101
|
Yang J, Guo H, Jiang NJ, Tang R, Li GC, Huang LQ, van Loon JJA, Wang CZ. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genet 2021; 17:e1009527. [PMID: 34264948 PMCID: PMC8282186 DOI: 10.1371/journal.pgen.1009527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Glucosinolates are token stimuli in host selection of many crucifer specialist
insects, but the underlying molecular basis for host selection in these insects
remains enigmatic. Using a combination of behavioral, electrophysiological, and
molecular methods, we investigate glucosinolate receptors in the cabbage
butterfly Pieris rapae. Sinigrin, as a potent feeding
stimulant, elicited activity in larval maxillary lateral sensilla styloconica,
as well as in adult medial tarsal sensilla. Two P.
rapae gustatory receptor genes PrapGr28
and PrapGr15 were identified with high expression in female
tarsi, and the subsequent functional analyses showed that
Xenopus oocytes only expressing PrapGr28
had specific responses to sinigrin; when ectopically expressed in
Drosophila sugar sensing neurons, PrapGr28 conferred
sinigrin sensitivity to these neurons. RNA interference experiments further
showed that knockdown of PrapGr28 reduced the sensitivity of
adult medial tarsal sensilla to sinigrin. Taken together, we conclude that
PrapGr28 is a gustatory receptor tuned to sinigrin in P.
rapae, which paves the way for revealing the molecular
basis of the relationships between crucifer plants and their specialist
insects. Preference of crucifer specialist insects to glucosinolates is well known in the
field of insect-plant interactions, but its molecular basis is unclear. This
study uses an integrative approach to investigate the molecular basis of
glucosinolate detection by gustatory receptor neurons in the larval mouthparts
and adult forelegs of the cabbage butterfly Pieris rapae, and
finally reveal that PrapGr28 is a bitter receptor tuned to sinigrin. The current
work takes a significant step towards identifying gustatory receptors tuned to
glucosinolates, crucial recognition signals in crucifer host plants, providing
insights into co-evolution of herbivorous insects and their host plants.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Rui Tang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Joop J. A. van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University and
Research, Wageningen, the Netherlands
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
102
|
Trabelcy B, Chinkov N, Samuni-Blank M, Merav M, Izhaki I, Carmeli S, Gerchman Y. Investigation of glucosinolates in the desert plant Ochradenus baccatus (Brassicales: Resedaceae). Unveiling glucoochradenin, a new arabinosylated glucosinolate. PHYTOCHEMISTRY 2021; 187:112760. [PMID: 33839520 DOI: 10.1016/j.phytochem.2021.112760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Here we describe the structure elucidation and quantification of six glucosinolates (GSLs) from the roots of the desert plant Ochradenus baccatus, Delile 1813 (family Resedaceae; order Brassicales). The structure elucidation was established on the corresponding enzymatically desulfated derivatives of the native GSLs of the plant. Among these GSLs we describe the previously undescribed 2″-O-(α-L-arabinopyranosyloxy)benzylglucosinolate (1a), for which we propose the name glucoochradenin. The other five glucosinolates (2a-6a) were (2S)-2-hydroxy-2-phenylethylglucosinolate (2a; glucobarbarin), 2″-O-(α-L-rhamnopyranosyloxy)benzylglucosinolate (3a), benzylglucosinolate (4a; glucotropaeolin), indol-3-ylmethylglucosinolate (5a; glucobrassicin) and phenethylglucosinolate (6a; gluconasturtiin), all elucidated as their desulfo-derivatives, 2b-6b respectively). Structures were elucidated by MS and 1D and 2D-NMR techniques, the identity of the arabinose verified by ion chromatography, and the absolute configuration of the sugar units determined by hydrolysis, coupling to cysteine methyl-ester and phenyl isothiocyanate followed by HPLC-MS analysis of the resulted diastereomers. Response factors were generated for desulfo-2″-O-(α-L-arabinopyranosyloxy)benzylglucosinolate and for desulfo-2″-O-(α-L-rhamnopyranosyloxy)benzylglucosinolate and all six GSLs were quantified, indicating that the root of O. baccatus is rich in GSLs (Avg. 61.3 ± 10.0 μmol/g DW and up to 337.2 μmol/g DW).
Collapse
Affiliation(s)
- Beny Trabelcy
- Department of Environmental and Evolutionary Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Nicka Chinkov
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Kiryat Tivon, 36006, Israel
| | - Michal Samuni-Blank
- Department of Environmental and Evolutionary Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Mayan Merav
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University Tel Aviv University, 69978, Israel
| | - Ido Izhaki
- Department of Environmental and Evolutionary Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry and Faculty of Exact Sciences, Tel Aviv University Tel Aviv University, 69978, Israel
| | - Yoram Gerchman
- Department of Environmental and Evolutionary Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel; Oranim College, Campus Oranim, Kiryat Tivon, 36006, Israel.
| |
Collapse
|
103
|
Lazcano-Ramírez HG, Gamboa-Becerra R, García-López IJ, Montes RAC, Díaz-Ramírez D, de la Vega OM, Ordaz-Ortíz JJ, de Folter S, Tiessen-Favier A, Winkler R, Marsch-Martínez N. Effects of the Developmental Regulator BOLITA on the Plant Metabolome. Genes (Basel) 2021; 12:genes12070995. [PMID: 34209960 PMCID: PMC8305173 DOI: 10.3390/genes12070995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.
Collapse
Affiliation(s)
- Hugo Gerardo Lazcano-Ramírez
- Cell Identity Laboratory, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (H.G.L.-R.); (D.D.-R.)
| | - Roberto Gamboa-Becerra
- Laboratory of Biochemical and Instrumental Analysis, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - Irving J. García-López
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (I.J.G.-L.); (A.T.-F.)
| | - Ricardo A. Chávez Montes
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - David Díaz-Ramírez
- Cell Identity Laboratory, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (H.G.L.-R.); (D.D.-R.)
| | - Octavio Martínez de la Vega
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
| | - José Juan Ordaz-Ortíz
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
| | - Stefan de Folter
- Advanced Genomics Unit (UGA-Langebio), CINVESTAV-IPN, Irapuato 36824, Mexico; (R.A.C.M.); (O.M.d.l.V.); (J.J.O.-O.); (S.d.F.)
| | - Axel Tiessen-Favier
- Genetic Engineering Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (I.J.G.-L.); (A.T.-F.)
| | - Robert Winkler
- Laboratory of Biochemical and Instrumental Analysis, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico;
- Correspondence: (R.W.); (N.M.-M.); Tel.: +52-(462)-623-9635 (R.W.); +52-462-623-9671 (N.M.-M.)
| | - Nayelli Marsch-Martínez
- Cell Identity Laboratory, Biotechnology and Biochemistry Department, CINVESTAV-IPN Irapuato Unit, Irapuato 36824, Mexico; (H.G.L.-R.); (D.D.-R.)
