101
|
Liu X, Wang L, Liu L, Li Y, Ogden M, Somssich M, Liu Y, Zhang Y, Ran M, Persson S, Zhao C. FERONIA adjusts CC1 phosphorylation to control microtubule array behavior in response to salt stress. SCIENCE ADVANCES 2024; 10:eadq8717. [PMID: 39612333 PMCID: PMC11606495 DOI: 10.1126/sciadv.adq8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Cell wall remodeling is important for plants to adapt to environmental stress. Under salt stress, cortical microtubules undergo a depolymerization-reassembly process to promote the biosynthesis of stress-adaptive cellulose, but the regulatory mechanisms underlying this process are still largely unknown. In this study, we reveal that FERONIA (FER), a potential cell wall sensor, interacts with COMPANION OF CELLULOSE SYNTHASE1 (CC1) and its closest homolog, CC2, two proteins that are required for cortical microtubule reassembly under salt stress. Biochemical data indicate that FER phosphorylates CC1 on multiple residues in its second and third hydrophobic microtubule-binding regions and that these phosphorylations modulate CC1 trafficking and affect the ability of CC1 to engage with microtubules. Furthermore, CC1 phosphorylation level is altered upon exposure to salt stress, which coincides with the changes of microtubule organization. Together, our study outlines an important intracellular mechanism that maintains microtubule arrays during salt exposure in plant cells.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liu Wang
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Linlin Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Michael Ogden
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yutong Liu
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Zhang
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minyuan Ran
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Staffan Persson
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunzhao Zhao
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
102
|
Liu K, Li X, Wang C, Han Y, Zhu Z, Li B. Genome-wide identification and characterization of the LRX gene family in grapevine (Vitis vinifera L.) and functional characterization of VvLRX7 in plant salt response. BMC Genomics 2024; 25:1155. [PMID: 39614156 DOI: 10.1186/s12864-024-11087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Leucine-rich repeat (LRR) extensins (LRXs), which are cell wall-localized chimeric extensin proteins, are essential for the development of plants and their resistance to stress. Despite the significance of these genes, an extensive genome-wide analysis of the LRX gene family in grapevine (Vitis vinifera L.) is lacking. RESULTS We here detected 14 grapevine LRX genes and classified them into four groups through phylogenetic analysis. Then, their physiological and biochemical properties and gene/protein structures were analyzed. According to synteny analysis, tandem and segmental duplications have appreciably affected the expansion of the grapevine LRX gene family. On investigating tissue-specific expression profiles and cis-regulatory elements, we observed that VvLRXs likely serve as regulators of both the growth of grapevines and their responses to various environmental stresses. Salt stress treatments induced the expression of several VvLRXs, and VvLRX7 expression was the most significantly upregulated. Furthermore, VvLRX7 expression was positively correlated with the salt tolerance of grape rootstocks. VvLRX7 overexpression in Arabidopsis markedly enhanced its salt tolerance. CONCLUSION This study provides a general understanding of the characteristics and evolution of the LRX gene family in grapevine. VvLRX7 may function as a positive regulator of plant's response to salt stress. These findings offer a basis for future studies on the function of grapevine LRXs and their role in improving salt stress tolerance in grapevine.
Collapse
Affiliation(s)
- Kai Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Xiujie Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Chaoping Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Yan Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Ziguo Zhu
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Science, Jinan, 250100, China.
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257000, Dongying, P. R. China.
| |
Collapse
|
103
|
Hou D, Li N, Qu X, Dong S, Guo K, Liu C. Divergent responses of nutrient biogeographical patterns in different shrub types across the arid region of Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:1150. [PMID: 39609788 PMCID: PMC11606181 DOI: 10.1186/s12870-024-05849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The arid region of the Qinghai-Tibet Plateau has a harsh natural environment that spans a vast altitudinal range, where plant growth suffers from various environmental stresses such as low temperature and drought. Shrubs are one of the most important plant functional groups in this region, and different shrub types have developed various nutrient strategies in response to these environmental stresses. However, nutrient characteristics and biogeographical patterns in different shrub types have seldom been investigated. The aboveground concentrations of carbon (C), nitrogen (N), and phosphorus (P) of the three shrub types (leaf-normal, leaf-reduced, and succulent shrubs) and soil physicochemical properties were measured in 138 sampling sites in the arid region of the Qinghai-Tibet Plateau. RESULTS Mean C, N, and P concentrations in all shrubs were 382.09 mg/g, 24.63 mg/g, and 1.43 mg/g in the arid region of the Qinghai-Tibet Plateau. Mean C, N, and P concentrations were 347.64, 24.30, and 1.25 mg/g in succulent shrubs, which were significantly lower than those of leaf-normal shrubs (C: 418.43 mg/g; N: 24.57 mg/g; P: 1.55 mg/g) and leaf-reduced shrubs (C: 399.71 mg/g; N: 25.96 mg/g; P: 1.65 mg/g). With increasing in longitude, C, N, and P concentrations in leaf-normal and leaf-reduced shrubs increased but these nutrients in succulent shrubs decreased. Increasing altitude only increased N and P concentrations for leaf-normal shrubs. These results demonstrated that the three shrub types had divergent nutrient biogeographical patterns. N and P concentrations of leaf-normal and leaf-reduced shrubs were directly driven by soil total N and total P concentrations and indirectly regulated by mean annual temperature and mean annual precipitation, promoting the formation of longitude or altitude nutrient patterns. Meanwhile, N and P concentrations in succulent shrubs were only regulated by soil pH, total N, and total P concentrations, driving the formation of longitude nutrient patterns. These results indicated divergent driving factors for nutrient biogeographical patterns among the three shrub types. CONCLUSIONS Our study highlights the unique nutrient characteristics of succulent shrubs, reveals driving factors of nutrient biogeographical patterns in the three shrub types, and contributes to the understanding of biogeochemical cycling in arid ecosystems.
Collapse
Affiliation(s)
- Dongjie Hou
- College of Grassland, Resource and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Nan Li
- College of Grassland, Resource and Environment, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaoyun Qu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Haidian District, Beijing, 100093, China
| | - Shaoqiong Dong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Haidian District, Beijing, 100093, China
| | - Ke Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Haidian District, Beijing, 100093, China
| | - Changcheng Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Haidian District, Beijing, 100093, China.
| |
Collapse
|
104
|
Nie W, He Q, Guo H, Zhang W, Ma L, Li J, Wen D. Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses. Microorganisms 2024; 12:2448. [PMID: 39770651 PMCID: PMC11677594 DOI: 10.3390/microorganisms12122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs. At the heart of mitigating these challenges, Arbuscular Mycorrhizal Fungi (AM fungi) form a crucial symbiotic relationship with most terrestrial plants, significantly enhancing their stress resilience. AM fungi improve nutrient uptake, particularly that of nitrogen and phosphorus, through their extensive mycelial networks. Additionally, they enhance soil structure, increase water use efficiency, and strengthen antioxidant defense mechanisms, particularly in environments stressed by drought, salinity, extreme temperatures, heavy metal contamination, and flooding. Beyond mitigating abiotic stress, AM fungi bolster plant defenses against pathogens and pests by competing for colonization sites and enhancing plant immune responses. They also facilitate plant adaptation to extreme environmental conditions by altering root morphology, modulating gene expression, and promoting the accumulation of osmotic adjustment compounds. This review discusses the role of AM fungi in enhancing plant growth and performance under environmental stress.
Collapse
Affiliation(s)
- Wenjing Nie
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Qinghai He
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Hongen Guo
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Wenjun Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lan Ma
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Junlin Li
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Dan Wen
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Fruit Research Institute, Tai’an 271000, China
| |
Collapse
|
105
|
Xiong G, Cui D, Tian Y, Schwarzacher T, Heslop-Harrison JS, Liu Q. Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. Int J Mol Sci 2024; 25:12754. [PMID: 39684466 DOI: 10.3390/ijms252312754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are membrane-bound receptor genes found in many plant species. They are involved in perceiving stresses and responding to the environment. Oat (Avena sativa; 2n = 6x = 42) are an important food and forage crop with potential in drought, saline, or alkaline soils. Here, we present a comprehensive genome-wide analysis of the LecRLK gene family in A. sativa and the crop's wild relatives A. insularis (4x) and A. longiglumis (2x), unveiling a rich diversity with a total of 390 LecRLK genes identified, comprising 219 G-types, 168 L-types, and 3 C-types in oats. Genes were unevenly distributed across the oat chromosomes. GFP constructs show that family members were predominantly located in the plasma membrane. Expression under salt stress demonstrated functional redundancy and differential expression of LecRLK gene family members in oats: 173 members of this family were involved in the response to salt stress, and the expression levels of three C-type genes in the root and leaf were significantly increased under salt stress. The results show the diversity, evolutionary dynamics, and functional implications of the LecRLK gene family in A. sativa, setting a foundation for defining its roles in plant development and stress resilience, and suggesting its potential agricultural application for crop improvement.
Collapse
Affiliation(s)
- Gui Xiong
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongli Cui
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yaqi Tian
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Trude Schwarzacher
- South China National Botanical Garden, Guangzhou 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- South China National Botanical Garden, Guangzhou 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE1 7RH, UK
| | - Qing Liu
- Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration, Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
106
|
Francioso O, Schiavon M, Nardi S, Castellani D, Ferrari E, Estrada MTR, Della Lucia MC, Zuffi V, Ertani A. Mitigation of Salt Stress in Lactuca sativa L. var. Gentile Rossa Using Microalgae as Priming Agents. PLANTS (BASEL, SWITZERLAND) 2024; 13:3311. [PMID: 39683104 DOI: 10.3390/plants13233311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Using renewable biomass in agriculture, particularly microalgae as a biostimulant, offers economic and environmental sustainability benefits by reducing costs, improving nutrient cycling, and enhancing water use efficiency. Microalgae contain bioactive compounds that boost crop tolerance to environmental stresses, including salinity. Saline soils, characterized by elevated sodium chloride (NaCl) levels, negatively impact many crops, resulting in low productivity and high remediation costs. Therefore, this study evaluates the biostimulant properties of a microalgae-based commercial preparation (MR) on lettuce (Lactuca sativa L.) plants grown hydroponically and exposed to saline stress. The extract was chemically characterized through elemental analysis, lipid composition (gas chromatography with flame ionization detector-GC-FID), the determination of functional groups (Fourier Transformed Infrared-FT-IR), structure (1H,13C Nuclear Magnetic Resonance-NMR), with their hormone-like activity also assessed. Lettuce plants were treated with or without the microalgae blend, in combination with 0, 50 mM, or 100 mM NaCl. The contents of nutrients, soluble proteins, chlorophylls, and phenols, as well as the lipid peroxidation, antioxidants and root traits of lettuce plants, were estimated. The microalgae applied to salt-stressed plants resulted in a significant increase in biomass, protein, and chlorophyll contents. Additionally, significant effects on the secondary metabolism and mitigation of salinity stress were observed in terms of increased phenol content and the activity of antioxidant enzymes, as well as decreased lipid peroxidation. The potassium (K+) content was increased significantly in plants treated with 100 mM NaCl after addition of microalgae, while the content of sodium (Na+) was concurrently reduced. In conclusion, our results demonstrate that using microalgae can be a potent approach for improving the cultivation of Lactuca sativa L. under saline stress conditions.
