101
|
Weighill D, Ben Guebila M, Glass K, Platig J, Yeh JJ, Quackenbush J. Gene Targeting in Disease Networks. Front Genet 2021; 12:649942. [PMID: 33968133 PMCID: PMC8103030 DOI: 10.3389/fgene.2021.649942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Profiling of whole transcriptomes has become a cornerstone of molecular biology and an invaluable tool for the characterization of clinical phenotypes and the identification of disease subtypes. Analyses of these data are becoming ever more sophisticated as we move beyond simple comparisons to consider networks of higher-order interactions and associations. Gene regulatory networks (GRNs) model the regulatory relationships of transcription factors and genes and have allowed the identification of differentially regulated processes in disease systems. In this perspective, we discuss gene targeting scores, which measure changes in inferred regulatory network interactions, and their use in identifying disease-relevant processes. In addition, we present an example analysis for pancreatic ductal adenocarcinoma (PDAC), demonstrating the power of gene targeting scores to identify differential processes between complex phenotypes, processes that would have been missed by only performing differential expression analysis. This example demonstrates that gene targeting scores are an invaluable addition to gene expression analysis in the characterization of diseases and other complex phenotypes.
Collapse
Affiliation(s)
- Deborah Weighill
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Kimberly Glass
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Harvard University, Boston, MA, United States
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Harvard University, Boston, MA, United States
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
102
|
Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells 2021; 10:cells10040847. [PMID: 33918004 PMCID: PMC8068358 DOI: 10.3390/cells10040847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with a 5 year survival rate of less than 8%, and is predicted to become the second leading cause of cancer-related death by 2030. Alongside late detection, which impacts upon surgical treatment, PDAC tumours are challenging to treat due to their desmoplastic stroma and hypovascular nature, which limits the effectiveness of chemotherapy and radiotherapy. Pancreatic stellate cells (PSCs), which form a key part of this stroma, become activated in response to tumour development, entering into cross-talk with cancer cells to induce tumour cell proliferation and invasion, leading to metastatic spread. We and others have shown that Fibroblast Growth Factor Receptor (FGFR) signalling can play a critical role in the interactions between PDAC cells and the tumour microenvironment, but it is clear that the FGFR signalling pathway is not acting in isolation. Here we describe our current understanding of the mechanisms by which FGFR signalling contributes to PDAC progression, focusing on its interaction with other pathways in signalling networks and discussing the therapeutic approaches that are being developed to try and improve prognosis for this terrible disease.
Collapse
|
103
|
Poelaert BJ, Knoche SM, Larson AC, Pandey P, Seshacharyulu P, Khan N, Maurer HC, Olive KP, Sheinin Y, Ahmad R, Singh AB, Batra SK, Rachagani S, Solheim JC. Amyloid Precursor-like Protein 2 Expression Increases during Pancreatic Cancer Development and Shortens the Survival of a Spontaneous Mouse Model of Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13071535. [PMID: 33810510 PMCID: PMC8036577 DOI: 10.3390/cancers13071535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary As pancreatic cancer is a disease with a high fatality rate, a better understanding of how it develops and the identification of new potential targets for its treatment are greatly needed. In this current study, we showed that the expression of amyloid precursor-like protein 2 (APLP2) in pancreatic cancer epithelial cells is higher than in precursor lesion epithelial cells, thus indicating that APLP2 increases during human pancreatic cancer development. We also generated a new mouse model that demonstrated the deletion of APLP2 expression specifically within the pancreas prolongs survival and decreases metastasis for mice with pancreatic cancer. Taken together, these findings open a new avenue toward comprehending and treating pancreatic cancer. Abstract In the United States, pancreatic cancer is a major cause of cancer-related deaths. Although substantial efforts have been made to understand pancreatic cancer biology and improve therapeutic efficacy, patients still face a bleak chance of survival. A greater understanding of pancreatic cancer development and the identification of novel treatment targets are desperately needed. Our analysis of gene expression data from patient samples showed an increase in amyloid precursor-like protein 2 (APLP2) expression within primary tumor epithelium relative to pancreatic intraepithelial neoplasia (PanIN) epithelial cells. Augmented expression of APLP2 in primary tumors compared to adjacent stroma was also observed. Genetically engineered mouse models of spontaneous pancreatic ductal adenocarcinoma were used to investigate APLP2′s role in cancer development. We found that APLP2 expression intensifies significantly during pancreatic cancer initiation and progression in the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mouse model, as shown by immunohistochemistry analysis. In studies utilizing pancreas-specific heterozygous and homozygous knockout of APLP2 in the KPC mouse model background, we observed significantly prolonged survival and reduced metastatic progression of pancreatic cancer. These results demonstrate the importance of APLP2 in pancreatic cancer initiation and metastasis and indicate that APLP2 should be considered a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Brittany J. Poelaert
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Poomy Pandey
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Nuzhat Khan
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
| | - H. Carlo Maurer
- Columbia University Department of Medicine and the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; (H.C.M.); (K.P.O.)
| | - Kenneth P. Olive
- Columbia University Department of Medicine and the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; (H.C.M.); (K.P.O.)
| | - Yuri Sheinin
- Department of Pathology and Microbiology and the Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA;
| | - Rizwan Ahmad
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Amar B. Singh
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Surinder K. Batra
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Satyanarayana Rachagani
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.J.P.); (S.M.K.); (A.C.L.); (P.P.); (N.K.)
- Department of Biochemistry & Molecular Biology and the Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (R.A.); (A.B.S.); (S.K.B.); (S.R.)
- Correspondence: ; Tel.: +1-402-559-4539
| |
Collapse
|
104
|
Liotta L, Lange S, Maurer HC, Olive KP, Braren R, Pfarr N, Burger S, Muckenhuber A, Jesinghaus M, Steiger K, Weichert W, Friess H, Schmid R, Algül H, Jost PJ, Ramser J, Fischer C, Quante AS, Reichert M, Quante M. PALLD mutation in a European family conveys a stromal predisposition for familial pancreatic cancer. JCI Insight 2021; 6:141532. [PMID: 33764904 PMCID: PMC8119201 DOI: 10.1172/jci.insight.141532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDPancreatic cancer is one of the deadliest cancers, with low long-term survival rates. Despite recent advances in treatment, it is important to identify and screen high-risk individuals for cancer prevention. Familial pancreatic cancer (FPC) accounts for 4%-10% of pancreatic cancers. Several germline mutations are related to an increased risk and might offer screening and therapy options. In this study, we aimed to identity of a susceptibility gene in a family with FPC.METHODSWhole exome sequencing and PCR confirmation was performed on the surgical specimen and peripheral blood of an index patient and her sister in a family with high incidence of pancreatic cancer, to identify somatic and germline mutations associated with familial pancreatic cancer. Compartment-specific gene expression data and immunohistochemistry were also queried.RESULTSThe identical germline mutation of the PALLD gene (NM_001166108.1:c.G154A:p.D52N) was detected in the index patient with pancreatic cancer and the tumor tissue of her sister. Whole genome sequencing showed similar somatic mutation patterns between the 2 sisters. Apart from the PALLD mutation, commonly mutated genes that characterize pancreatic ductal adenocarcinoma were found in both tumor samples. However, the 2 patients harbored different somatic KRAS mutations (G12D and G12V). Healthy siblings did not have the PALLD mutation, indicating a disease-specific impact. Compartment-specific gene expression data and IHC showed expression in cancer-associated fibroblasts (CAFs).CONCLUSIONWe identified a germline mutation of the palladin (PALLD) gene in 2 siblings in Europe, affected by familial pancreatic cancer, with a significant overexpression in CAFs, suggesting that stromal palladin could play a role in the development, maintenance, and/or progression of pancreatic cancer.FUNDINGDFG SFB 1321.
