101
|
Differences in the On- and Off-Tumor Microbiota between Right- and Left-Sided Colorectal Cancer. Microorganisms 2021; 9:microorganisms9051108. [PMID: 34065545 PMCID: PMC8160982 DOI: 10.3390/microorganisms9051108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to determine differences in the on- and off-tumor microbiota between patients with right- and left-sided colorectal cancer. Microbiome profiling of tumor and tumor-adjacent biopsies from patients with right-sided (n = 17) and left-sided (n = 7) colorectal adenocarcinoma was performed using 16S ribosomal RNA sequencing. Off-tumor alpha and beta diversity were significantly different between right- and left-sided colorectal cancer patients. However, no differences in on-tumor diversity were observed between tumor locations. Comparing the off-tumor microbiota showed the right colon to be enriched with species of the Lachnoclostridium, Selenomonas, and Ruminococcus genera. Whereas the left colon is enriched with Epsilonbacteraeota phylum, Campylobacteria class, and Pasteurellales and Campylobacterales orders, in contrast, the on-tumor microbiota showed relatively fewer differences in bacterial taxonomy between tumor sites, with left tumors being enriched with Methylophilaceae and Vadin BE97 families and Alloprevotella, Intestinibacter, Romboutsia, and Ruminococcus 2 genera. Patients with left-sided colorectal cancer had large taxonomic differences between their paired on- and off-tumor microbiota, while patients with right-sided colorectal cancer showed relatively fewer taxonomic differences. Collectively, this suggests that the right and left colon show distinctive bacterial populations; however, the presence of a colonic tumor leads to a more consistent microbiota between locations.
Collapse
|
102
|
Shen J, Li P, Liu S, Liu Q, Li Y, Zhang Z, Yang C, Hu M, Sun Y, He C, Xiao P. The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct 2021; 11:9634-9650. [PMID: 33048099 DOI: 10.1039/d0fo01731k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite that colorectal cancer (CRC) is a severe global health problem, effective chemopreventive strategies against CRC are still lacking. Huang-qin tea (HQT), a healthy herbal tea, is prepared from the aerial parts of Scutellaria baicalensis Georgi and has been consumed in China for thousands of years. HQT contains abundant flavonoids, which display potent anticancer effects, but no research studies have investigated the cancer-preventive effects of HQT on CRC in vivo. Here, we found that HQT inhibits azoxymethane-induced aberrant crypt foci (ACF) formation in a preneoplastic colonic ACF rat model. The essential role of the gut microbiota in the chemopreventive effect of HQT on CRC in a pseudo-germ-free rat model was confirmed. Besides, HQT modulates inflammatory cytokine expression by significantly decreasing IL-1β, IL-6, IL-10, and TNF-α expression, and elevating IFN-γ production. 16S rDNA sequencing analysis indicated that HQT regulated the gut microbiota by increasing the abundance of beneficial bacteria (Lachnoclostridium, Alistipes, Roseburia, and Lactococcus) and reducing the levels of Bacteroides, Parasutterella, and unidentified_Clostridiales. Fecal metabolomics showed that HQT modulated the AOM-induced metabolomic disorder, and these altered metabolites were almost involved in the lipid metabolic pathways. The Spearman correlation analysis revealed a correlation between the gut microbiota and fecal metabolites. Collectively, these results suggested that HQT exerted beneficial effects on host health by inhibiting inflammation, and by regulating the gut microbiota profile and certain metabolic pathways. In conclusion, HQT inhibits AOM-induced ACF formation by modulating the gut microbiota composition and improving metabolomic disorders, indicating the potential of HQT as a functional beverage candidate for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
104
|
Ribeiro M, Fonseca L, Anjos JS, Capo-Chichi JCC, Borges NA, Burrowes J, Mafra D. Oral iron supplementation in patients with chronic kidney disease: Can it be harmful to the gut microbiota? Nutr Clin Pract 2021; 37:81-93. [PMID: 33979013 DOI: 10.1002/ncp.10662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have several pathophysiological alterations, including anemia, one of the first changes in CKD patients. More recently, researchers have observed that the intestinal microbiota alterations are also another complication in these patients. The most common treatment for anemia is oral (mainly ferrous sulfate) or intravenous iron supplementation. Despite being a necessary treatment, recent studies have reported that supplementation with oral iron may increase its availability in the intestine, leading to disturbance in the gut microbiota and also to oxidative stress in the enterocytes, which may change the permeability and the microbiota profile. Although it is a therapy routinely used in patients with CKD, supplementation with oral iron on the gut microbiota has been rarely studied in these patients. Thus, this review will discuss the relationship between iron and the gut microbiota and the possible effects of oral iron supplementation on gut microbiota in patients with CKD.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Larissa Fonseca
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Juliana S Anjos
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jean C C Capo-Chichi
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
105
|
Scarallo L, Lionetti P. Dietary Management in Pediatric Patients with Crohn's Disease. Nutrients 2021; 13:1611. [PMID: 34064976 PMCID: PMC8150738 DOI: 10.3390/nu13051611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
It has been widely endorsed that a multifactorial etiology, including interaction between genetic and environmental factors, can contribute to Crohn's Disease (CD) pathogenesis. More specifically, diet has proven to be able to shape gut microbiota composition and thus is suspected to play a significant role in inflammatory bowel disease (IBD) pathogenesis. Moreover, poor nutritional status and growth retardation, arising from several factors such as reduced dietary intake or nutrient leakage from the gastrointestinal tract, represent the hallmarks of pediatric CD. For these reasons, multiple research lines have recently focused on the utilization of dietary therapies for the management of CD, aiming to target concurrently mucosal inflammation, intestinal dysbiosis and optimization of nutritional status. The forerunner of such interventions is represented by exclusive enteral nutrition (EEN), a robustly supported nutritional therapy; however, it is burdened by monotony and low tolerance in the long term. Novel dietary interventions, such as Crohn's Disease Exclusion Diet or Crohn's Disease treatment with eating, have shown their efficacy in the induction of remission in pediatric patients with CD. The aim of the present narrative review is to provide a synopsis of the available nutritional strategies in the management of pediatric CD and to discuss their application in the dietary management of these patients.
Collapse
Affiliation(s)
- Luca Scarallo
- Gastroenterology and Nutrition Unit, Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Paolo Lionetti
- Gastroenterology and Nutrition Unit, Meyer Children’s Hospital, 50139 Florence, Italy;
- Department NEUROFARBA, University of Florence, 50139 Florence, Italy
| |
Collapse
|
106
|
Mahalhal A, Burkitt MD, Duckworth CA, Hold GL, Campbell BJ, Pritchard DM, Probert CS. Long-Term Iron Deficiency and Dietary Iron Excess Exacerbate Acute Dextran Sodium Sulphate-Induced Colitis and Are Associated with Significant Dysbiosis. Int J Mol Sci 2021; 22:3646. [PMID: 33807459 PMCID: PMC8037348 DOI: 10.3390/ijms22073646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oral iron supplementation causes gastrointestinal side effects. Short-term alterations in dietary iron exacerbate inflammation and alter the gut microbiota, in murine models of colitis. Patients typically take supplements for months. We investigated the impact of long-term changes in dietary iron on colitis and the microbiome in mice. METHODS We fed mice chow containing differing levels of iron, reflecting deficient (100 ppm), normal (200 ppm), and supplemented (400 ppm) intake for up to 9 weeks, both in absence and presence of dextran sodium sulphate (DSS)-induced chronic colitis. We also induced acute colitis in mice taking these diets for 8 weeks. Impact was assessed (i) clinically and histologically, and (ii) by sequencing the V4 region of 16S rRNA. RESULTS In mice with long-term changes, the iron-deficient diet was associated with greater weight loss and histological inflammation in the acute colitis model. Chronic colitis was not influenced by altering dietary iron however there was a change in the microbiome in DSS-treated mice consuming 100 ppm and 400 ppm iron diets, and control mice consuming the 400 ppm iron diet. Proteobacteria levels increased significantly, and Bacteroidetes levels decreased, in the 400 ppm iron DSS group at day-63 compared to baseline. CONCLUSIONS Long-term dietary iron alterations affect gut microbiota signatures but do not exacerbate chronic colitis, however acute colitis is exacerbated by such dietary changes. More work is needed to understand the impact of iron supplementation on IBD. The change in the microbiome, in patients with colitis, may arise from the increased luminal iron and not simply from colitis.
Collapse
Affiliation(s)
- Awad Mahalhal
- Department of Molecular and Cellular Cancer Medicine, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Liverpool L69 3GE, UK; (A.M.); (D.M.P.)
