101
|
Borowicz-Reutt KK. Effects of Antiarrhythmic Drugs on Antiepileptic Drug Action-A Critical Review of Experimental Findings. Int J Mol Sci 2022; 23:ijms23052891. [PMID: 35270033 PMCID: PMC8911389 DOI: 10.3390/ijms23052891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Severe cardiac arrhythmias developing in the course of seizures increase the risk of SUDEP (sudden unexpected death in epilepsy). Hence, epilepsy patients with pre-existing arrhythmias should receive appropriate pharmacotherapy. Concomitant treatment with antiarrhythmic and antiseizure medications creates, however, the possibility of drug–drug interactions. This is due, among other reasons, to a similar mechanism of action. Both groups of drugs inhibit the conduction of electrical impulses in excitable tissues. The aim of this review was the analysis of such interactions in animal seizure models, including the maximal electroshock (MES) test in mice, a widely accepted screening test for antiepileptic drugs.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
102
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
103
|
Quintero-Espinosa DA, Ortega-Arellano HF, Velez-Pardo C, Jimenez-Del-Rio M. Phenolic-rich extract of avocado Persea americana (var. Colinred) peel blunts paraquat/maneb-induced apoptosis through blocking phosphorylation of LRRK2 kinase in human nerve-like cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:660-676. [PMID: 34897981 DOI: 10.1002/tox.23433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
It is increasingly evident that LRRK2 kinase activity is involved in oxidative stress (OS)-induced apoptosis-a type of regulated cell death and neurodegeneration, suggesting LRRK2 inhibition as a potential therapeutic target. We report that a phenolic-rich extract of avocado Persea americana var. Colinred peel (CRE, 0.01 mg/ml) restricts environmental neurotoxins paraquat (1 mM)/maneb (0.05 mM)-induced apoptosis process through blocking reactive oxygen species (ROS) signaling and concomitant inhibition of phosphorylation of LRRK2 in nerve-like cells (NLCs). Indeed, PQ + MB at 6 h exposure significantly increased ROS (57 ± 5%), oxidation of protein DJ-1cys106SOH into DJ-1Cys106SO3 ([~3.7 f(old)-(i)ncrease]), augmented p-(S935)-LRRK2 kinase (~20-f(old) (i)ncrease), induced nuclei condensation/fragmentation (28 ± 6%), increased the expression of PUMA (~6.2-fi), and activated CASPASE-3 (CASP-3, ~4-fi) proteins; but significantly decreased mitochondrial membrane potential (ΔΨm, ~48 ± 4%), all markers indicative of apoptosis compared to untreated cells. Remarkably, CRE significantly diminished both OS-signals (i.e., DCF+ cells, DJ-1Cys106SO3) as well as apoptosis markers (e.g., PUMA, CASP-3, loss of ΔΨm, p-LRRK2 kinase) in NLCs exposed to PQ + MB. Furthermore, CRE dramatically reestablishes the transient intracellular Ca2+ flow (~300%) triggered by dopamine (DA) in neuronal cells exposed to PQ + MB. We conclude that PQ + MB-induced apoptosis in NLCs through OS-mechanism, involving DJ-1, PUMA, CASP-3, LRRK2 kinase, mitochondria damage, DNA fragmentation, and alteration of DA-receptors. Our findings imply that CRE protects NLCs directly via antioxidant mechanism and indirectly by blocking LRRK2 kinase against PQ + MB stress stimuli. These data suggest that CRE might be a potential natural antioxidant.
Collapse
Affiliation(s)
- Diana A Quintero-Espinosa
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Medellin, Colombia
| | - Hector Flavio Ortega-Arellano
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Medellin, Colombia
| |
Collapse
|
104
|
Tikhonov DB, Zhorov BS. P-Loop Channels: Experimental Structures, and Physics-Based and Neural Networks-Based Models. MEMBRANES 2022; 12:membranes12020229. [PMID: 35207150 PMCID: PMC8876033 DOI: 10.3390/membranes12020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
The superfamily of P-loop channels includes potassium, sodium, and calcium channels, as well as TRP channels and ionotropic glutamate receptors. A rapidly increasing number of crystal and cryo-EM structures have revealed conserved and variable elements of the channel structures. Intriguing differences are seen in transmembrane helices of channels, which may include π-helical bulges. The bulges reorient residues in the helices and thus strongly affect their intersegment contacts and patterns of ligand-sensing residues. Comparison of the experimental structures suggests that some π-bulges are dynamic: they may appear and disappear upon channel gating and ligand binding. The AlphaFold2 models represent a recent breakthrough in the computational prediction of protein structures. We compared some crystal and cryo-EM structures of P-loop channels with respective AlphaFold2 models. Folding of the regions, which are resolved experimentally, is generally similar to that predicted in the AlphaFold2 models. The models also reproduce some subtle but significant differences between various P-loop channels. However, patterns of π-bulges do not necessarily coincide in the experimental and AlphaFold2 structures. Given the importance of dynamic π-bulges, further studies involving experimental and theoretical approaches are necessary to understand the cause of the discrepancy.
Collapse
|
105
|
Gamal El-Din TM, Lenaeus MJ. Fenestropathy of Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:842645. [PMID: 35222049 PMCID: PMC8873592 DOI: 10.3389/fphar.2022.842645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium channels (Nav) are responsible for the initiation and propagation of action potentials in excitable cells. From pain to heartbeat, these integral membrane proteins are the ignition stations for every sensation and action in human bodies. They are large (>200 kDa, 24 transmembrane helices) multi-domain proteins that couple changes in membrane voltage to the gating cycle of the sodium-selective pore. Nav mutations lead to a multitude of diseases - including chronic pain, cardiac arrhythmia, muscle illnesses, and seizure disorders - and a wide variety of currently used therapeutics block Nav. Despite this, the mechanisms of action of Nav blocking drugs are only modestly understood at this time and many questions remain to be answered regarding their state- and voltage-dependence, as well as the role of the hydrophobic membrane access pathways, or fenestrations, in drug ingress or egress. Nav fenestrations, which are pathways that connect the plasma membrane to the central cavity in the pore domain, were discovered through functional studies more than 40 years ago and once thought to be simple pathways. A variety of recent genetic, structural, and pharmacological data, however, shows that these fenestrations are actually key functional regions of Nav that modulate drug binding, lipid binding, and influence gating behaviors. We discovered that some of the disease mutations that cause arrhythmias alter amino acid residues that line the fenestrations of Nav1.5. This indicates that fenestrations may play a critical role in channel's gating, and that individual genetic variation may also influence drug access through the fenestrations for resting/inactivated state block. In this review, we will discuss the channelopathies associated with these fenestrations, which we collectively name "Fenestropathy," and how changes in the fenestrations associated with the opening of the intracellular gate could modulate the state-dependent ingress and egress of drugs binding in the central cavity of voltage gated sodium channels.
