101
|
Ghosh E, Tafesh-Edwards GSY, Eleftherianos I, Goldin SL, Ode PJ. The plant toxin 4-methylsulfinylbutyl isothiocyanate decreases herbivore performance and modulates cellular and humoral immunity. PLoS One 2023; 18:e0289205. [PMID: 37531339 PMCID: PMC10395821 DOI: 10.1371/journal.pone.0289205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Insect herbivores frequently encounter plant defense molecules, but the physiological and ecological consequences for their immune systems are not fully understood. The majority of studies attempting to relate levels of plant defensive chemistry to herbivore immune responses have used natural population or species-level variation in plant defensive chemistry. Yet, this potentially confounds the effects of plant defense chemistry with other potential plant trait differences that may affect the expression of herbivore immunity. We used an artificial diet containing known quantities of a plant toxin (4-methylsulfinylbutyl isothiocyanate; 4MSOB-ITC or ITC, a breakdown product of the glucosinolate glucoraphanin upon herbivory) to explicitly explore the effects of a plant toxin on the cellular and humoral immune responses of the generalist herbivore Trichoplusia ni (Lepidoptera: Noctuidae) that frequently feeds on glucosinolate-containing plants. Caterpillars feeding on diets with high concentrations of ITC experienced reduced survivorship and growth rates. High concentrations of ITC suppressed the appearance of several types of hemocytes and melanization activity, which are critical defenses against parasitic Hymenoptera and microbial pathogens. In terms of T. ni humoral immunity, only the antimicrobial peptide (AMP) genes lebocin and gallerimycin were significantly upregulated in caterpillars fed on diets containing high levels of ITC relative to caterpillars that were provided with ITC-free diet. Surprisingly, challenging caterpillars with a non-pathogenic strain of Escherichia coli resulted in the upregulation of the AMP gene cecropin. Feeding on high concentrations of plant toxins hindered caterpillar development, decreased cellular immunity, but conferred mixed effects on humoral immunity. Our findings provide novel insights into the effects of herbivore diet composition on insect performance demonstrating the role of specific plant defense toxins that shape herbivore immunity and trophic interactions.
Collapse
Affiliation(s)
- Enakshi Ghosh
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, Unites States of America
| | - Ghada S Y Tafesh-Edwards
- Department of Biological Sciences, The George Washington University, Washington, D.C., Unites States of America
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, D.C., Unites States of America
| | - Stephanie L Goldin
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, Unites States of America
| | - Paul J Ode
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, Unites States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, Unites States of America
| |
Collapse
|
102
|
Bui VH, Rodríguez-López CE, Dang TTT. Integration of discovery and engineering in plant alkaloid research: Recent developments in elucidation, reconstruction, and repurposing biosynthetic pathways. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102379. [PMID: 37182414 DOI: 10.1016/j.pbi.2023.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Plants synthesize tens of thousands of bioactive nitrogen-containing compounds called alkaloids, including some clinically important drugs in modern medicine. The discovery of new alkaloid structures and their metabolism in plants have provided ways to access these rich sources of bioactivities including new-to-nature compounds relevant to therapeutic and industrial applications. This review discusses recent advances in alkaloid biosynthesis discovery, including complete pathway elucidations. Additionally, the latest developments in the production of new and established plant alkaloids based on either biosynthesis or semisynthesis are discussed.
Collapse
Affiliation(s)
- Van-Hung Bui
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Carlos Eduardo Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3247 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
103
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
104
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
105
|
Yan C, Huang Y, Zhang S, Cui L, Jiao Z, Peng Z, Luo X, Liu Y, Qiu Z. Dynamic profiling of intact glucosinolates in radish by combining UHPLC-HRMS/MS and UHPLC-QqQ-MS/MS. FRONTIERS IN PLANT SCIENCE 2023; 14:1216682. [PMID: 37476169 PMCID: PMC10354559 DOI: 10.3389/fpls.2023.1216682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Glucosinolates (GSLs) and their degradation products in radish confer plant defense, promote human health, and generate pungent flavor. However, the intact GSLs in radish have not been investigated comprehensively yet. Here, an accurate qualitative and quantitative analyses of 15 intact GSLs from radish, including four major GSLs of glucoraphasatin (GRH), glucoerucin (GER), glucoraphenin (GRE), and 4-methoxyglucobrassicin (4MGBS), were conducted using UHPLC-HRMS/MS in combination with UHPLC-QqQ-MS/MS. Simultaneously, three isomers of hexyl GSL, 3-methylpentyl GSL, and 4-methylpentyl GSL were identified in radish. The highest content of GSLs was up to 232.46 μmol/g DW at the 42 DAG stage in the 'SQY' taproot, with an approximately 184.49-fold increase compared to the lowest content in another sample. That the GSLs content in the taproots of two radishes fluctuated in a similar pattern throughout the five vegetative growth stages according to the metabolic profiling, whereas the GSLs content in the '55' leaf steadily decreased over the same period. Additionally, the proposed biosynthetic pathways of radish-specific GSLs were elucidated in this study. Our findings will provide an abundance of qualitative and quantitative data on intact GSLs, as well as a method for detecting GSLs, thus providing direction for the scientific progress and practical utilization of GSLs in radish.
Collapse
Affiliation(s)
- Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yan Huang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lei Cui
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhenbiao Jiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yun Liu
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
106
|
Quicke DLJ, Ghafouri Moghaddam M, Butcher BA. Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not? Toxins (Basel) 2023; 15:424. [PMID: 37505693 PMCID: PMC10467097 DOI: 10.3390/toxins15070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Many insects defend themselves against predation by being distasteful or toxic. The chemicals involved may be sequestered from their diet or synthesized de novo in the insects' body tissues. Parasitoid wasps are a diverse group of insects that play a critical role in regulating their host insect populations such as lepidopteran caterpillars. The successful parasitization of caterpillars by parasitoid wasps is contingent upon their aptitude for locating and selecting suitable hosts, thereby determining their efficacy in parasitism. However, some hosts can be toxic to parasitoid wasps, which can pose challenges to their survival and reproduction. Caterpillars employ a varied array of defensive mechanisms to safeguard themselves against natural predators, particularly parasitoid wasps. These defenses are deployed pre-emptively, concurrently, or subsequently during encounters with such natural enemies. Caterpillars utilize a range of strategies to evade detection or deter and evade attackers. These tactics encompass both measures to prevent being noticed and mechanisms aimed at repelling or eluding potential threats. Post-attack strategies aim to eliminate or incapacitate the eggs or larvae of parasitoids. In this review, we investigate the dietary challenges faced by parasitoid wasps when encountering toxic hosts. We first summarize the known mechanisms through which insect hosts can be toxic to parasitoids and which protect caterpillars from parasitization. We then discuss the dietary adaptations and physiological mechanisms that parasitoid wasps have evolved to overcome these challenges, such as changes in feeding behavior, detoxification enzymes, and immune responses. We present new analyses of all published parasitoid-host records for the Ichneumonoidea that attack Lepidoptera caterpillars and show that classically toxic host groups are indeed hosts to significantly fewer species of parasitoid than most other lepidopteran groups.
Collapse
Affiliation(s)
| | | | - Buntika A. Butcher
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (D.L.J.Q.); (M.G.M.)