Collapse
Affiliation(s)
- Ornella Francioso
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Serenella Nardi
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Davide Castellani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Maria Teresa Rodriguez Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Animals, Food, Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, 35020 Padova, Italy
| | - Veronica Zuffi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Andrea Ertani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
107
|
Zhang C, Zeng J, Xie W, Liu C, Niu L, Wang Y, Wang Y, Shi M, Shao J, Wang W, Schiefelbein J, Yu F, An L. SPIRRIG is required for BRICK1 stability and salt stress induced root hair developmental plasticity in Arabidopsis. STRESS BIOLOGY 2024; 4:48. [PMID: 39585540 PMCID: PMC11589064 DOI: 10.1007/s44154-024-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Developmental plasticity is critical for plants to adapt to constantly changing environments. Plant root hairs display dramatic plasticity under different environments and therefore play crucial roles in defense against environmental stressors. Here, we report the isolation of an Arabidopsis mutant, salinity over-sensitive mutant 1-1 (som1-1), also exhibiting root hair developmental defects. Map-based cloning and allelic analyses confirmed that som1-1 is a new mutant allele of SPIRRIG (SPI), which encodes a Beige and Chediak Higashi (BEACH) domain-containing protein. SPI has been reported to facilitate actin dependent root hair development by temporally and spatially regulating the expression of BRICK1 (BRK1), a subunit of the SCAR/WAVE actin nucleating promoting complex. Our living cell imaging examinations revealed that salt stress induces an altered actin organization in root hair that mimics those in the spi mutant, implying SPI may respond to salt stress induced root hair plasticity by modulating actin cytoskeleton organization. Furthermore, we found BRK1 is also involved in root hair developmental change under salt stress, and overexpression of BRK1 resulted in root hairs over-sensitive to salt stress as those in spi mutant. Moreover, based on biochemical analyses, we found BRK1 is unstable and SPI mediates BRK1 stability. Functional loss of SPI results in the accumulation of steady-state of BRK1.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Jingyu Zeng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Wenjuan Xie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Chuanseng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Linyu Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Yanling Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Muyang Shi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
108
|
Singh AK, Pal P, Sahoo UK, Sharma L, Pandey B, Prakash A, Sarangi PK, Prus P, Pașcalău R, Imbrea F. Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress. Int J Mol Sci 2024; 25:12537. [PMID: 39684248 DOI: 10.3390/ijms252312537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Salt stress is a major abiotic stressor that limits plant growth, development, and agricultural productivity, especially in regions with high soil salinity. With the increasing salinization of soils due to climate change, developing salt-tolerant crops has become essential for ensuring food security. This review consolidates recent advances in plant genetics, transcription factors (TFs), and next-generation sequencing (NGS) technologies that are pivotal for enhancing salt stress tolerance in crops. It highlights critical genes involved in ion homeostasis, osmotic adjustment, and stress signaling pathways, which contribute to plant resilience under saline conditions. Additionally, specific TF families, such as DREB, NAC (NAM, ATAF, and CUC), and WRKY, are explored for their roles in activating salt-responsive gene networks. By leveraging NGS technologies-including genome-wide association studies (GWASs) and RNA sequencing (RNA-seq)-this review provides insights into the complex genetic basis of salt tolerance, identifying novel genes and regulatory networks that underpin adaptive responses. Emphasizing the integration of genetic tools, TF research, and NGS, this review presents a comprehensive framework for accelerating the development of salt-tolerant crops, contributing to sustainable agriculture in saline-prone areas.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Priti Pal
- Environmental Engineering, Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | | | - Laxuman Sharma
- Department of Horticulture, Sikkim University, Gangtok 737102, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Raul Pașcalău
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 300645 Timisoara, Romania
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
109
|
Wang R, Yang X, Chi Y, Zhang X, Ma X, Zhang D, Zhao T, Ren Y, Yang H, Ding W, Chu S, Zhou P. Regulation of hydrogen rich water on strawberry seedlings and root endophytic bacteria under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1497362. [PMID: 39640989 PMCID: PMC11617194 DOI: 10.3389/fpls.2024.1497362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Salt stress could lead to plant growth barriers and crop yield reduction. Strawberries are sensitive to salt stress, and improving salt tolerance is important for strawberry production. This study aimed to explore the potential of hydrogen-rich water (HRW) to enhance salt tolerance in strawberries. Through pot experiments, we investigated how HRW affects plant growth, ion absorption, osmotic stress, oxidative stress, antioxidant enzyme levels, hormone levels, and root endophytic bacteria in strawberry seedlings under salt stress. The results showed that under 100 mM NaCl treatment, 50% and 100% HRW treatments significantly increased strawberry biomass by 0.29 g and 0.54g, respectively, wherein, 100% HRW significantly increased the shoot and root length by 15.34% and 24.49%, respectively. In addition, under salt stress the absorption of K+ by strawberry seedlings was increased with the HRW supplement, while the absorption of Na+ was reduced. Meanwhile, HRW treatment reduced the transfer of Na+ from root to shoot. Furthermore, under salt stress, HRW treatment increased the relative water content (RWC) by 12.35%, decreased the electrolyte leakage rate (EL) by 7.56%. HRW modulated phytohormone levels in strawberry seedlings, thereby alleviating the salt stress on strawberries. Moreover, HRW was found to promote plant growth by altering the diversity of bacteria in strawberry roots and recruiting specific microorganisms, such as Tistella. Our findings indicate that HRW could help restore the microecological homeostasis of strawberry seedlings, thus further mitigating salt stress. This study provides a novel perspective on the mechanisms by which HRW alleviates salt stress, thereby enriching the scientific understanding of hydrogen's applications in agriculture.
Collapse
Affiliation(s)
- Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Ting Zhao
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Haiyan Yang
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| |
Collapse
|
110
|
Li YD, Li X, Zhu LL, Yang Y, Guo DL, Xie LQ. Integrating RNA-seq and population genomics to elucidate salt tolerance mechanisms in flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1442286. [PMID: 39634061 PMCID: PMC11616478 DOI: 10.3389/fpls.2024.1442286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
Salinity is an important abiotic environmental stressor threatening agricultural productivity worldwide. Flax, an economically important crop, exhibits varying degrees of adaptability to salt stress among different cultivars. However, the specific molecular mechanisms underlying these differences in adaptation have remained unclear. The objective of this study was to identify candidate genes associated with salt tolerance in flax using RNA-Seq combined with population-level analysis. To begin with, three representative cultivars were selected from a population of 200 flax germplasm and assessed their physiological and transcriptomic responses to salt stress. The cultivar C121 exhibited superior osmoregulation, antioxidant capacity, and growth under salt stress compared to the other two cultivars. Through transcriptome sequencing, a total of 7,459 differentially expressed genes associated with salt stress were identified, which were mainly enriched in pathways related to response to toxic substances, metal ion transport, and phenylpropanoid biosynthesis. Furthermore, genotyping of the 7,459 differentially expressed genes and correlating them with the phenotypic data on survival rates under salt stress allowed the identification of 17 salt-related candidate genes. Notably, the nucleotide diversity of nine of the candidate genes was significantly higher in the oil flax subgroup than in the fiber flax subgroup. These results enhance the fundamental understanding of salt tolerance mechanisms in flax, provide a basis for a more in-depth exploration of its adaptive responses to salt stress, and facilitate the scientific selection and breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Yuan-Dong Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Basic Medicine, Xinjiang Second Medical College, Karamay, Xinjiang, China
| | - Lei-Lei Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yang Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Dong-Liang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li-Qiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- College of Smart Agriculture, Xinjiang University, Urumqi, China
| |
Collapse
|
111
|
Hu JP, He YY, Li JH, Lü ZL, Zhang YW, Li YH, Li JL, Zhang MX, Cao YH, Zhang JL. Planting halophytes increases the rhizosphere ecosystem multifunctionality via reducing soil salinity. ENVIRONMENTAL RESEARCH 2024; 261:119707. [PMID: 39084507 DOI: 10.1016/j.envres.2024.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, β-glucosidase, β-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.
Collapse
Affiliation(s)
- Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan-Yuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jian-Hong Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, 553004, PR China
| | - Zhao-Long Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yue-Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Lü Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
112
|
Guo B, Kim EJ, Zhu Y, Wang K, Russinova E. Shaping Brassinosteroid Signaling through Scaffold Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:1608-1617. [PMID: 38590034 DOI: 10.1093/pcp/pcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2), that serves as a key negative regulator of brassinosteroid (BR) signaling. Here, we summarize current understanding of how scaffold proteins actively shape BR signaling outputs and cross-talk in plant cells via interactions with BIN2.
Collapse
Affiliation(s)
- Boyu Guo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Eun-Ji Kim
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
| |
Collapse
|
113
|
Ikram M, Minhas A, Al-Huqail AA, Ghoneim AM, Mahmood S, Mahmoud E, Tahira M, Mehran M, Maqsood MFK, Rauf A, Ali W. Promoting tomato resilience: effects of ascorbic acid and sulfur-treated biochar in saline and non-saline cultivation environments. BMC PLANT BIOLOGY 2024; 24:1053. [PMID: 39511477 PMCID: PMC11545619 DOI: 10.1186/s12870-024-05734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
The resilience of tomato plants under different cultivation environments, particularly saline and non-saline conditions, was investigated by applying various treatments, including 0.5% Ascorbic Acid (AsA) and 1% Sulphur-treated Biochar (BS). The study evaluated parameters such as fruit length, diameter, yield per plant and pot, Total Soluble Solids (TSS) content, chlorophyll content, electrolyte leakage, enzyme activities (Superoxide Dismutase - SOD, Peroxidase - POD, Catalase - CAT), and nutrient content (Nitrogen - N%, Phosphorus - P%, Potassium - K%). Under saline conditions, significant enhancements were observed in fruit characteristics and yield metrics with the application of AsA and BS individually, with the combined treatment yielding the most substantial improvements. Notably, AsA and BS treatments exhibited varying effects on TSS levels, chlorophyll content, electrolyte leakage, and enzyme activities, with the combination treatment consistently demonstrating superior outcomes. Additionally, nutrient content analysis revealed notable increases, particularly under non-saline conditions, with the combined treatment showcasing the most significant enhancements. Overall, the study underscores the potential of AsA and BS treatments in promoting tomato resilience, offering insights into their synergistic effects on multiple physiological and biochemical parameters crucial for plant growth and productivity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University , Multan, Pakistan.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Asif Minhas
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University , Multan, Pakistan
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza, 12112, Egypt.