Collapse
Affiliation(s)
| | - Michael J. Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
106
|
Nguyen HX, Wu T, Needs D, Zhang H, Perelli RM, DeLuca S, Yang R, Pan M, Landstrom AP, Henriquez C, Bursac N. Engineered bacterial voltage-gated sodium channel platform for cardiac gene therapy. Nat Commun 2022; 13:620. [PMID: 35110560 PMCID: PMC8810800 DOI: 10.1038/s41467-022-28251-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
Therapies for cardiac arrhythmias could greatly benefit from approaches to enhance electrical excitability and action potential conduction in the heart by stably overexpressing mammalian voltage-gated sodium channels. However, the large size of these channels precludes their incorporation into therapeutic viral vectors. Here, we report a platform utilizing small-size, codon-optimized engineered prokaryotic sodium channels (BacNav) driven by muscle-specific promoters that significantly enhance excitability and conduction in rat and human cardiomyocytes in vitro and adult cardiac tissues from multiple species in silico. We also show that the expression of BacNav significantly reduces occurrence of conduction block and reentrant arrhythmias in fibrotic cardiac cultures. Moreover, functional BacNav channels are stably expressed in healthy mouse hearts six weeks following intravenous injection of self-complementary adeno-associated virus (scAAV) without causing any adverse effects on cardiac electrophysiology. The large diversity of prokaryotic sodium channels and experimental-computational platform reported in this study should facilitate the development and evaluation of BacNav-based gene therapies for cardiac conduction disorders.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Daniel Needs
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hengtao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robin M Perelli
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Rachel Yang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Michael Pan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Craig Henriquez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
107
|
Leon-Aparicio D, Sánchez-Solano A, Arreola J, Perez-Cornejo P. Oleic acid blocks the calcium-activated chloride channel TMEM16A/ANO1. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159134. [DOI: 10.1016/j.bbalip.2022.159134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|
108
|
Tao E, Corry B. Characterizing fenestration size in sodium channel subtypes and their accessibility to inhibitors. Biophys J 2022; 121:193-206. [PMID: 34958776 PMCID: PMC8790208 DOI: 10.1016/j.bpj.2021.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Voltage-gated sodium channels (Nav) underlie the electrical activity of nerve and muscle cells. Humans have nine different subtypes of these channels, which are the target of small-molecule inhibitors commonly used to treat a range of conditions. Structural studies have identified four lateral fenestrations within the Nav pore module that have been shown to influence Nav pore blocker access during resting-state inhibition. However, the structural differences among the nine subtypes are still unclear. In particular, the dimensions of the four individual fenestrations across the Nav subtypes and their differential accessibility to pore blockers is yet to be characterized. To address this, we applied classical molecular dynamics simulations to study the recently published structures of Nav1.1, Nav1.2, Nav1.4, Nav1.5, and Nav1.7. Although there is significant variability in the bottleneck sizes of the Nav fenestrations, the subtypes follow a common pattern, with wider DI-II and DIII-IV fenestrations, a more restricted DII-III fenestration, and the most restricted DI-IV fenestration. We further identify the key bottleneck residues in each fenestration and show that the motions of aromatic residue sidechains govern the bottleneck radii. Well-tempered metadynamics simulations of Nav1.4 and Nav1.5 in the presence of the pore blocker lidocaine also support the DI-II fenestration being the most likely access route for drugs. Our computational results provide a foundation for future in vitro experiments examining the route of drug access to sodium channels. Understanding the fenestrations and their accessibility to drugs is critical for future analyses of diseases mutations across different sodium channel subtypes, with the potential to inform pharmacological development of resting-state inhibitors and subtype-selective drug design.
Collapse
Affiliation(s)
- Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
109
|
D'Avanzo N, Miles AJ, Powl AM, Nichols CG, Wallace BA, O'Reilly AO. The T1-tetramerisation domain of Kv1.2 rescues expression and preserves function of a truncated NaChBac sodium channel. FEBS Lett 2022; 596:772-783. [PMID: 35015304 PMCID: PMC9303580 DOI: 10.1002/1873-3468.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Cytoplasmic domains frequently promote functional assembly of multimeric ion channels. To investigate structural determinants of this process, we generated the ‘T1‐chimera’ construct of the NaChBac sodium channel by truncating its C‐terminal domain and splicing the T1‐tetramerisation domain of the Kv1.2 channel to the N terminus. Purified T1‐chimera channels were tetrameric, conducted Na+ when reconstituted into proteoliposomes, and were functionally blocked by the drug mibefradil. Both the T1‐chimera and full‐length NaChBac had comparable expression levels in the membrane, whereas a NaChBac mutant lacking a cytoplasmic domain had greatly reduced membrane expression. Our findings support a model whereby bringing the transmembrane regions into close proximity enables their tetramerisation. This phenomenon is found with other channels, and thus, our findings substantiate this as a common assembly mechanism.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, Université de Montréal, Canada
| | - Andrew J Miles
- Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Andrew M Powl
- Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, USA
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck, University of London, UK
| | - Andrias O O'Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, UK
| |
Collapse
|
110
|
Panagiotopoulos AA, Kalyvianaki K, Serifoglou B, Konstantinou E, Notas G, Castanas E, Kampa M. OXER1 mediates testosterone-induced calcium responses in prostate cancer cells. Mol Cell Endocrinol 2022; 539:111487. [PMID: 34634385 DOI: 10.1016/j.mce.2021.111487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
In prostate cancer, calcium homeostasis plays a significant role in the disease's development and progression. Intracellular calcium changes are an important secondary signal, triggered by a variety of extracellular stimuli, that controls many cellular functions. One of the main events affecting calcium is androgen signaling. Indeed, via calcium changes, androgens regulate cell processes like cell growth, differentiation and motility. In the present work we explored the nature of the receptor involved in calcium response induced by membrane-acting testosterone in prostate cancer cells. We report that testosterone, independently of the presence of the classical androgen receptor, can rapidly increase intracellular calcium from calcium stores, through the oxoeicosanoid receptor 1 (OXER1) and a specific signaling cascade that triggers calcium release from the endoplasmic reticulum. These findings reveal for the first time the receptor involved in the rapid calcium changes induced by androgens. Moreover, they further support the notion that androgens, even in the absence of AR, can still exert specific effects that regulate cancer cell fate.