| |
Collapse
|
107
|
Sugiyama A. Application of plant specialized metabolites to modulate soil microbiota. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:123-133. [PMID: 38250293 PMCID: PMC10797516 DOI: 10.5511/plantbiotechnology.23.0227a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 01/23/2024]
Abstract
Plant specialized metabolites (PSMs) are considerably diverse compounds with multifaceted roles in the adaptation of plants to various abiotic and biotic stresses. PSMs are frequently secreted into the rhizosphere, a small region around the roots, where they facilitate interactions between plants and soil microorganisms. PSMs shape the host-specific rhizosphere microbial communities that potentially influence plant growth and tolerance to adverse conditions. Plant mutants defective in PSM biosynthesis contribute to reveal the roles of each PSM in plant-microbiota interactions in the rhizosphere. Recently, various approaches have been used to directly supply PSMs to soil by in vitro methods or through addition in pots with plants. This review focuses on the feasibility of the direct PSM application methods to reveal rhizospheric plant-microbiota interactions and discusses the possibility of applying the knowledge gained to future engineering of rhizospheric traits.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
108
|
Endo R, Chikano H, Itabashi E, Kawasaki M, Ohara T, Kakizaki T. Large insertion in radish GRS1 enhances glucoraphanin content in intergeneric hybrids, Raphanobrassica ( Raphanus sativus L. x Brassica oleracea var. acephala). FRONTIERS IN PLANT SCIENCE 2023; 14:1132302. [PMID: 37346118 PMCID: PMC10279979 DOI: 10.3389/fpls.2023.1132302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/05/2023] [Indexed: 06/23/2023]
Abstract
Glucosinolates (GSLs), precursors of isothiocyanates (ITCs), are present in Brassicaceae plants have been found to have health benefits. Sulforaphane (4-(methylsulfinyl)butyl ITC) is an ITC stored in the form of 4-(methylsulfinyl)butyl GSL (glucoraphanin, 4MSOB) in Brassica vegetables, such as broccoli and kale. Sulforaphane activates Nrf2 expression, a transcription factor responsible for inducing physiological activities such as detoxification in the human body, and it represents a functional component unique to cruciferous vegetables. Raphanobrassica is an inter-generic hybrid between radish and kale, and it contains a high amount of 4MSOB. However, Raphanobrassica contains as much 4-methylsulfinyl-3-butenyl GSL (glucoraphenin, 4MSO3B) as it does 4MSOB. GLUCORAPHASATIN SYNTHASE 1 (GRS1) is an enzyme present in radish that synthesizes 4-methylthio-3-butenyl GSL (glucoraphasatin, 4MT3B), a precursor of 4MSO3B, using 4-(methylthio)butyl GSL (glucoerucin, 4MTB) as a substrate. Since the precursor of 4MSOB is also 4MTB, it was considered that both 4MSOB and 4MSO3B accumulate owing to competition in Raphanobrassica. We hypothesized that owing to the impaired function of GRS1 in Raphanobrassica, it may be possible to breed Raphanobrassica cultivars containing a high 4MSOB content. In this study, we generated Raphanobrassica populations with functional and defective GRS1 and compared the GSL composition in the two populations using high-performance liquid chromatography. The mean 4MSOB content in leaves of the defective-type populations was higher than that in the functional-type population, and the defective/functional ratio ranged from 2.02 to 2.51-fold, supporting this hypothesis. Furthermore, leaves, flower buds, stems, and roots contained higher amounts of 4MSOB in the defective population than in the functional population. The leaf 4MSOB content of defective Raphanobrassica grown in this study was comparable to that of previously studied vegetables (such as broccoli sprouts) with high 4MSOB content. Raphanobrassica with defective GRS1 represents a new leafy vegetable with high 4MSOB content which exhibits anti-cancerous and anti-inflammatory potentials.
Collapse
Affiliation(s)
- Ryota Endo
- Agricultural and Bio Resource Development Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | - Hiroshi Chikano
- Agricultural and Bio Resource Development Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | - Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsu, Japan
| | - Mitsuyo Kawasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsu, Japan
| | - Takayoshi Ohara
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsu, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsu, Japan
| |
Collapse
|
109
|
Ortega-Cuadros M, Aligon S, Velasquez N, Verdier J, Grappin P. Arabidopsis transcriptome dataset of the response of imbibed wild-type and glucosinolate-deficient seeds to nitrogen-containing compounds. Data Brief 2023; 48:109047. [PMID: 37006386 PMCID: PMC10051019 DOI: 10.1016/j.dib.2023.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The presented RNAseq data were obtained from Arabidopsis seeds dry and 6h imbibed to describe, in wild-type and glucosinolate (GSL)-deficient genotypes, the response at the RNA level to nitrogen compounds, i.e., potassium nitrate (KNO3, 10mM), potassium thiocyanate (KSCN, 8µM). The cyp79B2 cyp79B3 (cyp79B2/B3) double mutant deficient in Indole GSL, the myb28 myb29 (myb28/29) double mutant deficient in aliphatic GSL, the quadruple mutant cyp79B2 cyp79B3 myb28 myb29 (qko) deficient in total GSL in the seed and the WT reference genotype in Col-0 background were used for the transcriptomic analysis. Total ARN was extracted using NucleoSpin® RNA Plant and Fungi kit. Library construction and sequencing were performed with DNBseq™ technology at Beijing Genomics Institute. FastQC was used to check reads quality and mapping analysis were made using a quasi-mapping alignment from Salmon. Gene expression changes in mutant seeds compared to WT were calculated using DESeq2 algorithms. This comparison with the qko, cyp79B2/B3 and myb28/29 mutants made it possible to identify 30220, 36885 and 23807 differentially expressed genes (DEGs), respectively. Mapping rate result was merge into a single report using MultiQC; graphic results were illustrated through Veen diagrams and volcano plots. Fastq raw data and count files from 45 samples are available in the repository Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) and can be consulted with the data identification number GSE221567 at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221567.
Collapse
Affiliation(s)
- Mailen Ortega-Cuadros
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
- Institute of Biology, University of Antioquia, Calle 67 N° 53-108, Medellín 050010, Colombia
| | - Sophie Aligon
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| | - Nubia Velasquez
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| | - Jerome Verdier
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| | - Philippe Grappin
- Institut Agro, University Angers, INRAE, IRHS, SFR 4207 QuaSaV, Angers F-49000, France
| |
Collapse
|
110
|
Li M, Wang Y, Xu J, Zhang X, Wei Z. Deciphering the toxicity mechanism of haloquinolines on Chlorella pyrenoidosa using QSAR and metabolomics approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114943. [PMID: 37099961 DOI: 10.1016/j.ecoenv.2023.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
The hazardous potential of haloquinolines (HQLs) is becoming an issue of great concern due to its wide and long-term usage in many personal care products. We examined the growth inhibition, structure-activity relationship, and toxicity mechanism of 33 HQLs on Chlorella pyrenoidosa using the 72-h algal growth inhibition assay, three-dimensional quantitative structure-activity relationship (3D-QSAR), and metabolomics. We found that the IC50 (half maximal inhibitory concentration) values for 33 compounds ranged from 4.52 to > 150 mg·L-1, most tested compounds were toxic (1 mg·L-1 < IC50 < 10 mg·L-1) or harmful (10 mg·L-1 < IC50 < 100 mg·L-1) for the aquatic ecosystem. Hydrophobic properties of HQLs dominate their toxicity. Halogen atoms with large volume appear at the 2, 3, 4, 5, 6, and 7-positions of the quinoline ring to significantly increase the toxicity. In algal cells, HQLs can block diverse carbohydrates, lipids, and amino acid metabolism pathways, thereby resulting in energy usage, osmotic pressure regulation, membrane integrity, oxidative stress disorder, thus fatally damaging algal cells. Therefore, our results provide insight into the toxicity mechanism and ecological risk of HQLs.
Collapse
Affiliation(s)
- Min Li
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China; Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, Ningxia Province, PR China.
| | - Yayao Wang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China.
| | - Jianren Xu
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China; Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, Ningxia Province, PR China.
| | - Xiu Zhang
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China; Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, Ningxia Province, PR China.
| | - Zhaojun Wei
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia Province, PR China.
| |
Collapse
|
111
|
Yamane K, Yamada-Kato T, Haga N, Ishida K, Murayama S, Kobayashi K, Okunishi I. Allyl isothiocyanate and 6-(methylsulfinyl) hexyl isothiocyanate contents vary among wild and cultivated wasabi ( Eutrema japonium). BREEDING SCIENCE 2023; 73:237-245. [PMID: 37840977 PMCID: PMC10570882 DOI: 10.1270/jsbbs.22080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 10/17/2023]
Abstract
Wasabi (Japanese horseradish, Eutrema japonicum) is the only cultivated species in the genus Eutrema with functional components that provide a strong pungent flavor. To evaluate genetic resources for wasabi breeding, we surveyed variations in the two most abundant isothiocyanate (ITC) components in wasabi, allyl isothiocyanate (AITC) and 6-methylsulfinyl (hexyl) isothiocyanate (6-MSITC, hexaraphane). We also examined the phylogenetic relationships among 36 accessions of wild and cultivated wasabi in Japan using chloroplast DNA analysis. Our results showed that (i) the 6-MSITC content in currently cultivated wasabi accessions was significantly higher than in escaped cultivars, whereas the AITC content was not significantly different. (ii) Additionally, the 6-MSITC content in cultivated wasabi was significantly lower in the spring than during other seasons. This result suggested that the 6-MSITC content responds to environmental conditions. (iii) The phylogenetic position and the 6-MSITC content of accessions from Rebun, Hokkaido Prefecture had different profiles compared with those from southern Honshu, Japan, indicating heterogeneity of the Rebun populations from other Japanese wasabi accessions. (iv) The total content of AITC and 6-MSITC in cultivated wasabi was significantly higher than that of wild wasabi. In conclusion, old cultivars or landraces of wasabi, "zairai", are the most suitable candidates for immediate use as genetic resources.