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta, 31511, Egypt
| | - Maryam Tahira
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, 430070, China
| | - Muhammad Mehran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Abdul Rauf
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, 430070, China
| | - Waqar Ali
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
| |
Collapse
|
114
|
Lu S, Sun Y, Liu X, Wang F, Luan S, Wang H. The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato. Int J Biol Macromol 2024; 282:137294. [PMID: 39510459 DOI: 10.1016/j.ijbiomac.2024.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H2S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H2S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H2S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H2S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.
Collapse
Affiliation(s)
- Songchong Lu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sheng Luan
- Department of Plant and Microbial biology, University of California, Berkeley, CA 94720, USA.
| | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
115
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
116
|
Zhang H, Wang Y, Ma B, Bu X, Dang Z, Wang Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. Int J Mol Sci 2024; 25:11891. [PMID: 39595960 PMCID: PMC11594238 DOI: 10.3390/ijms252211891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. arborescens' adaptation to desert conditions, focusing on its physiological, biochemical, and transcriptomic responses to drought, salt, and alkali stresses. The results revealed that the three stresses have significant impacts on the photosynthetic, antioxidant, and ion balance systems of the plants, with the alkali stress inducing the most pronounced changes and differential gene expression. The clustering and functional enrichment analyses of differentially expressed genes (DEGs) highlighted the enrichment of the induced genes in pathways related to plant hormone signaling, phenylpropanoid biosynthesis, and transcription factors following stress treatments. In these pathways, the synthesis and signal transduction of abscisic acid (ABA) and ethylene, as well as the flavonoid and lignin synthesis pathways, and transcription factors such as MYB, AP2/ERF, bHLH, NAC, and WRKY responded actively to the stress and played pivotal roles. Through the WGCNA analysis, 10 key modules were identified, with the yellow module demonstrating a high correlation with the ABA and anthocyanin contents, while the turquoise module was enriched in the majority of genes related to hormone and phenylpropanoid pathways. The analysis of hub genes in these modules highlighted the significant roles of the bHLH and MYB transcription factors. These findings could offer new insights into the molecular mechanisms that enable the adaptation of K. arborescens to desert environments, enhancing our understanding of how other desert plants adapt to harsh conditions. These insights are crucial for exploring and utilizing high-quality forage plant germplasm resources and ecological development, with the identified candidate genes serving as valuable targets for further research on stress-resistant genes.
Collapse
Affiliation(s)
- Hongyi Zhang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Yingnan Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Binjie Ma
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiangqi Bu
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| |
Collapse
|
117
|
Wang J, Zhang Y, Wang J, Ma F, Wang L, Zhan X, Li G, Hu S, Khan A, Dang H, Li T, Hu X. Promoting γ-aminobutyric acid accumulation to enhances saline-alkali tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2089-2104. [PMID: 39186533 DOI: 10.1093/plphys/kiae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
Saline-alkali stress is a widely distributed abiotic stress that severely limits plant growth. γ-Aminobutyric acid (GABA) accumulates rapidly in plants under saline-alkali stress, but the underlying molecular mechanisms and associated regulatory networks remain unclear. Here, we report a MYB-like protein, I-box binding factor (SlMYBI), which positively regulates saline-alkali tolerance through induced GABA accumulation by directly modulating the glutamate decarboxylase (GAD) gene SlGAD1 in tomato (Solanum lycopersicum L.). Overexpression of SlGAD1 increased GABA levels and decreased reactive oxygen species accumulation under saline-alkali stress, while silencing of SlGAD1 further suggested that SlGAD1 plays an active role in GABA synthesis and saline-alkali tolerance of tomato. In addition, we found that SlMYBI activates SlGAD1 transcription. Both overexpression of SlMYBI and editing of SlMYBI using CRISPR-Cas9 showed that SlMYBI regulates GABA synthesis by modulating SlGAD1 expression. Furthermore, the interaction of SlNF-YC1 with SlMYBI enhanced the transcriptional activity of SlMYBI on SlGAD1 to further improve saline-alkali tolerance in tomato. Interestingly, we found that ethylene signaling was involved in the GABA response to saline-alkali stress by RNA-seq analysis of SlGAD1-overexpressing lines. This study elucidates the involvement of SlMYBI in GABA synthesis regulation. Specifically, the SlMYBI-SlNF-YC1 module is involved in GABA accumulation in response to saline-alkali stress.
Collapse
Affiliation(s)
- Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Junzheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Fang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Haoran Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
118
|
Kaleem M, Hameed M, Ahmad MSA, Ahmad F, Iqbal U, Asghar N, Ameer A, Mehmood A, Shehzadi N, Chishti MS, Hashem A, Abd-Allah EF. Role of leaf micro-structural modifications in modulation of growth and photosynthetic performance of aquatic halophyte Fimbristylis complanata (Retz.) under temporal salinity regimes. Sci Rep 2024; 14:26442. [PMID: 39488568 PMCID: PMC11531486 DOI: 10.1038/s41598-024-77589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Fimbristylis complanata is an aquatic halophytic sedge that thrives in salt-affected land, marshes, and water channels. Two ecotypes (HR-Rasool headworks ECe 19.45; SH- Sahianwala 47.49 dS m-1) of F. complanata were collected from two salt-affected wetlands of Punjab, Pakistan. Five rhizomes of each ecotype were grown in plastic pots in the Botanical garden research area and treated with three intensities of salt [0 mM (control), 200 mM (moderate), 400 mM (high) NaCl for three durations (0, 15 and 30 days). The pots were arranged using a completely randomized block design (CRD) with three replications. After each duration, sampling was done. The HR ecotype optimally performed better under moderate salt incubation and moderate to higher salt exposure. This ecotype had improved growth traits, including shoot fresh weight (SFW), shoot dry weight (SDW), leaf area (LA), root length (RL), leaf mass fraction (LMF), relative growth rate (RGR), and unit leaf area (ULA) at higher NaCl (400 mM) in comparison with control NaCl (0 mM). This improvement in growth occurs due to the accumulation of photosynthetic pigments, better photosynthesis, and water use efficiency (A/E). The leaf microstructure increased in HR ecotype as midrib (MrT), leaf blade (LTh), bulliform cells (BTh), and cortical cells (CcT) thicknesses to prevent water loss under salinity, increase aerenchymatous area (ArA) for efficient gas movements at moderate salt levels and less exposure time concerning absolute control (0 mM NaCl). The SH ecotype affirmed more tolerance to salt by securing higher biomass (SFW, SDW), increased growth traits (LA, RL, LMF, ULA), photosynthetic pigments (Chl a, b, Car), and maximum photosynthetic performance at high salt regimes and prolonged duration in comparison to control (0 mM NaCl). Additionally, increased MrT, LTh, BTh, ECA, abaxial and adaxial stomatal area, and density, broadened metaxylem and phloem area, large aerenchyma, more cortical cell thickness under moderate to high salt regimes under moderate to high salt levels and time. Overall, changes in morpho-physiological traits and leaf microstructures in both ecotypes are linked to salt tolerance under temporal salt regimes. Our findings suggest that both ecotypes of F. complanata can potentially rehabilitate the salt-affected wetlands.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Farooq Ahmad
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ummar Iqbal
- Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Bahawalpur, 64200, Pakistan
| | - Naila Asghar
- College of Agronomy, Shandong Agricultural University, Taian, Shandong Province, 271018, China
| | - Amina Ameer
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Anam Mehmood
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, 38040, Pakistan
| | - Nimra Shehzadi
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shahbaz Chishti
- Stat Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
119
|
Zhang LL, Zhu H, Chen CY, Shang NN, Sheng LX, Yu JQ. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14590. [PMID: 39468987 DOI: 10.1111/ppl.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Salt stress severely affects the growth and yield of apples (Malus domestica Borkh). Although salt-tolerant genes have been extensively studied, documentation on the role of the ATP-dependent phosphofructokinase gene MdPFK5 in salt stress is limited. This study conducted an evolutionary tree and three-dimensional structure analysis of the PFK gene family in Arabidopsis thaliana and MdPFK (MD01G1037400), revealing a close phylogenetic relationship between MdPFK (MD01G1037400) and AtPFK5. Given the similarity in their protein tertiary structures, MdPFK was designated as MdPFK5, suggesting functional similarities with AtPFK5. Further investigation revealed elevated expression levels of MdPFK5 in apple leaves and flowers, particularly showing significant upregulation 120 days after blooming and differential expression beginning at 3 hours of salt stress. Overexpression of MdPFPK5 conferred salt tolerance in both apple calli and transgenic lines of Arabidopsis thaliana. Moreover, NaCl treatment promoted soluble sugar accumulation in apple calli and transgenic lines of Arabidopsis thaliana overexpressing MdPFK5. This study provides new insights into the salt tolerance function of MdPFK5.
Collapse
Affiliation(s)
- Li-Li Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Hao Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chao-Yan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Na-Na Shang
- Dongying Vocational Institute, Dongying, China
| | - Li-Xia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
120
|
Jiang L, Xiao W, Chen H, Qi Y, Kuang X, Shi J, Liu Z, Cao J, Lin Q, Yu F, Wang L. The OsGAPC1-OsSGL module negatively regulates salt tolerance by mediating abscisic acid biosynthesis in rice. THE NEW PHYTOLOGIST 2024; 244:825-839. [PMID: 39169597 DOI: 10.1111/nph.20061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Plants frequently encounter adverse conditions and stress during their lives. Abscisic acid (ABA) plays a crucial role in response to salt stress, and dynamic regulation of ABA levels is essential for plant growth and stress resistance. In this study, we identified a transcription factor, OsSGL (Oryza sativa Stress tolerance and Grain Length), which acts as a negative regulator in salt stress, controlling ABA synthesis. OsSGL-overexpressing and mutant materials exhibited sensitivity and tolerance to salt stress, respectively. Notably, under salt treatment, several ABA-related genes, including the ABA synthesis enzyme OsNCED3 and the ABA response gene OsRAB21, were bound by OsSGL, leading to the inhibition of their transcription. Additionally, we found that a key enzyme involved in glycolysis, OsGAPC1, interacted with OsSGL and enhanced the inhibitory effect of OsSGL on OsNCED3. Upon salt stress, OsGAPC1 underwent acetylation and then translocated from the nucleus to the cytoplasm, partially alleviating the inhibitory effect of OsSGL on OsNCED3. Identification of the OsGAPC1-OsSGL module revealed a negative regulatory mechanism involved in the response of rice to salt stress. This discovery provides insight into the dynamic regulation of ABA synthesis in plants under salt stress conditions, highlighting the delicate balance between stress resistance and growth regulation.