- Department of Anatomy and Histology, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Michael D. Burkitt
- Division of Diabetes Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Carrie A. Duckworth
- Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK;
| | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical School, Clinical Sciences (Pitney) Building, University of New South Wales Sydney, Kogarah, NSW 2217, Australia;
| | - Barry J. Campbell
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK;
| | - David Mark Pritchard
- Department of Molecular and Cellular Cancer Medicine, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Liverpool L69 3GE, UK; (A.M.); (D.M.P.)
| | - Chris S. Probert
- Department of Molecular and Cellular Cancer Medicine, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Liverpool L69 3GE, UK; (A.M.); (D.M.P.)
| |
Collapse
|
107
|
Management of anaemia in patients with inflammatory bowel disease - results of a questionnaire among Polish healthcare professionals. GASTROENTEROLOGY REVIEW 2021; 16:89-94. [PMID: 33986893 PMCID: PMC8112275 DOI: 10.5114/pg.2021.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022]
Abstract
Introduction Anaemia is the most common systemic and extraintestinal complication of inflammatory bowel disease (IBD). Its impact on quality of life is significant; hence, it is important for healthcare professionals to manage it correctly. Aim To assess the knowledge among doctors about the diagnostics and treatment of anaemia in IBD patients. Material and methods The questionnaire survey was conducted among 169 doctors of different specialties. Eighty-seven (51.5%) of the respondents were gastroenterologists. Results 97.7% (84) of gastroenterologists and 92.6% (75) of all responders replied that all IBD patients should be monitored for anaemia (p = 0.266); however, only one-third of gastroenterologists knew the exact haemoglobin cut-off level in men with Crohn's disease. The necessity of monitoring vitamin B12 was indicated by 53.7% (36) of gastroenterologists and by 24.1 % (13) of other specialists (p = 0.002). Nine percent (6) of gastrologists and 3.7% (2) of other specialists screened for folic acid (p = 0.0431). 13.1% (11) of gastroenterologists and 35% (28) of other specialists frequently used iv iron (p = 0.003). 44.1% (26) of gastroenterologists and 52% (26) of other specialists administered between 1000 mg and 1500 mg of iv iron during hospitalization. Only 11.9 % (7) of GI-specialists and 2% (1) of non-GI-specialists administered total doses over 1500 mg (p = 0.155). 71% (62) of gastroenterologists and 73% (60) of all physicians did not observe any adverse events of iv iron. Conclusions Although the diagnostic approach to anaemia in IBD patients varies among respondents, knowledge of guidelines was slightly better among GI-professionals then among other doctors.
Collapse
|
108
|
Oral and Intravenous Iron Therapy Differentially Alter the On- and Off-Tumor Microbiota in Anemic Colorectal Cancer Patients. Cancers (Basel) 2021; 13:cancers13061341. [PMID: 33809624 PMCID: PMC8002270 DOI: 10.3390/cancers13061341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Iron deficiency anemia is a common complication of colorectal cancer and may require iron therapy. Oral iron can increase the iron available to gut bacteria and may alter the colonic microbiota. We performed an intervention study to compare oral and intravenous iron therapy on the colonic tumor-associated (on-tumor) and paired non-tumor-associated adjacent (off-tumor) microbiota. Anemic patients with colorectal adenocarcinoma received either oral ferrous sulphate (n = 16) or intravenous ferric carboxymaltose (n = 24). On- and off-tumor biopsies were obtained post-surgery and microbial profiling was performed using 16S ribosomal RNA analysis. Off-tumor α- and β-diversity were significantly different between iron treatment groups. No differences in on-tumor diversity were observed. Off-tumor microbiota of oral iron-treated patients showed higher abundances of the orders Clostridiales, Cytophagales, and Anaeroplasmatales compared to intravenous iron-treated patients. The on-tumor microbiota was enriched with the orders Lactobacillales and Alteromonadales in the oral and intravenous iron groups, respectively. The on- and off-tumor microbiota associated with intravenous iron-treated patients infers increased abundances of enzymes involved in iron sequestration and anti-inflammatory/oncogenic metabolite production, compared to oral iron-treated patients. Collectively, this suggests that intravenous iron may be a more appropriate therapy to limit adverse microbial outcomes compared to oral iron.
Collapse
|
109
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
110
|
Ahmed M, Metwaly A, Haller D. Modeling microbe-host interaction in the pathogenesis of Crohn's disease. Int J Med Microbiol 2021; 311:151489. [PMID: 33676240 DOI: 10.1016/j.ijmm.2021.151489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations in the gut microbiota structure and function are thought to play an important role in the pathogenesis of Crohn's disease (CD). The rapid advancement of high-throughput sequencing technologies led to the identification of microbiome risk signatures associated with distinct disease phenotypes and progressing disease entities. Functional validation of the identified microbiome signatures is essential to understand the underlying mechanisms of microbe-host interactions. Germfree mouse models are available to study the functional role of disease-conditioning complex gut microbial ecosystems (dysbiosis) or pathobionts (single bacteria) in the pathogenesis of CD-like inflammation. Here, we discuss the clinical and mechanistic relevance and limitations of gnotobiotic mouse models in the context of CD. In addition, we will address the role of diet as an essential external factor modulating microbiome changes, potentially underlying disease initiation and development.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Amira Metwaly
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Dirk Haller
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany; Technical University of Munich, ZIEL Institute for Food & Health, Germany.
| |
Collapse
|
111
|
Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol Nutr Food Res 2021; 65:e2000461. [PMID: 33216452 DOI: 10.1002/mnfr.202000461] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/14/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is complex, chronic, and relapsing gastrointestinal inflammatory disorders, which includes mainly two conditions, namely ulcerative colitis (UC) and Crohn's disease (CD). Development of IBD in any individual is closely related to his/her autoimmune regulation, gene-microbiota interactions, and dietary factors. Dietary tryptophan (Trp) is an essential amino acid for intestinal mucosal cells, and it is associated with the intestinal inflammation, epithelial barrier, and energy homeostasis of the host. According to recent studies, Trp and its three major metabolic pathways, namely kynurenine (KYN) pathway, indole pathway, and 5-hydroxytryptamine (5-HT) pathway, have vital roles in the regulation of intestinal inflammation by acting directly or indirectly on the pro/anti-inflammatory cytokines, functions of various immune cells, as well as the intestinal microbial composition and homeostasis. In this review, recent advances in Trp- and its metabolites-associated intestinal inflammation are summarized. It further discusses the complex mechanisms and interrelationships of the three major metabolic pathways of Trp in regulating inflammation, which could elucidate the value of dietary Trp to be used as a nutrient for IBD patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
112
|
Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions. Nutrients 2021; 13:nu13020482. [PMID: 33535496 PMCID: PMC7912724 DOI: 10.3390/nu13020482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is often accompanied by worsening of the patient's iron profile, and the resulting anemia could be a factor that negatively impacts antineoplastic treatment efficacy and patient survival. The first line of therapy is usually based on oral or intravenous iron supplementation; however, many patients remain anemic and do not respond. The key might lie in the pathogenesis of the anemia itself. Cancer-related anemia (CRA) is characterized by a decreased circulating serum iron concentration and transferrin saturation despite ample iron stores, pointing to a more complex problem related to iron homeostatic regulation and additional factors such as chronic inflammatory status. This review explores our current understanding of iron homeostasis in cancer, shedding light on the modulatory role of hepcidin in intestinal iron absorption, iron recycling, mobilization from liver deposits, and inducible regulators by infections and inflammation. The underlying relationship between CRA and systemic low-grade inflammation will be discussed, and an integrated multitarget approach based on nutrition and exercise to improve iron utilization by reducing low-grade inflammation, modulating the immune response, and supporting antioxidant mechanisms will also be proposed. Indeed, a Mediterranean-based diet, nutritional supplements and exercise are suggested as potential individualized strategies and as a complementary approach to conventional CRA therapy.