Collapse
Affiliation(s)
- Kyoko Yamane
- Gifu University, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Tomoe Yamada-Kato
- Kinjirushi Co., Ltd, 2-61 Yahata-hontori, Nakagawa-ku, Nagoya, Aichi 454-8526, Japan
| | - Natsuko Haga
- Gifu University, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Kaori Ishida
- Kinjirushi Co., Ltd, 2-61 Yahata-hontori, Nakagawa-ku, Nagoya, Aichi 454-8526, Japan
| | - Seiji Murayama
- Rebun Botanical Garden, Uedomari, Funadomari-mura, Rebun-cho, Rebun city, Hokkaido 097-1111, Japan
| | - Keiko Kobayashi
- Gifu University, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Isao Okunishi
- Kinjirushi Co., Ltd, 2-61 Yahata-hontori, Nakagawa-ku, Nagoya, Aichi 454-8526, Japan
| |
Collapse
|
112
|
Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1164-1177. [PMID: 36891808 DOI: 10.1111/tpj.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.
Collapse
Affiliation(s)
- Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, 100091, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
113
|
Shin D, Perez VC, Dickinson GK, Zhao H, Dai R, Tomiczek B, Cho KH, Zhu N, Koh J, Grenning A, Kim J. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542770. [PMID: 37398371 PMCID: PMC10312446 DOI: 10.1101/2023.05.29.542770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole-3-acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine-ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway which produces indispensable specialized metabolites such as lignin, aldoxime-mediated phenylpropanoid repression is detrimental to plant survival. Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants, ref2 and ref5 . REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities. ref2 and ref5 mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx respectively, it was assumed that ref2 accumulates AAOx, not IAOx. Our study indicates that ref2 accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid production in ref2 , but not to the wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity in ref2 were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation. Significance Statement Aliphatic aldoximes are precursors of various specialized metabolites including defense compounds. This study reveals that aliphatic aldoximes repress phenylpropanoid production and that altered methionine metabolism affects plant growth and development. As phenylpropanoids include vital metabolites such as lignin, a major sink of fixed carbon, this metabolic link may contribute to available resource allocation during defense.
Collapse
|
114
|
Li R, Zhou Z, Zhang T, Su H, Li J. Overexpression of LSU1 and LSU2 confers cadmium tolerance by manipulating sulfur metabolism in Arabidopsis. CHEMOSPHERE 2023; 334:139046. [PMID: 37244555 DOI: 10.1016/j.chemosphere.2023.139046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Phytoremediation using plants is an environmentally friendly and cost-effective strategy for removing cadmium (Cd) from soil. Plants used for phytoremediation must have a high Cd accumulation capacity and strong Cd tolerance. Therefore, understanding the molecular mechanism of Cd tolerance and accumulation in plants is of great interest. In response to Cd exposure, plants produce various thio-rich compounds, such as glutathione, phytochelatins, and metallothioneins, which play important roles in Cd immobilization, sequestration, and detoxification. Therefore, sulfur (S) metabolism is crucial for Cd tolerance and accumulation. In this study, we report that the overexpression of low-S responsive genes, LSU1 and LSU2, confers Cd tolerance in Arabidopsis. First, LSU1 and LSU2 promoted S assimilation under Cd stress. Second, LSU1 and LSU2 inhibited the biosynthesis and promoted the degradation of aliphatic glucosinolates, which could limit the consumption and enhance the release of S, thus, facilitating the production of the S-rich metabolites, glutathione, phytochelatins, and metallothioneins. We further demonstrated that the Cd tolerance mediated by LSU1 and LSU2 was dependent on the myrosinases BGLU28 and BGLU30, which catalyze the degradation of aliphatic glucosinolates. In addition, the overexpression of LSU1 and LSU2 improved Cd accumulation, which has great potential for the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zihuan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tianqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hongzhu Su
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
115
|
Wen Y, Jiang X, Li D, Ou Z, Yu Y, Chen R, Chen C, Xu H. Synthesis and characterization of an artificial glucosinolate bearing a chlorthalonil-based aglycon as a potent inhibitor of glucosinolate transporters. PHYTOCHEMISTRY 2023; 212:113726. [PMID: 37207992 DOI: 10.1016/j.phytochem.2023.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GSLs) are specialized metabolites in plants of the order Brassicales. GSL transporters (GTRs) are essential for the redistribution of GSLs and also play a role in controlling the GSL content of seeds. However, specific inhibitors of these transporters have not been reported. In the current study, we described the design and synthesis of 2,3,4,6-tetrachloro-5-cyanophenyl GSL (TCPG), an artificial GSL bearing a chlorothalonil moiety as a potent inhibitor of GTRs, and evaluated its inhibitory effect on the substrate uptake mediated through GTR1 and GTR2. Molecular docking showed that the position of the β-D-glucose group of TCPG was significantly different from that of the natural substrate in GTRs and the chlorothalonil moiety forms halogen bonds with GTRs. Functional assays and kinetic analysis of the transport activity revealed that TCPG could significantly inhibit the transport activity of GTR1 and GTR2 (IC50 values (mean ± SD) being 79 ± 16 μM and 192 ± 14 μM, respectively). Similarly, TCPG could inhibit the uptake and phloem transport of exogenous sinigrin by Arabidopsis thaliana (L.) Heynh leaf tissues, while not affecting that of esculin (a fluorescent surrogate for sucrose). TCPG could also reduce the content of endogenous GSLs in phloem exudates. Together, TCPG was discovered as an undescribed inhibitor of the uptake and phloem transport of GSLs, which brings novel insights into the ligand recognition of GTRs and provides a new strategy to control the GSL level. Further tests on the ecotoxicological and environmental safety of TCPG are needed before using it as an agricultural or horticultural chemical in the future.
Collapse
Affiliation(s)
- Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou, Guangdong, 510640, China
| | - Dehong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ziyue Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ye Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ronghua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
116
|
Escobar-Bravo R, Lin PA, Waterman JM, Erb M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat Prod Rep 2023; 40:840-865. [PMID: 36727645 PMCID: PMC10132087 DOI: 10.1039/d2np00061j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Collapse
Affiliation(s)
| | - Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
117
|
Nagia M, Morgan I, Gamel MA, Farag MA. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids. Crit Rev Food Sci Nutr 2023; 64:8133-8154. [PMID: 37051943 DOI: 10.1080/10408398.2023.2197065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.
Collapse
Affiliation(s)
- Mohamed Nagia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mirette A Gamel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
118
|
Ali Redha A, Torquati L, Langston F, Nash GR, Gidley MJ, Cozzolino D. Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review. Crit Rev Food Sci Nutr 2023; 64:8248-8264. [PMID: 37035931 DOI: 10.1080/10408398.2023.2198015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Cruciferous vegetables and oilseeds are rich in glucosinolates that can transform into isothiocyanates upon enzymic hydrolysis during post-harvest handling, food preparation and/or digestion. Vegetables contain glucosinolates that have beneficial bioactivities, while glucosinolates in oilseeds might have anti-nutritional properties. It is therefore important to monitor and assess glucosinolates and isothiocyanates content through the food value chain as well as for optimized crop production. Vibrational spectroscopy methods, such as infrared (IR) spectroscopy, are used as a nondestructive, rapid and low-cost alternative to the current and common costly, destructive, and time-consuming techniques. This systematic review discusses and evaluates the recent literature available on the use of IR spectroscopy to determine glucosinolates and isothiocyanates in vegetables and oilseeds. NIR spectroscopy was used to predict glucosinolates in broccoli, kale, rocket, cabbage, Brussels sprouts, brown mustard, rapeseed, pennycress, and a combination of Brassicaceae family seeds. Only one study reported the use of NIR spectroscopy to predict broccoli isothiocyanates. The major limitations of these studies were the absence of the critical evaluation of errors associated with the reference method used to develop the calibration models and the lack of interpretation of loadings or regression coefficients used to predict glucosinolates.
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Luciana Torquati
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Faye Langston
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Geoffrey R Nash
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
119
|
Abdel-Massih RM, Debs E, Othman L, Attieh J, Cabrerizo FM. Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Front Microbiol 2023; 14:1130208. [PMID: 37089539 PMCID: PMC10114928 DOI: 10.3389/fmicb.2023.1130208] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Glucosinolates are a group of thioglucosides that belong to the class of plant nitrogen-containing natural products. So far, very little biological activity has been associated with intact glucosinolates. The hydrolysis of glucosinolates has, for long, attracted attention because of the potent biological activity of the hydrolysis products. From allelopathic to antiparasitic, antimicrobial and antineoplastic effects, the activity spectrum of the degradation products of typical glucosinolates has been the subject of much research. The present review seeks to address the various means of glucosinolate degradation (thermal, enzymatic, or chemical degradation) and the ensuing products. It also aims to draw a comparative profile of the various antimicrobial effects of these degradation products to provide a further understanding of the biological function of these important compounds.