Collapse
Affiliation(s)
- Lingli Jiang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Weiyu Xiao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Huiping Chen
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Yinyao Qi
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Xinyu Kuang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Jiahui Shi
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Zhenming Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jianzhong Cao
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Feng Yu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
| | - Long Wang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Gerater by Area Institute For Innovation, Hunan University, Changsha, 410082, China
- Chongqing Research Institute, Hunan University, Chongqing, 401120, China
| |
Collapse
|
121
|
Guo W, Chen J, Liu L, Ren Y, Guo R, Ding Y, Li Y, Chai J, Sun Y, Guo C. MsMIOX2, encoding a MsbZIP53-activated myo-inositol oxygenase, enhances saline-alkali stress tolerance by regulating cell wall pectin and hemicellulose biosynthesis in alfalfa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:998-1013. [PMID: 39283985 DOI: 10.1111/tpj.17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
Alfalfa is one of the most widely cultivated forage crops worldwide. However, soil salinization restricts alfalfa growth and development and affects global productivity. The plant cell wall is the first barrier against various stresses. Therefore, elucidating the alterations in cell wall architecture is crucial for stress adaptation. This study aimed to clarify the impact of myo-inositol oxygenase 2 (MsMIOX2) on cell wall pectin and hemicellulose biosynthesis under saline-alkali stress and identify the upstream transcription factors that govern MsMIOX2. MsMIOX2 activation induced cell wall pectin and hemicellulose accumulation under saline-alkali stress. The effects of MsMIOX2 in saline-alkali tolerance were investigated by characterizing its overexpression and RNA interference lines. MsMIOX2 overexpression positively regulated the antioxidant system and photosynthesis in alfalfa under saline-alkali stress. MsMIOX2 exhibited myo-inositol oxygenase activity, which increased polysaccharide contents, facilitated pectin and hemicellulose biosynthesis, and extended the cell wall thickness. However, MsMIOX2 RNA interference decreased cell wall thickness and alleviated alfalfa saline-alkali stress tolerance. In addition, MsbZIP53 was identified as an upstream transcriptional MsMIOX2 regulator by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase, and beta-glucuronidase assays. MsbZIP53 overexpression increased MsMIOX2 expression, elevated MIOX activity, reinforced the antioxidant system and photosynthesis, and increased saline-alkali stress tolerance in alfalfa. In conclusion, this study presents a novel perspective for elucidating the molecular mechanisms of saline-alkali stress tolerance in alfalfa and emphasizes the potential use of MsMIOX2 in alfalfa breeding.
Collapse
Affiliation(s)
- Weileng Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiaxin Chen
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Lei Liu
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yuekun Ren
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Rui Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yang Ding
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Li
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Juqi Chai
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yuanqing Sun
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
122
|
Sun Y, Chen S, Grin IR, Zharkov DO, Yu B, Li H. The dual role of methylglyoxal in plant stress response and regulation of DJ-1 protein. PHYSIOLOGIA PLANTARUM 2024; 176:e14608. [PMID: 39508129 DOI: 10.1111/ppl.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Methylglyoxal (MG) is a highly reactive metabolic intermediate that plays important roles in plant salt stress response. This review explores the sources of MG in plants, how salt stress promotes MG production, and the dual role of MG under salt stress conditions. Both the positive role of low concentrations of MG as a signalling molecule and the toxic effects of high concentrations of MG in plant response to salt stress are discussed. The MG detoxification pathways, especially the glyoxalase system, are described in detail. Special attention is given to the novel role of the DJ-1 protein in the glyoxalase system as glyoxalase III to remove MG, and as a deglycase to decrease glycation damage caused by MG on DNA, proteins, and other biomolecules. This review aims to provide readers with comprehensive perspectives on the functions of MG in plant salt stress response, the roles of the DJ-1 protein in MG detoxification and repair of glycation-damaged molecules, as well as the broader functional implications of MG in plant salt stress tolerance. New perspectives on maintaining plant genome stability, breeding for salt-tolerant crop varieties, and improving crop quality are discussed.
Collapse
Affiliation(s)
- Yutong Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
123
|
Yu S, Zhang S, Lu L, Liu L, Liang J, Lang S, Wang C, Wang L, Li Z. Effects of combined ultrasound and calcium ion pretreatments on polyphenols during mung bean germination: Exploring underlying mechanisms. Food Res Int 2024; 195:114947. [PMID: 39277225 DOI: 10.1016/j.foodres.2024.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Mung beans were pretreated with a combination of ultrasonic and calcium ion to enhance the polyphenol content and antioxidant capacity during germination. Changes in polyphenol content and antioxidant capacity during germination, along with underlying mechanisms, were investigated. Both single ultrasound and combined ultrasound-Ca2+ pretreatments significantly increased the polyphenol content and enhanced the antioxidant capacity (p < 0.05) of mung beans depending on germination period. Among 74 polyphenolic metabolites identified in germinated mung beans, 50 were differential. Notably, 23 of these metabolites showed a significant positive correlation with antioxidant activity. Ultrasound pretreatment promoted flavonoid biosynthesis, whereas ultrasound-Ca2+ pretreatment favored the tyrosine synthesis pathway. Polyphenol composition and accumulation changes were mainly influenced by metabolic pathways like flavonoid, isoflavonoid, anthocyanin, and flavone/flavonol biosynthesis. The results suggest that ultrasound alone or combined with calcium ion pretreatments effectively enhance mung bean polyphenol content and antioxidant capacity during germination.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lele Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lijuan Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jiaxin Liang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuangjing Lang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, PR China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
124
|
Ge Y, Chen G, Cheng X, Li C, Tian Y, Chi W, Li J, Dai Z, Wang C, Duan E, Liu Y, Sun Z, Li J, Wang B, Xu D, Sun X, Zhang H, Zhang W, Wang C, Wan J. The superior allele LEA12 OR in wild rice enhances salt tolerance and yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2971-2984. [PMID: 38923790 PMCID: PMC11501004 DOI: 10.1111/pbi.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST. Here, we report that the elite allele LEA12OR, which encodes a late embryogenesis abundant (LEA) protein from the wild rice Oryza rufipogon Griff., improves osmotic adjustment and increases yield under salt stress. Mechanistically, LEA12OR, as the early regulator of the LEA12OR-OsSAPK10-OsbZIP86-OsNCED3 functional module, maintains the kinase stability of OsSAPK10 under salt stress, thereby conferring ST by promoting abscisic acid biosynthesis and accumulation in rice. The superior allele LEA12OR provides a new avenue for improving ST and yield via the application of LEA12OR in current rice through molecular breeding and genome editing.
Collapse
Affiliation(s)
- Yuwei Ge
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Jin Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yan Liu
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Jingfang Li
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Dayong Xu
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Xianjun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of AgriculturalSciencesBeijingChina
| | - Hui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of AgriculturalSciencesBeijingChina
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratorySouthern Japonica Rice R&D Corporation LtdNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of AgriculturalSciencesBeijingChina
| |
Collapse
|
125
|
Wang M, Wang T, Kou J, Wu J, Shao G, Wei J, Liu J, Ma P. SmJAZ3/4 positively and SmJAZ8 negatively regulates salt tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109151. [PMID: 39332329 DOI: 10.1016/j.plaphy.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Salvia miltiorrhiza Bunge, a model plant for medicinal research, is extensively utilized for its dried roots and rhizomes for treatment of various diseases. Soil salinization hinders the large-scale cultivation and industrial production of S. miltiorrhiza by affecting its active compounds. Methyl jasmonate (MeJA) is a crucial plant hormone that regulates plant responses under salt stress. Jasmonate zim domain (JAZ) proteins function as transcriptional repressors in jasmonic acid (JA) signaling pathways. This study explores the interaction between JA and salt stress by using transgenic Arabidopsis thaliana to elucidate the roles of SmJAZ3, SmJAZ4, and SmJAZ8. We found that 2.5 μM MeJA reduced the inhibitory effect of 150 mM NaCl on wild-type seed germination, and this effect was reversed by 15 μM dihydroxyindole-2-carboxylic acid (DIECA). Similar results were observed in transgenic A. thaliana lines overexpressing SmJAZ3/4/8. Inclusion of SmJAZ3/4 enhanced salt resistance by increasing antioxidant enzyme activity, chlorophyll content, proline content, and Na+/K+ content, while SmJAZ8 had the opposite effect. These findings suggest that appropriate concentrations of MeJA can alleviate the negative effect of salt stress on plant growth and development. Investigating the salt tolerance of SmJAZ3/4/8 is significant for cultivating high-quality salt-tolerant S. miltiorrhiza.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingyang Kou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jiafeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gaige Shao
- Xian Agricultural Technology Extension Center, Xian, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
126
|
Hua Y, Pei M, Song H, Liu Y, Zhou T, Chao H, Yue C, Huang J, Qin G, Feng Y. Boron confers salt tolerance through facilitating BnaA2.HKT1-mediated root xylem Na + unloading in rapeseed (Brassica napus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1326-1342. [PMID: 39453388 DOI: 10.1111/tpj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Boron (B) is an important limiting factor for plant growth and yield in saline soils, but the underlying molecular mechanisms remain poorly understood. In this study, we found that appropriate B supply obviously complemented rapeseed (Brassica napus L.) growth under salinity accompanied by higher biomass production and less reactive oxygen species accumulation. Determination of Na+ content in shoots and roots indicated that B significantly repressed root-to-shoot Na+ translocation, and non-invasive micro-tests of root xylem sap demonstrated that B increased xylem Na+ unloading in the roots of rapeseed plants under salinity. Comparative transcriptomic profiling revealed that B strongly upregulated BnaHKT1s expression, especially BnaA2.HKT1, in rapeseed roots exposed to salinity. In situ hybridizations analysis showed that BnaA2.HKT1 was significantly induced in root stelar tissues by high B (HB) under salinity. Green fluorescent protein and yeast heterologous expression showed that BnaA2.HKT1 functioned as a plasma membrane-localized Na+ transporter. Knockout of BnaA2.HKT1 by CRISPR/Cas9 resulted in hypersensitive of rapeseed plants to salinity even under HB condition, with higher shoot Na+ accumulation and lower biomass production. By contrast, overexpression of BnaA2.HKT1 ameliorated salinity-induced growth inhibition under B deficiency and salinity. Overall, our results proposed that B functioned as a positive regulator for the rapeseed growth and seed production under salt stress through facilitating BnaA2.HKT1-mediated root xylem Na+ unloading. This study may also provide an alternative strategy for the improvement of crop growth and development in saline soils.