Collapse
Affiliation(s)
- Lucia Liotta
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - H. Carlo Maurer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kenneth P. Olive
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Rickmer Braren
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nicole Pfarr
- Institut für Pathologie und pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Sebastian Burger
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Muckenhuber
- Institut für Pathologie und pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Moritz Jesinghaus
- Institut für Pathologie und pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institut für Pathologie und pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Wilko Weichert
- Institut für Pathologie und pathologische Anatomie, Technische Universität München, Munich, Germany
- Deutschen Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Chirurgische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hana Algül
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp J. Jost
- Deutschen Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Technische Universität München, Munich, Germany
- Innere Medizin III, Hämatologie und Onkologie, Technische Universität München, Munich, Germany
| | - Juliane Ramser
- Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Fischer
- Institut für Humangenetik, Ruprecht-Karls Universität, Heidelberg, Germany
| | - Anne S. Quante
- Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Deutschen Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Technische Universität München, Munich, Germany
| | - Michael Quante
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Deutschen Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Technische Universität München, Munich, Germany
- Klinik für Innere Medizin II, Universität Freiburg, Germany
| |
Collapse
|
105
|
Kawalerski RR, Leach SD, Escobar-Hoyos LF. Pancreatic cancer driver mutations are targetable through distant alternative RNA splicing dependencies. Oncotarget 2021; 12:525-533. [PMID: 33796221 PMCID: PMC7984828 DOI: 10.18632/oncotarget.27901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, has one of the highest case fatality rates of all known solid malignancies. Over the past decade, several landmark studies have established mutations in KRAS and TP53 as the predominant drivers of PDAC pathogenesis and therapeutic resistance, though treatment options for PDACs and other tumors with these mutations remain extremely limited. Hampered by late tumor discovery and diagnosis, clinicians are often faced with using aggressive and non-specific chemotherapies to treat advanced disease. Clinically meaningful responses to targeted therapy are often limited to the minority of patients with susceptible PDACs, and immunotherapies have routinely encountered roadblocks in effective activation of tumor-infiltrating immune cells. Alternative RNA splicing (ARS) has recently gained traction in the PDAC literature as a field from which we may better understand and treat complex mechanisms of PDAC initiation, progression, and therapeutic resistance. Here, we review PDAC pathogenesis as it relates to fundamental ARS biology, with an extension to implications for PDAC patient clinical management.
Collapse
Affiliation(s)
- Ryan R. Kawalerski
- Medical Scientist Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven D. Leach
- Departments of Molecular and Systems Biology, Surgery, and Medicine, Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Luisa F. Escobar-Hoyos
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06513, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06513, USA
- Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
106
|
Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, Hutter B, Toprak UH, Neumann O, Stenzinger A, Scholl C, Fröhling S, Brors B. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Res 2021; 31:448-460. [PMID: 33441414 PMCID: PMC7919457 DOI: 10.1101/gr.257246.119] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
The identification of gene fusions from RNA sequencing data is a routine task in cancer research and precision oncology. However, despite the availability of many computational tools, fusion detection remains challenging. Existing methods suffer from poor prediction accuracy and are computationally demanding. We developed Arriba, a novel fusion detection algorithm with high sensitivity and short runtime. When applied to a large collection of published pancreatic cancer samples (n = 803), Arriba identified a variety of driver fusions, many of which affected druggable proteins, including ALK, BRAF, FGFR2, NRG1, NTRK1, NTRK3, RET, and ROS1. The fusions were significantly associated with KRAS wild-type tumors and involved proteins stimulating the MAPK signaling pathway, suggesting that they substitute for activating mutations in KRAS In addition, we confirmed the transforming potential of two novel fusions, RRBP1-RAF1 and RASGRP1-ATP1A1, in cellular assays. These results show Arriba's utility in both basic cancer research and clinical translation.
Collapse
Affiliation(s)
- Sebastian Uhrig
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
- Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Julia Ellermann
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany
| | - Tatjana Walther
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany
| | - Pauline Burkhardt
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Martina Fröhlich
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
- Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
- Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Umut H Toprak
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Division of Neuroblastoma Genomics, DKFZ, 69120 Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Lung Research (DZL), Heidelberg site, 69120 Heidelberg, Germany
| | - Claudia Scholl
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Division of Applied Functional Genomics, DKFZ and NCT Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany
- NCT Molecular Diagnostics Program, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- NCT Molecular Diagnostics Program, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
107
|
Flowers BM, Xu H, Mulligan AS, Hanson KJ, Seoane JA, Vogel H, Curtis C, Wood LD, Attardi LD. Cell of Origin Influences Pancreatic Cancer Subtype. Cancer Discov 2021; 11:660-677. [PMID: 34009137 PMCID: PMC8134763 DOI: 10.1158/2159-8290.cd-20-0633] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of approximately 9%. An improved understanding of PDAC initiation and progression is paramount for discovering strategies to better detect and combat this disease. Although transcriptomic analyses have uncovered distinct molecular subtypes of human PDAC, the factors that influence subtype development remain unclear. Here, we interrogate the impact of cell of origin and different Trp53 alleles on tumor evolution, using a panel of tractable genetically engineered mouse models. Oncogenic KRAS expression, coupled with Trp53 deletion or point mutation, drives PDAC from both acinar and ductal cells. Gene-expression analysis reveals further that ductal cell-derived and acinar cell-derived tumor signatures are enriched in basal-like and classical subtypes of human PDAC, respectively. These findings highlight cell of origin as one factor that influences PDAC molecular subtypes and provide insight into the fundamental impact that the very earliest events in carcinogenesis can have on cancer evolution. SIGNIFICANCE: Although human PDAC has been classified into different molecular subtypes, the etiology of these distinct subtypes remains unclear. Using mouse genetics, we reveal that cell of origin is an important determinant of PDAC molecular subtype. Deciphering the biology underlying pancreatic cancer subtypes may reveal meaningful distinctions that could improve clinical intervention.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Brittany M Flowers
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California
| | - Hang Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Abigail S Mulligan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California
| | - Kathryn J Hanson
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jose A Seoane
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
108
|
Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers (Basel) 2021; 13:cancers13040895. [PMID: 33672734 PMCID: PMC7924365 DOI: 10.3390/cancers13040895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer has a poor prognosis, which is largely due to resistance to treatment. Tumor heterogeneity is a known cause for treatment failure and has been studied at the molecular level. Morphological heterogeneity is common but has not been investigated, despite the fact that pathology examination is an integral part of clinical diagnostics. This study assessed whether morphological heterogeneity reflects structural and functional diversity in key cancer biological processes. Using archival tissues from resected pancreatic cancer, we selected four common and distinct morphological phenotypes and demonstrated that these differed significantly for a panel of 26 structural and functional features of the cancer-cell and stromal compartments. The strong link between these features and morphological phenotypes allowed prediction of the latter based on the results for the panel of features. The findings of this study indicate that morphological heterogeneity reflects biological diversity and that its assessment may potentially provide clinically relevant information. Abstract Inter- and intratumor heterogeneity is an important cause of treatment failure. In human pancreatic cancer (PC), heterogeneity has been investigated almost exclusively at the genomic and transcriptional level. Morphological heterogeneity, though prominent and potentially easily assessable in clinical practice, remains unexplored. This proof-of-concept study aims at demonstrating that morphological heterogeneity reflects structural and functional divergence. From the wide morphological spectrum of conventional PC, four common and distinctive patterns were investigated in 233 foci from 39 surgical specimens. Twenty-six features involved in key biological processes in PC were analyzed (immuno-)histochemically and morphometrically: cancer cell proliferation (Ki67) and migration (collagen fiber alignment, MMP14), cancer stem cells (CD44, CD133, ALDH1), amount, composition and spatial arrangement of extracellular matrix (epithelial proximity, total collagen, collagen I and III, fibronectin, hyaluronan), cancer-associated fibroblasts (density, αSMA), and cancer-stroma interactions (integrins α2, α5, α1; caveolin-1). All features differed significantly between at least two of the patterns. Stromal and cancer-cell-related features co-varied with morphology and allowed prediction of the morphological pattern. In conclusion, morphological heterogeneity in the cancer-cell and stromal compartments of PC correlates with structural and functional diversity. As such, histopathology has the potential to inform on the operationality of key biological processes in individual tumors.
Collapse
|
109
|
Birnbaum DJ, Begg SKS, Finetti P, Vanderburg C, Kulkarni AS, Neyaz A, Hank T, Tai E, Deshpande V, Bertucci F, Birnbaum D, Lillemoe KD, Warshaw AL, Mino-Kenudson M, Fernandez-Del Castillo C, Ting DT, Liss AS. Transcriptomic Analysis of Laser Capture Microdissected Tumors Reveals Cancer- and Stromal-Specific Molecular Subtypes of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2021; 27:2314-2325. [PMID: 33547202 DOI: 10.1158/1078-0432.ccr-20-1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/22/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) lethality is multifactorial; although studies have identified transcriptional and genetic subsets of tumors with different prognostic significance, there is limited understanding of features associated with the minority of patients who have durable remission after surgical resection. In this study, we performed laser capture microdissection (LCM) of PDAC samples to define their cancer- and stroma-specific molecular subtypes and identify a prognostic gene expression signature for short-term and long-term survival. EXPERIMENTAL DESIGN LCM and RNA sequencing (RNA-seq) analysis of cancer and adjacent stroma of 19 treatment-naïve PDAC tumors was performed. Gene expression signatures were tested for their robustness in a large independent validation set. An RNA-ISH assay with pooled probes for genes associated with disease-free survival (DFS) was developed to probe 111 PDAC tumor samples. RESULTS Gene expression profiling identified four subtypes of cancer cells (C1-C4) and three subtypes of cancer-adjacent stroma (S1-S3). These stroma-specific subtypes were associated with DFS (P = 5.55E-07), with S1 associated with better prognoses when paired with C1 and C2. Thirteen genes were found to be predominantly expressed in cancer cells and corresponded with DFS in a validation using existing RNA-seq datasets. A second validation on an independent cohort of patients using RNA-ISH probes to six of these prognostic genes demonstrated significant association with overall survival (median 17 vs. 25 months; P < 0.02). CONCLUSIONS Our results identified specific signatures from the epithelial and the stroma components of PDAC, which add clarity to the nature of PDAC molecular subtypes and may help predict survival.