Collapse
Affiliation(s)
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura, Lebanon
| | - Leen Othman
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Jihad Attieh
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura, Lebanon
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús, National Scientific and Technical Research Council – National University of General San Martín, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, National University of General San Martín, Buenos Aires, Argentina
| |
Collapse
|
120
|
Trabelcy B, Shteindel N, Lalzar M, Izhaki I, Gerchman Y. Bacterial detoxification of plant defence secondary metabolites mediates the interaction between a shrub and frugivorous birds. Nat Commun 2023; 14:1821. [PMID: 37002264 PMCID: PMC10066296 DOI: 10.1038/s41467-023-37525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Many plants produce fleshy fruits, attracting fruit-eating animals that disperse the seeds in their droppings. Such seed dispersal results in a conflict between the plant and the animal, as digestion of seeds can be highly beneficial to the animal but reduces plant fitness. The plant Ochradenus baccatus uses the myrosinase-glucosinolates system to protect its seeds. We show that hydrolysis of the O. baccatus fruit glucosinolates by the myrosinase enzyme inhibited digestive enzymes and hampered digestion in naïve individuals of the bird Pycnonotus xanthopygos. However, digestion in birds regularly feeding on O. baccatus fruits was unaffected. We find that Pantoea bacteria, dominating the gut of these experienced birds as well as the fruits, thrive on glucosinolates hydrolysis products in culture. Augmentation of Pantoea protects both naïve birds and plant seedlings from the effects of glucosinolates hydrolysis products. Our findings demonstrate a tripartite interaction, where the plant-bird mutually beneficial interactions are mediated by a communal bacterial tenant.
Collapse
Affiliation(s)
- Beny Trabelcy
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| | - Nimrod Shteindel
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maya Lalzar
- Bioinformatic Unit, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Yoram Gerchman
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
- Oranim College, Kiryat Tivon, 3600600, Israel.
| |
Collapse
|
121
|
Amarakoon D, Lee WJ, Tamia G, Lee SH. Indole-3-Carbinol: Occurrence, Health-Beneficial Properties, and Cellular/Molecular Mechanisms. Annu Rev Food Sci Technol 2023; 14:347-366. [PMID: 36972159 DOI: 10.1146/annurev-food-060721-025531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Indole-3-carbinol (I3C) is a bioactive phytochemical abundant in cruciferous vegetables. One of its main in vivo metabolites is 3,3'-diindolylmethane (DIM), formed by the condensation of two molecules of I3C. Both I3C and DIM alter multiple signaling pathways and related molecules controlling diverse cellular events, including oxidation, inflammation, proliferation, differentiation, apoptosis, angiogenesis, and immunity. There is a growing body of evidence from both in vitro and in vivo models that these compounds possess strong potential to prevent several forms of chronic disease such as inflammation, obesity, diabetes, cardiovascular disease, cancer, hypertension, neurodegenerative diseases, and osteoporosis. This article reviews current knowledge of the occurrence of I3C in nature and foods, along with the beneficial effects of I3C and DIM concerning prevention and treatment of human chronic diseases, focusing on preclinical studies and their mechanisms of action at cellular and molecular levels.
Collapse
Affiliation(s)
- Darshika Amarakoon
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Wu-Joo Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Gillian Tamia
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
122
|
Costa-Pérez A, Núñez-Gómez V, Baenas N, Di Pede G, Achour M, Manach C, Mena P, Del Rio D, García-Viguera C, Moreno DA, Domínguez-Perles R. Systematic Review on the Metabolic Interest of Glucosinolates and Their Bioactive Derivatives for Human Health. Nutrients 2023; 15:nu15061424. [PMID: 36986155 PMCID: PMC10058295 DOI: 10.3390/nu15061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.
Collapse
Affiliation(s)
- Antonio Costa-Pérez
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare-Nostrum”, Campus de Espinardo, University of Murcia, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
| | - Mariem Achour
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Claudine Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, 63001 Clermont-Ferrand, France
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Cristina García-Viguera
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
- Correspondence: (N.B.); (D.A.M.); Tel.: +00-348-6888-9627 (N.B.); +00-349-6839-6200 (D.A.M.)
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain
| |
Collapse
|
123
|
Salt-Affected Rocket Plants as a Possible Source of Glucosinolates. Int J Mol Sci 2023; 24:ijms24065510. [PMID: 36982584 PMCID: PMC10056271 DOI: 10.3390/ijms24065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Soil salinity can have various negative consequences on agricultural products, from their quality and production to their aesthetic traits. In this work, the possibility to use salt-affected vegetables, that otherwise would be discarded, as a source of nutraceuticals was explored. To this aim, rocket plants, a vegetable featuring bioactive compounds such as glucosinolates, were exposed to increasing NaCl concentrations in hydroponics and analysed for their content in bioactive compounds. Salt levels higher than 68 mM produced rocket plants that did not comply with European Union regulations and would therefore be considered a waste product. Anyway, our findings, obtained by Liquid Chromatography-High Resolution Mass Spectrometry, demonstrated a significant increase in glucosinolates levels in such salt-affected plants. opening the opportunity for a second life of these market discarded products to be recycled as glucosinolates source. Furthermore, an optimal situation was found at NaCl 34 mM in which not only were the aesthetic traits of rocket plants not affected, but also the plants revealed a significant enrichment in glucosinolates. This can be considered an advantageous situation in which the resulting vegetables still appealed to the market and showed improved nutraceutical aspects.
Collapse
|
124
|
Bioactivity of brassica seed meals and its compounds as ecofriendly larvicides against mosquitoes. Sci Rep 2023; 13:3936. [PMID: 36894606 PMCID: PMC9998646 DOI: 10.1038/s41598-023-30563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Strategic, sustainable, and ecofriendly alternatives to chemical pesticides are needed to effectively control mosquitoes and reduce the incidence of their vectored diseases. We evaluated several Brassicaceae (mustard family) seed meals as sources of plant derived isothiocyanates produced from the enzymatic hydrolysis of biologically inactive glucosinolates for the control of Aedes aegypti (L., 1762). Five defatted seed meals (Brassica juncea (L) Czern., 1859, Lepidium sativum L., 1753, Sinapis alba L., 1753, Thlaspi arvense L., 1753, and Thlaspi arvense-heat inactivated and three major chemical products of enzymatic degradation (allyl isothiocyanate, benzyl isothiocyanate and 4-hydroxybenzyl isothiocyanate) were assayed to determine toxicity (LC50) to Ae. aegypti larvae. All seed meals except the heat inactivated T. arvense were toxic to mosquito larvae. L. sativum seed meal was the most toxic treatment to larvae (LC50 = 0.04 g/120 mL dH2O) at the 24-h exposure. At the 72-h evaluation, the LC50 values for B. juncea, S. alba and T. arvense seed meals were 0.05, 0.08 and 0.1 g/120 mL dH2O, respectively. Synthetic benzyl isothiocyanate was more toxic to larvae 24-h post treatment (LC50 = 5.29 ppm) compared with allyl isothiocyanate (LC50 = 19.35 ppm) and 4-hydroxybenzyl isothiocyanate (LC50 = 55.41 ppm). These results were consistent with the higher performance of the benzyl isothiocyanate producing L. sativum seed meal. Isothiocyanates produced from seed meals were more effective than the pure chemical compounds, based on calculated LC50 rates. Using seed meal may provide an effective method of delivery for mosquito control. This is the first report evaluating the efficacy of five Brassicaceae seed meals and their major chemical constituent against mosquito larvae and demonstrates how natural compounds from Brassicaceae seed meals can serve as a promising ecofriendly larvicides to control mosquitoes.