Collapse
Affiliation(s)
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Bourcin Serifoglou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Evangelia Konstantinou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| |
Collapse
|
111
|
Manzur-Villalobos I, Contreras-Puentes N, Díaz-Caballero A, Durán-Lengua M, Alviz-Amador A. In silico study of local anesthetics analogues on sodium channel Nav 1.7 a pharmacological target on inflamed dental pulp. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
112
|
Ionic channels in nerve membranes, 50 years on. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:12-20. [PMID: 34856230 PMCID: PMC8977236 DOI: 10.1016/j.pbiomolbio.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022]
Abstract
This retrospective traces the hypothesis of ion channels from an early statement in a 1970 essay in this journal (Hille, B., 1970, Prog. Biophys. Mol. Biol. 21, 1-32) to its realization today in biophysical, molecular, biochemical, and structural terms. The Na+ and K+ channels of the action potential have been isolated, reconstituted, cloned, mutated, and expressed. They are conformationally flexible, multi-pass glycosylated membrane proteins. Refined atomic structures of several conformational states are known. The discoveries over this half century history illustrate the growth of a field from initial ideas to a mature discipline of biology, physiology, and biomedical science.
Collapse
|
113
|
Cheng J, Wei W, Fang Y, Zhou N, Wu Q, Zhao Q. Sudden cardiac death and cardiac sodium channel diseases. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_123_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
114
|
Qiao Z, Fu W, Zhang Y, Chen R, Xu Z, Li Z, Shao X. Azobenzene-Semicarbazone Enables Optical Control of Insect Sodium Channels and Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15554-15561. [PMID: 34905925 DOI: 10.1021/acs.jafc.1c06404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photopharmacology uses molecular photoswitches to establish control over the action of bioactive molecules. The application of photopharmacology in the research of invertebrate sodium channels has not been investigated. Here we report several photochromic ligands of metaflumizone. One ligand, termed ABM04, underwent reversible trans-cis isomerization under ultraviolet or blue light irradiation. cis-ABM04 had excellent larvicidal activity against mosquito larvae with an LC50 value of 4.39 μM and showed insecticidal activity against Mythimna separata with an LC50 value of 7.19 μM. However, trans-ABM04 was not found to have biological activity. ABM04 (10 μM) can induce depolarization of dorsal unpaired median neurons and enable the real-time photoregulation of mosquito larval behavior. The precise regulation of invertebrate sodium channels is realized for the first time, which provides a new strategy for the basic and accurate research of invertebrate sodium channels.
Collapse
Affiliation(s)
- Zhi Qiao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongchao Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruijia Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
115
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
116
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
117
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
118
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
119
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
120
|
Savalli N, Angelini M, Steccanella F, Wier J, Wu F, Quinonez M, DiFranco M, Neely A, Cannon SC, Olcese R. The distinct role of the four voltage sensors of the skeletal CaV1.1 channel in voltage-dependent activation. J Gen Physiol 2021; 153:212652. [PMID: 34546289 PMCID: PMC8460119 DOI: 10.1085/jgp.202112915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Initiation of skeletal muscle contraction is triggered by rapid activation of RYR1 channels in response to sarcolemmal depolarization. RYR1 is intracellular and has no voltage-sensing structures, but it is coupled with the voltage-sensing apparatus of CaV1.1 channels to inherit voltage sensitivity. Using an opto-electrophysiological approach, we resolved the excitation-driven molecular events controlling both CaV1.1 and RYR1 activations, reported as fluorescence changes. We discovered that each of the four human CaV1.1 voltage-sensing domains (VSDs) exhibits unique biophysical properties: VSD-I time-dependent properties were similar to ionic current activation kinetics, suggesting a critical role of this voltage sensor in CaV1.1 activation; VSD-II, VSD-III, and VSD-IV displayed faster activation, compatible with kinetics of sarcoplasmic reticulum Ca2+ release. The prominent role of VSD-I in governing CaV1.1 activation was also confirmed using a naturally occurring, charge-neutralizing mutation in VSD-I (R174W). This mutation abolished CaV1.1 current at physiological membrane potentials by impairing VSD-I activation without affecting the other VSDs. Using a structurally relevant allosteric model of CaV activation, which accounted for both time- and voltage-dependent properties of CaV1.1, to predict VSD-pore coupling energies, we found that VSD-I contributed the most energy (~75 meV or ∼3 kT) toward the stabilization of the open states of the channel, with smaller (VSD-IV) or negligible (VSDs II and III) energetic contribution from the other voltage sensors (<25 meV or ∼1 kT). This study settles the longstanding question of how CaV1.1, a slowly activating channel, can trigger RYR1 rapid activation, and reveals a new mechanism for voltage-dependent activation in ion channels, whereby pore opening of human CaV1.1 channels is primarily driven by the activation of one voltage sensor, a mechanism distinct from that of all other voltage-gated channels.
