 that is responsible for escape from neutralizing antibodies and a core CD81-binding region that does not tolerate neutralization escape mutations. J Virol 2011; 85:10451-63. [PMID: 21813602 PMCID: PMC3187491 DOI: 10.1128/jvi.05259-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/22/2011] [Indexed: 12/12/2022] Open
Abstract
Understanding the interaction between broadly neutralizing antibodies and their epitopes provides a basis for the rational design of a preventive hepatitis C virus (HCV) vaccine. CBH-2, HC-11, and HC-1 are representatives of antibodies to overlapping epitopes on E2 that mediate neutralization by blocking virus binding to CD81. To obtain insights into escape mechanisms, infectious cell culture virus, 2a HCVcc, was propagated under increasing concentrations of a neutralizing antibody to isolate escape mutants. Three escape patterns were observed with these antibodies. First, CBH-2 escape mutants that contained mutations at D431G or A439E, which did not compromise viral fitness, were isolated. Second, under the selective pressure of HC-11, escape mutations progressed from a single L438F substitution at a low antibody concentration to double substitutions, L438F and N434D or L438F and T435A, at higher antibody concentrations. Escape from HC-11 was associated with a loss of viral fitness. An HCV pseudoparticle (HCVpp) containing the L438F mutation bound to CD81 half as efficiently as did wild-type (wt) HCVpp. Third, for HC-1, the antibody at a critical concentration completely suppressed viral replication and generated no escape mutants. Epitope mapping revealed contact residues for CBH-2 and HC-11 in two regions of the E2 glycoprotein, amino acids (aa) 425 to 443 and aa 529 to 535. Interestingly, contact residues for HC-1 were identified only in the region encompassing aa 529 to 535 and not in aa 425 to 443. Taken together, these findings point to a region of variability, aa 425 to 443, that is responsible primarily for viral escape from neutralization, with or without compromising viral fitness. Moreover, the region aa 529 to 535 is a core CD81 binding region that does not tolerate neutralization escape mutations.
Collapse
Affiliation(s)
- Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Anasuya Saha
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Jinming Xia
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Thomas Krey
- Institut Pasteur, CNRS URA3015, Unite de Virologie Structurale, Paris, France
| | - Felix A. Rey
- Institut Pasteur, CNRS URA3015, Unite de Virologie Structurale, Paris, France
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
109
|
Helle F, Duverlie G, Dubuisson J. The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses 2011; 3:1909-32. [PMID: 22069522 PMCID: PMC3205388 DOI: 10.3390/v3101909] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 10/01/2011] [Indexed: 12/14/2022] Open
Abstract
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.
Collapse
Affiliation(s)
- François Helle
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
| | - Gilles Duverlie
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
- Virology Department, Amiens University Hospital Center, South Hospital, Amiens 80000, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille 59021, France; E-Mail:
| |
Collapse
|
110
|
Ndongo-Thiam N, Berthillon P, Errazuriz E, Bordes I, De Sequeira S, Trépo C, Petit MA. Long-term propagation of serum hepatitis C virus (HCV) with production of enveloped HCV particles in human HepaRG hepatocytes. Hepatology 2011; 54:406-17. [PMID: 21520209 DOI: 10.1002/hep.24386] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/14/2011] [Indexed: 01/13/2023]
Abstract
UNLABELLED HepaRG human liver progenitor cells exhibit morphology and functionality of adult hepatocytes. We investigated the susceptibility of HepaRG hepatocytes to in vitro infection with serum-derived hepatitis C virus (HCV) particles (HCVsp) and the potential neutralizing activity of the E1E2-specific monoclonal antibody (mAb) D32.10. The infection was performed using HCVsp when the cells actively divided at day 3 postplating. HCV RNA, E1E2, and core antigens were quantified in HCV particles recovered from culture supernatants of differentiated cells for up to 66 days. The density distributions of particles were analyzed on iodixanol or sucrose gradients. Electron microscopy (EM) and immune-EM studies were performed for ultrastructural analysis of cells and localization of HCV E1E2 proteins in thin sections. HCV infection of HepaRG cells was documented by increasing production of E1E2-core-RNA(+) HCV particles from day 21 to day 63. Infectious particles sedimented between 1.06 and 1.12 g/mL in iodixanol gradients. E1E2 and core antigens were expressed in 50% of HCV-infected cells at day 31. The D32.10 mAb strongly inhibited HCV RNA production in HepaRG culture supernatants. Infected HepaRG cells frozen at day 56 were reseeded at low density. After only 1-3 subcultures and induction of a cell differentiation process the HepaRG cells produced high titer HCV RNA and thus showed to be sustainably infected. Apolipoprotein B-associated empty E1E2 and complete HCV particles were secreted. Characteristic virus-induced intracellular membrane changes and E1E2 protein-association to vesicles were observed. CONCLUSION HepaRG progenitor cells permit HCVsp infection. Differentiated HepaRG cells support long-term production of infectious lipoprotein-associated enveloped HCV particles. The E1E2-specific D32.10 mAb neutralizes the infection and this cellular model could be used as a surrogate infection system for the screening of entry inhibitors.
Collapse
Affiliation(s)
- Ndiémé Ndongo-Thiam
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052/CNRS UMR5286, Université Claude Bernard Lyon 1, and Hospices Civils de Lyon, Hôpital de la Croix Rousse, Service d'Hépatologie et de Gastroentérologie, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
111
|
Houghton M. Prospects for prophylactic and therapeutic vaccines against the hepatitis C viruses. Immunol Rev 2011; 239:99-108. [PMID: 21198667 DOI: 10.1111/j.1600-065x.2010.00977.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Encouraging efficacy data have been obtained in the hepatitis C virus (HCV) chimpanzee model using prophylactic vaccines comprising adjuvanted recombinant envelope gpE1/gpE2 glycoproteins or prime/boost immunization regimens using defective adenoviruses and plasmid DNA expressing non-structural genes. While usually not resulting in sterilizing immunity after experimental challenge, the progression to chronic, persistent infection (which is responsible for HCV-associated pathogenicity in human) is inhibited. These and other vaccine candidates are in clinical development for both prophylactic as well as possible therapeutic applications. Given that other vaccines tested in the chimpanzee model may be possibly increasing the rate of chronicity, it is very important that this model continues to be available and used prior to initiation of clinical development. Several vaccine monotherapy trials in chronically infected HCV patients are resulting in small declines in viral load, suggesting that in future, combining vaccination with antiviral drug treatment may be beneficial.
Collapse
Affiliation(s)
- Michael Houghton
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
112
|
Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol 2011; 54:1273-85. [PMID: 21236312 DOI: 10.1016/j.jhep.2010.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood borne disease estimated to chronically infect 3% of the worlds' population causing significant morbidity and mortality. Current medical therapy is curative in approximately 50% of patients. While recent treatment advances of genotype 1 infection using directly acting antiviral agents (DAAs) are encouraging, there is still a need to develop vaccine strategies capable of preventing infection. Moreover, vaccines may also be used in future in combination with DAAs enabling interferon-free treatment regimens. Viral and host specific factors contribute to viral evasion and present important impediments to vaccine development. Both, innate and adaptive immune responses are of major importance for the control of HCV infection. However, HCV has evolved ways of evading the host's immune response in order to establish persistent infection. For example, HCV inhibits intracellular interferon signalling pathways, impairs the activation of dendritic cells, CD8(+) and CD4(+) T cell responses, induces a state of T-cell exhaustion and selects escape variants with mutations CD8(+) T cell epitopes. An effective vaccine will need to produce strong and broadly cross-reactive CD4(+), CD8(+) T cell and neutralising antibody (NAb) responses to be successful in preventing or clearing HCV. Vaccines in clinical trials now include recombinant proteins, synthetic peptides, virosome based vaccines, tarmogens, modified vaccinia Ankara based vaccines, and DNA based vaccines. Several preclinical vaccine strategies are also under development and include recombinant adenoviral vaccines, virus like particles, and synthetic peptide vaccines. This paper will review the vaccines strategies employed, their success to date and future directions of vaccine design.