Collapse
|
125
|
In Vitro Antiviral Effect and Potential Neuroprotection of Salvadora persica L. Stem Bark Extract against Lipopolysaccharides-Induced Neuroinflammation in Mice: LC-ESI-MS/MS Analysis of the Methanol Extract. Pharmaceuticals (Basel) 2023; 16:ph16030398. [PMID: 36986497 PMCID: PMC10058283 DOI: 10.3390/ph16030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroinflammation is a serious immunomodulatory complex disorder that causes neurological and somatic ailments. The treatment of brain inflammation with new drugs derived from natural sources is a significant therapeutic goal. Utilizing LC-ESI-MS/MS analysis, the active constituents of Salvadora persica extract (SPE) were identified tentatively as exerting antioxidant and anti-inflammatory effects in natural medicine. Herein, we determined the antiviral potential of SPE against herpes simplex virus type 2 (HSV-2) using the plaque assay. HSV-2 is a neurotropic virus that can cause neurological diseases. SPE exhibited promising antiviral potential with a half-maximal cytotoxic concentration (CC50) of 185.960 ± 0.1 µg/mL and a half-maximal inhibitory concentration (IC50) of 8.946 ± 0.02 µg/mL. The in vivo study of the SPE impact against lipopolysaccharide (LPS)-induced neuroinflammation was performed using 42 mice divided into seven groups. All groups were administered LPS (0.25 mg/kg) intraperitoneally, except for the normal and SPE groups 1 and 2. Groups 5, 6, and 7 received 100, 200, and 300 mg/kg SPE. It was revealed that SPE inhibited acetylcholinesterase in the brain. It increased superoxide dismutase and catalase while decreasing malondialdehyde, which explains its antioxidative stress activity. SPE downregulated the gene expression of the inducible nitric oxide synthase, as well as the apoptotic markers (caspase-3 and c-Jun). In addition, it decreased the expression of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor-alpha). Mice administered SPE (300 mg/kg) with LPS exhibited normal neurons in the cerebral cortices, hippocampus pyramidal layer, and cerebellum, as determined by the histopathological analysis. Therefore, using S. persica to prevent and treat neurodegeneration could be a promising new therapeutic strategy to be explored.
Collapse
|
126
|
Han D, Tan J, Yue Z, Tao P, Lei J, Zang Y, Hu Q, Wang H, Zhang S, Li B, Zhao Y. Genome-Wide Identification and Expression Analysis of ESPs and NSPs Involved in Glucosinolate Hydrolysis and Insect Attack Defense in Chinese Cabbage ( Brassica rapa subsp. pekinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:1123. [PMID: 36903983 PMCID: PMC10005253 DOI: 10.3390/plants12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates are secondary plant metabolites that are part of the plant's defense system against pathogens and pests and are activated via enzymatic degradation by thioglucoside glucohydrolases (myrosinases). Epithiospecifier proteins (ESPs) and nitrile-specifier proteins (NSPs) divert the myrosinase-catalyzed hydrolysis of a given glucosinolate to form epithionitrile and nitrile rather than isothiocyanate. However, the associated gene families have not been explored in Chinese cabbage. We identified three ESP and fifteen NSP genes randomly distributed on six chromosomes in Chinese cabbage. Based on a phylogenetic tree, the ESP and NSP gene family members were divided into four clades and had similar gene structure and motif composition of Brassica rapa epithiospecifier proteins (BrESPs) and B. rapa nitrile-specifier proteins (BrNSPs) in the same clade. We identified seven tandem duplicated events and eight pairs of segmentally duplicated genes. Synteny analysis showed that Chinese cabbage and Arabidopsis thaliana are closely related. We detected the proportion of various glucosinolate hydrolysates in Chinese cabbage and verified the function of BrESPs and BrNSPs in glucosinolate hydrolysis. Furthermore, we used quantitative RT-PCR to analyze the expression of BrESPs and BrNSPs and demonstrated that these genes responded to insect attack. Our findings provide novel insights into BrESPs and BrNSPs that can help further promote the regulation of glucosinolate hydrolysates by ESP and NSP to resist insect attack in Chinese cabbage.
Collapse
Affiliation(s)
- Danni Han
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Jingru Tan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunxiang Zang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
127
|
Hellens AM, Chabikwa TG, Fichtner F, Brewer PB, Beveridge CA. Identification of new potential downstream transcriptional targets of the strigolactone pathway including glucosinolate biosynthesis. PLANT DIRECT 2023; 7:e486. [PMID: 36945724 PMCID: PMC10024969 DOI: 10.1002/pld3.486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Strigolactones regulate shoot branching and many aspects of plant growth, development, and allelopathy. Strigolactones are often discussed alongside auxin because they work together to inhibit shoot branching. However, the roles and mechanisms of strigolactones and how they act independently of auxin are still elusive. Additionally, there is still much in general to be discovered about the network of molecular regulators and their interactions in response to strigolactones. Here, we conducted an experiment in Arabidopsis with physiological treatments and strigolactone mutants to determine transcriptional pathways associated with strigolactones. The three physiological treatments included shoot tip removal with and without auxin treatment and treatment of intact plants with the auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA). We identified the glucosinolate biosynthesis pathway as being upregulated across strigolactone mutants indicating strigolactone-glucosinolate crosstalk. Additionally, strigolactone application cannot restore the highly branched phenotype observed in glucosinolate biosynthesis mutants, placing glucosinolate biosynthesis downstream of strigolactone biosynthesis. Oxidative stress genes were enriched across the experiment suggesting that this process is mediated through multiple hormones. Here, we also provide evidence supporting non-auxin-mediated, negative feedback on strigolactone biosynthesis. Increases in strigolactone biosynthesis gene expression seen in strigolactone mutants could not be fully restored by auxin. By contrast, auxin could fully restore auxin-responsive gene expression increases, but not sugar signaling-related gene expression. Our data also point to alternative roles of the strigolactone biosynthesis genes and potential new signaling functions of strigolactone precursors. In this study, we identify a strigolactone-specific regulation of glucosinolate biosynthesis genes indicating that the two are linked and may work together in regulating stress and shoot ranching responses in Arabidopsis. Additionally, we provide evidence for non-auxinmediated feedback on strigolactone biosynthesis and discuss this in the context of sugar signaling.
Collapse
Affiliation(s)
- Alicia M. Hellens
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tinashe G. Chabikwa
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Franziska Fichtner
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
- Institute for Plant BiochemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Philip B. Brewer
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
- School of Agriculture, Food and WineThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Christine A. Beveridge
- School of Biological SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
- ARC Centre for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
128
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
129
|
Gao YQ, Jimenez-Sandoval P, Tiwari S, Stolz S, Wang J, Glauser G, Santiago J, Farmer EE. Ricca's factors as mobile proteinaceous effectors of electrical signaling. Cell 2023; 186:1337-1351.e20. [PMID: 36870332 PMCID: PMC10098372 DOI: 10.1016/j.cell.2023.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as β-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jing Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Julia Santiago
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
130
|
Chen B, Liu Y, Xiang C, Zhang D, Liu Z, Liu Y, Chen J. Identification and in vitro enzymatic activity analysis of the AOP2 gene family associated with glucosinolate biosynthesis in Tumorous stem mustard ( Brassica juncea var. tumida). FRONTIERS IN PLANT SCIENCE 2023; 14:1111418. [PMID: 36909383 PMCID: PMC9992552 DOI: 10.3389/fpls.2023.1111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The major enzyme encoded by the glucosinolate biosynthetic gene AOP2 is involved in catalyzing the conversion of glucoiberin (GIB) into sinigrin (SIN) in Brassicaceae crops. The AOP2 proteins have previously been identified in several Brassicaceae species, but not in Tumorous stem mustard. As per this research, the five identified members of the AOP2 family from the whole genome of Brassica juncea named BjuAOP2.1-BjuAOP2.5 were found to be evenly distributed on five chromosomes. The subcellular localization results implied that BjuAOP2 proteins were mainly concentrated in the cytoplasm. Phylogenetic analysis of the AOP2 proteins from the sequenced Brassicaceae species in BRAD showed that BjuAOP2 genes were more closely linked to Brassica carinata and Brassica rapa than Arabidopsis. In comparison with other Brassicaceae plants, the BjuAOP2 members were conserved in terms of gene structures, protein sequences, and motifs. The light response and hormone response elements were included in the BjuAOP2 genes' cis-regulatory elements. The expression pattern of BjuAOP2 genes was influenced by the different stages of development and the type of tissue being examined. The BjuAOP2 proteins were used to perform the heterologous expression experiment. The results showed that all the five BjuAOP2 proteins can catalyze the conversion of GIB to SIN with different catalytic activity. These results provide the basis for further investigation of the functional study of BjuAOP2 in Tumorous stem mustard glucosinolate biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yihua Liu
- *Correspondence: Yihua Liu, ; Jingjing Chen,
| | | |
Collapse
|
131
|
Zagrodzki P, Wiesner A, Marcinkowska M, Jamrozik M, Domínguez-Álvarez E, Bierła K, Łobiński R, Szpunar J, Handzlik J, Galanty A, Gorinstein S, Paśko P. Relationships between Molecular Characteristics of Novel Organic Selenium Compounds and the Formation of Sulfur Compounds in Selenium Biofortified Kale Sprouts. Molecules 2023; 28:molecules28052062. [PMID: 36903308 PMCID: PMC10004238 DOI: 10.3390/molecules28052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Due to problems with selenium deficiency in humans, the search for new organic molecules containing this element in plant biofortification process is highly required. Selenium organic esters evaluated in this study (E-NS-4, E-NS-17, E-NS-71, EDA-11, and EDA-117) are based mostly on benzoselenoate scaffolds, with some additional halogen atoms and various functional groups in the aliphatic side chain of different length, while one compound contains a phenylpiperazine moiety (WA-4b). In our previous study, the biofortification of kale sprouts with organoselenium compounds (at the concentrations of 15 mg/L in the culture fluid) strongly enhanced the synthesis of glucosinolates and isothiocyanates. Thus, the study aimed to discover the relationships between molecular characteristics of the organoselenium compounds used and the amount of sulfur phytochemicals in kale sprouts. The statistical partial least square model with eigenvalues equaled 3.98 and 1.03 for the first and second latent components, respectively, which explained 83.5% of variance in the predictive parameters, and 78.6% of response parameter variance was applied to reveal the existence of the correlation structure between molecular descriptors of selenium compounds as predictive parameters and biochemical features of studied sprouts as response parameters (correlation coefficients for parameters in PLS model in the range-0.521 ÷ 1.000). This study supported the conclusion that future biofortifiers composed of organic compounds should simultaneously contain nitryl groups, which may facilitate the production of plant-based sulfur compounds, as well as organoselenium moieties, which may influence the production of low molecular weight selenium metabolites. In the case of the new chemical compounds, environmental aspects should also be evaluated.