Collapse
|
113
|
Kundra P, Rachmühl C, Lacroix C, Geirnaert A. Role of Dietary Micronutrients on Gut Microbial Dysbiosis and Modulation in Inflammatory Bowel Disease. Mol Nutr Food Res 2021. [DOI: 10.1002/mnfr.201901271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Palni Kundra
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Carole Rachmühl
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology Institute of Food Nutrition and Health Schmelzbergstrasse 7 Zürich 8092 Switzerland
| |
Collapse
|
114
|
Gordon M, Sinopoulou V, Iheozor-Ejiofor Z, Iqbal T, Allen P, Hoque S, Engineer J, Akobeng AK. Interventions for treating iron deficiency anaemia in inflammatory bowel disease. Cochrane Database Syst Rev 2021; 1:CD013529. [PMID: 33471939 PMCID: PMC8092475 DOI: 10.1002/14651858.cd013529.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inflammatory bowel disease affects approximately seven million people globally. Iron deficiency anaemia can occur as a common systemic manifestation, with a prevalence of up to 90%, which can significantly affect quality of life, both during periods of active disease or in remission. It is important that iron deficiency anaemia is treated effectively and not be assumed to be a normal finding of inflammatory bowel disease. The various routes of iron administration, doses and preparations present varying advantages and disadvantages, and a significant proportion of people experience adverse effects with current therapies. Currently, no consensus has been reached amongst physicians as to which treatment path is most beneficial. OBJECTIVES The primary objective was to evaluate the efficacy and safety of the interventions for the treatment of iron deficiency anaemia in people with inflammatory bowel disease. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and two other databases on 21st November 2019. We also contacted experts in the field and searched references of trials for any additional trials. SELECTION CRITERIA Randomised controlled trials investigating the effectiveness and safety of iron administration interventions compared to other iron administration interventions or placebo in the treatment of iron deficiency anaemia in inflammatory bowel disease. We considered both adults and children, with studies reporting outcomes of clinical, endoscopic, histologic or surgical remission as defined by study authors. DATA COLLECTION AND ANALYSIS Two review authors independently conducted data extraction and 'Risk of bias' assessment of included studies. We expressed dichotomous and continuous outcomes as risk ratios and mean differences with 95% confidence intervals. We assessed the certainty of the evidence using the GRADE methodology. MAIN RESULTS We included 11 studies (1670 randomised participants) that met the inclusion criteria. The studies compared intravenous iron sucrose vs oral iron sulphate (2 studies); oral iron sulphate vs oral iron hydroxide polymaltose complex (1 study); oral iron fumarate vs intravenous iron sucrose (1 study); intravenous ferric carboxymaltose vs intravenous iron sucrose (1 study); erythropoietin injection + intravenous iron sucrose vs intravenous iron sucrose + injection placebo (1 study); oral ferric maltol vs oral placebo (1 study); oral ferric maltol vs intravenous ferric carboxymaltose (1 study); intravenous ferric carboxymaltose vs oral iron sulphate (1 study); intravenous iron isomaltoside vs oral iron sulphate (1 study); erythropoietin injection vs oral placebo (1 study). All studies compared participants with CD and UC together, as well as considering a range of disease activity states. The primary outcome of number of responders, when defined, was stated to be an increase in haemoglobin of 20 g/L in all but two studies in which an increase in 10g/L was used. In one study comparing intravenous ferric carboxymaltose and intravenous iron sucrose, moderate-certainty evidence was found that intravenous ferric carboxymaltose was probably superior to intravenous iron sucrose, although there were responders in both groups (150/244 versus 118/239, RR 1.25, 95% CI 1.06 to 1.46, number needed to treat for an additional beneficial outcome (NNTB) = 9). In one study comparing oral ferric maltol to placebo, there was low-certainty evidence of superiority of the iron (36/64 versus 0/64, RR 73.00, 95% CI 4.58 to 1164.36). There were no other direct comparisons that found any difference in the primary outcomes, although certainty was low and very low for all outcomes, due to imprecision from sparse data and risk of bias varying between moderate and high risk. The reporting of secondary outcomes was inconsistent. The most common was the occurrence of serious adverse events or those requiring withdrawal of therapy. In no comparisons was there a difference seen between any of the intervention agents being studied, although the certainty was very low for all comparisons made, due to risk of bias and significant imprecision due to the low numbers of events. Time to remission, histological and biochemical outcomes were sparsely reported in the studies. None of the other secondary outcomes were reported in any of the studies. An analysis of all intravenous iron preparations to all oral iron preparations showed that intravenous administration may lead to more responders (368/554 versus 205/373, RR 1.17, 95% CI 1.05 to 1.31, NNTB = 11, low-certainty due to risk of bias and inconsistency). Withdrawals due to adverse events may be greater in oral iron preparations vs intravenous (15/554 versus 31/373, RR 0.39, 95% CI 0.20 to 0.74, low-certainty due to risk of bias, inconsistency and imprecision). AUTHORS' CONCLUSIONS Intravenous ferric carboxymaltose probably leads to more people having resolution of IDA (iron deficiency anaemia) than intravenous iron sucrose. Oral ferric maltol may lead to more people having resolution of IDA than placebo. We are unable to draw conclusions on which of the other treatments is most effective in IDA with IBD (inflammatory bowel disease) due to low numbers of studies in each comparison area and clinical heterogeneity within the studies. Therefore, there are no other conclusions regarding the treatments that can be made and certainty of all findings are low or very low. Overall, intravenous iron delivery probably leads to greater response in patients compared with oral iron, with a NNTB (number needed to treat) of 11. Whilst no serious adverse events were specifically elicited with any of the treatments studied, the numbers of reported events were low and the certainty of these findings very low for all comparisons, so no conclusions can be drawn. There may be more withdrawals due to such events when oral is compared with intravenous iron delivery. Other outcomes were poorly reported and once again no conclusions can be made as to the impact of IDA on any of these outcomes. Given the widespread use of many of these treatments in practice and the only guideline that exists recommending the use of intravenous iron in favour of oral iron, research to investigate this key issue is clearly needed. Considering the current ongoing trials identified in this review, these are more focussed on the impact in specific patient groups (young people) or on other symptoms (such as fatigue). Therefore, there is a need for studies to be performed to fill this evidence gap.
Collapse
Affiliation(s)
- Morris Gordon
- School of Medicine, University of Central Lancashire, Preston, UK
| | | | - Zipporah Iheozor-Ejiofor
- Cochrane Bone Joint and Muscle Trauma Group, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | | | - Patrick Allen
- Department of Gastroenterology and Hepatology, Ulster Hospital, Belfast, Ireland
| | | | | | | |
Collapse
|
115
|
Zheng L, Wen XL. Gut microbiota and inflammatory bowel disease: The current status and perspectives. World J Clin Cases 2021; 9:321-333. [PMID: 33521100 PMCID: PMC7812881 DOI: 10.12998/wjcc.v9.i2.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease that affects the gastrointestinal tract. It is argued that environment, microbiome, and immune-mediated factors interact in a genetically susceptible host to trigger IBD. Recently, there has been increased interest in the development, progression, and treatment of IBD because of our understanding of the microbiome. Researchers have proved that some factors can alter the microbiome and the pathogenesis of IBD. As a result, there has been increasing interest in the application of probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and gene manipulation in treating IBD because of the possible curative effect of microbiome-modulating interventions. In this review, we summarize the findings from human and animal studies and discuss the effect of the gut microbiome in treating patients with IBD.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
116
|
Li CY, Li XY, Shen L, Ji HF. Regulatory effects of transition metals supplementation/deficiency on the gut microbiota. Appl Microbiol Biotechnol 2021; 105:1007-1015. [PMID: 33449129 DOI: 10.1007/s00253-021-11096-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/13/2022]
Abstract
Transition metal ions are essential micronutrients for all living organisms and exert a wide range of effects on human health. The uptake of transition metal ions occurs primarily in the gastrointestinal tract, which is colonized by trillions of bacterial cells. In recent years, increasing studies have indicated that transition metals have regulatory effects on the gut microbiota. In view of the significant effect of the gut microbiota on human health and involvement in the pathogenesis of a wide range of diseases, in this paper, we provide a comprehensive discussion on the regulatory effects of four kinds of transition metal ions on the gut microbiota. A total of 20 animal model and human studies concerning the regulatory effects of four types of transition metal ions (i.e., iron, copper, zinc, and manganese) on gut microbiota were summarized. Both the deficiency and supplementation of these transition metal ions on the gut microbiota were considered. Furthermore, the potential mechanisms governing the regulatory effects of transition metal ions on the gut microbiota were also discussed. KEY POINTS : • Regulatory effects of iron, copper, zinc, and manganese on gut microbiota were reviewed. • Both deficiency and supplementation of metal ions on gut microbiota were considered. • Mechanisms governing effects of metal ions on gut microbiota were discussed.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
117
|
The Impact of Low-Level Iron Supplements on the Faecal Microbiota of Irritable Bowel Syndrome and Healthy Donors Using In Vitro Batch Cultures. Nutrients 2020; 12:nu12123819. [PMID: 33327501 PMCID: PMC7764926 DOI: 10.3390/nu12123819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Ferrous iron supplementation has been reported to adversely alter the gut microbiota in infants. To date, the impact of iron on the adult microbiota is limited, particularly at low supplementary concentrations. The aim of this research was to explore the impact of low-level iron supplementation on the gut microbiota of healthy and Irritable Bowel Syndrome (IBS) volunteers. Anaerobic, pH-controlled in vitro batch cultures were inoculated with faeces from healthy or IBS donors along with iron (ferrous sulphate, nanoparticulate iron and pea ferritin (50 μmol−1 iron)). The microbiota were explored by fluorescence in situ hybridisation coupled with flow cytometry. Furthermore, metabolite production was assessed by gas chromatography. IBS volunteers had different starting microbial profiles to healthy controls. The sources of iron did not negatively impact the microbial population, with results of pea ferritin supplementation being similar to nanoparticulate iron, whilst ferrous sulphate led to enhanced Bacteroides spp. The metabolite data suggested no shift to potentially negative proteolysis. The results indicate that low doses of iron from the three sources were not detrimental to the gut microbiota. This is the first time that pea ferritin fermentation has been tested and indicates that low dose supplementation of iron is unlikely to be detrimental to the gut microbiota.