Collapse
Affiliation(s)
- Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Minnan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haili Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Liu
- School of Biological Engineering, Xinxiang Institute of Engineering, Xinxiang, 453700, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Caipeng Yue
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingna Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
127
|
He L, Chen T, Zhao C, Zhao L, Zhao Q, Yao S, Zhu Z, Lu K, Wang C, Zhang Y. RST31 controls salt tolerance in rice (Oryza sativa) by regulating the cytokinin pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109075. [PMID: 39241632 DOI: 10.1016/j.plaphy.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Salt stress affects the growth of rice, which reduces grain yield. However, the mechanism of the rice response to salt stress is not fully understood. The rice salt tolerance 31 (rst31) mutant exhibits longer shoots and greater dry weight than wild type (WT) plants under salt stress conditions. Through map-based cloning and genetic complementation methods, we determined that RST31 encodes a half-size ABCG transporter protein, ABCG18. We showed that mutation of RST31 reduces DNA damage under salt stress, with less accumulation of reactive oxygen species (ROS). The deficiency of RST31 suppressed the root-to-shoot transport of cytokinin, which resulted in a decrease in cytokinin content in the shoot and an increase in cytokinin content in the root. ROS accumulated abundantly in WT and rst31 mutant plants after exogenous treatment with trans-zeatin, reducing rst31 tolerance of salt stress. Collectively, our results suggest that high cytokinin level in shoots leads to an increase in ROS content and severe DNA damage under salt stress, which lead to sensitivity to salt stress. These findings enhance our understanding of plant responses to salt stress through cytokinin pathways.
Collapse
Affiliation(s)
- Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Chunfang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Qingyong Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Shu Yao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Zhen Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Kai Lu
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| |
Collapse
|
128
|
Bonnin M, Soriano A, Favreau B, Lourkisti R, Miranda M, Ollitrault P, Oustric J, Berti L, Santini J, Morillon R. Comparative transcriptomic analyses of diploid and tetraploid citrus reveal how ploidy level influences salt stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1469115. [PMID: 39544537 PMCID: PMC11561191 DOI: 10.3389/fpls.2024.1469115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
Introduction Citrus is an important fruit crop for human health. The sensitivity of citrus trees to a wide range of abiotic stresses is a major challenge for their overall growth and productivity. Among these abiotic stresses, salinity results in a significant loss of global citrus yield. In order to find straightforward and sustainable solutions for the future and to ensure citrus productivity, it is of paramount importance to decipher the mechanisms responsible for salinity stress tolerance. Thisstudy aimed to investigate how ploidy levels influence salt stress tolerance in citrus by comparing the transcriptomic responses of diploid and tetraploid genotypes. In a previous article we investigated the physiological and biochemical response of four genotypes with different ploidy levels: diploid trifoliate orange (Poncirus trifoliata [L.] Raf.) (PO2x) and Cleopatra mandarin (Citrus reshni Hort. Ex Tan.) (CL2x) and their respective tetraploids (PO4x, CL4x). Methods In this study, we useda multifactorial gene selection and gene clustering approach to finely dissect the influence of ploidy level on the salt stress response of each genotype. Following transcriptome sequencing, differentially expressed genes (DEGs) were identified in response to salt stress in leaves and roots of the different citrus genotypes. Result and discussion Gene expression profiles and functional characterization of genes involved in the response to salt stress, as a function of ploidy level and the interaction between stress response and ploidy level, have enabled us to highlight the mechanisms involved in the varieties tested. Saltstress induced overexpression of carbohydrate biosynthesis and cell wall remodelling- related genes specifically in CL4x Ploidy level enhanced oxidative stress response in PO and ion management capacity in both genotypes. Results further highlighted that under stress conditions, only the CL4x genotype up- regulated genes involved in sugar biosynthesis, transport management, cell wall remodelling, hormone signalling, enzyme regulation and antioxidant metabolism. These findings provide crucial insights that could inform breeding strategies for developing salt-tolerant citrus varieties.
Collapse
Affiliation(s)
- Marie Bonnin
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Alexandre Soriano
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Bénédicte Favreau
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Radia Lourkisti
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Maëva Miranda
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Julie Oustric
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Liliane Berti
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Jérémie Santini
- Projet Ressources Naturelles Axe Adaptation des végé taux aux changements globaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR CNRS) 6134 Science Pour l’Environment (SPE), Universitéde Corse, Corsica, France
| | - Raphaël Morillon
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR AGAP) Institut, Univ. Montpellier, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| |
Collapse
|
129
|
Wang Y, Liu H, Wang M, Liu J, Geng G, Wang Y. Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:3018. [PMID: 39519937 PMCID: PMC11548545 DOI: 10.3390/plants13213018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The continuous global escalation of soil salinization areas presents severe challenges to the stability and growth of agricultural development across the world. In-depth research on sugar beet (Beta vulgaris L.), an important economic and sugar crop with salt tolerance characteristics, is crucial for to determine its salt-tolerance mechanisms, which has important practical implications for production. This review summarizes the multifaceted effects of salt stress on sugar beet, ranging from individual plant responses to cellular and molecular adaptations. Sugar beet exhibits robust salt-tolerance mechanisms, including osmotic regulation, ion balance management, and the compartmentalization of toxic ions. Omics technologies, including genomics, transcriptomics, proteomics, post-translational modification omics and metabolomics, have played crucial roles in elucidating these mechanisms. Key genes and pathways involved in salt tolerance in sugar beet have been identified, paving the way for targeted breeding strategies and biotechnological advancements. Understanding these mechanisms not only enhances our knowledge of sugar beet's adaptation strategies but also provides insights for improving salt tolerance in other crops. Future studies should focus on analyzing gene expression changes in sugar beet under salt stress to gain insight into the molecular aspects of its salt-tolerance mechanisms. Meanwhile, the effects of different environmental conditions on sugar beet adaptation strategies should also be investigated to improve their growth potential in salinized soils.
Collapse
Affiliation(s)
- Yuetong Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Huajun Liu
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, Xinjiang, China
| | - Maoqian Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jiahui Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gui Geng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
130
|
Gong M, Han W, Jiang Y, Yang X, He J, Kong M, Huo Q, Lv G. Physiological and transcriptomic analysis reveals the coating of microcapsules embedded with bacteria can enhance wheat salt tolerance. BMC PLANT BIOLOGY 2024; 24:1004. [PMID: 39448914 PMCID: PMC11515405 DOI: 10.1186/s12870-024-05718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H2O2) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.
Collapse
Affiliation(s)
- Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan, 250013, China
| | - Yawen Jiang
- College of Resources and Environmental Sciences, Shanxi Agricultural University, Taiyuan, 030801, China
| | - Xi Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China.
- National Saline-alkali Soil Comprehensive Utilization Technology Innovation Center, Dongying, 257000, China.
| |
Collapse
|
131
|
Yang G, Li Z, Rong M, Yu R, Zhang Q, Wang G, Xu Z, Du X, Xu X. Comparative transcriptome analysis to identify the important mRNA and lncRNA associated with salinity tolerance in alfalfa. PeerJ 2024; 12:e18236. [PMID: 39430557 PMCID: PMC11490228 DOI: 10.7717/peerj.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Salinity represents a fatal factor affecting the productivity of alfalfa. But the regulation of salinity tolerance via lncRNAs and mRNAs remains largely unclear within alfalfa. For evaluating salinity stress resistance-related lncRNAs and mRNAs within alfalfa, we analyzed root transcriptomics in two alfalfa varieties, GN5 (salinity-tolerant) and GN3 (salinity-sensitive), after treatments with NaCl at 0 and 150 mM. There were altogether 117,677 lncRNAs and 172,986 mRNAs detected, including 1,466 lncRNAs and 2,288 mRNAs with significant differential expression in GN5150/GN50, GN3150/GN30, GN50/GN30, and GN5150/GN3150. As revealed by GO as well as KEGG enrichment, some ionic and osmotic stress-associated genes, such as HPCA1-LRR, PP2C60, PP2C71, CRK1, APX3, HXK2, BAG6, and ARF1, had up-regulated levels in GN5 compared with in GN3. In addition, NaCl treatment markedly decreased CNGC1 expression in GN5. According to co-expressed network analyses, six lncRNAs (TCONS_00113549, TCONS_00399794, TCONS_00297228, TCONS_00004647, TCONS_00033214 and TCONS_00285177) modulated 66 genes including ARF1, BAG6, PP2C71, and CNGC1 in alfalfa roots, suggesting that these nine genes and six lncRNAs probably facilitated the different salinity resistance in GN5 vs. GN3. These results shed more lights on molecular mechanisms underlying genotype difference in salinity tolerance among alfalfas.
Collapse
Affiliation(s)
- Gaimei Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Zhengyan Li
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mengru Rong
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiting Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiming Xu
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xian Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
132
|
Mir R, Mircea DM, Ruiz-González MX, Brocal-Rubio P, Boscaiu M, Vicente O. Cakile maritima: A Halophyte Model to Study Salt Tolerance Mechanisms and Potential Useful Crop for Sustainable Saline Agriculture in the Context of Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:2880. [PMID: 39458826 PMCID: PMC11511379 DOI: 10.3390/plants13202880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Salinity is an increasing problem for agriculture. Most plant species tolerate low or, at best, moderate soil salinities. However, a small (<1%) proportion of species, termed halophytes, can survive and complete their life cycle in natural habitats with salinities equivalent to 200 mM NaCl or more. Cakile maritima is a succulent annual halophyte belonging to the Brassicaceae family; it is dispersed worldwide and mainly grows in foreshores. Cakile maritima growth is optimal under slight (i.e., 100 mM NaCl) saline conditions, measured by biomass and seed production. Higher salt concentrations, up to 500 mM NaCl, significantly impact its growth but do not compromise its survival. Cakile maritima alleviates sodium toxicity through different strategies, including anatomical and morphological adaptations, ion transport regulation, biosynthesis of osmolytes, and activation of antioxidative mechanisms. The species is potentially useful as a cash crop for the so-called biosaline agriculture due to its production of secondary metabolites of medical and nutritional interest and the high oil accumulation in its seeds. In this review, we highlight the relevance of this species as a model for studying the basic mechanisms of salt tolerance and for sustainable biosaline agriculture in the context of soil salination and climate change.