- Correspondence: (R.W.); (N.M.-M.); Tel.: +52-(462)-623-9635 (R.W.); +52-462-623-9671 (N.M.-M.)
| |
Collapse
|
104
|
Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. ANNALS OF BOTANY 2021; 127:887-902. [PMID: 33675229 PMCID: PMC8225284 DOI: 10.1093/aob/mcab028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/21/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS We investigate patterns of evolution of genome size across a morphologically and ecologically diverse clade of Brassicaceae, in relation to ecological and life history traits. While numerous hypotheses have been put forward regarding autecological and environmental factors that could favour small vs. large genomes, a challenge in understanding genome size evolution in plants is that many hypothesized selective agents are intercorrelated. METHODS We contribute genome size estimates for 47 species of Streptanthus Nutt. and close relatives, and take advantage of many data collections for this group to assemble data on climate, life history, soil affinity and composition, geographic range and plant secondary chemistry to identify simultaneous correlates of variation in genome size in an evolutionary framework. We assess models of evolution across clades and use phylogenetically informed analyses as well as model selection and information criteria approaches to identify variables that can best explain genome size variation in this clade. KEY RESULTS We find differences in genome size and heterogeneity in its rate of evolution across subclades of Streptanthus and close relatives. We show that clade-wide genome size is positively associated with climate seasonality and glucosinolate compounds. Model selection and information criteria approaches identify a best model that includes temperature seasonality and fraction of aliphatic glucosinolates, suggesting a possible role for genome size in climatic adaptation or a role for biotic interactions in shaping the evolution of genome size. We find no evidence supporting hypotheses of life history, range size or soil nutrients as forces shaping genome size in this system. CONCLUSIONS Our findings suggest climate seasonality and biotic interactions as potential forces shaping the evolution of genome size and highlight the importance of evaluating multiple factors in the context of phylogeny to understand the effect of possible selective agents on genome size.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
- Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA
- Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, USA
| | - Patrick J McIntyre
- Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA
- NatureServe, Boulder, CO, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, USA
- DynaMo Centre of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Sharon Y Strauss
- Center for Population Biology, University of California, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
105
|
Garcia A, Santamaria ME, Diaz I, Martinez M. Disentangling transcriptional responses in plant defense against arthropod herbivores. Sci Rep 2021; 11:12996. [PMID: 34155286 PMCID: PMC8217245 DOI: 10.1038/s41598-021-92468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 01/21/2023] Open
Abstract
The success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.
Collapse
Affiliation(s)
- Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
106
|
Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021; 54:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Glucosinolate-producing plants have long been recognized for both their distinctive benefits to human nutrition and their resistance traits against pathogens and herbivores. Despite the accumulation of glucosinolates (GLS) in plants is associated with their resistance to various biotic and abiotic stresses, the defensive and biological activities of GLS are commonly conveyed by their metabolic products. In view of this, metabolism is considered the driving factor upon the interactions of GLS-producing plants with other organisms, also influenced by plant and plant attacking or digesting organism characteristics. Several microbial pathogens and insects have evolved the capacity to detoxify GLS-hydrolysis products or inhibit their formation via different means, highlighting the relevance of their metabolic abilities for the plants' defense system activation and target organism detoxification. Strikingly, some bacteria, fungi and insects can likewise produce their own myrosinase (MYR)-like enzymes in one of the most important adaptation strategies against the GLS-MYR plant defense system. Knowledge of GLS metabolic pathways in herbivores and pathogens can impact plant protection efforts and may be harnessed upon for genetically modified plants that are more resistant to predators. In humans, the interest in the implementation of GLS in diets for the prevention of chronic diseases has grown substantially. However, the efficiency of such approaches is dependent on GLS bioavailability and metabolism, which largely involves the human gut microbiome. Among GLS-hydrolytic products, isothiocyanates (ITC) have shown exceptional properties as chemical plant defense agents against herbivores and pathogens, along with their health-promoting benefits in humans, at least if consumed in reasonable amounts. Deciphering GLS metabolic pathways provides critical information for catalyzing all types of GLS towards the generation of ITCs as the biologically most active metabolites. This review provides an overview on contrasting metabolic pathways in plants, bacteria, fungi, insects and humans towards GLS activation or detoxification. Further, suggestions for the preparation of GLS containing plants with improved health benefits are presented.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Naglaa G Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Ahmed S Gomaa
- Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
107
|
Manivannan A, Israni B, Luck K, Götz M, Seibel E, Easson MLAE, Kirsch R, Reichelt M, Stein B, Winter S, Gershenzon J, Vassão DG. Identification of a Sulfatase that Detoxifies Glucosinolates in the Phloem-Feeding Insect Bemisia tabaci and Prefers Indolic Glucosinolates. FRONTIERS IN PLANT SCIENCE 2021; 12:671286. [PMID: 34149771 PMCID: PMC8212129 DOI: 10.3389/fpls.2021.671286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cruciferous plants in the order Brassicales defend themselves from herbivory using glucosinolates: sulfur-containing pro-toxic metabolites that are activated by hydrolysis to form compounds, such as isothiocyanates, which are toxic to insects and other organisms. Some herbivores are known to circumvent glucosinolate activation with glucosinolate sulfatases (GSSs), enzymes that convert glucosinolates into inactive desulfoglucosinolates. This strategy is a major glucosinolate detoxification pathway in a phloem-feeding insect, the silverleaf whitefly Bemisia tabaci, a serious agricultural pest of cruciferous vegetables. In this study, we identified and characterized an enzyme responsible for glucosinolate desulfation in the globally distributed B. tabaci species MEAM1. In in vitro assays, this sulfatase showed a clear preference for indolic glucosinolates compared with aliphatic glucosinolates, consistent with the greater representation of desulfated indolic glucosinolates in honeydew. B. tabaci might use this detoxification strategy specifically against indolic glucosinolates since plants may preferentially deploy indolic glucosinolates against phloem-feeding insects. In vivo silencing of the expression of the B. tabaci GSS gene via RNA interference led to lower levels of desulfoglucosinolates in honeydew. Our findings expand the knowledge on the biochemistry of glucosinolate detoxification in phloem-feeding insects and suggest how detoxification pathways might facilitate plant colonization in a generalist herbivore.
Collapse
Affiliation(s)
| | - Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Monika Götz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Elena Seibel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Roy Kirsch
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | | |
Collapse
|
108
|
The Chemistry of Stress: Understanding the 'Cry for Help' of Plant Roots. Metabolites 2021; 11:metabo11060357. [PMID: 34199628 PMCID: PMC8228326 DOI: 10.3390/metabo11060357] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Plants are faced with various biotic and abiotic stresses during their life cycle. To withstand these stresses, plants have evolved adaptive strategies including the production of a wide array of primary and secondary metabolites. Some of these metabolites can have direct defensive effects, while others act as chemical cues attracting beneficial (micro)organisms for protection. Similar to aboveground plant tissues, plant roots also appear to have evolved “a cry for help” response upon exposure to stress, leading to the recruitment of beneficial microorganisms to help minimize the damage caused by the stress. Furthermore, emerging evidence indicates that microbial recruitment to the plant roots is, at least in part, mediated by quantitative and/or qualitative changes in root exudate composition. Both volatile and water-soluble compounds have been implicated as important signals for the recruitment and activation of beneficial root-associated microbes. Here we provide an overview of our current understanding of belowground chemical communication, particularly how stressed plants shape its protective root microbiome.