Collapse
Affiliation(s)
- Joseph Torresi
- Austin Centre for Infection Research, Department of Infectious Diseases Austin Hospital, Heidelberg, Victoria 3084, Australia.
| | | | | |
Collapse
|
113
|
Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med 2011; 13:e13. [PMID: 21489334 DOI: 10.1017/s1462399411001785] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry - the first encounter of the virus with the host cell - are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.
Collapse
|
114
|
Féray C. Liver transplantation as a model to better understand the cell entry of hepatitis C virus. J Hepatol 2011; 54:825-6. [PMID: 21167852 DOI: 10.1016/j.jhep.2010.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 12/04/2022]
Affiliation(s)
- Cyril Féray
- INSERM U948, Hôtel-Dieu, 9 quai Moncousu, Nantes, France.
| |
Collapse
|
115
|
Cao J, Chen Z, Ren Y, Luo Y, Cao M, Lu W, Zhao P, Qi Z. Oral immunization with attenuated Salmonella carrying a co-expression plasmid encoding the core and E2 proteins of hepatitis C virus capable of inducing cellular immune responses and neutralizing antibodies in mice. Vaccine 2011; 29:3714-23. [PMID: 21396407 DOI: 10.1016/j.vaccine.2011.02.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/11/2011] [Accepted: 02/07/2011] [Indexed: 01/13/2023]
Abstract
Hepatitis C virus (HCV) core protein has long been considered an attractive candidate for inclusion in a protective vaccine. However, this protein may hamper the development of systemic immune responses because of its immune suppressive properties. We previously reported that immune responses to HCV core protein could be efficiently induced by attenuated Salmonella carrying the HCV core protein, but not the HCV core DNA vaccine. To optimize the combination of the core protein and envelope protein 2 (E2) into a vaccine formulation to induce cellular immune responses and neutralizing antibodies, we constructed a plasmid containing two expression cassettes. One expression cassette was included to regulate the expression of HCV core protein by an inducible in vivo-activated Salmonella promoter, the other was included to regulate the expression of HCV E2 protein by the cytomegalovirus enhancer/promoter. Oral immunization of BALB/c mice with the attenuated Salmonella strain SL7207 carrying this plasmid efficiently induced HCV core and E2-specific cellular immune responses and antibodies. IgG purified from immunized mice could neutralize the infectivity of HCV pseudoparticles (HCVpp) of both the autologous Con 1 isolate and the heterologous H77 isolate, and cell culture produced HCV (HCVcc) of Con1-JFH1 chimera. These results indicated that this vaccine strategy can effectively deliver core and E2 protein to the immune system and provide a promising approach for the development of prophylactic and therapeutic vaccines against HCV infection.
Collapse
Affiliation(s)
- Jie Cao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF. Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol 2011; 54:566-76. [PMID: 21146244 DOI: 10.1016/j.jhep.2010.10.014] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. Preventive modalities are absent and the current antiviral treatment is limited by resistance, toxicity, and high costs. Viral entry is required for initiation, spread, and maintenance of infection, and thus is a promising target for antiviral therapy. HCV entry is a highly orchestrated process involving viral and host cell factors. These include the viral envelope glycoproteins E1 and E2, CD81, scavenger receptor BI, and tight junction proteins claudin-1 and occludin. Recent studies in preclinical models and HCV-infected patients have demonstrated that the virus has developed multiple strategies to escape host immune responses during viral entry. These include evasion from neutralizing antibodies and viral spread by cell-cell transmission. These challenges have to be taken into account for the design of efficient antiviral strategies. Thus, a detailed understanding of the mechanisms of viral entry and escape is a prerequisite to define viral and cellular targets and develop novel preventive and therapeutic antivirals. This review summarizes the current knowledge about the molecular mechanisms of HCV entry into hepatocytes, highlights novel targets and reviews the current preclinical and clinical development of compounds targeting entry. Proof-of-concept studies suggest that HCV entry inhibitors are a novel and promising class of antivirals widening the preventive and therapeutic arsenal against HCV infection.
Collapse
|
117
|
Angus AGN, Patel AH. Immunotherapeutic potential of neutralizing antibodies targeting conserved regions of the HCV envelope glycoprotein E2. Future Microbiol 2011; 6:279-94. [DOI: 10.2217/fmb.11.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCV is a major cause of chronic liver disease worldwide. There is no vaccine available and the current antiviral therapies fail to cure approximately half of treated patients. Liver disease caused by HCV infection is the most common indication for orthotopic liver transplantation. Unfortunately, reinfection of the new liver is universal and often results in an aggressive form of the disease leading to graft loss and the need for retransplantation. Immunotherapies using antibodies that potently inhibit HCV infection have the potential to control or even prevent graft reinfection. The virion envelope glycoproteins E1 and E2, which are involved in HCV entry into host cells, are the targets of neutralizing antibodies. To date, a number of monoclonal antibodies targeting conserved regions of E2 have been described that display outstanding neutralizing capabilities against HCV infection in both in vitro and in vivo systems. This article will summarize the current literature on these neutralizing anti-E2 antibodies and discuss their potential immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Allan GN Angus
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | | |
Collapse
|
118
|
Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 2011; 29:2910-7. [PMID: 21338680 DOI: 10.1016/j.vaccine.2011.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/16/2010] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
Abstract
Several studies have emphasized the importance of an early, highly neutralizing antibody response in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for HCV neutralizing antibodies. Here, we compared antibody responses in mice immunized with native soluble E2 (sE2) from the H77 1a isolate coupled with different adjuvants or combinations of adjuvants. Adjuvanting sE2 with Freund's, monophosphoryl lipid A (MPL), cytosine phosphorothioate guanine oligodeoxynucleotide (CpG ODN), or alpha-galactosylceramide (αGalCer) derivatives elicited only moderate antibody responses. In contrast, immunizations with sE2 and QuilA elicited exceptionally high anti-E2 antibody titers. Sera from these mice effectively neutralized HCV pseudoparticles (HCVpp) 1a entry. Moreover, the combination of QuilA and CpG ODN further enhanced neutralizing antibody titers wherein cross-neutralization of HCVpp 4 was observed. We conclude that the combination of QuilA and CpG ODN is a promising adjuvant combination that should be further explored for the development of an HCV subunit vaccine. Our work also emphasizes that the ideal combination of adjuvant and immunogen has to be determined empirically.