Collapse
Affiliation(s)
- David J Birnbaum
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Digestive Surgery, Aix-Marseille University, Marseille, France.,Department of Predictive Oncology, Cancer Research Center of Marseille, U1068 Inserm, UMR 7258 CNRS, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France
| | - Sebastian K S Begg
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pascal Finetti
- Department of Predictive Oncology, Cancer Research Center of Marseille, U1068 Inserm, UMR 7258 CNRS, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France
| | - Charles Vanderburg
- Harvard NeuroDiscovery Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Anupriya S Kulkarni
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Azfar Neyaz
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Thomas Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric Tai
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - François Bertucci
- Department of Predictive Oncology, Cancer Research Center of Marseille, U1068 Inserm, UMR 7258 CNRS, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Department of Predictive Oncology, Cancer Research Center of Marseille, U1068 Inserm, UMR 7258 CNRS, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - David T Ting
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
110
|
Naso JR, Topham JT, Karasinska JM, Lee MK, Kalloger SE, Wong H, Nelson J, Moore RA, Mungall AJ, Jones SJ, Laskin J, Marra MA, Renouf DJ, Schaeffer DF. Tumor infiltrating neutrophils and gland formation predict overall survival and molecular subgroups in pancreatic ductal adenocarcinoma. Cancer Med 2021; 10:1155-1165. [PMID: 33372414 PMCID: PMC7897949 DOI: 10.1002/cam4.3695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND RNA-sequencing-based classifiers can stratify pancreatic ductal adenocarcinoma (PDAC) into prognostically significant subgroups but are not practical for use in clinical workflows. Here, we assess whether histomorphological features may be used as surrogate markers for predicting molecular subgroup and overall survival in PDAC. METHODS Ninety-six tissue samples from 50 patients with non-resectable PDAC were scored for gland formation, stromal maturity, mucin, necrosis, and neutrophil infiltration. Prognostic PDAC gene expression classifiers were run on all tumors using whole transcriptome sequencing data from the POG trial (NCT02155621). Findings were validated using digital TCGA slides (n = 50). Survival analysis used multivariate Cox proportional-hazards tests and log-rank tests. RESULTS The combination of low gland formation and low neutrophil infiltration was significantly associated with the poor prognosis PDAC molecular subgroup (basal-like or squamous) and was an independent predictor of shorter overall survival, in both frozen section (n = 47) and formalin-fixed paraffin-embedded (n = 49) tissue samples from POG patients, and in the TCGA samples. This finding held true in the subgroup analysis of primary (n = 17) and metastatic samples (n = 79). The combination of high gland formation and high neutrophils had low sensitivity but high specificity for favorable prognosis subgroups. CONCLUSIONS The assessment of gland formation and neutrophil infiltration on routine histological sections can aid in prognostication and allow inferences to be made about molecular subtype, which may help guide patient management decisions and contribute to our understanding of heterogeneity in treatment response.
Collapse
Affiliation(s)
- Julia R. Naso
- Division of Anatomic PathologyVancouver General HospitalVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | | | | | | | - Steve E. Kalloger
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Pancreas Centre BCVancouverBCCanada
| | - Hui‐li Wong
- Division of Medical OncologyBC CancerVancouverBCCanada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences CentreVancouverBCCanada
| | | | | | | | - Janessa Laskin
- Division of Medical OncologyBC CancerVancouverBCCanada
- Canada's Michael Smith Genome Sciences CentreVancouverBCCanada
| | - Marco A. Marra
- Canada's Michael Smith Genome Sciences CentreVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Daniel J. Renouf
- Pancreas Centre BCVancouverBCCanada
- Division of Medical OncologyBC CancerVancouverBCCanada
| | - David F. Schaeffer
- Division of Anatomic PathologyVancouver General HospitalVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Pancreas Centre BCVancouverBCCanada
| |
Collapse
|
111
|
Samain R, Brunel A, Douché T, Fanjul M, Cassant-Sourdy S, Rochotte J, Cros J, Neuzillet C, Raffenne J, Duluc C, Perraud A, Nigri J, Gigoux V, Bieche I, Ponzo M, Carpentier G, Cascone I, Tomasini R, Schmid HA, Mathonnet M, Nicolle R, Bousquet MP, Martineau Y, Pyronnet S, Jean C, Bousquet C. Pharmacologic Normalization of Pancreatic Cancer-Associated Fibroblast Secretome Impairs Prometastatic Cross-Talk With Macrophages. Cell Mol Gastroenterol Hepatol 2021; 11:1405-1436. [PMID: 33482394 PMCID: PMC8024982 DOI: 10.1016/j.jcmgh.2021.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.
Collapse
Affiliation(s)
- Rémi Samain
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Alexia Brunel
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Thibault Douché
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Marjorie Fanjul
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Stéphanie Cassant-Sourdy
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Julia Rochotte
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital–Paris Diderot University, Clichy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University, Saint Cloud, France
| | - Jérôme Raffenne
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Camille Duluc
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Aurélie Perraud
- Equipe d'Accueil EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, Limoges, France
| | - Jérémy Nigri
- INSERM U1068/UMR 7258 CNRS, Cancer Research Center of Marseille, Marseille, France
| | - Véronique Gigoux
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris Descartes University, Paris, France
| | - Matteo Ponzo
- Growth, Reparation and Tissue Regeneration Laboratory, Equipe de Recherche Labellisée ERL-CNRS 9215, University of Paris-Est, Créteil, France
| | - Gilles Carpentier
- Growth, Reparation and Tissue Regeneration Laboratory, Equipe de Recherche Labellisée ERL-CNRS 9215, University of Paris-Est, Créteil, France
| | - Ilaria Cascone
- Growth, Reparation and Tissue Regeneration Laboratory, Equipe de Recherche Labellisée ERL-CNRS 9215, University of Paris-Est, Créteil, France
| | - Richard Tomasini
- INSERM U1068/UMR 7258 CNRS, Cancer Research Center of Marseille, Marseille, France
| | | | - Muriel Mathonnet
- Equipe d'Accueil EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, Limoges, France
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Marie-Pierre Bousquet
- Institute for Pharmacology and Structural Biology, University of Toulouse, Toulouse, France
| | - Yvan Martineau
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Stéphane Pyronnet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Christine Jean
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France,Correspondence Address correspondence to: Corinne Bousquet, VMD, PhD, INSERM U1037, Cancer Research Center of Toulouse, 2 Avenue Hubert Curien, CS53717, 31037 Toulouse Cedex 1, France. fax: (33) (0) 56131-9752.
| |
Collapse
|
112
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 698] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
113
|
Dreyer SB, Upstill-Goddard R, Paulus-Hock V, Paris C, Lampraki EM, Dray E, Serrels B, Caligiuri G, Rebus S, Plenker D, Galluzzo Z, Brunton H, Cunningham R, Tesson M, Nourse C, Bailey UM, Jones M, Moran-Jones K, Wright DW, Duthie F, Oien K, Evers L, McKay CJ, McGregor GA, Gulati A, Brough R, Bajrami I, Pettitt S, Dziubinski ML, Candido J, Balkwill F, Barry ST, Grützmann R, Rahib L, Johns A, Pajic M, Froeling FEM, Beer P, Musgrove EA, Petersen GM, Ashworth A, Frame MC, Crawford HC, Simeone DM, Lord C, Mukhopadhyay D, Pilarsky C, Tuveson DA, Cooke SL, Jamieson NB, Morton JP, Sansom OJ, Bailey PJ, Biankin AV, Chang DK. Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology 2021; 160:362-377.e13. [PMID: 33039466 PMCID: PMC8167930 DOI: 10.1053/j.gastro.2020.09.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Rosie Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Clara Paris
- Department of Pharmacological Faculty, Université Grenoble Alpes, Saint-Martin-d'Heres, France
| | - Eirini-Maria Lampraki
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Giuseppina Caligiuri
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Zachary Galluzzo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Holly Brunton
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Richard Cunningham
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mathias Tesson
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Ulla-Maja Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Marc Jones
- Stratified Medicine Scotland, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Kim Moran-Jones
- College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Derek W Wright
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Fraser Duthie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Karin Oien
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom; Greater Glasgow and Clyde Bio-repository, Pathology Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Lisa Evers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Colin J McKay
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | | | - Aditi Gulati
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rachel Brough
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ilirjana Bajrami
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephan Pettitt
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Michele L Dziubinski
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Juliana Candido
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Frances Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lola Rahib
- Pancreatic Cancer Action Network, Manhattan Beach, California
| | - Amber Johns
- The Kinghorn Cancer Centre, Darlinghurst and Garvan Institute of Medical Research, Sydney, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Darlinghurst and Garvan Institute of Medical Research, Sydney, Australia
| | - Fieke E M Froeling
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Phillip Beer
- Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Elizabeth A Musgrove
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Alan Ashworth
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom; University of California-San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Margaret C Frame
- Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Diane M Simeone
- Pancreatic Cancer Center, Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Chris Lord
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Jennifer P Morton
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Owen J Sansom
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Peter J Bailey
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia.