Collapse
|
109
|
Liu Z, Wang H, Xie J, Lv J, Zhang G, Hu L, Luo S, Li L, Yu J. The Roles of Cruciferae Glucosinolates in Disease and Pest Resistance. PLANTS 2021; 10:plants10061097. [PMID: 34070720 PMCID: PMC8229868 DOI: 10.3390/plants10061097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
With the expansion of the area under Cruciferae vegetable cultivation, and an increase in the incidence of natural threats such as pests and diseases globally, Cruciferae vegetable losses caused by pathogens, insects, and pests are on the rise. As one of the key metabolites produced by Cruciferae vegetables, glucosinolate (GLS) is not only an indicator of their quality but also controls infestation by numerous fungi, bacteria, aphids, and worms. Today, the safe and pollution-free production of vegetables is advocated globally, and environmentally friendly pest and disease control strategies, such as biological control, to minimize the adverse impacts of pathogen and insect pest stress on Cruciferae vegetables, have attracted the attention of researchers. This review explores the mechanisms via which GLS acts as a defensive substance, participates in responses to biotic stress, and enhances plant tolerance to the various stress factors. According to the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Huiping Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jianming Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Jian Lv
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Guobin Zhang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Linli Hu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Shilei Luo
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
| | - Lushan Li
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua 617000, China
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (H.W.); (J.X.); (J.L.); (G.Z.); (L.H.); (S.L.); (L.L.)
- Correspondence: ; Tel.: +86-931-763-2188
| |
Collapse
|
110
|
So Much for Glucosinolates: A Generalist Does Survive and Develop on Brassicas, but at What Cost? PLANTS 2021; 10:plants10050962. [PMID: 34066079 PMCID: PMC8150600 DOI: 10.3390/plants10050962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
While plants produce complex cocktails of chemical defences with different targets and efficacies, the biochemical effects of phytotoxin ingestion are often poorly understood. Here, we examine the physiological and metabolic effects of the ingestion of glucosinolates (GSLs), the frontline chemical defenses of brassicas (crucifers), on the generalist herbivore Helicoverpa armigera. We focus on kale and cabbage, two crops with similar foliar GSL concentrations but strikingly different GSL compositions. We observed that larval growth and development were well correlated with the nutritional properties of the insect diets, with low protein contents appearing to exacerbate the negative effects of GSLs on growth, pupation and adult eclosion, parameters that were all delayed upon exposure to GSLs. The different GSLs were metabolized similarly by the insect, indicating that the costs of detoxification via conjugation to glutathione (GSH) were similar on the two plant diets. Nevertheless, larval GSH contents, as well as some major nutritional markers (larval protein, free amino acids, and fat), were differentially affected by the different GSL profiles in the two crops. Therefore, the interplay between GSL and the nitrogen/sulfur nutritional availability of different brassicas strongly influences the effectiveness of these chemical defenses against this generalist herbivore.
Collapse
|
111
|
Zalucki JM, Heckel DG, Wang P, Kuwar S, Vassão DG, Perkins L, Zalucki MP. A Generalist Feeding on Brassicaceae: It Does Not Get Any Better with Selection. PLANTS 2021; 10:plants10050954. [PMID: 34064659 PMCID: PMC8150889 DOI: 10.3390/plants10050954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
Brassicaceae (Cruciferae) are ostensibly defended in part against generalist insect herbivores by toxic isothiocyanates formed when protoxic glucosinolates are hydrolysed. Based on an analysis of published host records, feeding on Brassicas is widespread by both specialist and generalists in the Lepidoptera. The polyphagous noctuid moth Helicoverpa armigera is recorded as a pest on some Brassicas and we attempted to improve performance by artificial selection to, in part, determine if this contributes to pest status. Assays on cabbage and kale versus an artificial diet showed no difference in larval growth rate, development times and pupal weights between the parental and the selected strain after 2, 21 and 29 rounds of selection, nor in behaviour assays after 50 generations. There were large differences between the two Brassicas: performance was better on kale than cabbage, although both were comparable to records for other crop hosts, on which the species is a major pest. We discuss what determines “pest” status.
Collapse
Affiliation(s)
- Jacinta M. Zalucki
- Centre for Planetary Health and Food Security, Griffith University, Brisbane 4011, Australia;
| | - David G. Heckel
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.K.); (D.G.V.)
- Correspondence: (D.G.H.); (M.P.Z.)
| | - Peng Wang
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia; (P.W.); (L.P.)
| | - Suyog Kuwar
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.K.); (D.G.V.)
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Daniel G. Vassão
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.K.); (D.G.V.)
| | - Lynda Perkins
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia; (P.W.); (L.P.)
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia; (P.W.); (L.P.)
- Correspondence: (D.G.H.); (M.P.Z.)
| |
Collapse
|
112
|
Ali MA, Khan MAU, Rao AQ, Iqbal A, Din SU, Shahid AA. Biochemical evidence of epicuticular wax compounds involved in cotton-whitefly interaction. PLoS One 2021; 16:e0250902. [PMID: 33945542 PMCID: PMC8096116 DOI: 10.1371/journal.pone.0250902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Sucking insects require a surface of plants on which the legs and the eggs of insects will adhere and to which insect mouthparts will access. The primary plant protection against insects is their surface property, which hinders the attachment of the insect’s legs and eggs. The epicuticular waxes chemistry influences the fine structure of the cuticular surface. In current study, an attempt was made to investigate the variation of chemical compounds in epicuticular waxes of four cotton species that classify them resistant or susceptible i.e., Gossypium abroreum, G. hirsutum, G. arboreum wax deficient mutant (GaWM3) and G. harknessi which were evaluated for their interaction with whitefly and CLCuV transmission. Gossypium hirsutum an insect and CLCuV susceptible cotton variety, was found to have four compounds namely Trichloroacetic acid, hexadecylester, P-xylenolpthalein, 2-cyclopentene-1-ol, 1-phenyl-and Phenol, 2,5-bis [1,1- dimethyl] which could interact with chitin of whitefly while only two compounds in Gossypium arboreum an insect and CLCuV resistant cotton variety could interact with chitin of whitefly. Similarly, GaWM3 and Gossypium harkasnessi were found to have only a single compound. Number of whiteflies found on leaves of G. hirsutum was much higher as compared to other cotton species. Keeping this fact in mind a wax biosynthetic gene CER3, from Arabidopsis thaliana was transformed into G. hirsutum and the plants were evaluated for their resistance against whitefly and CLCuV transmission. In microscopic analysis transgenic plants clearly showed higher amounts of leaf waxes as compared to non-transgenics. The least whitefly population and CLCuV titer of <10,000 units was found in transgenic plants compared to non-transgenic cotton where it was ≈4.5X106 units that confirmed the role of wax in insect interaction and ultimately to CLCuV transmission. This study provides novel insight on wax related compounds involved in cotton-whitefly interaction, which potentially can help in developing more efficient control strategies for this destructive pest.