Collapse
|
119
|
Eksioglu EA, Bess J, Jones G, Dettloff J, Dangmeon P, Dong HJ, Zhu H, Firpi R, Xu Y, Nelson DR, Liu C. Characterization of Anti-HCV Antibodies in IL-10-Treated Patients. Viral Immunol 2011; 23:359-68. [PMID: 20712480 DOI: 10.1089/vim.2009.0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is limited information on the direct role of the neutralizing antibody responses against hepatitis C virus (HCV) infection or methodologies to study them. Previously we have demonstrated that interleukin-10 (IL-10) administered to chronic hepatitis patients led to a decrease in disease activity, but an increase in HCV viral burden. The mechanism behind this is unknown. The objective of this study was to examine the antibody response in IL-10-treated patients. To establish a neutralization antibody assay, HCV-positive and HCV-negative sera were collected and incubated with HCV strain JFH-1 particles before culture with Huh 7.5 cells. Viral replication was measured a week later by either indirect immunofluorescence assay (iIFA) or real-time reverse transcriptase polymerase chain reaction (RT-PCR). After validation of the methodology, the sera from 30 previously-described subjects of a group previously treated with IL-10 were tested for the neutralization capacity of their antibodies. The amount of total anti-HCV antibody in the sera was also measured by direct staining of HCV full-length replicon cells. With this validated neutralization assay for anti-HCV antibodies we found that HCV-neutralizing antibodies are universally present, but with significantly different titers. In patients who were treated with IL-10, the total anti-HCV antibody titers appear to be constant, but with significantly decreased antibody neutralization activity. Our study validates an assay to quantitatively determine the presence and strength of HCV-specific neutralizing antibodies. We have found that IL-10-treated patients have significantly lower HCV antibodies, but maintain the total anti-HCV antibody titer, suggesting a novel mechanism by which IL-10 treatment increases viral load in patients.
Collapse
Affiliation(s)
- Erika A Eksioglu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Germano FN, dos Santos CA, Honscha G, Strasburg A, Gabbi B, Mendoza-Sassi RA, Soares EA, Seuánez HN, Soares MA, Martínez AMB. Prevalence of hepatitis C virus among users attending a voluntary testing centre in Rio Grande, southern Brazil: predictive factors and hepatitis C virus genotypes. Int J STD AIDS 2011; 21:466-71. [PMID: 20852195 DOI: 10.1258/ijsa.2009.009089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We estimated the prevalence of hepatitis C (HCV) infection and associated risk factors in 750 individuals attending the Voluntary Counseling and Testing Center of Rio Grande (VCT/RG), in Southern Brazil, and identified viral genotypes. Demographic data and risk factors for HCV transmission were also collected and analysed. Anti-HCV antibody-positive individuals were tested for HCV-RNA and genotyped by sequencing the 5' untranslated region of the viral genome. Prevalence estimates of anti-HCV and HCV-RNA were 6% and 5.5%, respectively. We identified genotypes 1 (67%), 2 (2%) and 3 (31%); the latter was more prevalent than in other regions of Brazil. Anti-HCV prevalence in VCT/RG users was similar to previous reports. Age, previous blood transfusion, sexual orientation and injecting drug use were independent predictors of HCV infection. The presence of multiple risk factors was also associated with a higher risk for HCV infection. HCV genotype was not associated with any variable analysed in this study.
Collapse
Affiliation(s)
- F N Germano
- Departamento de Patologia, Fundação Universidade Federal do Rio Grande, AV. General Osório S/N, Centro 96200-400 Rio Grande
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The hepatitis C virus (HCV) is a global public health problem affecting approximately 2% of the human population. The majority of HCV infections (more than 70%) result in life-long persistence of the virus that substantially increases the risk of serious liver diseases, including cirrhosis and hepatocellular carcinoma. The remainder (less than 30%) resolves spontaneously, often resulting in long-lived protection from persistence upon reexposure to the virus. To persist, the virus must replicate and this requires effective evasion of adaptive immune responses. In this review, the role of humoral and cellular immunity in preventing HCV persistence, and the mechanisms used by the virus to subvert protective host responses, are considered.
Collapse
|
122
|
Fukuhara T, Tani H, Shiokawa M, Goto Y, Abe T, Taketomi A, Shirabe K, Maehara Y, Matsuura Y. Intracellular delivery of serum-derived hepatitis C virus. Microbes Infect 2011; 13:405-12. [PMID: 21262370 PMCID: PMC7129305 DOI: 10.1016/j.micinf.2011.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
A robust and reliable cell culture system for serum-derived HCV (HCVser) has not been established yet because of the presence of neutralizing antibody and tropism for infection. To overcome this obstacle, we employed a lipid-mediated protein intracellular delivery reagent (PIDR) that permits internalization of proteins into cells. Although entry of HCVcc was not enhanced by the treatment with PIDR, entry of HCVser into hepatoma cell lines (Huh7 and HepG2) and immortalized primary hepatocytes (Hc and HuS/E2) was significantly enhanced by the PIDR treatment. The entry of HCVser into Huh7 cells in the presence of PIDR was resistant to the neutralization by an anti-hCD81 antibody, suggesting that PIDR is capable of internalizing HCVser in a receptor-independent manner. Interestingly, the PIDR-mediated entry of HCVser and HCVcc was enhanced by the addition of sera from chronic hepatitis C patients but not from healthy donors. In addition, neutralization of HCVcc infection by anti-E2 antibody was canceled by the treatment with PIDR. In conclusion, the PIDR is a valuable tool to get over the obstacle of neutralizing antibodies to internalize HCV into cells and might be useful for the establishment of in vitro propagation HCVser.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, Ferraro B, Stabenow J, Vijayachari P, Sundaram SG, Muruganandam N, Sarangan G, Srikanth P, Khan AS, Lewis MG, Kim JJ, Sardesai NY, Muthumani K, Weiner DB. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis 2011; 5:e928. [PMID: 21264351 PMCID: PMC3019110 DOI: 10.1371/journal.pntd.0000928] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 11/30/2010] [Indexed: 12/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines. Chikungunya fever epidemics are sustained by a cycle of human-mosquito-human transmission, with the epidemic cycle being similar to those of dengue and urban yellow fever. While the threat of a pandemic continues to engage the public's attention, the peculiar problems associated with the more immediate and very real seasonal epidemics are also worthy of consideration. Specifically, there are limited viral strains that have been characterized and available for laboratory study as well as limited knowledge of immune responses induced to the virus. In this study, we isolated CHIKV virus from an acutely infected human patient and used this new virus to develop a neutralization assay and a challenge stock, which is effective in a mouse model. Furthermore, we analyzed the ability of an envelope-based synthetic DNA-based vaccine to impact viral disease in the mouse model and to generate protective levels of immune responses in nonhuman primates. We observed that this novel vaccine approach generated protective levels of immune responses in both mouse and non-human primate models. We believe that these studies advance the field of Chikungunya vaccine research as well as the study of immune protection to CHIKV.