Collapse
|
118
|
Spagnuolo R, Abenavoli L, Larussa T, Iannelli C, Pellicano R, Fagoonee S, Doldo P, Luzza F. Safety profile of intravenous iron in inflammatory bowel disease: an up-to-date overview. Minerva Gastroenterol (Torino) 2020; 68:111-118. [PMID: 33267572 DOI: 10.23736/s2724-5985.20.02819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Up to 30-70% of patients may experience mild and moderate side effects during iron therapy and this is often associated with a poor adherence to therapy. Anemia is frequent in patients with active inflammatory bowel disease (IBD), due to both iron deficiency and chronic inflammation, therefore iron supplementation is frequently needed. Considering that gastrointestinal disorders are the most common side effects with oral iron, in IBD patients intravenous administration must be preferred. Although intravenous iron supplementation remains the most effective therapy of IBD-associated iron deficiency anemia, the perception of risk related to intravenous administration by clinicians could limit this successful strategy. In this narrative review we provided an up to date on the safety of the different iron formulations for intravenous administration, by reporting the most recent studies in IBD patients.
Collapse
Affiliation(s)
- Rocco Spagnuolo
- Department of Clinical and Experimental Medicine, "Magna Graecia" University, Catanzaro, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy -
| | - Tiziana Larussa
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Chiara Iannelli
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Patrizia Doldo
- Department of Clinical and Experimental Medicine, "Magna Graecia" University, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
119
|
Kuang JH, Huang YY, Hu JS, Yu JJ, Zhou QY, Liu DM. Exopolysaccharides from Bacillus amyloliquefaciens DMBA-K4 ameliorate dextran sodium sulfate-induced colitis via gut microbiota modulation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
120
|
Rund D. Intravenous iron: do we adequately understand the short- and long-term risks in clinical practice? Br J Haematol 2020; 193:466-480. [PMID: 33216989 DOI: 10.1111/bjh.17202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Intravenous (IV) iron as a therapeutic agent is often administered but not always fully understood. The benefits of IV iron are well proven in many fields, particularly in nephrology. IV iron is beneficial not only for true iron deficiency but also for iron-restricted anaemia (functional iron deficiency). Yet, the literature on intravenous iron has many inconsistencies regarding its adverse effects. Over the last several years, newer forms of iron have been developed, leading to the more regular use of iron and in larger doses. This review will summarize some of the older and newer literature regarding the differences among iron products, including the mechanisms and frequency of their adverse events (AEs). The pathway and frequency of an underrecognized adverse event (hypophosphataemia) will be discussed. Recent insights on infection risk and iron handling by macrophages are examined. Potential but presently unproven risks of iron overload due to IV iron are discussed. The impact of these on the risk:benefit ratio and dosing of intravenous iron are considered in different clinical settings, including pregnancy and cancer. IV iron is an essential component of the therapy of anaemia and understanding these issues will enable more informed treatment decisions and knowledgeable use of these drugs.
Collapse
Affiliation(s)
- Deborah Rund
- Hebrew University-Hadassah Medical Organization, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
121
|
Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, Yang IA, Wark PA, Hugenholtz P, Hansbro PM. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun 2020; 11:5886. [PMID: 33208745 PMCID: PMC7676259 DOI: 10.1038/s41467-020-19701-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD. Chronic obstructive pulmonary disease (COPD) is a progressing disease, with lung but not gut microbiota implicated in its etiology. Here the authors compare the stool from patients with COPD and healthy controls to find specific gut bacteria and metabolites associated with active disease, thereby hinting at a potential role for the gut microbiome in COPD.
Collapse
Affiliation(s)
- Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Annalicia Vaughan
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia. .,Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
122
|
Kumar A, Brookes MJ. Iron Therapy in Inflammatory Bowel Disease. Nutrients 2020; 12:nu12113478. [PMID: 33198376 PMCID: PMC7697745 DOI: 10.3390/nu12113478] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The most common complication seen in inflammatory bowel disease (IBD) patients is iron deficiency anaemia (IDA). Symptoms such as chronic fatigue can be as debilitating to IBD patients as pathological symptoms of abdominal pain and diarrhoea. Recognising and correcting anaemia may be as important as managing IBD symptoms and improving overall quality of life. Thus, iron replacement should be commenced the moment IDA is identified. Although intravenous iron is now considered standard treatment for IBD patients in Europe, oral iron still appears to be the preferred option. Advantages of oral iron include greater availability, lower costs and ease of applicability. However, its multitude of side effects, impact on the microbiome and further exacerbating IBD activity can have consequences on patient compliance. The newer oral iron formulations show promising safety and efficacy data with a good side effect profile. Intravenous iron formulations bypass the gastrointestinal tract absorption thereby leading to less side effects. Multiple studies have shown its superiority compared to oral formulations although its risk for hypersensitivity reactions continue to lead to clinician hesitancy in prescribing this formulation. This article provides an updated review on diagnosis and management of IDA in IBD patients, discussing the newer oral and intravenous formulations.
Collapse
Affiliation(s)
- Aditi Kumar
- The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK;
- Correspondence:
| | - Matthew J. Brookes
- The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK;
- Research Institute in Healthcare Science (RIHS), University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
123
|
Valente de Souza L, Hoffmann A, Weiss G. Impact of bacterial infections on erythropoiesis. Expert Rev Anti Infect Ther 2020; 19:619-633. [PMID: 33092423 DOI: 10.1080/14787210.2021.1841636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The importance of iron is highlighted by the many complex metabolic pathways in which it is involved. A sufficient supply is essential for the effective production of 200 billion erythrocytes daily, a process called erythropoiesis. AREAS COVERED During infection, the human body can withhold iron from pathogens, mechanism termed nutritional immunity. The subsequent disturbances in iron homeostasis not only impact on immune function and infection control, but also negatively affect erythropoiesis. The complex interplay between iron, immunity, erythropoiesis and infection control on the molecular and clinical level are highlighted in this review. Diagnostic algorithms for correct interpretation and diagnosis of the iron status in the setting of infection are presented. Therapeutic concepts are discussed regarding effects on anemia correction, but also toward their role on the course of infection. EXPERT OPINION In the setting of infection, anemia is often neglected and its impact on the course of diseases is incompletely understood. Clinical expertise can be improved in correct diagnosing of anemia and disturbances of iron homeostasis. Systemic studies are needed to evaluate the impact of specific therapeutic interventions on anemia correction on the course of infection, but also on patients' cardiovascular performance and quality of life.
Collapse
Affiliation(s)
- Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
124
|
Ahmed A, Slater R, Lewis S, Probert C. Using Volatile Organic Compounds to Investigate the Effect of Oral Iron Supplementation on the Human Intestinal Metabolome. Molecules 2020; 25:molecules25215113. [PMID: 33153225 PMCID: PMC7662922 DOI: 10.3390/molecules25215113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
Patients with iron deficiency anaemia are treated with oral iron supplementation, which is known to cause gastrointestinal side effects by likely interacting with the gut microbiome. To better study this impact on the microbiome, we investigated oral iron-driven changes in volatile organic compounds (VOCs) in the faecal metabolome. Stool samples from patients with iron deficiency anaemia were collected pre- and post-treatment (n = 45 and 32, respectively). Faecal headspace gas analysis was performed by gas chromatography–mass spectrometry and the changes in VOCs determined. We found that the abundance of short-chain fatty acids and esters fell, while aldehydes increased, after treatment. These changes in pre- vs. post-iron VOCs resemble those reported when the gut is inflamed. Our study shows that iron changes the intestinal metabolome, we suggest by altering the structure of the gut microbial community.
Collapse
Affiliation(s)
- Ammar Ahmed
- The Henry Wellcome Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (A.A.); (R.S.)
| | - Rachael Slater
- The Henry Wellcome Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (A.A.); (R.S.)
| | - Stephen Lewis
- Department of Gastroenterology, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK;
| | - Chris Probert
- The Henry Wellcome Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (A.A.); (R.S.)