Collapse
Affiliation(s)
- Muhammad Azam Ali
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- * E-mail:
| | | | - Abdul Qayyum Rao
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Adnan Iqbal
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Salah ud Din
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
113
|
Bhat R, Faiz S, Ali V, Khajuria M, Mukherjee D, Vyas D. Effect of temperature and insect herbivory on the regulation of glucosinolate-myrosinase system in Lepidium latifolium. PHYSIOLOGIA PLANTARUM 2021; 172:53-63. [PMID: 33231316 DOI: 10.1111/ppl.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
The glucosinolate-myrosinase (GLS-MYR) system is an important component of plant-insect interactions. However, there is no report on its performance in field conditions where the plants are subjected to both abiotic and biotic pressures simultaneously. We investigated the GLS-MYR system in a Himalayan ecotype of Lepidium latifolium that is recognized for its adaptive potential in field conditions. In order to understand the independent contribution of temperature and Pieris brassicae herbivory on the components of the GLS-MYR system, different conditions were simulated in the growth chamber. During field conditions, the final GLS hydrolysis products were found to be regulated by the metabolic GLS levels, the temperature conditions, and the density of insect interactions. These factors influence the expression of the hydrolyzing and specifier proteins, which further affects the GLS hydrolysis products. Our results suggest that the production of hydrolysis products is differentially affected under field conditions. While allyl isothiocyanate is significantly (P ≤ 0.05) affected by temperature but not insect density, 1-cyano-2,3-epithiopropane is not affected by either. The study shows that the outcome of the GLS-MYR system in a plant is a consequence of the combinatorial effect of ecophysiological factors and the insect interactions that eventually decide the performance of a plant in an environment.
Collapse
Affiliation(s)
- Rohini Bhat
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sheenam Faiz
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Villayat Ali
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Manu Khajuria
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Dhiraj Vyas
- Plant Science (Biodiversity and Applied Botany) Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
114
|
Frerigmann H, Piotrowski M, Lemke R, Bednarek P, Schulze-Lefert P. A Network of Phosphate Starvation and Immune-Related Signaling and Metabolic Pathways Controls the Interaction between Arabidopsis thaliana and the Beneficial Fungus Colletotrichum tofieldiae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:560-570. [PMID: 33226310 DOI: 10.1094/mpmi-08-20-0233-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The beneficial root-colonizing fungus Colletotrichum tofieldiae mediates plant growth promotion (PGP) upon phosphate (Pi) starvation in Arabidopsis thaliana. This activity is dependent on the Trp metabolism of the host, including indole glucosinolate (IG) hydrolysis. Here, we show that C. tofieldiae resolves several Pi starvation-induced molecular processes in the host, one of which is the downregulation of auxin signaling in germ-free plants, which is restored in the presence of the fungus. Using CRISPR/Cas9 genome editing, we generated an Arabidopsis triple mutant lacking three homologous nitrilases (NIT1 to NIT3) that are thought to link IG-hydrolysis products with auxin biosynthesis. Retained C. tofieldiae-induced PGP in nit1/2/3 mutant plants demonstrated that this metabolic connection is dispensable for the beneficial activity of the fungus. This suggests that either there is an alternative metabolic link between IG-hydrolysis products and auxin biosynthesis, or C. tofieldiae restores auxin signaling independently of IG metabolism. We show that C. tofieldiae, similar to pathogenic microorganisms, triggers Arabidopsis immune pathways that rely on IG metabolism as well as salicylic acid and ethylene signaling. Analysis of IG-deficient myb mutants revealed that these metabolites are, indeed, important for control of in planta C. tofieldiae growth: however, enhanced C. tofieldiae biomass does not necessarily negatively correlate with PGP. We show that Pi deficiency enables more efficient colonization of Arabidopsis by C. tofieldiae, possibly due to the MYC2-mediated repression of ethylene signaling and changes in the constitutive IG composition in roots.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Henning Frerigmann
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions and Cluster of Excellence on Plant Sciences (CEPLAS), D-50829 Cologne, Germany
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Markus Piotrowski
- Lehrstuhl für Molekulargenetik und Physiologie der Pflanzen, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - René Lemke
- Lehrstuhl für Molekulargenetik und Physiologie der Pflanzen, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions and Cluster of Excellence on Plant Sciences (CEPLAS), D-50829 Cologne, Germany
| |
Collapse
|
115
|
Blubaugh C, Carpenter-Boggs L, Reganold J, Snyder W. Herbivore-herbivore interactions complicate links between soil fertility and pest resistance. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
116
|
Mashhoor MV, Moharramipour S, Mikani A, Mehrabadi M. Erucin modulates digestive enzyme release via crustacean cardioactive peptide in the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104196. [PMID: 33545106 DOI: 10.1016/j.jinsphys.2021.104196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Plant secondary metabolites influence the feeding in insects through several modes of action. In this study, the physiological effects of erucin isothiocyanate were investigated on the elm leaf beetleXanthogaleruca luteola(Müller) (Coleoptera: Chrysomelidae) via impact on crustacean cardioactive peptide (CCAP) and midgut digestive enzymes. Third instar larvae of elm leaf beetle were fed on leaves impregnated with erucin for three days. The results showed that erucin decreasedα-amylase, lipase, and protease release. Western blot analysis and competitive ELISA showed that erucin decreased CCAP content of the midgut, brain, and hemolymph. Moreover, incubation of dissected midgut with CCAP and also its injection into the hemocoel increased digestive enzyme release. It could be concluded that erucin isothiocyanate decreases CCAP content that itself led to a decrease in digestive enzyme release. Also, it suggests that CCAP could be one of the factors, regulating feeding activities in the elm leaf beetle. This report shows that CCAP is both a midgut factor and a neuropeptide that regulates digestive enzyme release in the elm leaf beetle and could be used to study erucin effects in insects.
Collapse
Affiliation(s)
- Maryam Vahabi Mashhoor
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran.
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Iran
| |
Collapse
|
117
|
Zou XP, Lin YG, Cen YJ, Ma K, Qiu BB, Feng QL, Zheng SC. Analyses of microRNAs and transcriptomes in the midgut of Spodoptera litura feeding on Brassica juncea. INSECT SCIENCE 2021; 28:533-547. [PMID: 32166878 DOI: 10.1111/1744-7917.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Spodoptera litura is a destructive agricultural pest in tropical and subtropical areas. Understanding the molecular mechanisms of S. litura adaptation to its preferred host plants may help identify target genes useful for pest control. We used high-throughput sequencing to characterize the expression patterns of messenger RNAs (mRNAs) and microRNAs (miRNAs) in the midgut of S. litura fed on Brassica juncea for 6 h and 48 h. A total of 108 known and 134 novel miRNAs were identified, 29 miRNAs and 237 mRNAs were differentially expressed at 6 h of B. juncea feeding, 26 miRNAs and 433 mRNAs were differentially expressed at 48 h. For the mRNAs, the up-regulated genes were mostly enriched in detoxification enzymes (cytochrome P450, esterase, glutathione S-transferase, uridine diphosphate-glucuronosyl transferase), while the down-regulated genes were mostly enriched in proteinases and immune-related genes. Furthermore, most detoxification enzymes begin to up-regulate at 6 h, while most digestion and immune-related genes begin to up- or down-regulate at 48 h. Eighteen and 37 differently expressed transcription factors were identified at 6 h and 48 h, which may regulate the functional genes. We acquired 136 and 41 miRNA versus mRNA pairs at 6 h and 48 h, respectively. Some down-regulated and up-regulated miRNAs were predicted to target detoxification enzymes and proteinases, respectively. Real-time quantitative polymerase chain reaction of nine randomly selected miRNAs and 28 genes confirmed the results of RNA-seq. This analyses of miRNA and mRNA transcriptomes provides useful information about the molecular mechanisms of S. litura response to B. juncea.