Collapse
Affiliation(s)
- Karthik Mallilankaraman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Devon J. Shedlock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Huihui Bao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Omkar U. Kawalekar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Paolo Fagone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Aarthi A. Ramanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bernadette Ferraro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer Stabenow
- Regional Biocontainment Lab, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Paluru Vijayachari
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands, India
| | - Senthil G. Sundaram
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands, India
| | - Nagarajan Muruganandam
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands, India
| | - Gopalsamy Sarangan
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Amir S. Khan
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, United States of America
| | - Mark G. Lewis
- Bioqual Inc, Rockville, Maryland, United States of America
| | - J. Joseph Kim
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, United States of America
| | | | - Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
124
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
125
|
Bailey J. An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods. Altern Lab Anim 2010; 38:471-94. [DOI: 10.1177/026119291003800602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper ( 1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA, USA
| |
Collapse
|
126
|
Ndongo N, Berthillon P, Pradat P, Vieux C, Bordes I, Berby F, Maynard M, Zoulim F, Trépo C, Petit MA. Association of anti-E1E2 antibodies with spontaneous recovery or sustained viral response to therapy in patients infected with hepatitis C virus. Hepatology 2010; 52:1531-42. [PMID: 20890942 DOI: 10.1002/hep.23862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED The monoclonal antibody (mAb) D32.10 recognizes a discontinuous epitope encompassing three regions E1 (amino acids 297-306), E2A (amino acids 480-494), and E2B (amino acids 613-621) juxtaposed on the surface of serum-derived hepatitis C virus (HCV) particles (HCVsp). The mAb D32.10 inhibits efficiently and specifically the binding of HCVsp to human hepatocytes. Therefore, we investigated the clinical relevance of anti-E1E2A,B response in the serum of patients infected with HCV. To this end, an enzyme-linked immunosorbent assay (ELISA) using synthetic E1-, E2A-, and E2B-derived peptides was used. The ELISA was validated in terms of sensitivity, specificity, and test efficiency. The detection of the anti-E1E2 D32.10 epitope-binding antibodies during natural HCV infection in more than 300 HCV-positive sera demonstrated significantly (P < 0.001) higher prevalence of these antibodies: (1) in patients who spontaneously cured HCV infection (46 of 52, 88.5%) showing high titers (70% ≥ 1/1000) compared to never-treated patients with chronic hepatitis C (7 of 50, 14%) who actively replicated the virus, and (2) in complete responders (20 of 52, 38.5%) who cleared virus following treatment and achieved a sustained viral response compared to nonresponders (4 of 40, 10%). Serum anti-E1E2 antibodies were monitored before, during, and after the current standard-of-care therapy (pegylated interferon plus ribavirin) in responder and nonresponder patients. Optimal cutoff values were assessed by receiver operating characteristic curve analysis. One month prior to therapy initiation, the threshold of 1131 (optical density × 1000) gave 100% and 86% positive and negative predictive values, respectively, for achieving or not achieving a sustained viral response. CONCLUSION The anti-E1E2 D32.10 epitope-binding antibodies are associated with control of HCV infection and may represent a new relevant prognostic marker in serum. This unique D32.10 mAb may also have immunotherapeutic potential.
Collapse
Affiliation(s)
- Ndiémé Ndongo
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 871, Molecular Physiopathology and New Therapies in Viral Hepatitis, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Fafi-Kremer S, Fofana I, Soulier E, Carolla P, Meuleman P, Leroux-Roels G, Patel AH, Cosset FL, Pessaux P, Doffoël M, Wolf P, Stoll-Keller F, Baumert TF. Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. ACTA ACUST UNITED AC 2010; 207:2019-31. [PMID: 20713596 PMCID: PMC2931157 DOI: 10.1084/jem.20090766] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
End-stage liver disease caused by chronic hepatitis C virus (HCV) infection is a leading cause for liver transplantation (LT). Due to viral evasion from host immune responses and the absence of preventive antiviral strategies, reinfection of the graft is universal. The mechanisms by which the virus evades host immunity to reinfect the liver graft are unknown. In a longitudinal analysis of six HCV-infected patients undergoing LT, we demonstrate that HCV variants reinfecting the liver graft were characterized by efficient entry and poor neutralization by antibodies present in pretransplant serum compared with variants not detected after transplantation. Monoclonal antibodies directed against HCV envelope glycoproteins or a cellular entry factor efficiently cross-neutralized infection of human hepatocytes by patient-derived viral isolates that were resistant to autologous host-neutralizing responses. These findings provide significant insights into the molecular mechanisms of viral evasion during HCV reinfection and suggest that viral entry is a viable target for prevention of HCV reinfection of the liver graft.
Collapse
Affiliation(s)
- Samira Fafi-Kremer
- Institut National de la Santé et de la Recherche Médicale, Unité 748, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
A crucial role for infected-cell/antibody immune complexes in the enhancement of endogenous antiviral immunity by short passive immunotherapy. PLoS Pathog 2010; 6:e1000948. [PMID: 20548955 PMCID: PMC2883599 DOI: 10.1371/journal.ppat.1000948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 05/10/2010] [Indexed: 01/06/2023] Open
Abstract
Antiviral monoclonal antibodies (mAbs) represent promising therapeutics. However, most mAbs-based immunotherapies conducted so far have only considered the blunting of viral propagation and not other possible therapeutic effects independent of virus neutralization, namely the modulation of the endogenous immune response. As induction of long-term antiviral immunity still remains a paramount challenge for treating chronic infections, we have asked here whether neutralizing mAbs can, in addition to blunting viral propagation, exert immunomodulatory effects with protective outcomes. Supporting this idea, we report here that mice infected with the FrCasE murine retrovirus on day 8 after birth die of leukemia within 4–5 months and mount a non-protective immune response, whereas those rapidly subjected to short immunotherapy with a neutralizing mAb survive healthy and mount a long-lasting protective antiviral immunity with strong humoral and cellular immune responses. Interestingly, the administered mAb mediates lysis of infected cells through an antibody-dependent cell cytotoxicity (ADCC) mechanism. In addition, it forms immune complexes (ICs) with infected cells that enhance antiviral CTL responses through FcγR-mediated binding to dendritic cells (DCs). Importantly, the endogenous antiviral antibodies generated in mAb-treated mice also display the same properties, allowing containment of viral propagation and enhancement of memory cellular responses after disappearance of the administered mAb. Thus, our data demonstrate that neutralizing antiviral mAbs can act as immunomodulatory agents capable of stimulating a protective immunity lasting long after the end of the treatment. They also show an important role of infected-cells/antibody complexes in the induction and the maintenance of protective immunity through enhancement of both primary and memory antiviral T-cell responses. They also indicate that targeting infected cells, and not just viruses, by antibodies can be crucial for elicitation of efficient, long-lasting antiviral T-cell responses. This must be considered when designing antiviral mAb-based immunotherapies. Monoclonal antibodies (mAbs) constitute the largest class of bio-therapeutic proteins and are increasingly being considered as drugs to fight both acute and chronic severe human viral diseases. Most antiviral mAb-based treatments conducted so far, whether in humans or in animal models, have only considered the blunting of viral propagation through direct virus neutralization. However, mAbs might also operate via complementary mechanisms owing to their ability to interact with various components of the immune system. Using a lethal mouse model of retrovirally-induced leukemia, we report here that a neutralizing mAb administered to infected mice for a short period of time can, in addition to its direct effect on viral spread, induce a strong, long-lasting antiviral immune response protecting mice from disease development long after the end of the treatment. Although the initiation and maintenance of this long-term immunity is multi-factorial, we demonstrate a crucial role for the immune complexes formed between antiviral antibodies and infected cells in this process. Our work reveals a thus far underappreciated vaccine-like effect of antiviral neutralizing mAbs, which will have to be considered for future treatment of life-threatening viral infections.