- Correspondence: ; Tel.: +44-(0)-151-795-4010
| |
Collapse
|
125
|
Affiliation(s)
- Na Hee Lee
- Department of Pediatrics, Cha Bundang Medical Center, Cha University, Seongnam, Korea
| |
Collapse
|
126
|
Fillebeen C, Lam NH, Chow S, Botta A, Sweeney G, Pantopoulos K. Regulatory Connections between Iron and Glucose Metabolism. Int J Mol Sci 2020; 21:ijms21207773. [PMID: 33096618 PMCID: PMC7589414 DOI: 10.3390/ijms21207773] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for energy metabolism, and states of iron deficiency or excess are detrimental for organisms and cells. Therefore, iron and carbohydrate metabolism are tightly regulated. Serum iron and glucose levels are subjected to hormonal regulation by hepcidin and insulin, respectively. Hepcidin is a liver-derived peptide hormone that inactivates the iron exporter ferroportin in target cells, thereby limiting iron efflux to the bloodstream. Insulin is a protein hormone secreted from pancreatic β-cells that stimulates glucose uptake and metabolism via insulin receptor signaling. There is increasing evidence that systemic, but also cellular iron and glucose metabolic pathways are interconnected. This review article presents relevant data derived primarily from mouse models and biochemical studies. In addition, it discusses iron and glucose metabolism in the context of human disease.
Collapse
Affiliation(s)
- Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC H3Y 1P3, Canada;
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Amy Botta
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC H3Y 1P3, Canada;
- Correspondence: ; Tel.: +1-514-340-8260 (ext. 25293)
| |
Collapse
|
127
|
Medina-Reyes EI, Rodríguez-Ibarra C, Déciga-Alcaraz A, Díaz-Urbina D, Chirino YI, Pedraza-Chaverri J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem Toxicol 2020; 146:111814. [PMID: 33068655 DOI: 10.1016/j.fct.2020.111814] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Food additives such as titanium dioxide (E171), iron oxides and hydroxides (E172), silver (E174), and gold (E175) are highly used as colorants while silicon dioxide (E551) is generally used as anticaking in ultra-processed foodstuff highly used in the Western diets. These additives contain nanosized particles (1-100 nm) and there is a rising concern since these nanoparticles could exert major adverse effects due to they are not metabolized but are accumulated in several organs. Here, we analyze the evidence of gastrotoxicity, hepatotoxicity and the impact of microbiota on gut-brain and gut-liver axis induced by E171, E172, E174, E175 and E551 and their non-food grade nanosized counterparts after oral consumption. Although, no studies using these food additives have been performed to evaluate neurotoxicity or alterations in animal behavior, their non-food grade nanosized counterparts have been associated with stress, depression, cognitive and eating disorders as signs of animal behavior alterations. We identified that these food additives induce gastrotoxicity, hepatotoxicity and alterations in gut microbiota and most evidence points out oxidative stress as the main mechanism of toxicity, however, the role of oxidative stress as the main mechanism needs to be explored further.
Collapse
Affiliation(s)
- Estefany I Medina-Reyes
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico.
| | - Carolina Rodríguez-Ibarra
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Daniel Díaz-Urbina
- Laboratorio de Neurobiología de La Alimentación. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| |
Collapse
|
128
|
Schierová D, Březina J, Mrázek J, Fliegerová KO, Kvasnová S, Bajer L, Drastich P. Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells 2020; 9:cells9102283. [PMID: 33066233 PMCID: PMC7602113 DOI: 10.3390/cells9102283] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease, and intestinal bacteria are implicated in the pathogenesis of this disorder. The administration of aminosalicylates (5-ASA) is a conventional treatment that targets the mucosa, while fecal microbial transplantation (FMT) is a novel treatment that directly targets the gut microbiota. The aim of this study was to identify changes in fecal bacterial composition after both types of treatments and evaluate clinical responses. Sixteen patients with active left-sided UC underwent enema treatment using 5-ASA (n = 8) or FMT (n = 8) with a stool from a single donor. Fecal microbiota were analyzed by 16S rDNA high-throughput sequencing, and clinical indices were used to assess the efficacy of treatments. 5-ASA therapy resulted in clinical remission in 50% (4/8) of patients, but no correlation with changes in fecal bacteria was observed. In FMT, remission was achieved in 37.5% (3/8) of patients and was associated with a significantly increased relative abundance of the families Lachnospiraceae, Ruminococcaceae, and Clostridiaceae of the phylum Firmicutes, and Bifidobacteriaceae and Coriobacteriaceae of the phylum Actinobacteria. At the genus level, Faecalibacterium, Blautia, Coriobacteria, Collinsela, Slackia, and Bifidobacterium were significantly more frequent in patients who reached clinical remission. However, the increased abundance of beneficial taxa was not a sufficient factor to achieve clinical improvement in all UC patients. Nevertheless, our preliminary results indicate that FMT as non-drug-using method is thought to be a promising treatment for UC patients.
Collapse
Affiliation(s)
- Dagmar Schierová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Jan Březina
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
- Correspondence: (D.S.); (J.M.); Tel.: +420-2-6709-0509 (D.S.); +420-2-6709-0506 (J.M.)
| | - Kateřina Olša Fliegerová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Science, v.v.i., 142 20 Prague, Czech Republic; (K.O.F.); (S.K.)
| | - Lukáš Bajer
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| | - Pavel Drastich
- Hepatogastroenterology Department, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (J.B.); (L.B.); (P.D.)
| |
Collapse
|
129
|
Powers JM, Auerbach M. Iron supplementation in infants: a reflection on hepcidin and fractional iron absorption. Am J Clin Nutr 2020; 112:909-910. [PMID: 32844200 DOI: 10.1093/ajcn/nqaa224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jacquelyn M Powers
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Michael Auerbach
- School of Medicine, Georgetown University, Washington, DC, USA.,Private Practice, Baltimore, MD, USA
| |
Collapse
|
130
|
Gerner RR, Nuccio SP, Raffatellu M. Iron at the host-microbe interface. Mol Aspects Med 2020; 75:100895. [PMID: 32883564 PMCID: PMC7554189 DOI: 10.1016/j.mam.2020.100895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for nearly all living organisms. In addition to facilitating redox reactions, iron is bound by metalloproteins that participate in a variety of biological processes. As the bioavailability of free iron in host environments is extremely low, iron lies at the center of a battle for nutrients between microbes and their host. Mucosal surfaces such as the respiratory and gastrointestinal tracts are constantly exposed to commensal and pathogenic microorganisms. Whereas a key strategy of mammalian antimicrobial defense is to deprive microbes of iron, pathogens and some commensals have evolved effective strategies to circumvent iron limitation. Here we provide an overview of mechanisms underpinning the tug-of-war for iron between microbes and their host, with a particular focus on mucosal surfaces.
Collapse
Affiliation(s)
- Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Division of Internal Medicine I, Department of Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD CMAV), La Jolla, CA, USA.
| |
Collapse
|
131
|
Parmanand B, Watson M, Boland KJ, Ramamurthy N, Wharton V, Morovat A, Lund EK, Collier J, Le Gall G, Kellingray L, Fairweather-Tait S, Cobbold JF, Narbad A, Ryan JD. Systemic iron reduction by venesection alters the gut microbiome in patients with haemochromatosis. JHEP Rep 2020; 2:100154. [PMID: 32995714 PMCID: PMC7516344 DOI: 10.1016/j.jhepr.2020.100154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Background & Aims Iron reduction by venesection has been the cornerstone of treatment for haemochromatosis for decades, and its reported health benefits are many. Repeated phlebotomy can lead to a compensatory increase in intestinal iron absorption, reducing intestinal iron availability. Given that most gut bacteria are highly dependent on iron for survival, we postulated that, by reducing gut iron levels, venesection could alter the gut microbiota. Methods Clinical parameters, faecal bacterial composition and metabolomes were assessed before and during treatment in a group of patients with haemochromatosis undergoing iron reduction therapy. Results Systemic iron reduction was associated with an alteration of the gut microbiome, with changes evident in those who experienced reduced faecal iron availability with venesection. For example, levels of Faecalibacterium prausnitzii, a bacterium associated with improved colonic health, were increased in response to faecal iron reduction. Similarly, metabolomic changes were seen in association with reduced faecal iron levels. Conclusion These findings highlight a significant shift in the gut microbiome of patients who experience reduced colonic iron during venesection. Targeted depletion of faecal iron could represent a novel therapy for metabolic and inflammatory diseases, meriting further investigation. Lay summary Iron depletion by repeated venesection is the mainstay of treatment for haemochromatosis, an iron-overload disorder. Venesection has been associated with several health benefits, including improvements in liver function tests, reversal of liver scarring, and reduced risk of liver cancer. During iron depletion, iron absorption from the gastrointestinal (GI) tract increases to compensate for iron lost with treatment. Iron availability is limited in the GI tract and is crucial to the growth and function of many gut bacteria. In this study we show that reduced iron availability in the colon following venesection treatment leads to a change in the composition of the gut bacteria, a finding that, to date, has not been studied in patients with haemochromatosis. Venesection is the cornerstone of haemochromatosis treatment. Venesection leads to a compensatory increase in intestinal iron absorption. Reduced faecal iron availability leads to shifts in human colonic microbial composition. Changes in the human colonic metabolome occur with reduced faecal iron availability.