Collapse
Affiliation(s)
- Xiao-Peng Zou
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Jie Cen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Ma
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin-Bin Qiu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
118
|
Pre-dispersal seed predators boost seed production in a short-lived plant. Oecologia 2021; 195:971-982. [PMID: 33791860 DOI: 10.1007/s00442-021-04885-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Pre-dispersal seed predation diminishes fitness and population growth rate of many plant species. Therefore, plants have developed multiple strategies to reduce the harmful effects of this type of herbivory. The present study aims to determine the effect of pre-dispersal seed predators (PSPs) on the fitness of a short-lived herb, and to discern the mechanisms allowing the plants to reduce the impact of pre-dispersal seed predation. Knowing that the interplay between pre-dispersal seed predators and plants is strongly shaped by the presence of other co-occurring organisms, we tested whether detritivores modulate plant responses towards pre-dispersal seed predators. To do so, we experimentally manipulated in the field pre-dispersal seed predators and detritivores interacting with the short-lived herb Moricandia moricandioides. We found that detritivores did not alter the response of plants to PSPs. Strikingly, the plant overcompensated for pre-dispersal seed predation, almost doubling the number of seeds produced. Plant response to PSPs led to substantial changes in shoot architecture, reproductive traits, chemical defences in leaves and seeds and in seed nutrient content. The overcompensating mechanism seems to be meristem activation, which allowed plants to produce more reproductive tissue, and increasing the proportion of ovules that became seeds, a response which specifically compensates for pre-dispersal seed predation. As far as we know, this is the first experimental evidence of a positive effect of PSPs on plant lifetime fitness as a consequence of plant overcompensation.
Collapse
|
119
|
Pardini A, Tamasi G, De Rocco F, Bonechi C, Consumi M, Leone G, Magnani A, Rossi C. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach. Food Chem 2021; 355:129634. [PMID: 33799240 DOI: 10.1016/j.foodchem.2021.129634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/16/2023]
Abstract
Glucosinolates are a group of secondary metabolites occurring in all the vegetables belonging to the Brassicaceae family. Upon tissue damage, glucosinolates are hydrolyzed by myrosinase to a series of degradation products, including isothiocyanates, which are important for their health-promoting effects in humans. The glucosinolate-myrosinase system has been characterized in several Brassica species, of which white mustard (Sinapis alba) has been studied the most. In this study, a new HPLC-UV assay to evaluate the activities and kinetics of myrosinases in aqueous extracts, which closely represent the physiological conditions of plant tissues, was developed. This method was tested on myrosinases extracted from broccoli and cauliflower inflorescences, employing sinigrin and glucoraphanin as substrates. The results showed a strong inhibition of both enzymes at high substrate concentrations. The main issues related to kinetic analysis on the glucosinolate-myrosinase system were also elucidated.
Collapse
Affiliation(s)
- Alessio Pardini
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Center for Colloid and Surface Science (CSGI), University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Center for Colloid and Surface Science (CSGI), University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Federica De Rocco
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Center for Colloid and Surface Science (CSGI), University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy (DBCF), University of Siena, via Aldo Moro 2, 53100 Siena, Italy; Center for Colloid and Surface Science (CSGI), University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
120
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
121
|
Kumar P, Akhter T, Bhardwaj P, Kumar R, Bhardwaj U, Mazumdar-Leighton S. Consequences of 'no-choice, fixed time' reciprocal host plant switches on nutrition and gut serine protease gene expression in Pieris brassicae L. (Lepidoptera: Pieridae). PLoS One 2021; 16:e0245649. [PMID: 33471847 PMCID: PMC7817030 DOI: 10.1371/journal.pone.0245649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Tabasum Akhter
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Parul Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Rakesh Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Usha Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
122
|
Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu Rev Food Sci Technol 2021; 12:485-511. [PMID: 33467908 DOI: 10.1146/annurev-food-070620-025744] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucosinolates (GSLs) are a class of sulfur-containing compounds found predominantly in the genus Brassica of the Brassicaceae family. Certain edible plants in Brassica, known as Brassica vegetables, are among the most commonly consumed vegetables in the world. Over the last three decades, mounting evidence has suggested an inverse association between consumption of Brassica vegetables and the risk of various types of cancer. The biological activities of Brassica vegetables have been largely attributed to the hydrolytic products of GSLs. GSLs can be hydrolyzed by enzymes; thermal or chemical degradation also breaks down GSLs. There is considerable variation of GSLs in Brassica spp., which are caused by genetic and environmental factors. Most Brassica vegetables are consumed after cooking; common cooking methods have a complex influence on the levels of GSLs. The variationof GSLs in Brassica vegetables and the influence of cooking and processing methods ultimately affect their intake and health-promoting properties.
Collapse
Affiliation(s)
- Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| | - Hui Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Holly Childs
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
123
|
Petrén H, Gloder G, Posledovich D, Wiklund C, Friberg M. Innate preference hierarchies coupled with adult experience, rather than larval imprinting or transgenerational acclimation, determine host plant use in Pieris rapae. Ecol Evol 2021; 11:242-251. [PMID: 33437426 PMCID: PMC7790653 DOI: 10.1002/ece3.7018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 01/17/2023] Open
Abstract
The evolution of host range drives diversification in phytophagous insects, and understanding the female oviposition choices is pivotal for understanding host specialization. One controversial mechanism for female host choice is Hopkins' host selection principle, where females are predicted to increase their preference for the host species they were feeding upon as larvae. A recent hypothesis posits that such larval imprinting is especially adaptive in combination with anticipatory transgenerational acclimation, so that females both allocate and adapt their offspring to their future host. We study the butterfly Pieris rapae, for which previous evidence suggests that females prefer to oviposit on host individuals of similar nitrogen content as the plant they were feeding upon as larvae, and where the offspring show higher performance on the mother's host type. We test the hypothesis that larval experience and anticipatory transgenerational effects influence female host plant acceptance (no-choice) and preference (choice) of two host plant species (Barbarea vulgaris and Berteroa incana) of varying nitrogen content. We then test the offspring performance on these hosts. We found no evidence of larval imprinting affecting female decision-making during oviposition, but that an adult female experience of egg laying in no-choice trials on the less-preferred host Be. incana slightly increased the P. rapae propensity to oviposit on Be. incana in subsequent choice trials. We found no transgenerational effects on female host acceptance or preference, but negative transgenerational effects on larval performance, because the offspring of P. rapae females that had developed on Be. incana as larvae grew slower on both hosts, and especially on Be. incana. Our results suggest that among host species, preferences are guided by hard-wired preference hierarchies linked to species-specific host traits and less affected by larval experience or transgenerational effects, which may be more important for females evaluating different host individuals of the same species.