Collapse
Affiliation(s)
- Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Wiesner
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland
| | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Cracow, Poland
| | | | - Katarzyna Bierła
- IPREM—Institute of Analytical and Physical Chemistry for the Environment and Materials, CNRS-UPPA UMR 5254, Hélioparc, 64053 Pau, France
| | - Ryszard Łobiński
- IPREM—Institute of Analytical and Physical Chemistry for the Environment and Materials, CNRS-UPPA UMR 5254, Hélioparc, 64053 Pau, France
- Department of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Joanna Szpunar
- IPREM—Institute of Analytical and Physical Chemistry for the Environment and Materials, CNRS-UPPA UMR 5254, Hélioparc, 64053 Pau, France
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Medical College, Jagiellonian University Medyczna 9, 30-688 Kraków, Poland
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
- Correspondence: ; Tel.: +48-126205670; Fax: +48-126205405
| |
Collapse
|
132
|
Gaba Y, Bhowal B, Pareek A, Singla-Pareek SL. Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. Int J Mol Sci 2023; 24:4190. [PMID: 36835601 PMCID: PMC9960948 DOI: 10.3390/ijms24044190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
133
|
Medina-Fraga AL, Chinen LA, Demkura PV, Lichy MZ, Gershenzon J, Ballaré CL, Crocco CD. AtBBX29 integrates photomorphogenesis and defense responses in Arabidopsis. Photochem Photobiol Sci 2023:10.1007/s43630-023-00391-8. [PMID: 36807054 DOI: 10.1007/s43630-023-00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
Light is an environmental signal that modulates plant defenses against attackers. Recent research has focused on the effects of light on defense hormone signaling; however, the connections between light signaling pathways and the biosynthesis of specialized metabolites involved in plant defense have been relatively unexplored. Here, we show that Arabidopsis BBX29, a protein that belongs to the B-Box transcription factor (TF) family, integrates photomorphogenic signaling with defense responses by promoting flavonoid, sinapate and glucosinolate accumulation in Arabidopsis leaves. AtBBX29 transcript levels were up regulated by light, through photoreceptor signaling pathways. Genetic evidence indicated that AtBBX29 up-regulates MYB12 gene expression, a TF known to induce genes related to flavonoid biosynthesis in a light-dependent manner, and MYB34 and MYB51, which encode TFs involved in the regulation of glucosinolate biosynthesis. Thus, bbx29 knockout mutants displayed low expression levels of key genes of the flavonoid biosynthetic pathway, and the opposite was true in BBX29 overexpression lines. In agreement with the transcriptomic data, bbx29 mutant plants accumulated lower levels of kaempferol glucosides, sinapoyl malate, indol-3-ylmethyl glucosinolate (I3M), 4-methylsulfinylbutyl glucosinolate (4MSOB) and 3-methylthiopropyl glucosinolate (3MSP) in rosette leaves compared to the wild-type, and showed increased susceptibility to the necrotrophic fungus Botrytis cinerea and to the herbivore Spodoptera frugiperda. In contrast, BBX29 overexpressing plants displayed increased resistance to both attackers. In addition, we found that AtBBX29 plays an important role in mediating the effects of ultraviolet-B (UV-B) radiation on plant defense against B. cinerea. Taken together, these results suggest that AtBBX29 orchestrates the accumulation of specific light-induced metabolites and regulates Arabidopsis resistance against pathogens and herbivores.
Collapse
Affiliation(s)
- Ana L Medina-Fraga
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas A Chinen
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia V Demkura
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Z Lichy
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Carlos L Ballaré
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- IIBIO, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos D Crocco
- Facultad de Agronomía, IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
134
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
135
|
Czerniawski P, Piślewska-Bednarek M, Piasecka A, Kułak K, Bednarek P. Loss of MYB34 Transcription Factor Supports the Backward Evolution of Indole Glucosinolate Biosynthesis in a Subclade of the Camelineae Tribe and Releases the Feedback Loop in This Pathway in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:80-93. [PMID: 36222356 DOI: 10.1093/pcp/pcac142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Glucosinolates are specialized defensive metabolites characteristic of the Brassicales order. Among them, aliphatic and indolic glucosinolates (IGs) are usually highly abundant in species from the Brassicaceae family. The exceptions this trend are species representing a subclade of the Camelineae tribe, including Capsella and Camelina genera, which have reduced capacity to produce and metabolize IGs. Our study addresses the contribution of specific glucosinolate-related myeloblastosis (MYB) transcription factors to this unprecedented backward evolution of IG biosynthesis. To this end, we performed phylogenomic and functional studies of respective MYB proteins. The obtained results revealed weakened conservation of glucosinolate-related MYB transcription factors, including loss of functional MYB34 protein, in the investigated species. We showed that the introduction of functional MYB34 from Arabidopsis thaliana partially restores IG biosynthesis in Capsella rubella, indicating that the loss of this transcription factor contributes to the backward evolution of this metabolic pathway. Finally, we performed an analysis of the impact of particular myb mutations on the feedback loop in IG biosynthesis, which drives auxin overproduction, metabolic dysregulation and strong growth retardation caused by mutations in IG biosynthetic genes. This uncovered the unique function of MYB34 among IG-related MYBs in this feedback regulation and consequently in IG conservation in Brassicaceae plants.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| |
Collapse
|
136
|
Singh AA, Jo SH, Kiddane AT, Niyonizigiye I, Kim GD. Indole-3-carbinol induces apoptosis in AGS cancer cells via mitochondrial pathway. Chem Biol Drug Des 2023; 101:1367-1381. [PMID: 36798994 DOI: 10.1111/cbdd.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Indole-3-carbinol is produced from the cruciferous vegetables and broadly investigated for their various biological effects in in-vitro and in-vivo aspects. However, the anticancer activity of I3C and its molecular mechanisms have not been investigated in human adeno gastro carcinoma (AGS) cells. In our study of AGS cells, nuclear condensation was observed by 4',6-diamidino-2-phenylindole (DAPI) staining, cell death was confirmed by a cell viability assay, and fragmented DNA was observed at the IC50 dose by a DNA fragmentation assay. Apoptosis was evaluated by the qPCR technique. Treatment of the AGS cells with I3C at different concentrations has drastically decreased cell proliferation and differentiation. By releasing cytochrome-c from mitochondria in the intrinsic pathway, I3C prevents the multiplication of AGS cells and initiates apoptosis. The WST-1 assay result showed that I3C treatment against AGS cells had considerably reduced the viability of the cells. Furthermore, RT-qPCR showed the fold change among the expressed proteins compared with reference gene β-actin. Molecular docking revealed that I3C showed a strong binding affinity for the apoptotic protein 3DCY. The results show the caspase group of proteins contribute to the core of apoptotic machinery. I3C and its metabolites target a variety of components of cell-cycle control via distinct signaling pathways in light of the rapid development of tumors and oncogenesis. The translational significance of I3C and its metabolites in cancer is highlighted by their wide range of antitumor activity and low toxicity. Furthermore, the novel prodrug I3C, which has overlapping underlying mechanisms, could encourage new strategies to decrease oncogenesis.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, College of Natural Science, Pukyong National University, Busan, Korea
| | - Anley Teferra Kiddane
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| | - Irvine Niyonizigiye
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| | - Gun-Do Kim
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| |
Collapse
|
137
|
Kruse LH, Fehr B, Chobirko JD, Moghe GD. Phylogenomic analyses across land plants reveals motifs and coexpression patterns useful for functional prediction in the BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1067613. [PMID: 36844084 PMCID: PMC9950517 DOI: 10.3389/fpls.2023.1067613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The BAHD acyltransferase family is one of the largest enzyme families in flowering plants, containing dozens to hundreds of genes in individual genomes. Highly prevalent in angiosperm genomes, members of this family contribute to several pathways in primary and specialized metabolism. In this study, we performed a phylogenomic analysis of the family using 52 genomes across the plant kingdom to gain deeper insights into its functional evolution and enable function prediction. We found that BAHD expansion in land plants was associated with significant changes in various gene features. Using pre-defined BAHD clades, we identified clade expansions in different plant groups. In some groups, these expansions coincided with the prominence of metabolite classes such as anthocyanins (flowering plants) and hydroxycinnamic acid amides (monocots). Clade-wise motif-enrichment analysis revealed that some clades have novel motifs fixed on either the acceptor or the donor side, potentially reflecting historical routes of functional evolution. Co-expression analysis in rice and Arabidopsis further identified BAHDs with similar expression patterns, however, most co-expressed BAHDs belonged to different clades. Comparing BAHD paralogs, we found that gene expression diverges rapidly after duplication, suggesting that sub/neo-functionalization of duplicate genes occurs quickly via expression diversification. Analyzing co-expression patterns in Arabidopsis in conjunction with orthology-based substrate class predictions and metabolic pathway models led to the recovery of metabolic processes of most of the already-characterized BAHDs as well as definition of novel functional predictions for some uncharacterized BAHDs. Overall, this study provides new insights into the evolution of BAHD acyltransferases and sets up a foundation for their functional characterization.