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia.
| |
Collapse
|
114
|
Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification. J Clin Med 2020; 9:jcm9124128. [PMID: 33371431 PMCID: PMC7767410 DOI: 10.3390/jcm9124128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic signatures, with partially overlapping subgroups, have been established. Besides molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival. This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient stratification considering tumour functional behaviour independently of their mutational background.
Collapse
|
115
|
Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D, Peng X, Ying P, Zhang M, Niu S, Li Y, Zhong R, Chang J, Miao X. N 6-methyladenosine mRNA methylation of PIK3CB regulates AKT signalling to promote PTEN-deficient pancreatic cancer progression. Gut 2020; 69:2180-2192. [PMID: 32312789 DOI: 10.1136/gutjnl-2019-320179] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Thus far, most drugs have failed to significantly improve patient survival. N6-methyladenosine (m6A) plays an important role in the progression of PDAC, but its aberrant regulation driven by germline variants in human diseases remains unclear. DESIGN We first performed an exome-wide association analysis in 518 PDAC patients with overall survival and replicated in an independent population containing 552 PDAC patients. Then, a series of biochemical experiments in vitro and in vivo were conducted to investigate potential mechanisms of the candidate variant and its target gene PIK3CB underlying the PDAC progression. Moreover, the PIK3CB-selective inhibitor KIN-193 was used to block PDAC tumour growth. RESULTS We identified a missense variant rs142933486 in PIK3CB that is significantly associated with the overall survival of PDAC by reducing the PIK3CB m6A level, which facilitated its mRNA and protein expression levels mediated by the m6A 'writer' complex (METTL13/METTL14/WTAP) and the m6A 'reader' YTHDF2. The upregulation of PIK3CB is widely found in PDAC tumour tissues and significantly correlated with the poor prognosis of PDAC, especially in PTEN-deficient patients. We further demonstrated that PIK3CB overexpression substantially enhanced the proliferation and migration abilities of PTEN-deficient PDAC cells and activated AKT signalling pathway. Remarkably, KIN-193, a PIK3CB-selective inhibitor, is shown to serve as an effective anticancer agent for blocking PTEN-deficient PDAC. CONCLUSIONS These findings demonstrate aberrant m6A homoeostasis as an oncogenic mechanism in PDAC and highlight the potential of PIK3CB as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Jianbo Tian
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Meilin Rao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China, Huazhong University of Science and Technology Tongji Medical College, Wuhan, China
| |
Collapse
|
116
|
DelGiorno KE, Chung CY, Vavinskaya V, Maurer HC, Novak SW, Lytle NK, Ma Z, Giraddi RR, Wang D, Fang L, Naeem RF, Andrade LR, Ali WH, Tseng H, Tsui C, Gubbala VB, Ridinger-Saison M, Ohmoto M, Erikson GA, O'Connor C, Shokhirev MN, Hah N, Urade Y, Matsumoto I, Kaech SM, Singh PK, Manor U, Olive KP, Wahl GM. Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D 2. Gastroenterology 2020; 159:1866-1881.e8. [PMID: 32717220 PMCID: PMC7680354 DOI: 10.1053/j.gastro.2020.07.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.
Collapse
Affiliation(s)
- Kathleen E DelGiorno
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Vera Vavinskaya
- Department of Pathology, University of California San Diego, San Diego, California
| | - H Carlo Maurer
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Insitute for Biological Studies, La Jolla, California
| | - Nikki K Lytle
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Rajshekhar R Giraddi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Dezhen Wang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Linjing Fang
- Waitt Advanced Biophotonics Center, Salk Insitute for Biological Studies, La Jolla, California
| | - Razia F Naeem
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Insitute for Biological Studies, La Jolla, California
| | - Wahida H Ali
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Hubert Tseng
- Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, Califonia
| | - Crystal Tsui
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Vikas B Gubbala
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Maya Ridinger-Saison
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - Galina A Erikson
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California
| | - Carolyn O'Connor
- Flow Cytometry Core, Salk Insitute for Biological Studies, La Jolla, California
| | - Maxim Nikolaievich Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California
| | - Nasun Hah
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, California
| | | | | | - Susan M Kaech
- Immunobiology and Microbial Pathogenesis Laboratory, Salk Institute for Biological Studies, La Jolla, Califonia
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Insitute for Biological Studies, La Jolla, California
| | - Kenneth P Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| |
Collapse
|
117
|
Espinet E, Gu Z, Imbusch CD, Giese NA, Büscher M, Safavi M, Weisenburger S, Klein C, Vogel V, Falcone M, Insua-Rodríguez J, Reitberger M, Thiel V, Kossi SO, Muckenhuber A, Sarai K, Lee AYL, Backx E, Zarei S, Gaida MM, Rodríguez-Paredes M, Donato E, Yen HY, Eils R, Schlesner M, Pfarr N, Hackert T, Plass C, Brors B, Steiger K, Weichenhan D, Arda HE, Rooman I, Kopp JL, Strobel O, Weichert W, Sprick MR, Trumpp A. Aggressive PDACs Show Hypomethylation of Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. Cancer Discov 2020; 11:638-659. [PMID: 33060108 DOI: 10.1158/2159-8290.cd-20-1202] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Elisa Espinet
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany.,Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Büscher
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mariam Safavi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Weisenburger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Corinna Klein
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Vanessa Vogel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Mattia Falcone
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Manuel Reitberger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Thiel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Steffi O Kossi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | | | - Karnjit Sarai
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Y L Lee
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elyne Backx
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Soheila Zarei
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias M Gaida
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medical Center JGU Mainz, Mainz, Germany
| | | | - Elisa Donato
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hsi-Yu Yen
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Roland Eils
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany.,Digital Health Centre, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, University Hospital and University of Heidelberg, Heidelberg, Germany
| | | | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Thilo Hackert
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Benedikt Brors
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Dieter Weichenhan
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center of Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilse Rooman
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oliver Strobel
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,National Center of Tumor Diseases, NCT, Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Martin R Sprick
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
118
|
Miyabayashi K, Baker LA, Deschênes A, Traub B, Caligiuri G, Plenker D, Alagesan B, Belleau P, Li S, Kendall J, Jang GH, Kawaguchi RK, Somerville TDD, Tiriac H, Hwang CI, Burkhart RA, Roberts NJ, Wood LD, Hruban RH, Gillis J, Krasnitz A, Vakoc CR, Wigler M, Notta F, Gallinger S, Park Y, Tuveson DA. Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discov 2020; 10:1566-1589. [PMID: 32703770 PMCID: PMC7664990 DOI: 10.1158/2159-8290.cd-20-0133] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Koji Miyabayashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benno Traub
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Microbiology and Molecular Genetics, University of California, Davis, California
| | - Richard A Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas J Roberts
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura D Wood
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
119
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
120
|
Cannon A, Thompson CM, Maurer HC, Atri P, Bhatia R, West S, Ghersi D, Olive KP, Kumar S, Batra SK. CXCR3 and Cognate Ligands are Associated with Immune Cell Alteration and Aggressiveness of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020; 26:6051-6063. [PMID: 32873571 DOI: 10.1158/1078-0432.ccr-20-1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/19/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The cytokine milieu in pancreatic ductal adenocarcinoma (PDAC) promotes tumor progression and immune suppression, contributing to the dismal prognosis of patients with PDAC. The roles of many of these cytokines, however, have not been thoroughly investigated in PDAC. EXPERIMENTAL DESIGN PDAC microarray and The Cancer Genome Atlas datasets were analyzed to identify cytokines and cognate receptors overexpressed in PDAC and associated with survival. Pathway and CIBERSORT analyses were used to elucidate potential mechanisms of altered patient survival. Comparative analysis of cytokine expression in KPC (K-rasG12D; TP53R172H; Pdx-1cre) and KC (K-rasG12D; Pdx-1cre) PDAC models and multicolor immunofluorescence (IF) staining of human PDAC-resected samples were used to validate these findings. RESULTS CXCL9 and CXCL10 were among the most highly overexpressed cytokines by bioinformatics analyses, while their receptor, CXCR3, was significantly overexpressed by IHC analysis. Higher CXCR3 ligand expression was associated with shorter overall survival, while high CXCR3 expression was associated with better survival. The CXCR3 ligands, CXCL4, 9, and 10, were overexpressed in KPC compared with KC mice. Pathway analysis of CXCR3- and CXCR3 ligand-associated genes showed that CXCR3 is a marker of antitumor immunity, while its ligands may promote immunosuppression. CIBERSORT and IF studies of PDAC tissues demonstrated that high CXCR3 expression was associated with increased CD8+ T-cell and naïve B-cell signatures and loss of plasma cell signatures. CXCR3 ligand expression was associated with increased CD8+ T-cell signatures and loss of natural killer-cell signatures. CONCLUSIONS CXCR3 ligands are overexpressed in PDAC and are associated with poor survival likely related to alterations in tumor immune infiltrate/activity.