Collapse
Affiliation(s)
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenLeuvenBelgium
| | | | | | | |
Collapse
|
124
|
Czerniawski P, Piasecka A, Bednarek P. Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. PHYTOCHEMISTRY 2021; 181:112571. [PMID: 33130372 DOI: 10.1016/j.phytochem.2020.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Glucosinolates are unique thioglucosides that evolved in the order Brassicales. These compounds function in plant adaptation to the environment, including combating plant pathogens, herbivore deterrence and abiotic stress tolerance. In line with their defensive functions glucosinolates usually accumulate constitutively in relatively high amounts in all tissues of Brassicaceae plants. Here we performed glucosinolate analysis in different organs of selected species representing Capsella, Camelina and Neslia genera, which similarly as the model plant Arabidopsis thaliana belong to the Camelineae tribe. We also identified orthologs of A. thaliana glucosinolate biosynthetic genes in the published genomes of some of the investigated species. Subsequent gene expression and phylogenetic analyses enabled us an insight into the evolutionary changes in the transcription of these genes and in the sequences of respective proteins that occurred within the Camelineae tribe. Our results indicated that glucosinolates are highly abundant in siliques and roots of the investigated species but hardly, if at all, produced in leaves. In addition to this unusual tissular distribution we revealed reduced structural diversity of methionine-derived aliphatic glucosinolates (AGs) with elevated accumulation of rare long chain AGs. This preference seems to correlate with evolutionary changes in genes encoding methylthioalkylmalate synthases that are responsible for the elongation of AG side chains. Finally, our results indicate that the biosynthetic pathway for tryptophan-derived indolic glucosinolates likely lost its main functions in immunity and resistance towards sucking insects and is on its evolutionary route to be shut off in the investigated species.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland; Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
125
|
Ji R, Lei J, Chen IW, Sang W, Yang S, Fang J, Zhu-Salzman K. Cytochrome P450s CYP380C6 and CYP380C9 in green peach aphid facilitate its adaptation to indole glucosinolate-mediated plant defense. PEST MANAGEMENT SCIENCE 2021; 77:148-158. [PMID: 32648658 DOI: 10.1002/ps.6002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Overexpressing CIRCADIAN CLOCK ASSOCIATED1 in Arabidopsis thaliana (CCA1-ox) increases indole glucosinolate production and resistance to green peach aphid (Myzus persicae). Little is known of how aphids respond to this group of plant defense compounds or of the underlying molecular mechanism. RESULTS Aphids reared on CCA1-ox for over 40 generations (namely the CCA population) became less susceptible to CCA1-ox than aphids maintained on the wild-type Col-0 (namely the COL population). This elevated tolerance was transgenerational as it remained for at least eight generations after the CCA population was transferred to Col-0. Intriguingly, transcriptome analysis indicated that all differential cytochrome P450 monooxygenase genes (MpCYPs), primarily MpCYP4s, MpCYP380s and MpCYP6s, were more highly expressed in the CCA population. Application of a P450 inhibitor to the CCA population resulted in decreased aphid reproduction on CCA1-ox, which was not observed if aphids were reared on Col-0. When indole glucosinolate biosynthesis in CCA1-ox was blocked using virus-induced gene silencing, the effect of the P450 inhibitor on the CCA population was attenuated, affirming the essential role played by MpCYPs in counteracting the defense mechanism in CCA1-ox that is low or absent in Col-0. Furthermore, we used host-induced gene silencing to identify MpCYP380C6 and MpCYP380C9 that specifically facilitated the CCA population to cope with CCA1-mediated plant defense. Expression profiles revealed their possible contribution to the transgenerational tolerance observed in aphids. CONCLUSION MpCYP380C6 and MpCYP380C9 in aphids play a crucial role in mitigating indole glucosinolate-mediated plant defense, and this effect is transgenerational.
Collapse
Affiliation(s)
- Rui Ji
- Jiangsu Key Laboratory for Food and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Wen Sang
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Shiying Yang
- Jiangsu Key Laboratory for Food and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jichao Fang
- Jiangsu Key Laboratory for Food and Safety - State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
126
|
Romanchuk S. Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Collapse
|
127
|
Hu J, Yang JJ, Liu BM, Cui HY, Zhang YJ, Jiao XG. Feeding behavior explains the different effects of cabbage on MEAM1 and MED cryptic species of Bemisia tabaci. INSECT SCIENCE 2020; 27:1276-1284. [PMID: 31769205 DOI: 10.1111/1744-7917.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
MEAM1 (Middle East-Asia Minor 1, "B" biotype) and MED (Mediterranean, "Q" biotype) are the two most destructive cryptic species of the Bemisia tabaci complex on the planet. Our previous studies have shown that MEAM1 outcompetes MED on cabbage; the underlying mechanism is unknown. In the Brassicaceae family, the glucosinolate-myrosinase defense system plays a crucial role in deterring feeding, inhibiting growth, and causing acute toxicity against a wide range of generalist herbivores. In the present study, we first compared the survival of MEAM1 and MED exposed to sinigrin (a glucosinolate) and myrosinase (an enzyme that degrades glucosinolates); we found that survival of both species was high in response to sinigrin alone but was near zero in response to sinigrin + myrosinase. We then used electropenetrography (electrical penetration graphs, EPG) to assess the feeding behaviors of MEAM1 and MED whiteflies on cabbage. The EPG results revealed that the mean duration of each potential drop (pd, indicating an intracellular puncture) was substantially longer for MED than MEAM1 on cabbage, indicating that the exposure to the toxic hydrolysates of glucosinolate and myrosinase is greater for MED than for MEAM1. We therefore conclude that differences in penetrating behaviors may help explain the different effects of cabbage on MEAM1 and MED whitefly species.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-Jian Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bai-Ming Liu
- Tianjin Institute of Plant Protection, Tianjin, China
| | - Hong-Ying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Guo Jiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
128
|
Brennan EB. Sparrow Preferences for Winter Cover Crops in California's Central Coast. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.567579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
129
|
Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111786] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insect pests represent a major global challenge to important agricultural crops. Insecticides are often applied to combat such pests, but their use has caused additional challenges such as environmental contamination and human health issues. Over millions of years, plants have evolved natural defense mechanisms to overcome insect pests and pathogens. One such mechanism is the production of natural repellents or specialized metabolites like glucosinolates. There are three types of glucosinolates produced in the order Brassicales: aliphatic, indole, and benzenic glucosinolates. Upon insect herbivory, a “mustard oil bomb” consisting of glucosinolates and their hydrolyzing enzymes (myrosinases) is triggered to release toxic degradation products that act as insect deterrents. This review aims to provide a comprehensive summary of glucosinolate biosynthesis, the “mustard oil bomb”, and how these metabolites function in plant defense against pathogens and insects. Understanding these defense mechanisms will not only allow us to harness the benefits of this group of natural metabolites for enhancing pest control in Brassicales crops but also to transfer the “mustard oil bomb” to non-glucosinolate producing crops to boost their defense and thereby reduce the use of chemical pesticides.