Collapse
Affiliation(s)
- Ricardo Mir
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Diana M. Mircea
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (D.M.M.); (M.B.)
| | - Mario X. Ruiz-González
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | | | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (D.M.M.); (M.B.)
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
133
|
Irin IJ, Hasanuzzaman M. Role of organic amendments in improving the morphophysiology and soil quality of Setaria italica under salinity. Heliyon 2024; 10:e38159. [PMID: 39386792 PMCID: PMC11462332 DOI: 10.1016/j.heliyon.2024.e38159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Salinity negatively impacts soil fertility by impairing the development and physiological functions of foxtail millet plants. Organic amendments have emerged as a viable solution in the reclamation and management of salinity inflicted soils and improve the performance of crop. In this regard, a pot experiment was carried out to examine the effect of organic amendments (OAs) on soil quality and its influence on the growth and physiology of foxtail millet under saline and non-saline condition. The findings indicated that under salt stress conditions, the levels of proline, hydrogen peroxide (H2O2), and electrolyte leakage (EL) risen, whilst other physiological parameters decrease in foxtail millet. However, the addition of OAs, particularly dhaincha and biochar (BC), has shown a promising salt tolerant amendment among others. Its addition improved the growth performance of salinity-stressed plants, including plant height, fresh and dry biomass, simultaneously decreased sodium ion (Na+) and improved calcium (Ca2+), potassium (K+), and nitrate ion (NO3 -). They also increased proline build up by 6-17 %, reduced H2O2 (19-38 %) and malondialdehyde (16-18 %). Furthermore, they elevated the relative water content (RWC) (25 %), chlorophyll content, and reduced EL (29-50 %). Once more, dhaincha and BC enhanced the number of rhizobia, phosphorus-solubilizing bacteria (PSB) and overall bacterial population in the soil. In saline soil, daincha and BC could enhance soil organic matter (628 %), total nitrogen (1630 %), available phosphorus (32-38 %), and exchangeable potassium (54-73 %). A potential strategy for improving setaria italica performance under salt is suggested to be the following order, dhaincha > biochar > vermicompost > duckweed. The study would assist stakeholders in these salinity-prone areas in strategizing the use of OAs to their fallow land for cultivation and agricultural activities.
Collapse
Affiliation(s)
- Israt Jahan Irin
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
134
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
135
|
Yin X, Gao Q, Wang F, Liu W, Luo Y, Zhong S, Feng J, Bai R, Chen L, Dai X, Liang M. Marker-Assisted Selection of Jacalin-Related Lectin Genes OsJRL45 and OsJRL40 Derived from Sea Rice 86 Enhances Salt Tolerance in Rice. Int J Mol Sci 2024; 25:10912. [PMID: 39456694 PMCID: PMC11507410 DOI: 10.3390/ijms252010912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization limits rice growth and is an important restriction on grain yield. Jacalin-related lectins are involved in multiple stress responses, but their role in salt stress responses and use as molecular markers for salt tolerance remain poorly understood. Salt stress treatments and RT-qPCR analyses of Sea Rice 86 (SR86), 9311, and Nipponbare (Nip) showed that OsJRL45 and OsJRL40 enhanced tolerance of salt stress in SR86. Molecular markers based on sequence differences in SR86 and the salt-sensitive variety, 9311, in the intergenic region between OsJRL45 and OsJRL40 were validated in recombinant inbred lines derived from SR86 and 9311, hybrid populations, and common rice varieties. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that OsJRL45 and OsJRL40 interacted. Co-transformation of Nip with OsJRL45 and OsJRL40 derived from SR86 had no effect on the mature phenotype in T2 plants; however, salt stress at the three-leaf stage led to significant increases in CAT, POD, SOD, and Pro contents, but reduced MDA content in transgenic plants. Transcriptomic analysis identified 834 differentially expressed genes in transgenic plants under salt stress. GO and KEGG enrichment analyses indicated that metabolic pathways related to antioxidant responses and osmotic balance were crucial for salt-stress tolerance. Thus, molecular markers based on nucleotide differences in OsJRL45 and OsJRL40 provide a novel method for identifying salt-tolerant rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaojun Dai
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China; (X.Y.); (Q.G.); (F.W.); (W.L.); (Y.L.); (S.Z.); (J.F.); (R.B.); (L.C.)
| | - Manzhong Liang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China; (X.Y.); (Q.G.); (F.W.); (W.L.); (Y.L.); (S.Z.); (J.F.); (R.B.); (L.C.)
| |
Collapse
|
136
|
Miao C, Zhang Y, Cui J, Zhang H, Wang H, Jin H, Lu P, He L, Zhou Q, Yu J, Ding X. An Enhanced Interaction of Graft and Exogenous SA on Photosynthesis, Phytohormone, and Transcriptome Analysis in Tomato under Salinity Stress. Int J Mol Sci 2024; 25:10799. [PMID: 39409129 PMCID: PMC11477039 DOI: 10.3390/ijms251910799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Salt stress can adversely affect global agricultural productivity, necessitating innovative strategies to mitigate its adverse effects on plant growth and yield. This study investigated the effects of exogenous salicylic acid (SA), grafting (G), and their combined application (GSA) on various parameters in tomato plants subjected to salt stress. The analysis focused on growth characteristics, photosynthesis, osmotic stress substances, antioxidant enzyme activity, plant hormones, ion content, and transcriptome profiles. Salt stress severely inhibits the growth of tomato seedlings. However, SA, G, and GSA improved the plant height by 22.5%, 26.5%, and 40.2%; the stem diameter by 11.0%, 26.0%, and 23.7%; the shoot fresh weight by 76.3%, 113.2%, and 247.4%; the root fresh weight by 150.9%, 238.6%, and 286.0%; the shoot dry weight by 53.5%, 65.1%, and 162.8%; the root dry weight by 150.0%, 150.0%, and 166.7%, and photosynthesis by 4.0%, 16.3%, and 32.7%, with GSA presenting the most pronounced positive effect. Regarding the osmotic stress substances, the proline content increased significantly by more than 259.2% in all treatments, with the highest levels in GSA. Under salt stress, the tomato seedlings accumulated high Na+ levels; the SA, G, and GSA treatments enhanced the K+ and Ca2+ absorption while reducing the Na+ and Al3+ levels, thereby alleviating the ion toxicity. The transcriptome analysis indicated that SA, G, and GSA influenced tomato growth under salt stress by regulating specific signaling pathways, including the phytohormone and MAPK pathways, which were characterized by increased endogenous SA and decreased ABA content. The combined application of grafting and exogenous SA could be a promising strategy for enhancing plant tolerance to salt stress, offering potential solutions for sustainable agriculture in saline environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai 201403, China; (C.M.)
| |
Collapse
|
137
|
Jia T, Gu J, Ma M. La (NO 3) 3 substantially fortified Glycyrrhiza uralensis's resilience against salt stress by interconnected pathways. BMC PLANT BIOLOGY 2024; 24:926. [PMID: 39367329 PMCID: PMC11452937 DOI: 10.1186/s12870-024-05644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
The taproot of Glycyrrhiza uralensis is globally appreciated for its medicinal and commercial value and is one of the most popular medicinal plants. With the decline of wild G. uralensis resources, cultivated G. uralensis has become a key method to ensure supply. However, soil salinization poses challenges to G. uralensis cultivation and affects the yield and quality of it. In this study, the inhibitory effects of NaCl and Na2SO4 on yield and quality of G. uralensis were comprehensively evaluated in a three-year large-scale pot experiment, and the alleviating effects of supplementation with lanthanum nitrate (La (NO3)3) on G. uralensis were further evaluated under salt stress. The findings indicate that La (NO3)3 significantly strengthened the plant's salt tolerance by enhancing photosynthetic capacity, osmolyte accumulation, antioxidant defenses, and cellular balance of ions, which led to a substantial increase in root biomass and accumulation of major medicinal components. In comparison to the NaCl-stress treatment, the 0.75 M La (NO3)3 + NaCl treatment resulted in a 20% and 34% increase in taproot length and biomass, respectively, alongside a 52% and 43% rise in glycyrrhizic acid and glycyrrhizin content, respectively. Similar improvements were observed with 0.75 M La (NO3)3 + Na2SO4 treatment, which increased root length and biomass by 14% and 26%, respectively, and glycyrrhizic acid and glycyrrhizin content by 40% and 38%, respectively. The combined showed that application of La (NO3)3 not only significantly improved the salt resilience of G. uralensis, but also had a more pronounced alleviation of growth inhibition induced by NaCl compared to Na2SO4 stress except in the gas exchange parameters and root growth. This study provides a scientific basis for high-yield and high-quality cultivation of G. uralensis in saline soils and a new approach for other medicinal plants to improve their salt tolerance.
Collapse
Affiliation(s)
- Tingting Jia
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, The People's Republic of China
| | - Junjun Gu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, The People's Republic of China
| | - Miao Ma
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, The People's Republic of China.
| |
Collapse
|
138
|
Song Y, Tang H, Zhang Z, Sun X, Ding X, Guo X, Wang Q, Chen J, Dong W. A Novel MsEOBI-MsPAL1 Module Enhances Salinity Stress Tolerance, Floral Scent Emission and Seed Yield in Alfalfa. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360571 DOI: 10.1111/pce.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Alfalfa (Medicago sativa L.) is an important and widely cultivated forage legume, yet its yield is constrained by salinity stress. In this study, we characterized an R2R3-MYB transcription factor MsEOBI in alfalfa. Its salt tolerance function and regulatory pathways were investigated. The nuclear-localized MsEOBI functions as a transcriptional activator, enhancing salinity tolerance by promoting the biosynthesis of flavonoids and lignin, as well as facilitating the scavenging of reactive oxygen species (ROS). Additionally, MsEOBI promotes pollinator attraction and increases seed yield by activating the biosynthesis of volatile phenylpropanoids. Yeast one-hybrid (Y1H), dual-luciferase reporter and chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays demonstrated that MsEOBI directly binds to the promoter regions of MsPAL1, a key gene in the phenylpropanoid pathway, thereby activating its expression. Overexpression of MsPAL1 enhances salinity tolerance in alfalfa. These findings elucidate the role of the MsEOBI-MsPAL1 regulatory module and provide valuable genetic resources for the future breeding of salt-tolerant alfalfa varieties.