Collapse
Key Words
- ALT, alanine aminotransferase
- CRP, C-reactive protein
- FAAS, flame atomic absorption spectrophotometry
- GI, gastrointestinal
- HFE, hyperferritinaemia
- HH, hereditary haemachromatosis
- Haemochromatosis
- Iron
- LDA, linear discriminant analysis
- LEfSe, linear discriminant analysis effect size
- Microbiome
- TSP, 3-(trimethylsilyl)-propionate-d4
- Venesection
- WCC, white cell count
Collapse
Affiliation(s)
- Bhavika Parmanand
- Quadram Institute, Norwich, UK.,University of East Anglia, Norwich, UK
| | - Michael Watson
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Karen J Boland
- Department of Gastroenterology, Beaumont Hospital/Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Victoria Wharton
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals Foundation Trust, Oxford, UK
| | | | - Jane Collier
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | | | | | - Jeremy F Cobbold
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - John D Ryan
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,Hepatology Unit, Beaumont Hospital/Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
132
|
Anemia in Children With Inflammatory Bowel Disease: A Position Paper by the IBD Committee of the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2020; 71:563-582. [PMID: 32947565 DOI: 10.1097/mpg.0000000000002885] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anemia is one of the most common extraintestinal manifestations of inflammatory bowel disease (IBD). It can be asymptomatic or associated with nonspecific symptoms, such as irritability, headaches, fatigue, dizziness, and anorexia. In IBD patients, the etiology of anemia is often multifactorial. Various causes include iron deficiency, anemia of inflammation and chronic disease, vitamin deficiencies, hemolysis, or myelosuppressive effect of drugs. Anemia and iron deficiency in these patients may be underestimated because of their insidious onset, lack of standardized screening practices, and possibly underappreciation that treatment of anemia is also required when treating IBD. Practitioners may hesitate to use oral preparations because of their intolerance whereas intravenous preparations are underutilized because of fear of adverse events, availability, and cost. Several publications in recent years have documented the safety and comparative efficacy of various intravenous preparations. This article reviews management of anemia in children with IBD, including diagnosis, etiopathogenesis, evaluation of a patient, protocol to screen and monitor patients for early detection and response to therapy, treatment including parenteral iron therapy, and newer approaches in management of anemia of chronic disease. This report has been compiled by a group of pediatric gastroenterologists serving on the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN) IBD committee, in collaboration with a pediatric hematologist, pharmacist, and a registered dietician who specializes in pediatric IBD (IBD Anemia Working Group), after an extensive review of the current literature. The purpose of this review is to raise awareness of under-diagnosis of anemia in children with IBD and make recommendations for screening, testing, and treatment in this population.
Collapse
|
133
|
Colchicine increases intestinal permeability, suppresses inflammatory responses, and alters gut microbiota in mice. Toxicol Lett 2020; 334:66-77. [PMID: 33002524 DOI: 10.1016/j.toxlet.2020.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Although colchicine (COL) has been used to treat gout for more than a thousand years, it has been shrouded in a dark history for a long time due to its high toxicity, especially for the gastrointestinal tract. With the widespread clinical application of COL, COL's toxicity to the gastrointestinal tract has raised concerns. This study's objective was to address the exact intestinal toxicity of COL, with particular attention to the effects of COL on gut microbiota homeostasis. The mice were exposed to various dosages of COL (0.1, 0.5, and 2.5 mg kg-1 body weight per day) for a week, and the results showed that COL exposure caused serious intestinal injuries, reducing the relative expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and tight junction proteins (zo-1, claudin-1, and occludin) in the ileum and colon tissue. The 16S rRNA gene sequencing analysis of mice feces samples revealed that the composition and diversity of intestinal microbiome underwent a profound remodeling at the dosage of 2.5 mg kg-1 body weight per day, which may increase the toxic load in the gut. In addition, elevated levels of diamine oxidase (DAO) and lipopolysaccharide (LPS) in serum indicated that COL increased intestinal permeability, impairing intestinal barrier. In conclusion, our results demonstrate that COL's toxicity to the gut microbiome is compatible with intestinal injuries, inflammatory pathway inhibition, and increased intestinal permeability; our results also represent a novel insight to uncover the adverse reactions of COL in the gastrointestinal tract.
Collapse
|
134
|
Seeman MV. The gut microbiome and antipsychotic treatment response. Behav Brain Res 2020; 396:112886. [PMID: 32890599 DOI: 10.1016/j.bbr.2020.112886] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Patients with psychosis usually respond to one antipsychotic drug and not to another; one third fail to respond to any. Some patients, who initially do well, stop responding. Some develop serious side effects even at low doses. While several of the reasons for this variability are known, many are not. The aim of this review is to explore the potential role of intestinal organisms in response/non-response to antipsychotics. Much of the literature in this field is relatively new and still, for the most part, theoretical. A growing number of animal experiments and clinical trials are starting to point, however, to substantial effects of antipsychotics on the composition of gut bacteria and, reciprocally, to the effects of microbiota on the pharmacokinetics of antipsychotic medication. Because so many factors influence the constituents of the human intestine, it is difficult, at present, to sort out how much one or more either enhance or dampen the benefits of antipsychotics or the character/severity of the adverse effects they induce. Dietary and other therapies are being devised to reverse dysbiosis. If successful, such therapies plus the modification of factors that, together, are known to determine the composition of microbiota could help to maximize the effectiveness of currently available antipsychotic therapy.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University pf Toronto, Suite #605 260 Heath St. West, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
135
|
Patients developing inflammatory bowel disease have iron deficiency and lower plasma ferritin years before diagnosis: a nested case-control study. Eur J Gastroenterol Hepatol 2020; 32:1147-1153. [PMID: 32541236 PMCID: PMC7423531 DOI: 10.1097/meg.0000000000001816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron deficiency is common among inflammatory bowel disease (IBD) patients, generally reported without comparisons with controls. The aim of this study was to analyse if iron deficiency was more common among those later developing IBD compared to matched controls in a prospective setting. METHODS We included 96 healthy subjects later developing IBD and 191 matched controls from the Northern Sweden Health and Disease Study. We analysed iron, ferritin, transferrin, and calculated transferrin saturation in plasma sampled at least 1 year prior to IBD diagnosis. Iron deficiency was defined as plasma ferritin <30 µg/L if C-reactive protein (CRP) was <3 mg/L. When CRP was >3 mg/L, iron deficiency could not be excluded if ferritin was <100 µg/L. RESULTS Iron deficiency could not be excluded among more male cases vs controls (25.0% vs 2.2%; P < 0.001), whereas with no differences for women (39.6% vs 35.3%; P = 0.538). Ferritin was lower among male IBD cases (P = 0.001) and for ulcerative colitis (P = 0.016 for males and 0.017 for females), but not for Crohn's disease. Ferritin was associated with a lower risk for IBD and in the ulcerative colitis subgroup when using sex-based z-scores. Ferritin quartiles 2-4 had a 65% lower odds ratio for all IBD, ulcerative colitis, and Crohn's disease in multivariable analysis. CONCLUSIONS Lower ferritin was associated with higher risk for developing IBD in a prospective setting. Iron deficiency was more common among healthy males years later developing IBD compared to matched controls, but not among women.
Collapse
|
136
|
Phipps O, Al-Hassi HO, Quraishi MN, Kumar A, Brookes MJ. Influence of Iron on the Gut Microbiota in Colorectal Cancer. Nutrients 2020; 12:nu12092512. [PMID: 32825236 PMCID: PMC7551435 DOI: 10.3390/nu12092512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Perturbations of the colonic microbiota can contribute to the initiation and progression of colorectal cancer, leading to an increase in pathogenic bacteria at the expense of protective bacteria. This can contribute to disease through increasing carcinogenic metabolite/toxin production, inducing inflammation, and activating oncogenic signaling. To limit disease progression, external factors that may influence the colonic microbiota need to be considered in patients with colorectal cancer. One major factor that can influence the colonic microbiota is iron. Iron is an essential micronutrient that is required by both prokaryotes and eukaryotes for cellular function. Most pathogenic bacteria have heightened iron acquisition mechanisms and therefore tend to outcompete protective bacteria for free iron. Colorectal cancer patients often present with anemia due to iron deficiency, and thus they require iron therapy. Depending upon the route of administration, iron therapy has the potential to contribute to a procarciongenic microbiota. Orally administered iron is the common treatment for anemia in these patients but can lead to an increased gut iron concentration. This suggests the need to reassess the route of iron therapy in these patients. Currently, this has only been assessed in murine studies, with human trials being necessary to unravel the potential microbial outcomes of iron therapy.
Collapse
Affiliation(s)
- Oliver Phipps
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
- Correspondence:
| | - Hafid O. Al-Hassi
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
| | - Mohammed N. Quraishi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Aditi Kumar
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
- Royal Wolverhampton Hospitals NHS Trust, Gastroenterology Unit, Wolverhampton WV10 0QP, UK
| | - Matthew J. Brookes
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (H.O.A.-H.); (A.K.); (M.J.B.)