Collapse
Affiliation(s)
- Lars H. Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Fehr
- Computational Biology Department, Cornell University, Ithaca, NY, United States
| | - Jason D. Chobirko
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY, United States
| | - Gaurav D. Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
138
|
Reinbacher L, Praprotnik E, Razinger J, Bacher S, Grabenweger G. Influence of Wireworm Diet on its Susceptibility to and Control With the Entomopathogenic Fungus Metarhizium brunneum (Hypocreales: Clavicipitaceae) in Laboratory and Field Settings. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:108-118. [PMID: 36575909 PMCID: PMC9912137 DOI: 10.1093/jee/toac198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Entomopathogenic fungi (EPF) represent promising control agents against wireworms but success in field experiments is inconsistent. The physiological condition of the targeted insect is crucial for its ability to withstand fungal infection. In particular, nutritional status is among the most important determinants of the insects' immune defense. In this study, we investigated the effects of diet on the development of the wireworm Agriotes obscurus (L.) (Coleoptera: Elateridae) and its subsequent susceptibility to the fungal pathogen Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) in a pot experiment. After being reared on one of five plant diets for eight weeks, wireworms were exposed to an environment inoculated with the EPF and monitored for their susceptibility to fungal infection. We then performed a field experiment in which three plant diets (clover, radish, and a cover crop mix), selected according to the insects' performance in the laboratory experiment, were grown as a cover crop with EPF application. Plant diet influenced growth and development of larvae, but there were no strong differences in susceptibility toward fungal infection in the laboratory experiment. Damage levels in EPF-treated plots in the field varied depending on the cover crop. Damage was highest in plots planted with a mix of cover crop species, whereas damage was lowest in plots with clover or radish alone. This agrees with the laboratory results where insect performance was inferior when fed on clover or radish. Cover crop effects on wireworm damage in the subsequent cash crop may thus vary depending on the cover crop species selected.
Collapse
Affiliation(s)
| | - Eva Praprotnik
- Agricultural Institute of Slovenia, Plant Protection Department, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Plant Protection Department, Ljubljana, Slovenia
| | - Sven Bacher
- University of Fribourg, Department of Biology, Unit of Ecology and Evolution, Fribourg, Switzerland
| | - Giselher Grabenweger
- Agroscope, Extension Arable Crops, Departement Plants and Plant Products, Zurich, Switzerland
| |
Collapse
|
139
|
Prakash J. Secondary Metabolites From Plants for Cardiovascular Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:155-171. [DOI: 10.4018/978-1-6684-6737-4.ch010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
One of the leading causes of mortality worldwide is cardiac vascular disease. According to the WHO report, CVDs affect 17.9 million people each year and will affect 22.2 million people by 2030. The plants include flavonoids, polyphenols, plant Sulphur compounds, and terpenoids, which are all active phytochemicals. Recent research has revealed that flavonoids are substances with strong biological effects that may help prevent chronic illnesses including cardiovascular disease. The prevention of low-density lipoprotein oxidation, which encourages vasodilatation, is a common flavonoid mode of action. Due to the rising frequency of CVD, numerous plants have been identified to contain a number of physiologically active chemicals with known biological effects; however, proper CVD preventive and treatment approaches are still needed. This study aims to emphasize the cardiovascular risk factors, in addition to explaining the processes through which naturally occurring bioactive chemicals exhibit their cardiovascular preventive effects.
Collapse
Affiliation(s)
- Jose Prakash
- B.S. Abdur Rahman Crescent Insititute of Science and Technology, India
| |
Collapse
|
140
|
Casajús V, Howe K, Fish T, Civello P, Thannhauser T, Li L, Gómez Lobato M, Martínez G. Evidence of glucosinolates translocation from inflorescences to stems during postharvest storage of broccoli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:322-329. [PMID: 36669347 DOI: 10.1016/j.plaphy.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Broccoli is a vegetable appreciated by consumers for its nutritional properties, particularly for its high glucosinolate (GLS) content. However, broccoli shows a high rate of senescence during postharvest and the GLS content in inflorescences decreases sharply. Usually, postharvest studies on broccoli focus on inflorescences, ignoring the other tissues harvested such as the stems and main stalk. In this work, GLS metabolism in whole heads of broccoli (including inflorescences, small stems and stalk) was analysed during postharvest senescence. The content of GLS content, expression of GLS metabolic genes, and expression of GLS transport-associated genes were measured in the three parts of harvested broccoli. A marked decrease in the content of all GLSs was detected in inflorescences, but an increase in the stems and stalk. Also, decreased expressions of GLS biosynthesis and degradation genes were detected in all tissues analysed. On the other hand, an increase in the expression of one of the genes involved in GLS transport was observed. These results suggest that GLSs would be transported from inflorescences to stems during postharvest senescence. From a commercial point of view, broccoli stems are usually discarded and not used as food. However, the accumulation of GLSs in the stems is an important factor to consider when contemplating potential commercial use of this part of the plant.
Collapse
Affiliation(s)
- Victoria Casajús
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina
| | - Kevin Howe
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Pedro Civello
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina; Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - María Gómez Lobato
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina
| | - Gustavo Martínez
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina; Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
141
|
Sandoval-Ruiz R, Grabau ZJ. Management of Reniform Nematode in Cotton Using Winter Crop Residue Amendments Under Greenhouse Conditions. J Nematol 2023; 55:20230041. [PMID: 37868787 PMCID: PMC10590205 DOI: 10.2478/jofnem-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 10/24/2023] Open
Abstract
Rotylenchulus reniformis (reniform nematode, RN) is among the most important nematodes affecting cotton. Cultural practices, such as rotation and soil amendment, are established methods for managing RN. Management may be enhanced if crop residue has biofumigant properties against RN. The objective was to evaluate the efficacy of winter crop amendments for managing RN in the greenhouse. Reniform nematode-infested soil was amended with dry or fresh organic matter (OM, 2% w/w) from winter crops - canola, carinata, hairy vetch, oat, or no crop. Cotton was subsequently grown in this soil. Independent of the crop, dry OM amendments were more effective than no amendment at managing RN, while fresh OM amendments were not. Soil and root RN abundances and reproduction factors were generally lower in Trials 1 and 3 for dry OM than fresh OM amendments or control without OM. In Trial 2, none of the OM treatments reduced RN parameters compared with no OM control. In general, when compared to plants without RN or OM, RN did not produce significant changes in growth parameters but did affect physiology (Soil Plant Analysis Development, or SPAD, values). In conclusion, dry OM amendments can help manage RN, crop growth does not always relate to RN abundances, and SPAD values could help indicate RN presence.