Collapse
Affiliation(s)
- Nicoletta Savalli
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Federica Steccanella
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Julian Wier
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marbella Quinonez
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alan Neely
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
121
|
Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Na v1.4 in Neuromuscular Diseases. Front Pharmacol 2021; 12:751095. [PMID: 34671263 PMCID: PMC8521073 DOI: 10.3389/fphar.2021.751095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.4 is a major actor in the excitability of skeletal myofibers, driving the muscle force in response to nerve stimulation. Supporting further this key role, mutations in SCN4A, the gene encoding the pore-forming α subunit of Nav1.4, are responsible for a clinical spectrum of human diseases ranging from muscle stiffness (sodium channel myotonia, SCM) to muscle weakness. For years, only dominantly-inherited diseases resulting from Nav1.4 gain of function (GoF) were known, i.e., non-dystrophic myotonia (delayed muscle relaxation due to myofiber hyperexcitability), paramyotonia congenita and hyperkalemic or hypokalemic periodic paralyses (episodic flaccid muscle weakness due to transient myofiber hypoexcitability). These last 5 years, SCN4A mutations inducing Nav1.4 loss of function (LoF) were identified as the cause of dominantly and recessively-inherited disorders with muscle weakness: periodic paralyses with hypokalemic attacks, congenital myasthenic syndromes and congenital myopathies. We propose to name this clinical spectrum sodium channel weakness (SCW) as the mirror of SCM. Nav1.4 LoF as a cause of permanent muscle weakness was quite unexpected as the Na+ current density in the sarcolemma is large, securing the ability to generate and propagate muscle action potentials. The properties of SCN4A LoF mutations are well documented at the channel level in cellular electrophysiological studies However, much less is known about the functional consequences of Nav1.4 LoF in skeletal myofibers with no available pertinent cell or animal models. Regarding the therapeutic issues for Nav1.4 channelopathies, former efforts were aimed at developing subtype-selective Nav channel antagonists to block myofiber hyperexcitability. Non-selective, Nav channel blockers are clinically efficient in SCM and paramyotonia congenita, whereas patient education and carbonic anhydrase inhibitors are helpful to prevent attacks in periodic paralyses. Developing therapeutic tools able to counteract Nav1.4 LoF in skeletal muscles is then a new challenge in the field of Nav channelopathies. Here, we review the current knowledge regarding Nav1.4 LoF and discuss the possible therapeutic strategies to be developed in order to improve muscle force in SCW.
Collapse
Affiliation(s)
- Sophie Nicole
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| |
Collapse
|
122
|
El Ghaleb Y, Fernández-Quintero ML, Monteleone S, Tuluc P, Campiglio M, Liedl KR, Flucher BE. Ion-pair interactions between voltage-sensing domain IV and pore domain I regulate Ca V1.1 gating. Biophys J 2021; 120:4429-4441. [PMID: 34506774 PMCID: PMC8553663 DOI: 10.1016/j.bpj.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
The voltage-gated calcium channel CaV1.1 belongs to the family of pseudo-heterotetrameric cation channels, which are built of four structurally and functionally distinct voltage-sensing domains (VSDs) arranged around a common channel pore. Upon depolarization, positive gating charges in the S4 helices of each VSD are moved across the membrane electric field, thus generating the conformational change that prompts channel opening. This sliding helix mechanism is aided by the transient formation of ion-pair interactions with countercharges located in the S2 and S3 helices within the VSDs. Recently, we identified a domain-specific ion-pair partner of R1 and R2 in VSD IV of CaV1.1 that stabilizes the activated state of this VSD and regulates the voltage dependence of current activation in a splicing-dependent manner. Structure modeling of the entire CaV1.1 in a membrane environment now revealed the participation in this process of an additional putative ion-pair partner (E216) located outside VSD IV, in the pore domain of the first repeat (IS5). This interdomain interaction is specific for CaV1.1 and CaV1.2 L-type calcium channels. Moreover, in CaV1.1 it is sensitive to insertion of the 19 amino acid peptide encoded by exon 29. Whole-cell patch-clamp recordings in dysgenic myotubes reconstituted with wild-type or E216 mutants of GFP-CaV1.1e (lacking exon 29) showed that charge neutralization (E216Q) or removal of the side chain (E216A) significantly shifted the voltage dependence of activation (V1/2) to more positive potentials, suggesting that E216 stabilizes the activated state. Insertion of exon 29 in the GFP-CaV1.1a splice variant strongly reduced the ionic interactions with R1 and R2 and caused a substantial right shift of V1/2, whereas no further shift of V1/2 was observed on substitution of E216 with A or Q. Together with our previous findings, these results demonstrate that inter- and intradomain ion-pair interactions cooperate in the molecular mechanism regulating VSD function and channel gating in CaV1.1.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria; Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck
| | - Stefania Monteleone
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck; Evotec (UK) Ltd., Abingdon, Oxfordshire, United Kingdom
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck
| | - Bernhard E Flucher
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
123
|
Jiang D, Banh R, Gamal El-Din TM, Tonggu L, Lenaeus MJ, Pomès R, Zheng N, Catterall WA. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell 2021; 184:5151-5162.e11. [PMID: 34520724 DOI: 10.1016/j.cell.2021.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Richard Banh
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
124
|
Lou S, Cui S. Drug treatment of epilepsy: From serendipitous discovery to evolutionary mechanisms. Curr Med Chem 2021; 29:3366-3391. [PMID: 34514980 DOI: 10.2174/0929867328666210910124727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Epilepsy is a chronic brain disorder caused by abnormal firing of neurons. Up to now, using antiepileptic drugs is the main method of epilepsy treatment. The development of antiepileptic drugs lasted for centuries. In general, most agents entering clinical practice act on the balance mechanisms of brain "excitability-inhibition". More specifically, they target voltage-gated ion channels, GABAergic transmission and glutamatergic transmission. In recent years, some novel drugs representing new mechanisms of action have been discovered. Although there are about 30 available drugs in the market, it is still in urgent need of discovering more effective and safer drugs. The development of new antiepileptic drugs is into a new era: from serendipitous discovery to evolutionary mechanism-based design. This article presents an overview of drug treatment of epilepsy, including a series of traditional and novel drugs.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| |
Collapse
|
125
|
Wu X, Hong L. Calmodulin Interactions with Voltage-Gated Sodium Channels. Int J Mol Sci 2021; 22:ijms22189798. [PMID: 34575961 PMCID: PMC8472079 DOI: 10.3390/ijms22189798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a small protein that acts as a ubiquitous signal transducer and regulates neuronal plasticity, muscle contraction, and immune response. It interacts with ion channels and plays regulatory roles in cellular electrophysiology. CaM modulates the voltage-gated sodium channel gating process, alters sodium current density, and regulates sodium channel protein trafficking and expression. Many mutations in the CaM-binding IQ domain give rise to diseases including epilepsy, autism, and arrhythmias by interfering with CaM interaction with the channel. In the present review, we discuss CaM interactions with the voltage-gated sodium channel and modulators involved in CaM regulation, as well as summarize CaM-binding IQ domain mutations associated with human diseases in the voltage-gated sodium channel family.