Collapse
Affiliation(s)
- Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher M Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - H Carlo Maurer
- Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Medical Center, New York, New York.,Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sean West
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Dario Ghersi
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Kenneth P Olive
- Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Medical Center, New York, New York
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. .,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
121
|
Le Large TY, Mantini G, Meijer LL, Pham TV, Funel N, van Grieken NC, Kok B, Knol J, van Laarhoven HW, Piersma SR, Jimenez CR, Kazemier G, Giovannetti E, Bijlsma MF. Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets. JCI Insight 2020; 5:e138290. [PMID: 32634123 PMCID: PMC7455080 DOI: 10.1172/jci.insight.138290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a relative paucity of cancer cells that are surrounded by an abundance of nontumor cells and extracellular matrix, known as stroma. The interaction between stroma and cancer cells contributes to poor outcome, but how proteins from these individual compartments drive aggressive tumor behavior is not known. Here, we report the proteomic analysis of laser-capture microdissected (LCM) PDAC samples. We isolated stroma, tumor, and bulk samples from a cohort with long- and short-term survivors. Compartment-specific proteins were measured by mass spectrometry, yielding what we believe to be the largest PDAC proteome landscape to date. These analyses revealed that, in bulk analysis, tumor-derived proteins were typically masked and that LCM was required to reveal biology and prognostic markers. We validated tumor CALB2 and stromal COL11A1 expression as compartment-specific prognostic markers. We identified and functionally addressed the contributions of the tumor cell receptor EPHA2 to tumor cell viability and motility, underscoring the value of compartment-specific protein analysis in PDAC.
Collapse
Affiliation(s)
- Tessa Y.S. Le Large
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Laura L. Meijer
- Department of Surgery and
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | | | - Jaco Knol
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- OncoProteomics Laboratory, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Free University Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
122
|
Zhu Z, Achreja A, Meurs N, Animasahun O, Owen S, Mittal A, Parikh P, Lo TW, Franco-Barraza J, Shi J, Gunchick V, Sherman MH, Cukierman E, Pickering AM, Maitra A, Sahai V, Morgan MA, Nagrath S, Lawrence TS, Nagrath D. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat Metab 2020; 2:775-792. [PMID: 32694827 PMCID: PMC7438275 DOI: 10.1038/s42255-020-0226-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Branched-chain amino acids (BCAAs) supply both carbon and nitrogen in pancreatic cancers, and increased levels of BCAAs have been associated with increased risk of pancreatic ductal adenocarcinomas (PDACs). It remains unclear, however, how stromal cells regulate BCAA metabolism in PDAC cells and how mutualistic determinants control BCAA metabolism in the tumour milieu. Here, we show distinct catabolic, oxidative and protein turnover fluxes between cancer-associated fibroblasts (CAFs) and cancer cells, and a marked reliance on branched-chain α-ketoacid (BCKA) in PDAC cells in stroma-rich tumours. We report that cancer-induced stromal reprogramming fuels this BCKA demand. The TGF-β-SMAD5 axis directly targets BCAT1 in CAFs and dictates internalization of the extracellular matrix from the tumour microenvironment to supply amino-acid precursors for BCKA secretion by CAFs. The in vitro results were corroborated with circulating tumour cells (CTCs) and PDAC tissue slices derived from people with PDAC. Our findings reveal therapeutically actionable targets in pancreatic stromal and cancer cells.
Collapse
Affiliation(s)
- Ziwen Zhu
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Owen
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Parikh
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ting-Wen Lo
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Edna Cukierman
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Meredith A Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sunitha Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
123
|
Meng Z, Yuan Q, Zhao J, Wang B, Li S, Offringa R, Jin X, Wu H. The m 6A-Related mRNA Signature Predicts the Prognosis of Pancreatic Cancer Patients. Mol Ther Oncolytics 2020; 17:460-470. [PMID: 32490170 PMCID: PMC7256444 DOI: 10.1016/j.omto.2020.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) has an important epitranscriptomic modification that controls cancer self-renewal and cell fate. The addition of m6A to mRNA is a reversible modification. The deposition of m6A is encoded by a methyltransferase complex involving three homologous factors, jargonized as "writers," "erasers," and "readers." However, their roles in pancreatic adenocarcinoma (PAAD) are underexploited. With the use of The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we provided an mRNA signature that may improve the prognostic prediction of PAAD patients based on the genetic status of m6A regulators. PAAD patients with genetic alteration of m6A regulators had worse disease-free and overall survival. After comparing PAAD groups with/without genetic alteration of m6A regulators, we identified 196 differentially expressed genes (DEGs). Then, we generated a 16-mRNA signature score system through least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Multivariate cox regression analysis demonstrated that a high-risk score significantly correlates with poor prognosis. Moreover, time-dependent receiver operating characteristic (ROC) curves revealed it was effective in predicting the overall survival in both training and validation sets. PAH, ZPLD1, PPFIA3, and TNNT1 from our signature also exhibited an independent prognostic value. Collectively, these findings can improve the understanding of m6A modifications in PAAD and potentially guide therapies in PAAD patients.
Collapse
Affiliation(s)
- Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingchen Yuan
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shoukang Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
124
|
Bortolomeazzi M, Keddar MR, Ciccarelli FD, Benedetti L. Identification of non-cancer cells from cancer transcriptomic data. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194445. [PMID: 31654804 PMCID: PMC7346884 DOI: 10.1016/j.bbagrm.2019.194445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Interactions between cancer cells and non-cancer cells composing the tumour microenvironment play a primary role in determining cancer progression and shaping the response to therapy. The qualitative and quantitative characterisation of the different cell populations in the tumour microenvironment is therefore crucial to understand its role in cancer. In recent years, many experimental and computational approaches have been developed to identify the cell populations composing heterogeneous tissue samples, such as cancer. In this review, we describe the state-of-the-art approaches for the quantification of non-cancer cells from bulk and single-cell cancer transcriptomic data, with a focus on immune cells. We illustrate the main features of these approaches and highlight their applications for the analysis of the tumour microenvironment in solid cancers. We also discuss techniques that are complementary and alternative to RNA sequencing, particularly focusing on approaches that can provide spatial information on the distribution of the cells within the tumour in addition to their qualitative and quantitative measurements. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Michele Bortolomeazzi
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK
| | - Mohamed Reda Keddar
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK.
| | - Lorena Benedetti
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE11UL, UK.
| |
Collapse
|
125
|
Deng Y, Zhou T, Wu JL, Chen Y, Shen CY, Zeng M, Chen T, Zhang XM. The impact of molecular classification based on the transcriptome of pancreatic cancer: from bench to bedside. CHINESE JOURNAL OF ACADEMIC RADIOLOGY 2020; 3:67-75. [DOI: 10.1007/s42058-020-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 07/25/2024]
|
126
|
ZBED2 is an antagonist of interferon regulatory factor 1 and modifies cell identity in pancreatic cancer. Proc Natl Acad Sci U S A 2020; 117:11471-11482. [PMID: 32385160 DOI: 10.1073/pnas.1921484117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lineage plasticity is a prominent feature of pancreatic ductal adenocarcinoma (PDA) cells, which can occur via deregulation of lineage-specifying transcription factors. Here, we show that the zinc finger protein ZBED2 is aberrantly expressed in PDA and alters tumor cell identity in this disease. Unexpectedly, our epigenomic experiments reveal that ZBED2 is a sequence-specific transcriptional repressor of IFN-stimulated genes, which occurs through antagonism of IFN regulatory factor 1 (IRF1)-mediated transcriptional activation at cooccupied promoter elements. Consequently, ZBED2 attenuates the transcriptional output and growth arrest phenotypes downstream of IFN signaling in multiple PDA cell line models. We also found that ZBED2 is preferentially expressed in the squamous molecular subtype of human PDA, in association with inferior patient survival outcomes. Consistent with this observation, we show that ZBED2 can repress the pancreatic progenitor transcriptional program, enhance motility, and promote invasion in PDA cells. Collectively, our findings suggest that high ZBED2 expression is acquired during PDA progression to suppress the IFN response pathway and to promote lineage plasticity in this disease.