Collapse
|
129
|
Georgel P, Schuster C, Zeisel MB, Stoll-Keller F, Berg T, Bahram S, Baumert TF. Virus-host interactions in hepatitis C virus infection: implications for molecular pathogenesis and antiviral strategies. Trends Mol Med 2010; 16:277-86. [PMID: 20537953 DOI: 10.1016/j.molmed.2010.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 12/18/2022]
Abstract
With a global burden of 170 million chronically infected patients and a major cause of liver cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is a major public health challenge. Recent discoveries of viral and cellular factors mediating virus-host interactions have allowed scientists to uncover the key molecular mechanisms of viral infection and escape from innate and adaptive immune responses. These include the discovery of tight junction proteins as entry factors and microRNA-122, cyclophilins and lipoproteins as host factors for virus translation, replication and production. Furthermore, global genetic analyses have identified IL-28B as a genetic factor associated with the outcome of HCV infection. These discoveries markedly advance the understanding of the molecular pathogenesis of HCV infection and uncover novel targets for urgently needed antiviral strategies.
Collapse
Affiliation(s)
- Philippe Georgel
- Laboratoire d'Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
130
|
Gottwein JM, Scheel TKH, Callendret B, Li YP, Eccleston HB, Engle RE, Govindarajan S, Satterfield W, Purcell RH, Walker CM, Bukh J. Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): genetic analyses and in vivo pathogenesis studies. J Virol 2010; 84:5277-93. [PMID: 20200247 PMCID: PMC2863810 DOI: 10.1128/jvi.02667-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/19/2010] [Indexed: 12/19/2022] Open
Abstract
Previously, RNA transcripts of cDNA clones of hepatitis C virus (HCV) genotypes 1a (strains H77, HCV-1, and HC-TN), 1b (HC-J4, Con1, and HCV-N), and 2a (HC-J6 and JFH1) were found to be infectious in chimpanzees. However, only JFH1 was infectious in human hepatoma Huh7 cells. We performed genetic analysis of HCV genotype 3a (strain S52) and 4a (strain ED43) prototype strains and generated full-length consensus cDNA clones (pS52 and pED43). Transfection of Huh7.5 cells with RNA transcripts of these clones did not yield cells expressing HCV Core. However, intrahepatic transfection of chimpanzees resulted in robust infection with peak HCV RNA titers of approximately 5.5 log(10) international units (IU)/ml. Genomic consensus sequences recovered from serum at the times of peak viral titers were identical to the sequences of the parental plasmids. Both chimpanzees developed acute hepatitis with elevated liver enzymes and significant necroinflammatory liver changes coinciding with detection of gamma interferon-secreting, intrahepatic T cells. However, the onset and broadness of intrahepatic T-cell responses varied greatly in the two animals, with an early (week 4) multispecific response in the ED43-infected animal (3 weeks before the first evidence of viral control) and a late (week 11) response with limited breadth in the S52-infected animal (without evidence of viral control). Autologous serum neutralizing antibodies were not detected during the acute infection in either animal. Both animals became persistently infected. In conclusion, we generated fully functional infectious cDNA clones of HCV genotypes 3a and 4a. Proof of functionality of all genes might further the development of recombinant cell culture systems for these important genotypes.
Collapse
Affiliation(s)
- Judith M. Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Benoit Callendret
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Yi-Ping Li
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Heather B. Eccleston
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Ronald E. Engle
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Sugantha Govindarajan
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - William Satterfield
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Robert H. Purcell
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Christopher M. Walker
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, The Center for Vaccines and Immunity, Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, Liver Research Laboratory, Rancho Los Amigos Medical Center, Downey, California, Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas
| |
Collapse
|
131
|
Duan H, Struble E, Zhong L, Mihalik K, Major M, Zhang P, Feinstone S, Feigelstock D. Hepatitis C virus with a naturally occurring single amino-acid substitution in the E2 envelope protein escapes neutralization by naturally-induced and vaccine-induced antibodies. Vaccine 2010; 28:4138-44. [PMID: 20433800 DOI: 10.1016/j.vaccine.2010.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/08/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Mutations arising in neutralizing epitopes of hepatitis C virus may play a role in the ability of the virus to escape control by neutralizing antibodies and in the establishment of chronic infections. An amino-acid substitution, Q412H, within a major conserved neutralization epitope EP I (aa 412-426) in the E2 glycoprotein is observed in chronic HCV carriers. We found that naturally acquired polyclonal EP I-specific antibodies have an equivalent binding capacity toward either the wild type or the Q412H mutant peptide encompassing the EP I epitope. While EP I-specific antibodies neutralized J6/JFH1 virus in vitro, they did not neutralize J6/JFH1 virus containing the Q412H mutation. Furthermore, we found that plasma obtained from a chimpanzee that had anti-E1/E2 antibodies following experimental immunization, neutralized the wild type J6/JFH1 virus but failed to neutralize the mutant virus. Thus, mutation Q412H found in naturally occurring variants could represent an antibody escape mutation. These data may have important implications for vaccine design.
Collapse
Affiliation(s)
- Hongying Duan
- Division of Viral Products, Center for Biologics Evaluation and Research, FDA, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Ferrari C, Mondelli M. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2009:835-857. [DOI: 10.1002/9780470747919.ch51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
133
|
Li HF, Huang CH, Ai LS, Chuang CK, Chen SSL. Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry. J Biomed Sci 2009; 16:89. [PMID: 19778418 PMCID: PMC2759930 DOI: 10.1186/1423-0127-16-89] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 09/24/2009] [Indexed: 01/19/2023] Open
Abstract
Background Envelope (E) glycoprotein E2 of the hepatitis C virus (HCV) mediates binding of the virus to target cell receptors. Nevertheless, the precise role of E1 in viral entry remains elusive. Methods To understand the involvement of the fusion peptide-like domain positioned at residues 264 to 290 within envelope glycoprotein E1 in HCV infection, mutants with Ala and Asn substitutions for residues conserved between HCV and E proteins of flaviviruses or the fusion proteins of paramyxoviruses were constructed by site-directed mutagenesis and their effects on membrane fusion and viral infectivity were examined. Results None of these mutations affected the synthesis or cell surface expression of envelope proteins, nor did they alter the formation of a non-covalent E1-E2 heterodimer or E2 binding to the large extracellular loop of CD81. The Cys residues located at positions 272 and 281 were unlikely involved in intra- or intermolecular disulfide bond formation. With the exception of the G267A mutant, which showed increased cell fusion, other mutants displayed reduced or marginally inhibited cell fusion capacities compared to the wild-type (WT) E1E2. The G267A mutant was also an exception in human immunodeficiency virus type 1 (HIV-1)/HCV E1E2 pseudotyping analyses, in that it showed higher one-cycle infectivity; all other mutants exhibited greatly or partially reduced viral entry versus the WT pseudotype. All but the G278A and D279N mutants showed a WT-like profile of E1E2 incorporation into HIV-1 particles. Since C272A, C281A, G282A, and G288A pseudotypes bound to Huh7 cells as effectively as did the WT pseudotype, the reduced infectivity of these pseudotypes was due to their ability to inhibit cell fusion. Conclusion Our results indicate that specific residues, but not the structure, of this fusion peptide-like domain are required for mediating cell fusion and viral entry.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | |
Collapse
|
134
|
Adaptive immunity to hepatitis C virus. Viruses 2009; 1:276-97. [PMID: 21994550 PMCID: PMC3185498 DOI: 10.3390/v1020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/14/2009] [Accepted: 08/25/2009] [Indexed: 12/23/2022] Open
Abstract
The precise role of adaptive immune responses in the clinical outcome of HCV infection is still only partially defined. Recent studies suggest that viral-host cell interactions during the acute phase of infection are essential for viral clearance or progression into chronic HCV infection. This review focuses on different aspects of the adaptive immune responses as determinants of the different outcomes of HCV infection, clearance or persistent infection, and outlines current concepts of HCV evasion strategies. Unravelling these important mechanisms of virus-host interaction will contribute to the development of novel strategies to prevent and control HCV infection.