Collapse
|
126
|
Abderemane-Ali F, Rossen ND, Kobiela ME, Craig RA, Garrison CE, Chen Z, Colleran CM, O’Connell LA, Du Bois J, Dumbacher JP, Minor DL. Evidence that toxin resistance in poison birds and frogs is not rooted in sodium channel mutations and may rely on "toxin sponge" proteins. J Gen Physiol 2021; 153:e202112872. [PMID: 34351379 PMCID: PMC8348241 DOI: 10.1085/jgp.202112872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX "toxin sponge" protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.
Collapse
Affiliation(s)
- Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Nathan D. Rossen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Megan E. Kobiela
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | | | | | - Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Claire M. Colleran
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA
| | - John P. Dumbacher
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA
- Department of Biology, San Francisco State University, San Francisco, CA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
127
|
Ning S, Hua L, Ji Z, Fan D, Meng X, Li Z, Wang Q, Guo Z. Protein 4.1 family and ion channel proteins interact to regulate the process of heart failure in rats. Acta Histochem 2021; 123:151748. [PMID: 34271280 DOI: 10.1016/j.acthis.2021.151748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a major cause of death in cardiovascular diseases worldwide, and its molecular mechanisms and effective prevention strategies remain to be further studied. The myocardial cytoskeleton plays a pivotal role in many heart diseases. However, little is known about the function of the membrane cytoskeleton 4.1 protein family and related regulatory mechanisms in the pathogenesis of HF. In this study, we detected the localization and expression of the protein 4.1 family and ion channel proteins in a rat HF model induced by doxorubicin (DOX), and studied the interactions between them. Our results showed that compared with the control group, the HF group displayed an increased expression level of protein 4.1R and decreased levels of protein 4.1 G and 4.1 N. The Nav1.5 protein levels were significantly increased, while the SERCA2a and Cav1.2 protein levels were significantly decreased in the HF group. Furthermore, there is co-localization and interaction between protein 4.1R and Nav1.5, protein 4.1 G and SERCA2a, protein 4.1 N and Cav1.2, respectively. Taken together, the results indicated that the protein 4.1 family might be involved in the occurrence and development of HF through its interaction with ion channel proteins, suggesting that 4.1 proteins may serve as a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Shuwei Ning
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Lei Hua
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangguang Meng
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhiying Li
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Qian Wang
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhikun Guo
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
128
|
El Ghaleb Y, Schneeberger PE, Fernández-Quintero ML, Geisler SM, Pelizzari S, Polstra AM, van Hagen JM, Denecke J, Campiglio M, Liedl KR, Stevens CA, Person RE, Rentas S, Marsh ED, Conlin LK, Tuluc P, Kutsche K, Flucher BE. CACNA1I gain-of-function mutations differentially affect channel gating and cause neurodevelopmental disorders. Brain 2021; 144:2092-2106. [PMID: 33704440 PMCID: PMC8422349 DOI: 10.1093/brain/awab101] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here, we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy, the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analysed possible effects on Cav3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with Cav3.3-I860N showing the strongest and Cav3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in Cav3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the Cav3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the Cav3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the Cav3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type Cav3.3 to slow oscillations with Cav3.3-I860N and an intermediate firing mode with Cav3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Monica L Fernández-Quintero
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
- Institute of Theoretical Chemistry, University of Innsbruck, Innsbruck 6020, Austria
| | - Stefanie M Geisler
- Department of Pharmacology, University of Innsbruck, Innsbruck 6020, Austria
| | - Simone Pelizzari
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Abeltje M Polstra
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Klaus R Liedl
- Institute of Theoretical Chemistry, University of Innsbruck, Innsbruck 6020, Austria
| | - Cathy A Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN 37403, USA
| | | | - Stefan Rentas
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura K Conlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Petronel Tuluc
- Department of Pharmacology, University of Innsbruck, Innsbruck 6020, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
129
|
Chen Y, Wei M, Lee J, Zhao J, Lin P, Wang Q, Li F, Ling D. Neurodegenerative Disease Diagnosis via Ion‐Level Detection in the Brain. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Min Wei
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Jing Zhao
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Peihua Lin
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Qiyue Wang
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Fangyuan Li
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Daishun Ling
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
130
|
Zhou H, Wan F, Guo F, Liu J, Ding W. High value-added application of a renewable bioresource as acaricide: Investigation the mechanism of action of scoparone against Tetranychus cinnabarinus. J Adv Res 2021; 38:29-39. [PMID: 35572395 PMCID: PMC9091730 DOI: 10.1016/j.jare.2021.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
|
131
|
Roles for α-Synuclein in Gene Expression. Genes (Basel) 2021; 12:genes12081166. [PMID: 34440340 PMCID: PMC8393936 DOI: 10.3390/genes12081166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (α-Syn) is a small cytosolic protein associated with a range of cellular compartments, including synaptic vesicles, the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. In addition to its physiological role in regulating presynaptic function, the protein plays a central role in both sporadic and familial Parkinson’s disease (PD) via a gain-of-function mechanism. Because of this, several recent strategies propose to decrease α-Syn levels in PD patients. While these therapies may offer breakthroughs in PD management, the normal functions of α-Syn and potential side effects of its depletion require careful evaluation. Here, we review recent evidence on physiological and pathological roles of α-Syn in regulating activity-dependent signal transduction and gene expression pathways that play fundamental role in synaptic plasticity.