Collapse
|
130
|
The Effects of Ozone on Herbivore-Induced Volatile Emissions of Cultivated and Wild Brassica Rapa. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since preindustrial times, concentrations of tropospheric ozone, a phytotoxic pollutant, have risen in the Northern Hemisphere. Selective breeding has intentionally modified crop plant traits to improve yield but may have altered plant defenses against abiotic and biotic stresses. This study aims to determine if cultivated and wild plants respond differently to herbivory under elevated ozone. We studied the volatile emissions of four cultivated Brassica rapa ssp. oleifera varieties and one wild population after exposure to ozone or Plutella xylostella larval feeding either individually or together. Ozone modulated the volatiles emitted in response to herbivory by all plant varieties to different extents. We did not observe a clear difference in the effects of ozone on wild and cultivated plants, but cultivated plants had higher volatile emission rates in response to herbivory and ozone had either no effect or increased the herbivore-induced response. Larvae tended to feed more on elevated ozone-treated plants; however, we could not link the increase of feeding to the change in volatile emissions. Our study complements recent studies reporting that selective breeding might not have weakened chemical defenses to biotic and abiotic stresses of cultivated plants.
Collapse
|
131
|
Brzozowski LJ, Gore MA, Agrawal AA, Mazourek M. Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference. PLANT, CELL & ENVIRONMENT 2020; 43:2812-2825. [PMID: 32666553 DOI: 10.1111/pce.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/23/2020] [Indexed: 05/19/2023]
Abstract
Crop domestication and improvement often concurrently affect plant resistance to pests and production of secondary metabolites, creating challenges for isolating the ecological implications of selection for specific metabolites. Cucurbitacins are bitter triterpenoids with extreme phenotypic differences between Cucurbitaceae lineages, yet we lack integrated models of herbivore preference, cucurbitacin accumulation, and underlying genetic mechanisms. In Cucurbita pepo, we dissected the effect of cotyledon cucurbitacins on preference of a specialist insect pest (Acalymma vittatum) for multiple tissues, assessed genetic loci underlying cucurbitacin accumulation in diverse germplasm and a biparental F2 population (from a cross between two independent domesticates), and characterized quantitative associations between gene expression and metabolites during seedling development. Acalymma vittatum affinity for cotyledons is mediated by cucurbitacins, but other traits contribute to whole-plant resistance. Cotyledon cucurbitacin accumulation was associated with population structure, and our genetic mapping identified a single locus, Bi-4, containing genes relevant to transport and regulation - not biosynthesis - that diverged between lineages. These candidate genes were expressed during seedling development, most prominently a putative secondary metabolite transporter. Taken together, these findings support the testable hypothesis that breeding for plant resistance to insects involves targeting genes for regulation and transport of defensive metabolites, in addition to core biosynthesis genes.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
132
|
How Effective Is Conservation Biological Control in Regulating Insect Pest Populations in Organic Crop Production Systems? INSECTS 2020; 11:insects11110744. [PMID: 33138249 PMCID: PMC7692856 DOI: 10.3390/insects11110744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Simple Summary Organic crop production systems typically rely on conservation biological control to increase and sustain natural enemies including parasitoids and predators that will regulate insect pest populations below damaging levels. The use of flowering plants or floral resources to attract and retain natural enemies in organic crop production systems has not been consistent, based on the scientific literature, and most importantly, many studies do not correlate an increase in natural enemies with a reduction in plant damage. This may be associated with the effects of intraguild predation or the negative effects that can occur when multiple natural enemies are present in an ecosystem. Consequently, although incorporating flowering plants into organic crop production systems may increase the natural enemy assemblages, more robust scientific studies are warranted to determine the actual effects of natural enemies in reducing plant damage associated with insect pest populations. Abstract Organic crop production systems are designed to enhance or preserve the presence of natural enemies, including parasitoids and predators, by means of conservation biological control, which involves providing environments and habitats that sustain natural enemy assemblages. Conservation biological control can be accomplished by providing flowering plants (floral resources) that will attract and retain natural enemies. Natural enemies, in turn, will regulate existing insect pest populations to levels that minimize plant damage. However, evidence is not consistent, based on the scientific literature, that providing natural enemies with flowering plants will result in an abundance of natural enemies sufficient to regulate insect pest populations below economically damaging levels. The reason that conservation biological control has not been found to sufficiently regulate insect pest populations in organic crop production systems across the scientific literature is associated with complex interactions related to intraguild predation, the emission of plant volatiles, weed diversity, and climate and ecosystem resources across locations where studies have been conducted.
Collapse
|
133
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
134
|
Thakur AK, Parmar N, Singh KH, Nanjundan J. Current achievements and future prospects of genetic engineering in Indian mustard (Brassica juncea L. Czern & Coss.). PLANTA 2020; 252:56. [PMID: 32951089 DOI: 10.1007/s00425-020-03461-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Transgenic technology in Indian mustard has expedited crop improvement programs. Further, there is a need to optimize gene editing protocols and find out the suitable target genes to harvest the benefits of gene editing technology in this important edible oilseed crop. Brassica juncea is an economically and industrially important oilseed crop being grown mainly in India and in some parts of Canada, Russia, China and Australia. Besides being consumed as edible oil, it also has numerous applications in food and paint industry. However, its overall production and productivity are being hampered by a number of biotic and abiotic stress factors. Further, its oil and seedmeal quality needs to be improved for increasing food as well as feed value. However, the lack of resistant crossable germplasm or varieties necessitated the use of genetic engineering interventions in Indian mustard crop improvement. A number of genes conferring resistance to biotic stresses including lectins for aphids' control, chitinase, glucanase and osmotin for disease control and for abiotic stresses, CODA, LEA and ion antiporter genes have been transferred to Indian mustard. Both antisense and RNAi technologies have been employed for improving oil and seedmeal quality. Efforts have been made to improve the phytoremediation potential of this crop through genetic engineering approach. The deployment of barnase/barstar gene system for developing male sterile and restorer lines has really expedited hybrid development programs in Indian mustard. Further, there is a need to optimize gene editing protocols and to find out suitable target genes for gene editing in this crop. In this review paper, authors have attempted to review various genetic transformation efforts carried out in Indian mustard for its improvement to combat biotic and abiotic stress challenges, quality improvement and hybrid development.