Collapse
|
127
|
Somerville TDD, Biffi G, Daßler-Plenker J, Hur SK, He XY, Vance KE, Miyabayashi K, Xu Y, Maia-Silva D, Klingbeil O, Demerdash OE, Preall JB, Hollingsworth MA, Egeblad M, Tuveson DA, Vakoc CR. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. eLife 2020; 9:e53381. [PMID: 32329713 PMCID: PMC7200154 DOI: 10.7554/elife.53381] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
A highly aggressive subset of pancreatic ductal adenocarcinomas undergo trans-differentiation into the squamous lineage during disease progression. Here, we investigated whether squamous trans-differentiation of human and mouse pancreatic cancer cells can influence the phenotype of non-neoplastic cells in the tumor microenvironment. Conditioned media experiments revealed that squamous pancreatic cancer cells secrete factors that recruit neutrophils and convert pancreatic stellate cells into cancer-associated fibroblasts (CAFs) that express inflammatory cytokines at high levels. We use gain- and loss-of-function approaches to show that squamous-subtype pancreatic tumor models become enriched with neutrophils and inflammatory CAFs in a p63-dependent manner. These effects occur, at least in part, through p63-mediated activation of enhancers at pro-inflammatory cytokine loci, which includes IL1A and CXCL1 as key targets. Taken together, our findings reveal enhanced tissue inflammation as a consequence of squamous trans-differentiation in pancreatic cancer, thus highlighting an instructive role of tumor cell lineage in reprogramming the stromal microenvironment.
Collapse
Affiliation(s)
| | - Giulia Biffi
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborUnited States
- Cancer Research United Kingdom Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| | | | - Stella K Hur
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Xue-Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Krysten E Vance
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Koji Miyabayashi
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborUnited States
| | - Yali Xu
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Diogo Maia-Silva
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Watson School of Biological SciencesCold Spring HarborUnited States
| | - Olaf Klingbeil
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | | | | | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - David A Tuveson
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Lustgarten Foundation Pancreatic Cancer Research LaboratoryCold Spring HarborUnited States
| | | |
Collapse
|
128
|
Sriram K, Salmerón C, Wiley SZ, Insel PA. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol 2020; 177:2434-2455. [PMID: 32060895 DOI: 10.1111/bph.15028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has one of the highest mortality rates (5-year survival ~9%) among cancers. Pancreatic adenocarcinoma (PAAD) is the most common (>80%) and the most lethal type of pancreatic cancer. A need exists for new approaches to treat pancreatic adenocarcinoma. GPCRs, the largest family of cell-surface receptors and drug targets, account for ~35% of approved drugs. Recent studies have revealed roles for GPCRs in PAAD cells and cells in the tumour micro-environment. This review assesses current information regarding GPCRs in PAAD by summarizing omics data for GPCRs expression in PAAD. The PAAD "GPCRome" includes GPCRs with approved agents, thereby offering potential for their repurposing/repositioning. We then reviewed the evidence for functional roles of specific GPCRs in PAAD. We also highlight gaps in understanding the contribution of GPCRs to PAAD biology and identify several GPCRs that may be novel therapeutic targets for future work in search of GPCR-targeted drugs to treat PAAD tumours.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Cristina Salmerón
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shu Z Wiley
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, California.,Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
129
|
de Oliveira G, Paccielli Freire P, Santiloni Cury S, de Moraes D, Santos Oliveira J, Dal-Pai-Silva M, do Reis PP, Francisco Carvalho R. An Integrated Meta-Analysis of Secretome and Proteome Identify Potential Biomarkers of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E716. [PMID: 32197468 PMCID: PMC7140071 DOI: 10.3390/cancers12030716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely aggressive, has an unfavorable prognosis, and there are no biomarkers for early detection of the disease or identification of individuals at high risk for morbidity or mortality. The cellular and molecular complexity of PDAC leads to inconsistences in clinical validations of many proteins that have been evaluated as prognostic biomarkers of the disease. The tumor secretome, a potential source of biomarkers in PDAC, plays a crucial role in cell proliferation and metastasis, as well as in resistance to treatments, which together contribute to a worse clinical outcome. The massive amount of proteomic data from pancreatic cancer that has been generated from previous studies can be integrated and explored to uncover secreted proteins relevant to the diagnosis and prognosis of the disease. The present study aimed to perform an integrated meta-analysis of PDAC proteome and secretome public data to identify potential biomarkers of the disease. Our meta-analysis combined mass spectrometry data obtained from two systematic reviews of the pancreatic cancer literature, which independently selected 20 studies of the secretome and 35 of the proteome. Next, we predicted the secreted proteins using seven in silico tools or databases, which identified 39 secreted proteins shared between the secretome and proteome data. Notably, the expression of 31 genes of these secretome-related proteins was upregulated in PDAC samples from The Cancer Genome Atlas (TCGA) when compared to control samples from TCGA and The Genotype-Tissue Expression (GTEx). The prognostic value of these 39 secreted proteins in predicting survival outcome was confirmed using gene expression data from four PDAC datasets (validation set). The gene expression of these secreted proteins was able to distinguish high- and low-survival patients in nine additional tumor types from TCGA, demonstrating that deregulation of these secreted proteins may also contribute to the prognosis in multiple cancers types. Finally, we compared the prognostic value of the identified secreted proteins in PDAC biomarkers studies from the literature. This analysis revealed that our gene signature performed equally well or better than the signatures from these previous studies. In conclusion, our integrated meta-analysis of PDAC proteome and secretome identified 39 secreted proteins as potential biomarkers, and the tumor gene expression profile of these proteins in patients with PDAC is associated with worse overall survival.
Collapse
Affiliation(s)
- Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Patrícia Pintor do Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil;
- Experimental Research Unity, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-970, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| |
Collapse
|
130
|
Venkat S, Tisdale AA, Schwarz JR, Alahmari AA, Maurer HC, Olive KP, Eng KH, Feigin ME. Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma. Genome Res 2020; 30:347-360. [PMID: 32029502 PMCID: PMC7111527 DOI: 10.1101/gr.257550.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/04/2020] [Indexed: 01/08/2023]
Abstract
Alternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3'-UTR length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expression of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor landscape; however, little is known about tumor type-specific alterations that may uncover novel events and vulnerabilities. Here, we integrate RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA events in 148 pancreatic ductal adenocarcinomas (PDACs). We report widespread, recurrent, and functionally relevant 3'-UTR alterations associated with gene expression changes of known and newly identified PDAC growth-promoting genes and experimentally validate the effects of these APA events on protein expression. We find enrichment for APA events in genes associated with known PDAC pathways, loss of tumor-suppressive miRNA binding sites, and increased heterogeneity in 3'-UTR forms of metabolic genes. Survival analyses reveal a subset of 3'-UTR alterations that independently characterize a poor prognostic cohort among PDAC patients. Finally, we identify and validate the casein kinase CSNK1A1 (also known as CK1alpha or CK1a) as an APA-regulated therapeutic target in PDAC. Knockdown or pharmacological inhibition of CSNK1A1 attenuates PDAC cell proliferation and clonogenic growth. Our single-cancer analysis reveals APA as an underappreciated driver of protumorigenic gene expression in PDAC via the loss of miRNA regulation.
Collapse
Affiliation(s)
- Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Arwen A Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Johann R Schwarz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Abdulrahman A Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - H Carlo Maurer
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, 81675 Munich, Germany
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Department of Medicine, Division of Digestive and Liver Diseases, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Kevin H Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| |
Collapse
|
131
|
Dijk F, Veenstra VL, Soer EC, Dings MPG, Zhao L, Halfwerk JB, Hooijer GK, Damhofer H, Marzano M, Steins A, Waasdorp C, Busch OR, Besselink MG, Tol JA, Welling L, van Rijssen LB, Klompmaker S, Wilmink HW, van Laarhoven HW, Medema JP, Vermeulen L, van Hooff SR, Koster J, Verheij J, van de Vijver MJ, Wang X, Bijlsma MF. Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Sci Rep 2020; 10:337. [PMID: 31941932 PMCID: PMC6962149 DOI: 10.1038/s41598-019-56826-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative (network) analysis showed high interconnectivity with previously identified classification schemes and high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed assessments of tumor growth in subtyped experimental models revealed that a highly invasive growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, by developing a classification system tailored to experimental models, we have uncovered subtype-specific biology that should be further explored to improve treatment of a group of PDAC patients that currently has little therapeutic benefit from surgical treatment.