Collapse
|
132
|
Alsaloum M, Labau JIR, Sosniak D, Zhao P, Almomani R, Gerrits M, Hoeijmakers JGJ, Lauria G, Faber CG, Waxman SG, Dib-Hajj S. A novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy. J Neurophysiol 2021; 126:827-839. [PMID: 34320850 DOI: 10.1152/jn.00184.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small fiber neuropathy (SFN) is a common condition affecting thinly myelinated Aδ and unmyelinated C fibers, often resulting in excruciating pain and dysautonomia. SFN has been associated with several conditions, but a significant number of cases have no discernible cause. Recent genetic studies have identified potentially pathogenic gain-of-function mutations in several the pore-forming voltage-gated sodium channel α subunits (NaVs) in a subset of patients with SFN, but the auxiliary sodium channel β subunits have been less implicated in the development of the disease. β subunits modulate NaV trafficking and gating, and several mutations have been linked to epilepsy and cardiac dysfunction. Recently, we provided the first evidence for the contribution of a mutation in the β2-subunit to pain in human painful diabetic neuropathy. Here, we provide the first evidence for the involvement of a sodium channel β subunit mutation in the pathogenesis of SFN with no other known causes. We show, through current-clamp analysis, that the newly-identified Y69H variant of the β2 subunit induces neuronal hyperexcitability in dorsal root ganglion neurons, lowering the threshold for action potential firing and allowing for increased repetitive action potential spiking. Underlying the hyperexcitability induced by the β2-Y69H variant, we demonstrate an upregulation in tetrodotoxin-sensitive, but not tetrodotoxin-resistant sodium currents. This provides the first evidence for the involvement of β2 subunits in SFN and strengthens the link between sodium channel β subunits and the development of neuropathic pain in humans.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States.,Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Daniel Sosniak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Rowida Almomani
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands.,Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Catherina G Faber
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
133
|
Papazoglou A, Henseler C, Broich K, Daubner J, Weiergräber M. Breeding of Ca v2.3 deficient mice reveals Mendelian inheritance in contrast to complex inheritance in Ca v3.2 null mutant breeding. Sci Rep 2021; 11:13972. [PMID: 34234221 PMCID: PMC8263769 DOI: 10.1038/s41598-021-93391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
134
|
Balla C, Conte E, Selvatici R, Marsano RM, Gerbino A, Farnè M, Blunck R, Vitali F, Armaroli A, Brieda A, Liantonio A, De Luca A, Ferlini A, Rapezzi C, Bertini M, Gualandi F, Imbrici P. Functional Characterization of Two Novel Mutations in SCN5A Associated with Brugada Syndrome Identified in Italian Patients. Int J Mol Sci 2021; 22:ijms22126513. [PMID: 34204499 PMCID: PMC8234720 DOI: 10.3390/ijms22126513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background. Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by “coved type” ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20–30% of BrS cases and is considered clinically relevant. Methods. Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. Results. Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. Conclusions. Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention.
Collapse
Affiliation(s)
- Cristina Balla
- Cardiological Center, University of Ferrara, 44121 Ferrara, Italy; (C.B.); (F.V.); (A.B.); (C.R.); (M.B.)
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (A.L.); (A.D.L.)
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.S.); (M.F.); (A.A.); (A.F.)
| | | | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Marianna Farnè
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.S.); (M.F.); (A.A.); (A.F.)
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Francesco Vitali
- Cardiological Center, University of Ferrara, 44121 Ferrara, Italy; (C.B.); (F.V.); (A.B.); (C.R.); (M.B.)
| | - Annarita Armaroli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.S.); (M.F.); (A.A.); (A.F.)
| | - Alessandro Brieda
- Cardiological Center, University of Ferrara, 44121 Ferrara, Italy; (C.B.); (F.V.); (A.B.); (C.R.); (M.B.)
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (A.L.); (A.D.L.)
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (A.L.); (A.D.L.)
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.S.); (M.F.); (A.A.); (A.F.)
| | - Claudio Rapezzi
- Cardiological Center, University of Ferrara, 44121 Ferrara, Italy; (C.B.); (F.V.); (A.B.); (C.R.); (M.B.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy
| | - Matteo Bertini
- Cardiological Center, University of Ferrara, 44121 Ferrara, Italy; (C.B.); (F.V.); (A.B.); (C.R.); (M.B.)
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.S.); (M.F.); (A.A.); (A.F.)
- Correspondence: (F.G.); (P.I.)
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (A.L.); (A.D.L.)
- Correspondence: (F.G.); (P.I.)
| |
Collapse
|
135
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
136
|
Kang PW, Chakouri N, Diaz J, Tomaselli GF, Yue DT, Ben-Johny M. Elementary mechanisms of calmodulin regulation of Na V1.5 producing divergent arrhythmogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:e2025085118. [PMID: 34021086 PMCID: PMC8166197 DOI: 10.1073/pnas.2025085118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.
Collapse
Affiliation(s)
- Po Wei Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Gordon F Tomaselli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Manu Ben-Johny
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| |
Collapse
|
137
|
Wood A, Karipidis K. Radiofrequency Fields and Calcium Movements Into and Out of Cells. Radiat Res 2021; 195:101-113. [PMID: 33206197 DOI: 10.1667/rade-20-00101.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/14/2020] [Indexed: 11/03/2022]
Abstract
The recent rollout of 5G telecommunications systems has spawned a renewed call to re-examine the possibility of so-called "non-thermal" harmful effects of radiofrequency (RF) radiation. The possibility of calcium being affected by low-level RF has been the subject of research for nearly 50 years and there have been recent suggestions that voltage-gated calcium channels (VGCCs) are "extraordinarily sensitive" to ambient RF fields. This article examines the feasibility of particularly modulated RF coupling to gating mechanisms in VGCCs and also reviews studies from the literature from the last 50 years for consistency of outcome. We conclude that the currents induced by fields at the ICNIRP guideline limits are many orders of magnitude below those needed to affect gating, and there would need to be a biological mechanism for detection and rectification of the extremely-low-frequency (ELF) modulations, which has not been demonstrated. Overall, experimental studies have not validated that RF affects Ca2+ transport into or out of cells.