Collapse
|
135
|
Major ME. Prophylactic and Therapeutic Vaccination against Hepatitis C Virus (HCV): Developments and Future Perspectives. Viruses 2009; 1:144-65. [PMID: 21994543 PMCID: PMC3185488 DOI: 10.3390/v1020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/25/2009] [Accepted: 08/11/2009] [Indexed: 12/15/2022] Open
Abstract
Studies in patients and chimpanzees that spontaneously clear Hepatitis C Virus (HCV) have demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism regarding prophylactic HCV vaccines and a number of studies in the chimpanzee model have been performed, all of which resulted in modified infections after challenge but did not always prevent persistence of the virus. Therapeutic vaccine strategies have also been pursued in an effort to reduce the costs and side effects associated with anti-viral drug treatment. This review summarizes the studies performed thus far in both patients and chimpanzees for prophylactic and therapeutic vaccination, assesses the progress made and future perspectives.
Collapse
Affiliation(s)
- Marian E Major
- Division of Viral Products, Center for Biologics, Food and Drug Administration, Bldg29A/Rm1D10, 8800 Rockville Pike, Bethesda, MD 20892, USA; E-mail: ; Tel.: +1-301-827-1881
| |
Collapse
|
136
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
137
|
Girou E, Chevaliez S, Challine D, Thiessart M, Morice Y, Lesprit P, Tkoub-Scheirlinck L, Soing-Altrach S, Cizeau F, Cavin C, André M, Dahmanne D, Lang P, Pawlotsky JM. Determinant roles of environmental contamination and noncompliance with standard precautions in the risk of hepatitis C virus transmission in a hemodialysis unit. Clin Infect Dis 2009; 47:627-33. [PMID: 18662134 DOI: 10.1086/590564] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nosocomial transmission is the second most frequent cause of hepatitis C virus (HCV) infection. A prospective observational study was conducted to assess the roles of environmental contamination and noncompliance with standard precautions in HCV cross-transmission in a hemodialysis unit. METHODS Patients undergoing chronic hemodialysis in a French university hospital unit were systematically screened, revealing 2 sporadic cases of HCV transmission. An investigation was launched to determine whether the patients were infected in the hemodialysis unit and the possible roles of environmental contamination and noncompliance with standard precautions. We examined possible relationships among new cases of HCV infection, environmental contamination by blood and HCV RNA, and compliance with guidelines on hand hygiene and glove use. RESULTS Two patients experienced seroconversion to HCV during the study period. Phylogenetic analyses showed that 1 of these patients was infected with the same strain as that affecting a chronically infected patient also treated in the unit. Of 740 environmental surface samples, 82 (11%) contained hemoglobin; 6 (7%) of those contained HCV RNA. The rate of compliance with hand hygiene was 37% (95% confidence interval, 35%-39%), and gloves were immediately removed after patient care in 33% (95% confidence interval, 29%-37%) of cases. A low ratio of nurses to patients and poor hand hygiene were independent predictors of the presence of hemoglobin on environmental surfaces. CONCLUSION Blood-contaminated surfaces may be a source of HCV cross-transmission in a hemodialysis unit. Strict compliance with hand hygiene and glove use and strict organization of care procedures are needed to reduce the risk of HCV cross-transmission among patients undergoing hemodialysis.
Collapse
|
138
|
Jia L, Yu J, Yang J, Song H, Liu X, Wang Y, Xu Y, Zhang C, Zhong Y, Li Q. HCV antibody response and genotype distribution in different areas and races of China. Int J Biol Sci 2009; 5:421-7. [PMID: 19564925 PMCID: PMC2702825 DOI: 10.7150/ijbs.5.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/04/2009] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) heterogeneity accounts for the failure of effective vaccine development and the lack of successful anti-viral therapy in some patients. Little is known about the immune response to HCV peptides and the region or race specific genotypes in China. The objective of this study was to characterize HCV antibody immune response to HCV peptides and HCV genotypes in different regions and races of China. A total of 363 serum samples were collected from HCV carriers in 6 regions in China. The immune response to HCV peptides was evaluated by ELISA. HCV genotypes were examined using nested RT-PCR. We found that the anti-HCV antibody neutralization rates were significantly different among the serum samples from different areas or from different races in the same area. For samples from Tibet and Sinkiang, the rates of neutralization by HCV peptides were only 3.2% and 30.8%, respectively. The genotypes of samples from Tibet and Sinkiang were apparently heterogeneic and included type I, II, III and multiple types (I/II/III, I/II, I/III, II/III). One specific sample with multiple-genotype (I/II/III) HCV infection was found to consist of type I, II, III, II/III and an unclassified genotype. These studies indicate that the anti-HCV antibody immune response to HCV peptides varied across regions and among races. The distribution of HCV genotypes among Tibetans in Tibet and Uighurs in Sinkiang was different from that in the inner areas of China. In addition, a "master" genotype, type II, was found to exist in HCV infection with multiple HCV genotypes.
Collapse
Affiliation(s)
- Leili Jia
- The Institute for Disease Prevention and Control of PLA, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Dowd KA, Netski DM, Wang XH, Cox AL, Ray SC. Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology 2009; 136:2377-86. [PMID: 19303013 PMCID: PMC2895772 DOI: 10.1053/j.gastro.2009.02.080] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/27/2009] [Accepted: 02/26/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Despite recent characterization of hepatitis C virus-specific neutralizing antibodies, it is not clear to what extent immune pressure from neutralizing antibodies drives viral sequence evolution in vivo. This lack of understanding is particularly evident in acute infection, the phase when elimination or persistence of viral replication is determined and during which the importance of the humoral immune response has been largely discounted. METHODS We analyzed envelope glycoprotein sequence evolution and neutralization of sequential autologous hepatitis C virus pseudoparticles in 8 individuals throughout acute infection. RESULTS Amino acid substitutions occurred throughout the envelope genes, primarily within the hypervariable region 1 of E2. When individualized pseudoparticles expressing sequential envelope sequences were used to measure neutralization by autologous sera, antibodies neutralizing earlier sequence variants were detected at earlier time points than antibodies neutralizing later variants, indicating clearance and evolution of viral variants in response to pressure from neutralizing antibodies. To demonstrate the effects of amino acid substitution on neutralization, site-directed mutagenesis of a pseudoparticle envelope sequence revealed amino acid substitutions in hypervariable region 1 that were responsible for a dramatic decrease in neutralization sensitivity over time. In addition, high-titer neutralizing antibodies peaked at the time of viral clearance in all spontaneous resolvers, whereas chronically evolving subjects displayed low-titer or absent neutralizing antibodies throughout early acute infection. CONCLUSIONS These findings indicate that, during acute hepatitis C virus infection in vivo, virus-specific neutralizing antibodies drive sequence evolution and, in some individuals, play a role in determining the outcome of infection.