Collapse
Affiliation(s)
- Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Zhaoran Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Xueying Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Xinru Ding
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Xinying Guo
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Qi Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| |
Collapse
|
139
|
Zhuang S, Yu Z, Li J, Wang F, Zhang C. Physiological and transcriptomic analyses reveal the molecular mechanism of PsAMT1.2 in salt tolerance. TREE PHYSIOLOGY 2024; 44:tpae113. [PMID: 39231271 DOI: 10.1093/treephys/tpae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Soil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with wild type under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase and ascorbate peroxidase activities, and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity and anion transport. Among the 1056 differentially expressed genes, genes related to photosystem I and photosystem II were up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.
Collapse
Affiliation(s)
- Shuaijun Zhuang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Zhaoyou Yu
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jiayuan Li
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Fan Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Chunxia Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
140
|
Liu L, Luo S, Ma L, Zhang Y, Wang T, Wang J, Liang X, Xue S. Analysis of Ion Transport Properties of Glycine max HKT Transporters and Identifying a Regulation of GmHKT1;1 by the Non-Functional GmHKT1;4. PLANT & CELL PHYSIOLOGY 2024; 65:1399-1413. [PMID: 38978103 DOI: 10.1093/pcp/pcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
High-affinity potassium transporters (HKTs) play an important role in plants responding to salt stress, but the transport properties of the soybean HKT transporters at the molecular level are still unclear. Here, using Xenopus oocyte as a heterologous expression system and two-electrode voltage-clamp technique, we identified four HKT transporters, GmHKT1;1, GmHKT1;2, GmHKT1;3 and GmHKT1;4, all of which belong to type I subfamily, but have distinct ion transport properties. While GmHKT1;1, GmHKT1;2 and GmHKT1;3 function as Na+ transporters, GmHKT1;1 is less selective against K+ than the two other transporters. Astonishingly, GmHKT1;4, which lacks transmembrane segments and has no ion permeability, is significantly expressed, and its gene expression pattern is different from the other three GmHKTs under salt stress. Interestingly, GmHKT1;4 reduced the Na+/K+ currents mediated by GmHKT1;1. Further study showed that the transport ability of GmHKT1;1 regulated by GmHKT1;4 was related to the structural differences in the first intracellular domain and the fourth repeat domain. Overall, we have identified one unique GmHKT member, GmHKT1;4, which modulates the Na+ and K+ transport ability of GmHKT1;1 via direct interaction. Thus, we have revealed a new type of HKT interaction model for altering their ion transport properties.
Collapse
Affiliation(s)
- Liu Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Longfei Ma
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Yanli Zhang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Tiantian Wang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Jicheng Wang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Xiushuo Liang
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| |
Collapse
|
141
|
Che J, Yamaji N, Wang SF, Xia Y, Yang SY, Su YH, Shen RF, Ma JF. OsHAK4 functions in retrieving sodium from the phloem at the reproductive stage of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:76-90. [PMID: 39139125 DOI: 10.1111/tpj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity significantly limits rice productivity, but it is poorly understood how excess sodium (Na+) is delivered to the grains at the reproductive stage. Here, we functionally characterized OsHAK4, a member of the clade IV HAK/KUP/KT transporter subfamily in rice. OsHAK4 was localized to the plasma membrane and exhibited influx transport activity for Na+, but not for K+. Analysis of organ- and growth stage-dependent expression patterns showed that very low expression levels of OsHAK4 were detected at the vegetative growth stage, but its high expression in uppermost node I, peduncle, and rachis was found at the reproductive stage. Immunostaining indicated OsHAK4 localization in the phloem region of node I, peduncle, and rachis. Knockout of OsHAK4 did not affect the growth and Na+ accumulation at the vegetative stage. However, at the reproductive stage, the hak4 mutants accumulated higher Na+ in the peduncle, rachis, husk, and brown rice compared to the wild-type rice. Element imaging revealed higher Na+ accumulation at the phloem region of the peduncle in the mutants. These results indicate that OsHAK4 plays a crucial role in retrieving Na+ from the phloem in the upper nodes, peduncle, and rachis, thereby preventing Na+ distribution to the grains at the reproductive stage of rice.
Collapse
Affiliation(s)
- Jing Che
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Shao Fei Wang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun Ying Yang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yan Hua Su
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
142
|
Gao Y, Cui Y, Li M, Kang J, Yang Q, Ma Q, Long R. Comparative proteomic discovery of salt stress response in alfalfa roots and overexpression of MsANN2 confers salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109033. [PMID: 39137681 DOI: 10.1016/j.plaphy.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity constrains growth, development and yield of alfalfa (Medicago sativa L.). To illustrate the molecular mechanisms responsible for salt tolerance, a comparative proteome analysis was explored to characterize protein profiles of alfalfa seedling roots exposed to 100 and 200 mM NaCl for three weeks. There were 52 differentially expressed proteins identified, among which the mRNA expressions of 12 were verified by Real-Time-PCR analysis. The results showed increase in abundance of ascorbate peroxidase, POD, CBS protein and PR-10 in salt-stressed alfalfa, suggesting an effectively antioxidant and defense systems. Alfalfa enhanced protein quality control system to refold or degrade abnormal proteins induced by salt stress through upregulation of unfolded protein response (UPR) marker PDIs and molecular chaperones (eg. HSP70, TCP-1, and GroES) as well as the ubiquitin-proteasome system (UPS) including ubiquitin ligase enzyme (E3) and proteasome subunits. Upregulation of proteins responsible for calcium signal transduction including calmodulin and annexin helped alfalfa adapt to salt stress. Specifically, annexin (MsANN2), a key Ca2+-binding protein, was selected for further characterization. The heterologous of the MsANN2 in Arabidopsis conferred salt tolerance. These results provide detailed information for salt-responsive root proteins and highlight the importance of MsANN2 in adapting to salt stress in alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanjun Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qiaoli Ma
- College of Forestry and Prataculture, Ningxia University, No. 489 West Helanshan Road, Yinchuan, Ningxia, 750021, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
143
|
Furio RN, Fernández AC, Albornoz PL, Yonny ME, Toscano Adamo ML, Ruiz AI, Nazareno MA, Coll Y, Díaz-Ricci JC, Salazar SM. Mitigation strategy of saline stress in Fragaria vesca using natural and synthetic brassinosteroids as biostimulants. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23327. [PMID: 39413063 DOI: 10.1071/fp23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.
Collapse
Affiliation(s)
- Ramiro N Furio
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Ana C Fernández
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina
| | - Patricia L Albornoz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina; and Cátedra de Anatomía Vegetal, Fac. Ciencias Naturales e IML UNT, Tucumán CP4000, Argentina
| | - Melisa Evangelina Yonny
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - María Luisa Toscano Adamo
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Ana I Ruiz
- Instituto de Morfología Vegetal, Fundación Miguel Lillo, Tucumán T4000JFE, Argentina
| | - Mónica Azucena Nazareno
- Instituto de Ciencias Químicas - Facultad de Agronomía y Agroindustrias - Universidad Nacional de Santiago del Estero, CONICET, Santiago del Estero CP4200, Argentina
| | - Yamilet Coll
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Vedado CP10400, Cuba
| | - Juan C Díaz-Ricci
- Instituto de Química Biológica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, and Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán CPT4000ILI, Argentina
| | - Sergio M Salazar
- Instituto Nacional de Tecnología Agropecuaria, EEA Famaillá, Tucumán CP4132, Argentina; and Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán CP4000ACS, Argentina
| |
Collapse
|
144
|
Ren Y, Jiang M, Zhu JK, Zhou W, Zhao C. Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2109-2125. [PMID: 39031490 DOI: 10.1111/jipb.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.
Collapse
Affiliation(s)
- Yuying Ren
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengdan Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies, Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunzhao Zhao
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
145
|
Zhu J, Sun C, Zhang Y, Zhang M, Zhao C, Lv C, Guo B, Wang F, Zhou M, Xu R. Functional analysis on the role of HvHKT1.4 in barley (Hordeum vulgare L.) salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109061. [PMID: 39182425 DOI: 10.1016/j.plaphy.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
High-affinity potassium transporters (HKTs) are well known proteins that govern the partitioning of Na+ between roots and shoots. Six HvHKTs were identified in barley and designated as HvHKT1.1, HvHKT1.3, HvHKT1.4, HvHKT1.5, HvHKT2.1 and HvHKT2.2 according to their similarity to previously reported OsHKTs. Among these HvHKTs, HvHKT1.4 was highly up-regulated under salinity stress in both leaves and roots of Golden Promise. Subcellular localization analysis showed that HvHKT1.4 is a plasma-membrane-localized protein. The knockout mutants of HvHKT1.4 showed greater salinity sensitivity and higher Na+ concentration in leaves than wild-type plants. Haplotype analysis of HvHKT1.4 in 344 barley accessions showed 15 single nucleotide substitutions in the CDS region, belonging to five haplotypes. Significant differences in mean salinity damage scores, leaf Na+ contents and Na+/K+ were found between Hap5 and other haplotypes with Hap5 showing better salinity tolerance. The results indicated that HvHKT1.4 can be an effective target in improving salinity tolerance through ion homeostasis.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chengqun Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
146
|
Chen M, Zhu C, Zhang H, Chen S, Wang X, Gan L. Endogenous γ-Aminobutyric Acid Accumulation Enhances Salinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2750. [PMID: 39409618 PMCID: PMC11479070 DOI: 10.3390/plants13192750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Rice is an important food crop worldwide but is usually susceptible to saline stress. When grown on soil with excessive salt, rice plants experience osmotic, ionic, and oxidative stresses that adversely affect growth performance. γ-Aminobutyric acid (GABA) is a nonproteinogenic amino acid that plays an important role in the metabolic activities of organisms. Glutamate decarboxylase (GAD) is the rate-limiting enzyme in GABA metabolism. Here, we genetically modified rice GAD by overexpression or CRISPR-mediated genome editing. These lines, named gad3-ox1 and gad3-ox2 or gad1/3-ko, were used to explore the effects of endogenous GABA accumulation on salt tolerance in rice. Both the gad3-ox1 and gad3-ox2 lines exhibited significant accumulation of the GABA content, whereas the gad1/3-ko line presented a reduced GABA content in vivo. Notably, the two overexpression lines were markedly resistant to salt stress compared with the wild-type and knockout lines. Furthermore, our results demonstrated that endogenous GABA accumulation in the gad3-ox1 and gad3-ox2 lines increased the contents of antioxidant substances and osmotic regulators, decreased the content of membrane lipid peroxidation products and the Na+ content, and resulted in strong tolerance to salt stress. Together, these data provide a theoretical basis for cultivating rice varieties with strong salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (C.Z.); (H.Z.); (S.C.); (X.W.)