Collapse
Affiliation(s)
- Rebeca Sandoval-Ruiz
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL32611, United States
| | - Zane J. Grabau
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL32611, United States
| |
Collapse
|
142
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
143
|
Ghidoli M, Ponzoni E, Araniti F, Miglio D, Pilu R. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:570. [PMID: 36771654 PMCID: PMC9920110 DOI: 10.3390/plants12030570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, a renewed interest in novel crops has been developing due to the environmental issues associated with the sustainability of agricultural practices. In particular, a cover crop, Camelina sativa (L.) Crantz, belonging to the Brassicaceae family, is attracting the scientific community's interest for several desirable features. It is related to the model species Arabidopsis thaliana, and its oil extracted from the seeds can be used either for food and feed, or for industrial uses such as biofuel production. From an agronomic point of view, it can grow in marginal lands with little or no inputs, and is practically resistant to the most important pathogens of Brassicaceae. Although cultivated in the past, particularly in northern Europe and Italy, in the last century, it was abandoned. For this reason, little breeding work has been conducted to improve this plant, also because of the low genetic variability present in this hexaploid species. In this review, we summarize the main works on this crop, focused on genetic improvement with three main objectives: yield, seed oil content and quality, and reduction in glucosinolates content in the seed, which are the main anti-nutritional substances present in camelina. We also report the latest advances in utilising classical plant breeding, transgenic approaches, and CRISPR-Cas9 genome-editing.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Elena Ponzoni
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| | - Daniela Miglio
- Laboratory for Mother and Child Health, Department of Public Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20133 Milan, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
144
|
Sharma A, Sinharoy S, Bisht NC. The mysterious non-arbuscular mycorrhizal status of Brassicaceae species. Environ Microbiol 2023; 25:917-930. [PMID: 36655756 DOI: 10.1111/1462-2920.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
The Brassicaceae family is unique in not fostering functional symbiosis with arbuscular mycorrhiza (AM). The family is also special in possessing glucosinolates, a class of secondary metabolites predominantly functioning for plant defence. We have reviewed what effect the glucosinolates of this non-symbiotic host have on AM or vice versa. Isothiocyanates, the toxic degradation product of the glucosinolates, particularly the indolic and benzenic glucosinolates, are known to be involved in the inhibition of AM. Interestingly, AM colonization enhances glucosinolate production in two AM-host in the Brassicales family- Moringa oleifera and Tropaeolum spp. PHOSPHATE STARVATION RESPONSE 1 (PHR1), a central transcription factor that controls phosphate starvation response also activates the glucosinolate biosynthesis in AM non-host Arabidopsis thaliana. Recently, the advances in whole-genome sequencing, enabling extensive ecological microbiome studies have helped unravel the Brassicaceae microbiome, identifying new mutualists that compensate for the loss of AM symbiosis, and reporting cues for some influence of glucosinolates on the microbiome structure. We advocate that glucosinolate is an important candidate in determining the mycorrhizal status of Brassicaceae and has played a major role in its symbiosis-defence trade-off. We also identify key open questions in this area that remain to be addressed in the future.
Collapse
Affiliation(s)
- Aprajita Sharma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Senjuti Sinharoy
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
145
|
Kim JA, Moon H, Kim HS, Choi D, Kim NS, Jang J, Lee SW, Baskoro Dwi Nugroho A, Kim DH. Transcriptome and QTL mapping analyses of major QTL genes controlling glucosinolate contents in vegetable- and oilseed-type Brassica rapa plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1067508. [PMID: 36743533 PMCID: PMC9891538 DOI: 10.3389/fpls.2022.1067508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites providing defense against pathogens and herbivores in plants, and anti-carcinogenic activity against human cancer cells. Profiles of GSLs vary greatly among members of genus Brassica. In this study, we found that a reference line of Chinese cabbage (B. rapa ssp. pekinensis), 'Chiifu' contains significantly lower amounts of total GSLs than the oilseed-type B. rapa (B. rapa ssp. trilocularis) line 'LP08'. This study aimed to identify the key regulators of the high accumulation of GSLs in Brassica rapa plants using transcriptomic and linkage mapping approaches. Comparative transcriptome analysis showed that, in total, 8,276 and 9,878 genes were differentially expressed between 'Chiifu' and 'LP08' under light and dark conditions, respectively. Among 162 B. rapa GSL pathway genes, 79 were related to GSL metabolism under light conditions. We also performed QTL analysis using a single nucleotide polymorphism-based linkage map constructed using 151 F5 individuals derived from a cross between the 'Chiifu' and 'LP08' inbred lines. Two major QTL peaks were successfully identified on chromosome 3 using high-performance liquid chromatography to obtain GSL profiles from 97 F5 recombinant inbred lines. The MYB-domain transcription factor gene BrMYB28.1 (Bra012961) was found in the highest QTL peak region. The second highest peak was located near the 2-oxoacid-dependent dioxygenase gene BrGSL-OH.1 (Bra022920). This study identified major genes responsible for differing profiles of GSLs between 'Chiifu' and 'LP08'. Thus, our study provides molecular insights into differences in GSL profiles between vegetative- and oilseed-type B. rapa plants.
Collapse
Affiliation(s)
- Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyang Suk Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Nan-Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Juna Jang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | | | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
146
|
Vega-Galvez A, Uribe E, Pasten A, Camus J, Gomez-Perez LS, Mejias N, Vidal RL, Grunenwald F, Aguilera LE, Valenzuela-Barra G. Comprehensive Evaluation of the Bioactive Composition and Neuroprotective and Antimicrobial Properties of Vacuum-Dried Broccoli ( Brassica oleracea var. italica) Powder and Its Antioxidants. Molecules 2023; 28:molecules28020766. [PMID: 36677826 PMCID: PMC9860602 DOI: 10.3390/molecules28020766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, vacuum drying (VD) was employed as an approach to protect the bioactive components of and produce dried broccoli powders with a high biological activity. To achieve these goals, the effects of temperature (at the five levels of 50, 60, 70, 80 and 90 °C) and constant vacuum pressure (10 kPa) were evaluated. The results show that, with the increasing temperature, the drying time decreased. Based on the statistical tests, the Brunauer-Emmett-Teller (BET) model was found to fit well to sorption isotherms, whereas the Midilli and Kucuk model fit well to the drying kinetics. VD has a significant impact on several proximate composition values. As compared with the fresh sample, VD significantly reduced the total phenol, flavonoid and glucosinolate contents. However, it was shown that VD at higher temperatures (80 and 90 °C) contributed to a better antioxidant potential of broccoli powder. In contrast, 50 °C led to a better antimicrobial and neuroprotective effects, presumably due to the formation of isothiocyanate (ITC). Overall, this study demonstrates that VD is a promising technique for the development of extracts from broccoli powders that could be used as natural preservatives or as a neuroprotective agent.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
- Correspondence: ; Tel./Fax: +56-51-220-4446
| | - Elsa Uribe
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
- Instituto de Investigación Multidisciplinario en Ciencias y Tecnología, Universidad de La Serena, La Serena 1700000, Chile
| | - Alexis Pasten
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - Javiera Camus
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - Nicol Mejias
- Food Engineering Department, Faculty of Engineering, Universidad de La Serena, La Serena 1700000, Chile
| | - René L. Vidal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380000, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380000, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago 8380000, Chile
| | - Lorgio E. Aguilera
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1700000, Chile
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
147
|
Perez VC, Zhao H, Lin M, Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:266. [PMID: 36678978 PMCID: PMC9867223 DOI: 10.3390/plants12020266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Auxins are a class of plant hormones playing crucial roles in a plant's growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis.
Collapse
Affiliation(s)
- Veronica C. Perez
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
148
|
Zhou X, Zhang H, Xie Z, Liu Y, Wang P, Dai L, Zhang X, Wang Z, Wang Z, Wan L, Yang G, Hong D. Natural variation and artificial selection at the BnaC2.MYB28 locus modulate Brassica napus seed glucosinolate. PLANT PHYSIOLOGY 2023; 191:352-368. [PMID: 36179100 PMCID: PMC9806571 DOI: 10.1093/plphys/kiac463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 05/17/2023]
Abstract
The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.
Collapse
Affiliation(s)
- Xianming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Zhaoqi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihong Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
149
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
150
|
Lim PK, Julca I, Mutwil M. Redesigning plant specialized metabolism with supervised machine learning using publicly available reactome data. Comput Struct Biotechnol J 2023; 21:1639-1650. [PMID: 36874159 PMCID: PMC9976193 DOI: 10.1016/j.csbj.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The immense structural diversity of products and intermediates of plant specialized metabolism (specialized metabolites) makes them rich sources of therapeutic medicine, nutrients, and other useful materials. With the rapid accumulation of reactome data that can be accessible on biological and chemical databases, along with recent advances in machine learning, this review sets out to outline how supervised machine learning can be used to design new compounds and pathways by exploiting the wealth of said data. We will first examine the various sources from which reactome data can be obtained, followed by explaining the different machine learning encoding methods for reactome data. We then discuss current supervised machine learning developments that can be employed in various aspects to help redesign plant specialized metabolism.
Collapse
Affiliation(s)
- Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|