Collapse
Affiliation(s)
- Frederike Dijk
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Eline C Soer
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mark P G Dings
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Johannes B Halfwerk
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gerrit K Hooijer
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Marco Marzano
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Johanna A Tol
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Lieke Welling
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lennart B van Rijssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sjors Klompmaker
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
132
|
Ayres Pereira M, Chio IIC. Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes (Basel) 2019; 11:E6. [PMID: 31861620 PMCID: PMC7016631 DOI: 10.3390/genes11010006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely aggressive disease with a high metastatic potential. Most patients are diagnosed with metastatic disease, at which the five-year survival rate is only 3%. A better understanding of the mechanisms that drive metastasis is imperative for the development of better therapeutic interventions. Here, we take the reader through our current knowledge of the parameters that support metastatic progression in pancreatic ductal adenocarcinoma, and the experimental models that are at our disposal to study this process. We also describe the advantages and limitations of these models to study the different aspects of metastatic dissemination.
Collapse
Affiliation(s)
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
133
|
Abbassi R, Schmid RM. Evolving Treatment Paradigms for Pancreatic Cancer. Visc Med 2019; 35:362-372. [PMID: 31934585 PMCID: PMC6944930 DOI: 10.1159/000503797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma is an extremely aggressive tumor which is supposed to become the second deadliest malignancy in 2030. For a long time the possibilities to treat this complex disease were very limited. SUMMARY In the last years the development of new chemotherapeutic regimens has led to a better outcome in the ad-juvant, neoadjuvant, and palliative setting. Furthermore, progress in sequencing technologies has enabled a detailed investigation of the genetic alterations, mutational burden, expression pattern, and stroma composition in pancreatic cancer and led to the identification of subtypes of this disease. MESSAGES This analysis will increase our understanding of tumor heterogeneity and hopefully translate into new potential targets, biomarkers, and the development of individual therapeutic approaches in the future.
Collapse
Affiliation(s)
| | - Roland M. Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
134
|
Rashid NU, Peng XL, Jin C, Moffitt RA, Volmar KE, Belt BA, Panni RZ, Nywening TM, Herrera SG, Moore KJ, Hennessey SG, Morrison AB, Kawalerski R, Nayyar A, Chang AE, Schmidt B, Kim HJ, Linehan DC, Yeh JJ. Purity Independent Subtyping of Tumors (PurIST), A Clinically Robust, Single-sample Classifier for Tumor Subtyping in Pancreatic Cancer. Clin Cancer Res 2019; 26:82-92. [PMID: 31754050 DOI: 10.1158/1078-0432.ccr-19-1467] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Molecular subtyping for pancreatic cancer has made substantial progress in recent years, facilitating the optimization of existing therapeutic approaches to improve clinical outcomes in pancreatic cancer. With advances in treatment combinations and choices, it is becoming increasingly important to determine ways to place patients on the best therapies upfront. Although various molecular subtyping systems for pancreatic cancer have been proposed, consensus regarding proposed subtypes, as well as their relative clinical utility, remains largely unknown and presents a natural barrier to wider clinical adoption. EXPERIMENTAL DESIGN We assess three major subtype classification schemas in the context of results from two clinical trials and by meta-analysis of publicly available expression data to assess statistical criteria of subtype robustness and overall clinical relevance. We then developed a single-sample classifier (SSC) using penalized logistic regression based on the most robust and replicable schema. RESULTS We demonstrate that a tumor-intrinsic two-subtype schema is most robust, replicable, and clinically relevant. We developed Purity Independent Subtyping of Tumors (PurIST), a SSC with robust and highly replicable performance on a wide range of platforms and sample types. We show that PurIST subtypes have meaningful associations with patient prognosis and have significant implications for treatment response to FOLIFIRNOX. CONCLUSIONS The flexibility and utility of PurIST on low-input samples such as tumor biopsies allows it to be used at the time of diagnosis to facilitate the choice of effective therapies for patients with pancreatic ductal adenocarcinoma and should be considered in the context of future clinical trials.
Collapse
Affiliation(s)
- Naim U Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xianlu L Peng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chong Jin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard A Moffitt
- Department of Biomedical Informatics and Pathology, Stony Brook University, Stony Brook, New York.,Department of Pharmacological Sciences, Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York
| | - Keith E Volmar
- University of North Carolina-Rex Healthcare, Raleigh, North Carolina
| | - Brian A Belt
- Department of Surgery, University of Rochester, Rochester, New York
| | - Roheena Z Panni
- Department of Surgery, Washington University, Saint Louis, St. Louis, Missouri
| | - Timothy M Nywening
- Department of Surgery, Washington University, Saint Louis, St. Louis, Missouri
| | - Silvia G Herrera
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristin J Moore
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah G Hennessey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ashley B Morrison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan Kawalerski
- Department of Biomedical Informatics and Pathology, Stony Brook University, Stony Brook, New York
| | - Apoorve Nayyar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Audrey E Chang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benjamin Schmidt
- Department of Surgery, Washington University, Saint Louis, St. Louis, Missouri
| | - Hong Jin Kim
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David C Linehan
- Department of Surgery, University of Rochester, Rochester, New York
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
135
|
Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, Senbabaoglu Y, Modrusan Z, Liang Y, Junttila MR, Klijn C, Bourgon R, Turley SJ. Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15 + Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discov 2019; 10:232-253. [PMID: 31699795 DOI: 10.1158/2159-8290.cd-19-0644] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
With only a fraction of patients responding to cancer immunotherapy, a better understanding of the entire tumor microenvironment is needed. Using single-cell transcriptomics, we chart the fibroblastic landscape during pancreatic ductal adenocarcinoma (PDAC) progression in animal models. We identify a population of carcinoma-associated fibroblasts (CAF) that are programmed by TGFβ and express the leucine-rich repeat containing 15 (LRRC15) protein. These LRRC15+ CAFs surround tumor islets and are absent from normal pancreatic tissue. The presence of LRRC15+ CAFs in human patients was confirmed in >80,000 single cells from 22 patients with PDAC as well as by using IHC on samples from 70 patients. Furthermore, immunotherapy clinical trials comprising more than 600 patients across six cancer types revealed elevated levels of the LRRC15+ CAF signature correlated with poor response to anti-PD-L1 therapy. This work has important implications for targeting nonimmune elements of the tumor microenvironment to boost responses of patients with cancer to immune checkpoint blockade therapy. SIGNIFICANCE: This study describes the single-cell landscape of CAFs in pancreatic cancer during in vivo tumor evolution. A TGFβ-driven, LRRC15+ CAF lineage is associated with poor outcome in immunotherapy trial data comprising multiple solid-tumor entities and represents a target for combinatorial therapy.This article is highlighted in the In This Issue feature, p. 161.
Collapse
Affiliation(s)
| | - Sören Müller
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California
| | | | - Hartmut Koeppen
- Department of Pathology, Genentech, South San Francisco, California
| | - Jeffrey Hung
- Department of Pathology, Genentech, South San Francisco, California
| | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech, South San Francisco, California
| | - Beatrice Breart
- Department of Cancer Immunology, Genentech, South San Francisco, California
| | - Oded Foreman
- Department of Pathology, Genentech, South San Francisco, California
| | | | | | - Yasin Senbabaoglu
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California
| | - Zora Modrusan
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, California
| | - Yuxin Liang
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, California
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Christiaan Klijn
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California
| | - Richard Bourgon
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, California.
| |
Collapse
|
136
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
137
|
Michaelis KA, Norgard MA, Zhu X, Levasseur PR, Sivagnanam S, Liudahl SM, Burfeind KG, Olson B, Pelz KR, Angeles Ramos DM, Maurer HC, Olive KP, Coussens LM, Morgan TK, Marks DL. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat Commun 2019; 10:4682. [PMID: 31615993 PMCID: PMC6794326 DOI: 10.1038/s41467-019-12657-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
A priority in cancer research is to innovate therapies that are not only effective against tumor progression but also address comorbidities such as cachexia that limit quality and quantity of life. We demonstrate that TLR7/8 agonist R848 induces anti-tumor responses and attenuates cachexia in murine models of pancreatic ductal adenocarcinoma (PDAC). In vivo, tumors from two of three cell lines were R848-sensitive, resulting in smaller tumor mass, increased immune complexity, increased CD8+ T-cell infiltration and activity, and decreased Treg frequency. R848-treated mice demonstrated improvements in behavioral and molecular cachexia manifestations, resulting in a near-doubling of survival duration. Knockout mouse studies revealed that stromal, not neoplastic, TLR7 is requisite for R848-mediated responses. In patient samples, we found Tlr7 is ubiquitously expressed in stroma across all stages of pancreatic neoplasia, but epithelial Tlr7 expression is relatively uncommon. These studies indicate immune-enhancing approaches including R848 may be useful in PDAC and cancer-associated cachexia. In the treatment of pancreatic ductal adenocarcinoma (PDAC), comorbidities such as cachexia limit quality of life and survival. Here, the authors show TLR7/8 agonist R848 remodels host and tumour immune responses, promoting survival and attenuating cachexia in murine models of PDAC.