| |
Collapse
|
147
|
Cao Q, Hao J, Zhang T, Liu L, Xu D, Wang C, Zhao Q, Zhang H, Zhang L. Isolation and functional analysis of the Larix olgensis LoNAC3 transcription factor gene. BMC PLANT BIOLOGY 2024; 24:881. [PMID: 39342102 PMCID: PMC11438299 DOI: 10.1186/s12870-024-05619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Larch is an important timber tree species. The traditional methods of tree genetic breeding have been progressing slowly. It is necessary to carry out gene function analysis and genetically modified breeding research. The NAC transcription factor family is a plant-specific transcription factor family with various biological functions, as shown in recent research. However, there are few studies on the NAC gene among gymnosperm coniferous species. RESULTS LoNAC3 with complete cds was identified and isolated from the cDNA of Larix olgensis based on transcriptome data. The cDNA length of LoNAC3 is 1185 bp, encoding 394 amino acids, with a conserved NAM domain located at the N-terminus, and subcellular localization in the nucleus. The results of real-time quantitative PCR analysis showed that at different growth stages and in different tissues of L. olgensis, the relative expression level of LoNAC3 was highest in the needles. After drought, salt, alkali stress and hormone treatment, expression was induced to different degrees. The expression level of LoNAC3 was significantly increased under drought and salt conditions. The relative expression level changed under methyl jasmonate (MeJA) and abscisic acid (ABA) treatment. By observing the phenotype of overexpressed LoNAC3 tobacco, it was found that overexpressed tobacco is shorter and blooms earlier than wild-type tobacco. Under abiotic stress, LoNAC3 overexpressed tobacco has lower germination rates and poorer growth status. Transgenic tobacco under stress treatment has a higher malondialdehyde (MDA) content than wild-type tobacco, while peroxidase (POD) activity is lower than wild-type tobacco. CONCLUSIONS Through the analysis of LoNAC3 sequence and promoter expression, it can be concluded that LoNAC3 is involved in the drought and salt stress response processes of L. olgensis, and is induced by ABA and MeJA expression. Overexpression of LoNAC3 leads to stunted tobacco growth and negatively regulates its tolerance to drought and salt stress through the reactive oxygen species pathway. The preliminary analysis of the expression pattern and function of the LoNAC3 can provide a theoretical basis and high-quality materials for genetic improvement of larch in later stages.
Collapse
Affiliation(s)
- Qing Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Junfei Hao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Tiantian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Lu Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Daixi Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Qingrong Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
148
|
Ma H, Zhao W, Duan W, Ma F, Li C, Li Z. Inversion model of soil salinity in alfalfa covered farmland based on sensitive variable selection and machine learning algorithms. PeerJ 2024; 12:e18186. [PMID: 39346075 PMCID: PMC11439395 DOI: 10.7717/peerj.18186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Timely and accurate monitoring of soil salinity content (SSC) is essential for precise irrigation management of large-scale farmland. Uncrewed aerial vehicle (UAV) low-altitude remote sensing with high spatial and temporal resolution provides a scientific and effective technical means for SSC monitoring. Many existing soil salinity inversion models have only been tested by a single variable selection method or machine learning algorithm, and the influence of variable selection method combined with machine learning algorithm on the accuracy of soil salinity inversion remain further studied. Methods Firstly, based on UAV multispectral remote sensing data, by extracting the spectral reflectance of each sampling point to construct 30 spectral indexes, and using the pearson correlation coefficient (PCC), gray relational analysis (GRA), variable projection importance (VIP), and support vector machine-recursive feature elimination (SVM-RFE) to screen spectral index and realize the selection of sensitive variables. Subsequently, screened and unscreened variables as model input independent variables, constructed 20 soil salinity inversion models based on the support vector machine regression (SVM), back propagation neural network (BPNN), extreme learning machine (ELM), and random forest (RF) machine learning algorithms, the aim is to explore the feasibility of different variable selection methods combined with machine learning algorithms in SSC inversion of crop-covered farmland. To evaluate the performance of the soil salinity inversion model, the determination coefficient (R2), root mean square error (RMSE) and performance deviation ratio (RPD) were used to evaluate the model performance, and determined the best variable selection method and soil salinity inversion model by taking alfalfa covered farmland in arid oasis irrigation areas of China as the research object. Results The variable selection combined with machine learning algorithm can significantly improve the accuracy of remote sensing inversion of soil salinity. The performance of the models has been improved markedly using the four variable selection methods, and the applicability varied among the four methods, the GRA variable selection method is suitable for SVM, BPNN, and ELM modeling, while the PCC method is suitable for RF modeling. The GRA-SVM is the best soil salinity inversion model in alfalfa cover farmland, with Rv 2 of 0.8888, RMSEv of 0.1780, and RPD of 1.8115 based on the model verification dataset, and the spatial distribution map of soil salinity can truly reflect the degree of soil salinization in the study area. Conclusion Based on our findings, the variable selection combined with machine learning algorithm is an effective method to improve the accuracy of soil salinity remote sensing inversion, which provides a new approach for timely and accurate acquisition of crops covered farmland soil salinity information.
Collapse
Affiliation(s)
- Hong Ma
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
- JiuQuan Vocational Technical College, JiuQuan, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou, China
| | - Wenju Zhao
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou, China
| | - Weicheng Duan
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou, China
| | - Fangfang Ma
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou, China
| | - Congcong Li
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou, China
| | - Zongli Li
- General Institute for Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, China
| |
Collapse
|
149
|
Qiao L, Li Y, Wang L, Gu C, Luo S, Li X, Yan J, Lu C, Chang Z, Gao W, Zhang X. Identification of Salt-Stress-Responding Genes by Weighted Gene Correlation Network Analysis and Association Analysis in Wheat Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2642. [PMID: 39339617 PMCID: PMC11435117 DOI: 10.3390/plants13182642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The leaf is not only the main site of photosynthesis, but also an important organ reflecting plant salt tolerance. Discovery of salt-stress-responding genes in the leaf is of great significance for the molecular improvement of salt tolerance in wheat varieties. In this study, transcriptome sequencing was conducted on the leaves of salt-tolerant wheat germplasm CH7034 seedlings at 0, 1, 6, 24, and 48 h after NaCl treatment. Based on weighted gene correlation network analysis of differentially expressed genes (DEGs) under salt stress, 12 co-expression modules were obtained, of which, 9 modules containing 4029 DEGs were related to the salt stress time-course. These DEGs were submitted to the Wheat Union database, and a total of 904,588 SNPs were retrieved from 114 wheat germplasms, distributed on 21 wheat chromosomes. Using the R language package and GAPIT program, association analysis was performed between 904,588 SNPs and leaf salt injury index of 114 wheat germplasms. The results showed that 30 single nucleotide polymorphisms (SNPs) from 15 DEGs were associated with salt tolerance. Then, nine candidate genes, including four genes (TaBAM, TaPGDH, TaGluTR, and TaAAP) encoding enzymes as well as five genes (TaB12D, TaS40, TaPPR, TaJAZ, and TaWRKY) encoding functional proteins, were identified by converting salt tolerance-related SNPs into Kompetitive Allele-Specifc PCR (KASP) markers for validation. Finally, interaction network prediction was performed on TaBAM and TaAAP, both belonging to the Turquoise module. Our results will contribute to a further understanding of the salt stress response mechanism in plant leaves and provide candidate genes and molecular markers for improving salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linyi Qiao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yijuan Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Liujie Wang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chunxia Gu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shiyin Luo
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xin Li
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jinlong Yan
- Millet Research Institute, Shanxi Agricultural University, Changzhi 046011, China
| | - Chengda Lu
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhijian Chang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wei Gao
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
150
|
Eprintsev AT, Anokhina GB, Selivanova PS, Moskvina PP, Igamberdiev AU. Biochemical and Epigenetic Regulation of Glutamate Metabolism in Maize ( Zea mays L.) Leaves under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2651. [PMID: 39339624 PMCID: PMC11434742 DOI: 10.3390/plants13182651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The effect of salt stress (150 mM NaCl) on the expression of genes, methylation of their promoters, and enzymatic activity of glutamate dehydrogenase (GDH), glutamate decarboxylase (GAD), and the 2-oxoglutarate (2-OG)-dehydrogenase (2-OGDH) complex was studied in maize (Zea mays L.). GDH activity increased continuously under salt stress, being 3-fold higher after 24 h. This was accompanied by the appearance of a second isoform with lower electrophoretic mobility. The expression of the Gdh1 gene strongly increased after 6-12 h of incubation, which corresponded to the demethylation of its promoter, while Gdh2 gene expression slightly increased after 2-6 h and then decreased. GAD activity gradually increased in the first 12 h, and then returned to the control level. This corresponded to the increase of Gad expression and its demethylation. Salt stress led to a 2-fold increase in the activity of 2-OGDH during the first 6 h of NaCl treatment, then the activity returned to the control level. Expression of the genes Ogdh1 and Ogdh3 peaked after 1-2 h of incubation. After 6-8 h with NaCl, the expression of these genes declined below the control levels, which correlated with the higher methylation of their promoters. We conclude that salt stress causes a redirection of the 2-OG flux to the γ-aminobutyric acid shunt via its amination to glutamate, by altering the expression of the Gdh1 and Gdh2 genes, which likely promotes the assembly of the native GDH molecule having a different subunit composition and greater affinity for 2-OG.
Collapse
Affiliation(s)
- Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394018, Russia; (A.T.E.); (G.B.A.); (P.S.S.); (P.P.M.)
| | - Galina B. Anokhina
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394018, Russia; (A.T.E.); (G.B.A.); (P.S.S.); (P.P.M.)
| | - Polina S. Selivanova
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394018, Russia; (A.T.E.); (G.B.A.); (P.S.S.); (P.P.M.)
| | - Polina P. Moskvina
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394018, Russia; (A.T.E.); (G.B.A.); (P.S.S.); (P.P.M.)
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|