Collapse
Affiliation(s)
- Andrew Wood
- School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| |
Collapse
|
138
|
Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca 2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal Signal 2021; 5:NS20200095. [PMID: 33664982 PMCID: PMC7905535 DOI: 10.1042/ns20200095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Neuronal voltage-gated Ca2+ (CaV) channels play a critical role in cellular excitability, synaptic transmission, excitation-transcription coupling and activation of intracellular signaling pathways. CaV channels are multiprotein complexes and their functional expression in the plasma membrane involves finely tuned mechanisms, including forward trafficking from the endoplasmic reticulum (ER) to the plasma membrane, endocytosis and recycling. Whether genetic or acquired, alterations and defects in the trafficking of neuronal CaV channels can have severe physiological consequences. In this review, we address the current evidence concerning the regulatory mechanisms which underlie precise control of neuronal CaV channel trafficking and we discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saloni Koshti
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
139
|
Fernández-Quintero ML, El Ghaleb Y, Tuluc P, Campiglio M, Liedl KR, Flucher BE. Structural determinants of voltage-gating properties in calcium channels. eLife 2021; 10:e64087. [PMID: 33783354 PMCID: PMC8099428 DOI: 10.7554/elife.64087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated calcium channels control key functions of excitable cells, like synaptic transmission in neurons and the contraction of heart and skeletal muscles. To accomplish such diverse functions, different calcium channels activate at different voltages and with distinct kinetics. To identify the molecular mechanisms governing specific voltage sensing properties, we combined structure modeling, mutagenesis, and electrophysiology to analyze the structures, free energy, and transition kinetics of the activated and resting states of two functionally distinct voltage sensing domains (VSDs) of the eukaryotic calcium channel CaV1.1. Both VSDs displayed the typical features of the sliding helix model; however, they greatly differed in ion-pair formation of the outer gating charges. Specifically, stabilization of the activated state enhanced the voltage dependence of activation, while stabilization of resting states slowed the kinetics. This mechanism provides a mechanistic model explaining how specific ion-pair formation in separate VSDs can realize the characteristic gating properties of voltage-gated cation channels.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruckAustria
- Department of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruckAustria
| | - Yousra El Ghaleb
- Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruckAustria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences, University of InnsbruckInnsbruckAustria
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruckAustria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruckAustria
| | - Bernhard E Flucher
- Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruckAustria
| |
Collapse
|
140
|
Synthesis and Evaluation of Novel α-Aminoamides Containing Benzoheterocyclic Moiety for the Treatment of Pain. Molecules 2021; 26:molecules26061716. [PMID: 33808667 PMCID: PMC8003485 DOI: 10.3390/molecules26061716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.
Collapse
|
141
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
142
|
Abstract
The identification of a gain-of-function mutation in CACNA1C as the cause of Timothy syndrome, a rare disorder characterized by cardiac arrhythmias and syndactyly, highlighted roles for the L-type voltage-gated Ca2+ channel CaV1.2 in nonexcitable cells. Previous studies in cells and animal models had suggested that several voltage-gated Ca2+ channels (VGCCs) regulated critical signaling events in various cell types that are not expected to support action potentials, but definitive data were lacking. VGCCs occupy a special position among ion channels, uniquely able to translate membrane excitability into the cytoplasmic Ca2+ changes that underlie the cellular responses to electrical activity. Yet how these channels function in cells not firing action potentials and what the consequences of their actions are in nonexcitable cells remain critical questions. The development of new animal and cellular models and the emergence of large data sets and unbiased genome screens have added to our understanding of the unanticipated roles for VGCCs in nonexcitable cells. Here, we review current knowledge of VGCC regulation and function in nonexcitable tissues and cells, with the goal of providing a platform for continued investigation.
Collapse
Affiliation(s)
- Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Chike Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA;
| |
Collapse
|
143
|
Xu L, Sun L, Xie L, Mou S, Zhang D, Zhu J, Xu P. Advances in L-Type Calcium Channel Structures, Functions and Molecular Modeling. Curr Med Chem 2021; 28:514-524. [PMID: 32664834 DOI: 10.2174/0929867327666200714154059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
L-type Calcium Channels (LTCCs), also termed as Cav1, belong to voltage-gated calcium channels (VGCCs/Cavs), which play a critical role in a wide spectrum of physiological processes, including neurotransmission, cell cycle, muscular contraction, cardiac action potential and gene expression. Aberrant regulation of calcium channels is involved in neurological, cardiovascular, muscular and psychiatric disorders. Accordingly, LTCCs have been regarded as important drug targets, and a number of LTCC drugs are in clinical use. In this review, the recent development of structures and biological functions of LTCCs are introduced. Moreover, the representative modulators and ligand binding sites of LTCCs are discussed. Finally, molecular modeling and Computer-aided Drug Design (CADD) methods for understanding structure-function relations of LTCCs are summarized.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Lilei Sun
- Department of Radiology, Weifang Second People's Hospital, Weifang 261041, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shanzhi Mou
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jingyu Zhu
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Department of Orthopedics, Second Military Medical University Affiliated Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
144
|
Földi MC, Pesti K, Zboray K, Toth AV, Hegedűs T, Málnási-Csizmadia A, Lukacs P, Mike A. The mechanism of non-blocking inhibition of sodium channels revealed by conformation-selective photolabeling. Br J Pharmacol 2021; 178:1200-1217. [PMID: 33450052 DOI: 10.1111/bph.15365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. EXPERIMENTAL APPROACH Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. KEY RESULTS We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. CONCLUSIONS AND IMPLICATIONS Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.
Collapse
Affiliation(s)
- Mátyás C Földi
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Krisztina Pesti
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Adam V Toth
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András Málnási-Csizmadia
- Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Peter Lukacs
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Arpad Mike
- MTA-ELTE NAP B Opto-Neuropharmacology Group, Budapest, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary.,Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
145
|
Arshaad MI, Siwek ME, Henseler C, Daubner J, Ehninger D, Hescheler J, Sachinidis A, Broich K, Papazoglou A, Weiergräber M. Enhanced hippocampal type II theta activity AND altered theta architecture in mice lacking the Ca v3.2 T-type voltage-gated calcium channel. Sci Rep 2021; 11:1099. [PMID: 33441788 PMCID: PMC7806756 DOI: 10.1038/s41598-020-79763-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
T-type Ca2+ channels are assumed to contribute to hippocampal theta oscillations. We used implantable video-EEG radiotelemetry and qPCR to unravel the role of Cav3.2 Ca2+ channels in hippocampal theta genesis. Frequency analysis of spontaneous long-term recordings in controls and Cav3.2-/- mice revealed robust increase in relative power in the theta (4-8 Hz) and theta-alpha (4-12 Hz) ranges, which was most prominent during the inactive stages of the dark cycles. Urethane injection experiments also showed enhanced type II theta activity and altered theta architecture following Cav3.2 ablation. Next, gene candidates from hippocampal transcriptome analysis of control and Cav3.2-/- mice were evaluated using qPCR. Dynein light chain Tctex-Type 1 (Dynlt1b) was significantly reduced in Cav3.2-/- mice. Furthermore, a significant reduction of GABA A receptor δ subunits and GABA B1 receptor subunits was observed in the septohippocampal GABAergic system. Our results demonstrate that ablation of Cav3.2 significantly alters type II theta activity and theta architecture. Transcriptional changes in synaptic transporter proteins and GABA receptors might be functionally linked to the electrophysiological phenotype.