- Royal Wolverhampton Hospitals NHS Trust, Gastroenterology Unit, Wolverhampton WV10 0QP, UK
| |
Collapse
|
137
|
Lopes AI, Azevedo S, Cabral J, Ferreira MG, Sande-Lemos P, Ferreira R, Trindade E, Lima R, Antunes H. Portuguese Consensus on Diagnosis, Treatment, and Management of Anemia in Pediatric Inflammatory Bowel Disease. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2020; 27:244-254. [PMID: 32775546 DOI: 10.1159/000505071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Anemia is a common extraintestinal manifestation of inflammatory bowel disease (IBD), both in pediatric and in adult patients. Iron deficiency is the main cause of anemia in patients with IBD. Anemia is a clinically relevant comorbidity, with impact on patients' quality of life and it should be timely diagnosed and adequately treated. Currently, an active treatment approach is the recommended strategy, with evidence showing efficacy and safety of intravenous iron formulations. However, evidence in pediatric age remains scarce and no clinical recommendations exist for the diagnosis and treatment of this particular age group. The present document represents the first national consensus on the management of anemia in pediatric IBD and is therefore particularly relevant. The authors anticipate that the proposed recommendations will be useful in daily clinical practice for diagnosing and managing iron deficiency and iron-deficiency anemia in the pediatric population with IBD.
Collapse
Affiliation(s)
- Ana Isabel Lopes
- Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre (CAML), Lisbon, Portugal.,Gastroenterology Unit, Pediatric Department, Hospital de Santa Maria, University Hospital Centre of North Lisbon, Lisbon, Portugal
| | - Sara Azevedo
- Gastroenterology Unit, Pediatric Department, Hospital de Santa Maria, University Hospital Centre of North Lisbon, Lisbon, Portugal
| | - José Cabral
- Pediatric Gastroenterology Unit, Dona Estefânia Hospital, University Hospital Centre of Central Lisbon, Lisbon, Portugal
| | | | - Piedade Sande-Lemos
- Pediatric Department, Hospital Prof. Doutor Fernando Fonseca EPE, Amadora, Portugal
| | - Ricardo Ferreira
- Pediatric Department, Pediatric Hospital, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Eunice Trindade
- Pediatric Gastroenterology Unit, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Rosa Lima
- Pediatric Gastroenterology Unit, Centro Materno Infantil do Norte, Porto Hospital and Universitary Centre, Porto, Portugal
| | - Henedina Antunes
- Pediatric Gastroenterology, Hepatology and Nutrition Unit and Clinical Academic Center 2CA-Braga, Hospital de Braga, Braga, Portugal.,Life and Health Sciences Institute (ICVS), School of Medicine University of Minho, Braga, Portugal.,ICVS/3B's Associated Laboratory, Braga-Guimarães, Portugal
| |
Collapse
|
138
|
Garg M, Chand S, Weenink P, Yunqiu Wu K, Cheng RKY. Letter: assessing iron deficiency in patients with IBD-a step in the right direction, but uncertainty remains. Aliment Pharmacol Ther 2020; 52:413-415. [PMID: 32592245 DOI: 10.1111/apt.15833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Mayur Garg
- Department of Gastroenterology, Northern Hospital, Melbourne, Vic, Australia.,Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Vic, Australia.,Department of Medicine, University of Melbourne, Melbourne, Vic, Australia.,Eastern Health Clinical School, Monash University, Melbourne, Vic, Australia.,Department of Gastroenterology, Eastern Health, Box Hill, Vic, Australia
| | - Sheital Chand
- Department of Gastroenterology, Eastern Health, Box Hill, Vic, Australia
| | - Petrus Weenink
- Eastern Health Clinical School, Monash University, Melbourne, Vic, Australia
| | - Karen Yunqiu Wu
- Eastern Health Clinical School, Monash University, Melbourne, Vic, Australia
| | - Richard K Y Cheng
- Department of Gastroenterology, Redcliffe Hospital, Redcliffe, Qld, Australia
| |
Collapse
|
139
|
Sadeghi O, Milajerdi A, Siadat SD, Keshavarz SA, Sima AR, Vahedi H, Adibi P, Esmaillzadeh A. Effects of soy milk consumption on gut microbiota, inflammatory markers, and disease severity in patients with ulcerative colitis: a study protocol for a randomized clinical trial. Trials 2020; 21:565. [PMID: 32576228 PMCID: PMC7310397 DOI: 10.1186/s13063-020-04523-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background Several strategies are recommended to alleviate clinical symptoms of ulcerative colitis (UC). Soy milk may affect UC through its anti-inflammatory properties. However, no study has examined the effects of soy milk consumption on gut microbiota and inflammatory biomarkers in patients with UC. The current study will be done to examine the effects of soy milk consumption on UC symptoms, inflammation, and gut microbiota in patients with UC. Methods This study is a randomized clinical trial, in which thirty patients with mild to moderate severity of UC will be randomly allocated to receive either 250 mL/day soy milk plus routine treatments (n = 15) or only routine treatments (n = 15) for 4 weeks. Assessment of anthropometric measures and biochemical indicators including serum concentrations of high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon gamma (IFN-γ) will be done at the study baseline and end of trial. In addition, the quantity of butyrate-producing bacteria including Clostridium cluster IV, Faecalibacterium prausnitzii, and Roseburia spp.; prebiotic bacteria including Lactobacillus spp. and Bifidobacteria spp.; and mucus-degrading bacteria including Akkermansia muciniphila, Bacteroides fragilis, and Ruminococcus spp., as well as calprotectin and lactoferrin levels, will be explored in fecal samples. Also, the Firmicutes to Bacteroidetes ratio which is of significant relevance in human gut microbiota composition will be assessed. Discussion Altered gut microbiota has been reported as an important contributing factor to inflammation in patients with inflammatory bowel disease (IBD). Soy milk contains several components such as phytoestrogens with potential anti-inflammatory properties. This product might affect gut microbiota through its protein and fiber content. Therefore, soy milk might beneficially affect systemic inflammation, gut microbiota, and then clinical symptoms in patients with UC. Trial registration Iranian Registry of Clinical Trials (www.irct.ir) IRCT20181205041859N1. Registered on 27 January 2019.
Collapse
Affiliation(s)
- Omid Sadeghi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Alireza Milajerdi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Sima
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoon Vahedi
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Adibi
- Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
140
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|
141
|
Macdougall IC, Comin-Colet J, Breymann C, Spahn DR, Koutroubakis IE. Iron Sucrose: A Wealth of Experience in Treating Iron Deficiency. Adv Ther 2020; 37:1960-2002. [PMID: 32297281 PMCID: PMC7467495 DOI: 10.1007/s12325-020-01323-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Iron deficiency and iron-deficiency anemia are associated with increased morbidity and mortality in a wide range of conditions. In many patient populations, this can be treated effectively with oral iron supplementation; but in patients who are unable to take or who do not respond to oral iron therapy, intravenous iron administration is recommended. Furthermore, in certain conditions, such as end-stage kidney disease, chronic heart failure, and inflammatory bowel disease, intravenous iron administration has become first-line treatment. One of the first available intravenous iron preparations is iron sucrose (Venofer®), a nanomedicine that has been used clinically since 1949. Treatment with iron sucrose is particularly beneficial owing to its ability to rapidly increase hemoglobin, ferritin, and transferrin saturation levels, with an acceptable safety profile. Recently, important new data relating to the use of iron sucrose, including the findings from the landmark PIVOTAL trial in patients with end-stage kidney disease, have been reported. Several years ago, a number of iron sucrose similars became available, although there have been concerns about the clinical appropriateness of substituting the original iron sucrose with an iron sucrose similar because of differences in efficacy and safety. This is a result of the complex and unique physicochemical properties of nanomedicines such as iron sucrose, which make copying the molecule difficult and problematic. In this review, we summarize the evidence accumulated during 70 years of clinical experience with iron sucrose in terms of efficacy, safety, and cost-effectiveness.
Collapse
Affiliation(s)
| | - Josep Comin-Colet
- Department of Cardiology, Bellvitge University Hospital and IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - Donat R Spahn
- Institute of Anaesthesiology, University of Zurich and University Hospital Zürich, Zurich, Switzerland
| | | |
Collapse
|
142
|
Auerbach M, Gafter-Gvili A, Macdougall IC. Intravenous iron: a framework for changing the management of iron deficiency. LANCET HAEMATOLOGY 2020; 7:e342-e350. [PMID: 32220343 DOI: 10.1016/s2352-3026(19)30264-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
For decades intravenous iron was considered dangerous. Newer formulations with carbohydrate cores binding elemental iron more tightly allow complete iron replacement within 15-60 min in one visit. Meta-analyses and prospective comparisons of different formulations support equivalent safety to placebo with less toxicity than oral iron. Of the available formulations, the preponderance of published evidence supports equal safety and efficacy. In this Viewpoint, we report evidence supporting repositioning of intravenous iron to the frontline in multiple disorders with iron deficiency, which include heart failure, chronic kidney disease, inflammatory bowel disease, patient blood management in the perioperative period, and obstetrics and gynaecology. We have also highlighted neonatal evidence supporting the inadequacy of oral iron in late pregnancy, a critical period of iron need for normal foetal brain development. Physicians should consider prioritising the use of intravenous iron rather than oral iron as a treatment for iron deficiency in some of these clinical scenarios.