Collapse
Affiliation(s)
- Kimberly A. Dowd
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Dale M. Netski
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Xiao-Hong Wang
- Southwest Hospital, Third Military Medical University, Chongqing, Peoples Republic of China, 400038
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| |
Collapse
|
140
|
Pan Q, Tilanus HW, Janssen HLA, van der Laan LJW. Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opin Biol Ther 2009; 9:713-24. [DOI: 10.1517/14712590902989970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
141
|
Morice Y, Ratinier M, Miladi A, Chevaliez S, Germanidis G, Wedemeyer H, Laperche S, Lavergne JP, Pawlotsky JM. Seroconversion to hepatitis C virus alternate reading frame protein during acute infection. Hepatology 2009; 49:1449-59. [PMID: 19350656 PMCID: PMC2956746 DOI: 10.1002/hep.22821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED The existence of hepatitis C virus (HCV) proteins encoded by alternate reading frames overlapping the core-encoding region has been suggested. Several mechanisms of production have been postulated, and the functions of these proteins in the HCV life cycle remain unknown. We analyzed cases of seroconversion to an alternate reading frame protein in a group of 17 patients infected by one of the two HCV genotype 1b strains during an outbreak in a hemodialysis unit. Three patients seroconverted, and antibodies were transiently detected in another patient. Three of these patients were infected by one of the two HCV strains, whereas the strain infecting the remaining patient could not be identified. Quasispecies sequence analysis of the core-coding region showed no differences in the core or +1 reading frame sequences that could explain alternate reading frame protein seroconversion in some but not all of the patients infected by one of the HCV strains, and no such difference was found between the two strains. Because differences in the structure of RNA elements could play a role in frameshift events, we conducted a predictive analysis of RNA folding. No difference was found between the patients who did and did not seroconvert to alternate reading frame protein. CONCLUSION Our findings prove that alternate reading frame proteins can be produced during acute HCV infection. However, seroconversion does not occur in all patients for unknown reasons. Alternate reading frame protein could be generated by minority quasispecies variants or variants that occur transiently.
Collapse
Affiliation(s)
- Yoann Morice
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Maxime Ratinier
- IBCP, Institut de biologie et chimie des protéines
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Ahmed Miladi
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Stéphane Chevaliez
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology
Medical School HannoverHannover,DE
| | - Syria Laperche
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR
| | - Jean-Pierre Lavergne
- IBCP, Institut de biologie et chimie des protéines
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Jean-Michel Pawlotsky
- Centre de référence français des hépatites B, C et D
Institut National de la Transfusion SanguineFR,Service de virologie
AP-HPHôpital Henri MondorUniversité Paris XII Val de MarneFR,Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,* Correspondence should be adressed to: Jean-Michel Pawlotsky
| |
Collapse
|
142
|
Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 2009; 8:333-45. [PMID: 19249975 DOI: 10.1586/14760584.8.3.333] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against the hepatitis C virus (HCV) has long been defined as a difficult challenge due to the considerable variability of this RNA virus and the observation that convalescent humans and chimpanzees could be re-infected after re-exposure. On the other hand, progress in the understanding of antiviral immune responses in patients with viral clearance has elucidated key mechanisms playing a role in the control of viral infection. Studies investigating prophylactic vaccine approaches in chimpanzees have confirmed that the induction and maintenance of strong helper and cytotoxic T-cell immune responses against multiple viral epitopes is necessary for protection against viral clearance and chronic infection. A multispecific B-cell response, resulting in rapid induction of cross-neutralizing antibodies may assist cellular responses. Therapeutic vaccine formulations currently being evaluated in clinical trials are facing the fact that the immune system of chronic carriers is impaired and needs the restoration of T-cell functions to enhance their efficacy.
Collapse
Affiliation(s)
- Françoise Stoll-Keller
- Inserm, U748 et Laboratoire de Virologie des Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
143
|
Acute infection with a single hepatitis C virus strain in dialysis patients: Analysis of adaptive immune response and viral variability. J Hepatol 2009; 50:693-704. [PMID: 19231006 DOI: 10.1016/j.jhep.2008.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/06/2008] [Accepted: 11/24/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS While the adaptive immune response is crucial for spontaneous resolution of acute hepatitis C virus (HCV) infection, it also constitutes the driving force for viral escape. For acutely HCV-infected dialysis patients, little is known about the host response and its impact on viral evolution. METHODS Four haemodialysis patients accidentally infected with the same HCV strain were prospectively investigated with respect to the clinical course, CD4+ and CD8+ T-cell responses, neutralizing antibodies, viral kinetics and sequence variability. RESULTS In one patient, a robust CD4+ T-cell response was associated with transient control of infection, while in the other patients, weak responses correlated with persistently high viremia. Despite the presence of CD8+ T-cell effectors in the first patient, no sequence differences were detected in targeted regions of the viral genome in any of the patients when viral persistence was established. Genetic stability in the envelope genes, including the hypervariable regions, correlated with low-level or absent neutralizing antibodies in all of the patients. CONCLUSIONS The establishment of viral persistence in the special patient group of dialysis patients is due to a failure of the adaptive immune system, as shown by the absence of significant T-cell and antibody responses, as well as viral variability.
Collapse
|
144
|
Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity. J Virol 2009; 83:6149-60. [PMID: 19321602 DOI: 10.1128/jvi.00248-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing antibodies are commonly present in the sera of patients with chronic hepatitis C virus (HCV) infection. To elucidate possible mechanisms of virus escape from these antibodies, retrovirus particles pseudotyped with HCV glycoproteins (HCVpp) isolated from sequential samples collected over a 26-year period from a chronically infected patient, H, were used to characterize the neutralization potential and binding affinity of a panel of anti-HCV E2 human monoclonal antibodies (HMAbs). Moreover, AP33, a neutralizing murine monoclonal antibody (MAb) to a linear epitope in E2, was also tested against selected variants. The HMAbs used were previously shown to broadly neutralize HCV and to recognize a cluster of highly immunogenic overlapping epitopes, designated domain B, containing residues that are also critical for binding of viral E2 glycoprotein to CD81, a receptor essential for virus entry. Escape variants were observed at different time points with some of the HMAbs. Other HMAbs neutralized all variants except for the isolate 02.E10, obtained in 2002, which was also resistant to MAb AP33. The 02.E10 HCVpp that have reduced binding affinities for all antibodies and for CD81 also showed reduced infectivity. Comparison of the 02.E10 nucleotide sequence with that of the strain H-derived consensus variant, H77c, revealed the former to have two mutations in E2, S501N and V506A, located outside the known CD81 binding sites. Substitution A506V in 02.E10 HCVpp restored binding to CD81, but its antibody neutralization sensitivity was only partially restored. Double substitutions comprising N501S and A506V synergistically restored 02.E10 HCVpp infectivity. Other mutations that are not part of the antibody binding epitope in the context of N501S and A506V were able to completely restore neutralization sensitivity. These findings showed that some nonlinear overlapping epitopes are more essential than others for viral fitness and consequently are more invariant during earlier years of chronic infection. Further, the ability of the 02.E10 consensus variant to escape neutralization by the tested antibodies could be a new mechanism of virus escape from immune containment. Mutations that are outside receptor binding sites resulted in structural changes leading to complete escape from domain B neutralizing antibodies, while simultaneously compromising viral fitness by reducing binding to CD81.