Collapse
Affiliation(s)
- Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Magdalena Elisabeth Siwek
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
146
|
Lipinsky M, Tobelaim WS, Peretz A, Simhaev L, Yeheskel A, Yakubovich D, Lebel G, Paas Y, Hirsch JA, Attali B. A unique mechanism of inactivation gating of the Kv channel family member Kv7.1 and its modulation by PIP2 and calmodulin. SCIENCE ADVANCES 2020; 6:eabd6922. [PMID: 33355140 PMCID: PMC11206195 DOI: 10.1126/sciadv.abd6922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Inactivation of voltage-gated K+ (Kv) channels mostly occurs by fast N-type or/and slow C-type mechanisms. Here, we characterized a unique mechanism of inactivation gating comprising two inactivation states in a member of the Kv channel superfamily, Kv7.1. Removal of external Ca2+ in wild-type Kv7.1 channels produced a large, voltage-dependent inactivation, which differed from N- or C-type mechanisms. Glu295 and Asp317 located, respectively, in the turret and pore entrance are involved in Ca2+ coordination, allowing Asp317 to form H-bonding with the pore helix Trp304, which stabilizes the selectivity filter and prevents inactivation. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+-calmodulin prevented Kv7.1 inactivation triggered by Ca2+-free external solutions, where Ser182 at the S2-S3 linker relays the calmodulin signal from its inner boundary to the external pore to allow proper channel conduction. Thus, we revealed a unique mechanism of inactivation gating in Kv7.1, exquisitely controlled by external Ca2+ and allosterically coupled by internal PIP2 and Ca2+-calmodulin.
Collapse
Affiliation(s)
- Maya Lipinsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - William Sam Tobelaim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luba Simhaev
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Yeheskel
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Lebel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
147
|
VDAC Gating Thermodynamics, but Not Gating Kinetics, Are Virtually Temperature Independent. Biophys J 2020; 119:2584-2592. [PMID: 33189678 DOI: 10.1016/j.bpj.2020.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and an archetypical β-barrel channel. Here, we study the effects of temperature on VDAC channels reconstituted in planar lipid membranes at the single- and multichannel levels within the 20°C to 40°C range. The temperature dependence of conductance measured on a single channel in 1 M KCl shows an increase characterized by a 10°C temperature coefficient Q10 = 1.22 ± 0.02, which exceeds that of the bathing electrolyte solution conductivity, Q10 = 1.17 ± 0.01. The rates of voltage-induced channel transition between the open and closed states measured on multichannel membranes also show statistically significant increases, with temperatures that are consistent with activation energy barriers of ∼10 ± 3 kcal/mol. At the same time, the gating thermodynamics, as characterized by the gating charge and voltage of equipartitioning, does not display any measurable temperature dependence. The two parameters stay within 3.2 ± 0.2 elementary charges and 30 ± 2 mV, respectively. Thus, whereas the channel kinetics, specifically its conductance and rates of gating response to voltage steps, demonstrates a clear increase with temperature, the conformational voltage-dependent equilibria are virtually insensitive to temperature. These results, which may be a general feature of β-barrel channel gating, suggest either an entropy-driven gating mechanism or a role for enthalpy-entropy compensation.
Collapse
|
148
|
Dolphin AC, Insel PA, Blaschke TF, Meyer UA. Introduction to the Theme "Ion Channels and Neuropharmacology: From the Past to the Future". Annu Rev Pharmacol Toxicol 2020; 60:1-6. [PMID: 31914892 DOI: 10.1146/annurev-pharmtox-082719-110050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
"Ion Channels and Neuropharmacology: From the Past to the Future" is the main theme of articles in Volume 60 of the Annual Review of Pharmacology and Toxicology. Reviews in this volume discuss a wide spectrum of therapeutically relevant ion channels and GPCRs with a particular emphasis on structural studies that elucidate drug binding sites and mechanisms of action. The regulation of ion channels by second messengers, including Ca2+ and cyclic AMP, and lipid mediators is also highly relevant to several of the ion channels discussed, including KCNQ channels, HCN channels, L-type Ca2+ channels, and AMPA receptors, as well as the aquaporin channels. Molecular identification of exactly where drugs bind in the structure not only elucidates their mechanism of action but also aids future structure-based drug discovery efforts to focus on relevant pharmacophores. The ion channels discussed here are targets for multiple nervous system diseases, including epilepsy and neuropathic pain. This theme complements several previous themes, including "New Therapeutic Targets," "New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development," and "New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology."
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom;
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Terrence F Blaschke
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
149
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
150
|
Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020; 187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Conotoxins (CnTX) are bioactive peptides produced by marine molluscs belonging to Conus genus. The biochemical structure of these venomous peptides is characterized by a low number of amino acids linked with disulfide bonds formed by a high degree of post-translational modifications and glycosylation steps which increase the diversity and rate of evolution of these molecules. CnTX different isoforms are known to target ion channels and, in particular, voltage-gated sodium (Na+) channels (Nav channels). These are transmembrane proteins fundamental in excitable cells for generating the depolarization of plasma membrane potential known as action potential which propagates electrical signals in muscles and nerves for physiological functions. Disorders in Nav channel activity have been shown to induce neurological pathologies and pain states. Here, we describe the current knowledge of CnTX isoform modulation of the Nav channel activity, the mechanism of action and the potential therapeutic use of these toxins in counteracting neurological dysfunctions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|