Collapse
|
143
|
Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform 2020; 20:1032-1056. [PMID: 29186315 DOI: 10.1093/bib/bbx156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiome impacts several aspects of human health and disease, including digestion, drug metabolism and the propensity to develop various inflammatory, autoimmune and metabolic diseases. Many of the molecular processes that play a role in the activity and dynamics of the microbiota go beyond species and genic composition and thus, their understanding requires advanced bioinformatics support. This article aims to provide an up-to-date view of the resources and software tools that are being developed and used in human gut microbiome research, in particular data integration and systems-level analysis efforts. These efforts demonstrate the power of standardized and reproducible computational workflows for integrating and analysing varied omics data and gaining deeper insights into microbe community structure and function as well as host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Anália Lourenço
- Dpto. de Informática - Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
144
|
Peñalver Bernabé B, Maki PM, Dowty SM, Salas M, Cralle L, Shah Z, Gilbert JA. Precision medicine in perinatal depression in light of the human microbiome. Psychopharmacology (Berl) 2020; 237:915-941. [PMID: 32065252 DOI: 10.1007/s00213-019-05436-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Perinatal depression is the most common complication of pregnancy and affects the mother, fetus, and infant. Recent preclinical studies and a limited number of clinical studies have suggested an influence of the gut microbiome on the onset and course of mental health disorders. In this review, we examine the current state of knowledge regarding genetics, epigenetics, heritability, and neuro-immuno-endocrine systems biology in perinatal mood disorders, with a particular focus on the interaction between these factors and the gut microbiome, which is mediated via the gut-brain axis. We also provide an overview of experimental and analytical methods that are currently available to researchers interested in elucidating the influence of the gut microbiome on mental health disorders during pregnancy and postpartum.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States.
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shannon M Dowty
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariana Salas
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Lauren Cralle
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Zainab Shah
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jack A Gilbert
- Scripts Oceanographic Institute, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
145
|
Metaproteomics characterizes human gut microbiome function in colorectal cancer. NPJ Biofilms Microbiomes 2020; 6:14. [PMID: 32210237 PMCID: PMC7093434 DOI: 10.1038/s41522-020-0123-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Pathogenesis of colorectal cancer (CRC) is associated with alterations in gut microbiome. Previous studies have focused on the changes of taxonomic abundances by metagenomics. Variations of the function of intestinal bacteria in CRC patients compared to healthy crowds remain largely unknown. Here we collected fecal samples from CRC patients and healthy volunteers and characterized their microbiome using quantitative metaproteomic method. We have identified and quantified 91,902 peptides, 30,062 gut microbial protein groups, and 195 genera of microbes. Among the proteins, 341 were found significantly different in abundance between the CRC patients and the healthy volunteers. Microbial proteins related to iron intake/transport; oxidative stress; and DNA replication, recombination, and repair were significantly alternated in abundance as a result of high local concentration of iron and high oxidative stress in the large intestine of CRC patients. Our study shows that metaproteomics can provide functional information on intestinal microflora that is of great value for pathogenesis research, and can help guide clinical diagnosis in the future.
Collapse
|
146
|
Xiao M, Shen Z, Luo W, Tan B, Meng X, Wu X, Wu S, Nie K, Tong T, Hong J, Wang X, Wang X. A new colitis therapy strategy via the target colonization of magnetic nanoparticle-internalized Roseburia intestinalis. Biomater Sci 2020; 7:4174-4185. [PMID: 31380882 DOI: 10.1039/c9bm00980a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The homeostasis process in the gut tissue of humans relies on intestinal bacteria. However, the intestine is a complex structural tissue with a huge superficial area, and thus the effective application of probiotics in the treatment of Crohn's disease (CD) is still challenging. Herein, we show the feasibility of probiotic target delivery and retention using magnetic iron oxide nanoparticle-internalized Roseburia intestinalis, which can be easily directed by a magnetic field in vitro and in vivo. Subsequently, the increased colonization of this core profitable flora not only resulted in a better therapy effect than traditional intragastric administration but also altered the bacterial composition, leading to a higher diversity in microbial taxa in rats with colitis. Our findings illustrate the exciting opportunities that nanotechnology offers for alternative strategies to modulate biological systems remotely and precisely, which represent a step towards the wireless magnetic manipulation of living biological entities in microbiology.
Collapse
Affiliation(s)
- Mengwei Xiao
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Maynard C, Weinkove D. Bacteria increase host micronutrient availability: mechanisms revealed by studies in C. elegans. GENES AND NUTRITION 2020; 15:4. [PMID: 32138646 PMCID: PMC7057599 DOI: 10.1186/s12263-020-00662-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Micronutrients cannot be synthesized by humans and are obtained from three different sources: diet, gut microbiota, and oral supplements. The microbiota generates significant quantities of micronutrients, but the contribution of these compounds to total uptake is unclear. The role of bacteria in the synthesis and uptake of micronutrients and supplements is widely unexplored and may have important implications for human health. The efficacy and safety of several micronutrient supplements, including folic acid, have been questioned due to some evidence of adverse effects on health. The use of the simplified animal-microbe model, Caenorhabditis elegans, and its bacterial food source, Escherichia coli, provides a controllable system to explore the underlying mechanisms by which bacterial metabolism impacts host micronutrient status. These studies have revealed mechanisms by which bacteria may increase the bioavailability of folic acid, B12, and iron. These routes of uptake interact with bacterial metabolism, with the potential to increase bacterial pathogenesis, and thus may be both beneficial and detrimental to host health.
Collapse
Affiliation(s)
- Claire Maynard
- Department of Biosciences, Durham University, Durham, UK
| | - David Weinkove
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
148
|
Elstrott B, Khan L, Olson S, Raghunathan V, DeLoughery T, Shatzel JJ. The role of iron repletion in adult iron deficiency anemia and other diseases. Eur J Haematol 2020; 104:153-161. [PMID: 31715055 PMCID: PMC7031048 DOI: 10.1111/ejh.13345] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Iron deficiency anemia (IDA) is the most prevalent and treatable form of anemia worldwide. The clinical management of patients with IDA requires a comprehensive understanding of the many etiologies that can lead to iron deficiency including pregnancy, blood loss, renal disease, heavy menstrual bleeding, inflammatory bowel disease, bariatric surgery, or extremely rare genetic disorders. The treatment landscape for many causes of IDA is currently shifting toward more abundant use of intravenous (IV) iron due to its effectiveness and improved formulations that decrease the likelihood of adverse effects. IV iron has found applications beyond treatment of IDA, and there is accruing data about its efficacy in patients with heart failure, restless leg syndrome, fatigue, and prevention of acute mountain sickness. This review provides a framework to diagnose, manage, and treat patients presenting with IDA and discusses other conditions that benefit from iron supplementation.
Collapse
Affiliation(s)
- Benjamin Elstrott
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lubna Khan
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sven Olson
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Vikram Raghunathan
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Thomas DeLoughery
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joseph J. Shatzel
- Division of Hematology-Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
149
|
Abstract
Iron deficiency anaemia is a global health concern affecting children, women and the elderly, whilst also being a common comorbidity in multiple medical conditions. The aetiology is variable and attributed to several risk factors decreasing iron intake and absorption or increasing demand and loss, with multiple aetiologies often coexisting in an individual patient. Although presenting symptoms may be nonspecific, there is emerging evidence on the detrimental effects of iron deficiency anaemia on clinical outcomes across several medical conditions. Increased awareness about the consequences and prevalence of iron deficiency anaemia can aid early detection and management. Diagnosis can be easily made by measurement of haemoglobin and serum ferritin levels, whilst in chronic inflammatory conditions, diagnosis may be more challenging and necessitates consideration of higher serum ferritin thresholds and evaluation of transferrin saturation. Oral and intravenous formulations of iron supplementation are available, and several patient and disease-related factors need to be considered before management decisions are made. This review provides recent updates and guidance on the diagnosis and management of iron deficiency anaemia in multiple clinical settings.
Collapse
Affiliation(s)
- M D Cappellini
- Department of Clinical Sciences and Community, IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | | | - A T Taher
- Department of Internal Medicine, American University of Beirut Medical Centre, Beirut, Lebanon
| |
Collapse
|
150
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|