Collapse
|
145
|
Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts. J Virol 2009; 83:5477-84. [PMID: 19297469 DOI: 10.1128/jvi.02262-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W(30)-GLW(51)-C(54)-C(64). Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.
Collapse
|
146
|
Zubkova I, Choi YH, Chang E, Pirollo K, Uren T, Watanabe H, Wells F, Kachko A, Krawczynski K, Major ME. T-cell vaccines that elicit effective immune responses against HCV in chimpanzees may create greater immune pressure for viral mutation. Vaccine 2009; 27:2594-602. [PMID: 19428866 DOI: 10.1016/j.vaccine.2009.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/18/2008] [Accepted: 02/12/2009] [Indexed: 12/16/2022]
Abstract
A prime/boost vaccine strategy that transfects antigen-presenting cells using ligand-modified immunoliposomes to efficiently deliver plasmid DNA, followed by boosting with non-replicating recombinant adenovirus was used in chimpanzees to generate HCV-specific memory T-cells. Three chimpanzees (two vaccines, one control) were immunized with immunoliposomes complexed with DNA expressing NS3-NS5B or complexed with empty vector. Animals were boosted with adenovirus expressing NS3-NS5B, or non-recombinant adenovirus (control). Using liposome delivery we were able to obtain specific HCV responses following DNA priming in the chimpanzees. This data and mouse immunization studies confirm this as a more efficient delivery system than direct intramuscular inoculations with naked DNA. Subsequent to the adenovirus boost significant increases in peripheral HCV-specific T-cell responses and intrahepatic IFN-gamma and CD3varepsilon mRNA were also observed in the two vaccinated animals. Following challenge (100 CID(50)) both vaccinated animals showed immediate and significant control of viral replication (peak titers 3.7x10(4) and 9x10(3)IU/mL at weeks 1 and 2), which coincided with increases in HCV-specific T-cell responses. Viral kinetics in the control animal were comparable to historical controls with exponential increases in titer during the first several weeks. One vaccinated animal developed a low-level persistent infection (2x10(3)IU/mL) which correlated with a decrease in HCV-specific T-cell responses. Circulating virus isolated from both vaccinated animals showed approximately 2-fold greater nonsynonymous mutation rates compared to controls and the nonsynonymous/synonymous mutation rate ratio was indicative of positive selection. These data suggest that although T-cell vaccines can induce immune responses capable of controlling HCV, they also induce high levels of immune pressure for the potential selection of escape mutants.
Collapse
Affiliation(s)
- I Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Infectious HCV pseudoparticles (HCVpp) can be assembled by display of unmodified and functional HCV glycoproteins on retroviral and lentiviral core particles. HCVpp have been shown to mimic the early infection steps of parental HCV. The presence of a marker gene packaged within these HCV pseudoparticles allows reliable and fast determination of infectivity mediated by the HCV glycoproteins. With this highly flexible system, E1E2 from a broad range of HCV strains can be investigated, including autologous HCV strains from patients' virus, and it has allowed careful investigation of the humoral response to HCV.
Collapse
Affiliation(s)
- Marlène Dreux
- Universit de Lyon, (UCB-Lyon1), Lyon, IFR128, France
| | | |
Collapse
|
148
|
Zeisel MB, Barth H, Schuster C, Baumert TF. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci (Landmark Ed) 2009; 14:3274-85. [PMID: 19273272 DOI: 10.2741/3450] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With an estimated 170 million infected individuals, hepatitis C virus (HCV) has a major impact on public health. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. Using recombinant HCV envelope glycoproteins and HCV pseudotype particles, several cell surface molecules have been identified interacting with HCV during viral binding and entry. These include CD81, highly sulfated heparan sulfate, the low-density lipoprotein receptor, scavenger receptor class B type I and claudin-1. Treatment options for chronic HCV infection are limited and a vaccine to prevent HCV infection is not available. Interfering with HCV entry holds promise for drug design and discovery as the understanding of molecular mechanisms underlying HCV interaction with the host cell is advancing. The complexity of the virus entry process offers several therapeutic targets.
Collapse
|
149
|
Dowd KA, Hershow RC, Yawetz S, Larussa P, Diaz C, Landesman SH, Paul ME, Read JS, Lu M, Thomas DL, Netski DM, Ray SC. Maternal neutralizing antibody and transmission of hepatitis C virus to infants. J Infect Dis 2008; 198:1651-5. [PMID: 18928374 DOI: 10.1086/593067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine whether lower levels of hepatitis C virus (HCV)-specific neutralizing antibodies (nAb) are associated with an increased risk of mother-to-child transmission (MTCT) of HCV, HCV nAb titers were assessed in 63 mothers coinfected with HCV and human immunodeficiency virus (HIV) type 1. Of the mothers, 16 transmitted HCV to their infant, but no difference was detected between the ability of maternal plasma from transmitters and nontransmitters to neutralize heterologous HCV pseudoparticles (median nAb titer, 1:125 vs. 1:100; P = .23). In the setting of HIV/HCV coinfection, we found no evidence that HCV nAbs are associated with the prevention of MTCT of HCV.
Collapse
Affiliation(s)
- Kimberly A Dowd
- Department of Medicine, Johns Hopkins Medical Institutions, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Zarife MAS, Reis EAG, Carmo TMA, Lopes GB, Brandão ECM, Silva HR, Santana N, Martins-Filho OA, Reis MG. Increased frequency of CD56Bright NK-cells, CD3-CD16+CD56- NK-cells and activated CD4+T-cells or B-cells in parallel with CD4+CDC25High T-cells control potentially viremia in blood donors with HCV. J Med Virol 2008; 81:49-59. [PMID: 19031471 DOI: 10.1002/jmv.21340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A detailed phenotypic analysis of major and minor circulating lymphocyte subsets is described in potential blood donors with markers of hepatitis C virus (HCV), including non-viremic and viremic groups. Although there were no changes in the hematological profile of either group, increased the levels of pre-NK cells (CD3-CD16+CD56-) and a lower frequency of mature NK cells (CD3-CD16+CD56+) characterized innate immunity in the non-viremic group. Both non-viremic and viremic groups displayed significantly increased levels of CD56(Bright) NK cells. Furthermore, this subset was significantly elevated in the viremic subgroup with a low viral load. In addition, an increase in the NKT2 subset was observed only in this subgroup. An enhanced frequency of activated CD4+ T-cells (CD4+HLA-DR+) was a characteristic feature of the non-viremic group, whereas elevated CD19+ B-cells and CD19+CD86+ cell populations were the major phenotypic features of the viremic group, particularly in individuals with a low viral load. Although CD4+CD25High T-cells were significantly elevated in both the viremic and non-viremic groups, it was particularly evident in the viremic low viral load subgroup. A parallel increase in CD4+CD25High T-cells, pre-NK, and activated CD4+ T-cells was observed in the non-viremic group, whereas a parallel increase in CD4+CD25High T-cells and CD19+ B-cells was characteristic of the low viral load subgroup. These findings suggest that CD56Bright NK cells, together with pre-NK cells and activated CD4+ T-cells in combination with CD4+CD25High T-cells, might play an important role in controlling viremia. Elevated CD56(Bright) NK cells, B-cell responses and a T-regulated immunological profile appeared to be associated with a low viral load.
Collapse
|