Collapse
Affiliation(s)
- Katherine A Michaelis
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA.,Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shamilene Sivagnanam
- Department of Computational Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon M Liudahl
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kevin G Burfeind
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Brennan Olson
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Katherine R Pelz
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Diana M Angeles Ramos
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - H Carlo Maurer
- Departments of Medicine and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Kenneth P Olive
- Departments of Medicine and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Marks
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA. .,Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
138
|
Ramu I, Buchholz SM, Patzak MS, Goetze RG, Singh SK, Richards FM, Jodrell DI, Sipos B, Ströbel P, Ellenrieder V, Hessmann E, Neesse A. SPARC dependent collagen deposition and gemcitabine delivery in a genetically engineered mouse model of pancreas cancer. EBioMedicine 2019; 48:161-168. [PMID: 31597597 PMCID: PMC6838446 DOI: 10.1016/j.ebiom.2019.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterised by extensive matrix deposition that has been implicated in impaired drug delivery and therapeutic resistance. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates collagen deposition and is highly upregulated in the activated stroma subtype with poor prognosis in PDAC patients. METHODS KrasG12D;p48-Cre;SPARC-/- (KC-SPARC-/-) and KrasG12D;p48-Cre;SPARCWT (KC-SPARCWT) were generated and analysed at different stages of carcinogenesis by histological grading, immunohistochemistry for epithelial and stromal markers, survival and preclinical analysis. Pharmacokinetic and pharmacodynamic studies were conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunohistochemistry following gemcitabine treatment (100 mg/kg) in vivo. FINDINGS Global genetic ablation of SPARC in a KrasG12D driven mouse model resulted in significantly reduced overall and mature collagen deposition around early and advanced pancreatic intraepithelial neoplasia (PanIN) lesions and in invasive PDAC (p < .001). However, detailed pathological scoring and molecular analysis showed no effects on PanIN to PDAC progression, vessel density (CD31), tumour incidence, grading or metastatic frequency. Despite comparable tumour kinetics, ablation of SPARC resulted in a significantly shortened survival in KC-SPARC-/- mice (280 days versus 485 days, p < .03, log-rank-test). Using LC-MS/MS, we show that SPARC dependent collagen deposition does not affect intratumoural gemcitabine accumulation or immediate therapeutic response in tumour bearing KC-SPARCWT and KC-SPARC-/-mice. INTERPRETATION Global SPARC ablation reduces the collagen-rich microenvironment in murine PDAC. Moreover, global SPARC depletion did not affect tumour growth kinetics, grading or metastatic frequency. Notably, the dense-collagen matrix did not restrict access of gemcitabine to the tumour. These findings may have direct translational implications in clinical trial design.
Collapse
Affiliation(s)
- Iswarya Ramu
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Sören M Buchholz
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Melanie S Patzak
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Robert G Goetze
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, The University of Cambridge, United Kingdom
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, The University of Cambridge, United Kingdom
| | - Bence Sipos
- Institute of Pathology and Neuropathology, University Clinic Tübingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Centre Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany.
| |
Collapse
|
139
|
Martens S, Lefesvre P, Nicolle R, Biankin AV, Puleo F, Van Laethem JL, Rooman I. Different shades of pancreatic ductal adenocarcinoma, different paths towards precision therapeutic applications. Ann Oncol 2019; 30:1428-1436. [PMID: 31161208 DOI: 10.1093/annonc/mdz181] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Different histological and molecular subtypes of pancreatic ductal adenocarcinoma (PDAC), with different molecular composition and survival statistics, have recently been recognised. MATERIALS AND METHODS This review describes the currently available studies regarding molecular and histological subtypes in PDAC. Studies from major cohorts such as International Cancer Genome Consortium as well as smaller cohorts are reviewed. We discuss where the described subtypes overlap, where the discrepancies are and which paths forward could be taken regarding diagnosis, ontogeny and therapy. RESULTS Four molecular subtypes with strong overlap among the different studies can be found, next to a list of mixed findings. Two of the four subtypes (epithelial classical and mesenchymal basal-like) were represented in every study and were often discriminated in other solid tumours as well. These two subtypes differ substantially in prognosis. One biomarker has been discovered, only discriminating these two subtypes, and insights into subtype-specific therapeutic vulnerabilities are scarce. CONCLUSION Subtypes can be reproducibly detected in cohorts of PDAC patients and two of them directly relate with prognosis. A consensus on the subtypes is warranted. Further discovery and validation studies are needed to identify strong biomarkers, to comprehend subtype ontogeny and to define strategies for precision medicine.
Collapse
Affiliation(s)
- S Martens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels
| | - P Lefesvre
- Department of Pathology, UZ Brussel, Brussels, Belgium
| | - R Nicolle
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - F Puleo
- Medical Oncology Department, Institut Jules Bordet; Laboratory of Experimental Gastroenterology
| | - J L Van Laethem
- Laboratory of Experimental Gastroenterology; Department of Gastroenterology and Digestive Oncology, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - I Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels.
| |
Collapse
|
140
|
Karamitopoulou E, Gloor B. Clinical Scenarios Emerging from Combined Immunophenotypic, Molecular and Morphologic Analysis of Pancreatic Cancer: The Good, the Bad and the Ugly Scenario. Cancers (Basel) 2019; 11:E968. [PMID: 31295960 PMCID: PMC6678850 DOI: 10.3390/cancers11070968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with increasing incidence and dismal prognosis. The composition of the immune cell infiltrates in the tumor microenvironment (TME) and the dynamic interplay between cancer- and immune cells can influence and/or be influenced by tumor-intrinsic characteristics like molecular profiles and tumor cell morphology. The combined analyses of pancreatic cancer by using morphologic, genetic, and immunologic features help us understand the significant heterogeneity of the TME and recognize the different mechanisms of immune evasion. Moreover, this information may lead to the identification of novel biomarkers for more precise patient stratification and therapy guidance.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Pancreatic Cancer Research Group, Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland.
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland.
| |
Collapse
|
141
|
Singh S, Hasselluhn MC, Neesse A. A tangled tale of molecular subtypes in pancreatic cancer. Gut 2019; 68:953-954. [PMID: 30814120 DOI: 10.1136/gutjnl-2018-318086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Shiv Singh
- Gastroenterology and Gastrointestinal Oncology, Georg-August-Universitat Gottingen Universitatsmedizin, Gottingen, Germany
| | - Marie Christin Hasselluhn
- Gastroenterology and Gastrointestinal Oncology, Georg-August-Universitat Gottingen Universitatsmedizin, Gottingen, Germany
| | - Albrecht Neesse
- Gastroenterology and Gastrointestinal Oncology, Georg-August-Universitat Gottingen Universitatsmedizin, Gottingen, Germany
| |
Collapse
|
142
|
Precision Medicine in Pancreatic Disease-Knowledge Gaps and Research Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2019; 48:1250-1258. [PMID: 31688587 PMCID: PMC7282491 DOI: 10.1097/mpa.0000000000001412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A workshop on research gaps and opportunities for Precision Medicine in Pancreatic Disease was sponsored by the National Institute of Diabetes and Digestive Kidney Diseases on July 24, 2019, in Pittsburgh. The workshop included an overview lecture on precision medicine in cancer and 4 sessions: (1) general considerations for the application of bioinformatics and artificial intelligence; (2) omics, the combination of risk factors and biomarkers; (3) precision imaging; and (4) gaps, barriers, and needs to move from precision to personalized medicine for pancreatic disease. Current precision medicine approaches and tools were reviewed, and participants identified knowledge gaps and research needs that hinder bringing precision medicine to pancreatic diseases. Most critical were (a) multicenter efforts to collect large-scale patient data sets from multiple data streams in the context of environmental and social factors; (b) new information systems that can collect, annotate, and quantify data to inform disease mechanisms; (c) novel prospective clinical trial designs to test and improve therapies; and (d) a framework for measuring and assessing the value of proposed approaches to the health care system. With these advances, precision medicine can identify patients early in the course of their pancreatic disease and prevent progression to chronic or fatal illness.
Collapse
|