Collapse
Affiliation(s)
- Ajay Kumar Thakur
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, 321303, India.
| | - Nehanjali Parmar
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, 321303, India
| | - K H Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, 321303, India
| | - J Nanjundan
- ICAR-Indian Agricultural Research Institute-Regional Station, Wellington, Tamilnadu, 643 231, India
| |
Collapse
|
135
|
Sun R, Gols R, Harvey JA, Reichelt M, Gershenzon J, Pandit SS, Vassão DG. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Mol Ecol 2020; 29:4014-4031. [PMID: 32853463 DOI: 10.1111/mec.15613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023]
Abstract
Plant chemical defences impact not only herbivores, but also organisms in higher trophic levels that prey on or parasitize herbivores. While herbivorous insects can often detoxify plant chemicals ingested from suitable host plants, how such detoxification affects endoparasitoids that use these herbivores as hosts is largely unknown. Here, we used transformed plants to experimentally manipulate the major detoxification reaction used by Plutella xylostella (diamondback moth) to deactivate the glucosinolate defences of its Brassicaceae host plants. We then assessed the developmental, metabolic, immune, and reproductive consequences of this genetic manipulation on the herbivore as well as its hymenopteran endoparasitoid Diadegma semiclausum. Inhibition of P. xylostella glucosinolate metabolism by plant-mediated RNA interference increased the accumulation of the principal glucosinolate activation products, the toxic isothiocyanates, in the herbivore, with negative effects on its growth. Although the endoparasitoid manipulated the excretion of toxins by its insect host to its own advantage, the inhibition of herbivore glucosinolate detoxification slowed endoparasitoid development, impaired its reproduction, and suppressed the expression of genes of a parasitoid-symbiotic polydnavirus that aids parasitism. Therefore, the detoxification of plant glucosinolates by an herbivore lowers its toxicity as a host and benefits the parasitoid D. semiclausum at multiple levels.
Collapse
Affiliation(s)
- Ruo Sun
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Multitrophic Interactions, Netherlands Institute of Ecology, Wageningen, The Netherlands.,Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sagar S Pandit
- Molecular and Chemical Ecology Laboratory, Indian Institute of Science Education and Research, Pune, India
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
136
|
The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Curr Biol 2020; 30:4476-4482.e5. [PMID: 32916118 DOI: 10.1016/j.cub.2020.08.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022]
Abstract
Glucosinolates (GSs) are sulfur-containing secondary metabolites characteristic of cruciferous plants [1, 2]. Their breakdown products, isothiocyanates (ITCs), are released following tissue disruption by insect feeding or other mechanical damages [3, 4]. ITCs repel and are toxic to generalist herbivores, while specialist herbivores utilize the volatile ITCs as key signals for localizing host plants [5, 6]. However, the molecular mechanisms underlying detection of ITCs remain open. Here, we report that in the diamondback moth Plutella xylostella, a crucifer specialist, ITCs indeed drive the host preference for Arabidopsis thaliana, and the two olfactory receptors Or35 and Or49 are essential for this behavior. By performing gene expression analyses, we identified 12 (out of 59 in total) female-biased Ors, suggesting their possible involvement in oviposition choice. By ectopically expressing these Ors in Xenopus oocytes and screening their responses with 49 odors (including 13 ITCs, 25 general plant volatiles, and 11 sex pheromone components), we found that Or35 and Or49 responded specifically to three ITCs (iberverin, 4-pentenyl ITC, and phenylethyl ITC). The same ITCs also exhibited highest activity in electroantennogram recordings with female antennae and were the strongest oviposition stimulants. Knocking out either Or35 or Or49 via CRISPR-Cas9 resulted in a reduced oviposition preference for the ITCs, while double Or knockout females lost their ITC preference completely and were unable to choose between wild-type A. thaliana and a conspecific ITC knockout plant. We hence conclude that the ITC-based oviposition preference of the diamondback moth for its host A. thaliana is governed by the cooperation of two highly specific olfactory receptors.
Collapse
|
137
|
Mohammed S, Bhattacharya S, Gesing MA, Klupsch K, Theißen G, Mummenhoff K, Müller C. Morphologically and physiologically diverse fruits of two Lepidium species differ in allocation of glucosinolates into immature and mature seed and pericarp. PLoS One 2020; 15:e0227528. [PMID: 32841235 PMCID: PMC7447065 DOI: 10.1371/journal.pone.0227528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
The morphology and physiology of diaspores play crucial roles in determining the fate of seeds in unpredictable habitats. In some genera of the Brassicaceae different types of diaspores can be found. Lepidium appelianum produces non-dormant seeds within indehiscent fruits while in L. campestre dormant seeds are released from dehiscent fruits. We investigated whether the allocation of relevant defence compounds into different tissues in different Lepidium species may be related to the diverse dispersal strategy (indehiscent and dehiscent) and seed physiology (non-dormant and dormant). Total glucosinolate concentration and composition were analysed in immature and mature seeds and pericarps of L. appelianum and L. campestre using high-performance liquid chromatography. Moreover, for comparison, transgenic RNAi L. campestre lines were used that produce indehiscent fruits due to silencing of LcINDEHISCENCE, the INDEHISCENCE ortholog of L. campestre. Total glucosinolate concentrations were lower in immature compared to mature seeds in all studied Lepidium species and transgenic lines. In contrast, indehiscent fruits of L. appelianum maintained their total glucosinolate concentration in mature pericarps compared to immature ones, while in dehiscent L. campestre and in indehiscent RNAi-LcIND L. campestre a significant decrease in total glucosinolate concentrations from immature to mature pericarps could be detected. Indole glucosinolates were detected in lower abundance than the other glucosinolate classes (aliphatic and aromatic). Relatively high concentrations of 4-methoxyindol-3-ylmethyl glucosinolate were found in mature seeds of L. appelianum compared to other tissues, while no indole glucosinolates were detected in mature diaspores of L. campestre. The diaspores of the latter species may rather depend on aliphatic and aromatic glucosinolates for long-term protection. The allocation patterns of glucosinolates correlate with the morpho-physiologically distinct fruits of L. appelianum and L. campestre and may be explained by the distinct dispersal strategies and the dormancy status of both species.
Collapse
Affiliation(s)
- Said Mohammed
- Department of Biology, Botany, University of Osnabrück, Osnabrück, Germany
- Department of Biology, Debre Birhan University, Debre Birhan, Ethiopia
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, Osnabrück, Germany
| | | | - Katharina Klupsch
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Osnabrück, Germany
| | - Caroline Müller
- Faculty of Biology, Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
138
|
Sontowski R, van Dam NM. Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat. INSECTS 2020; 11:insects11080543. [PMID: 32824605 PMCID: PMC7469148 DOI: 10.3390/insects11080543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Like in many other organisms, the guts of insects are full with many different bacteria. These bacteria can help their hosts to overcome toxic diets or can boost their resistance to pathogens. We were curious to learn which factors determine the composition of gut bacterial communities (GBCs) in true flies and mosquitoes, which belong to the order Diptera. We searched for research papers reporting on GBCs in these insects. Using these published data, we investigated whether the GBCs are species-specific, or whether they are determined by the diet, life stage or environment of the host insect. We found that the GBCs in larvae and adults of the same insect species can be very different. Insects on similar diets did not necessarily show similar GBCs. This made us conclude that GBCs are mostly life stage-specific. However, we found that the number of data papers we could use is limited; more data are needed to strengthen our conclusion. Lastly, novel DNA technologies can show ‘who is there’ in GBCs. At the same time, we lack knowledge on the exact function of gut bacteria. Obtaining more knowledge on the function of GBCs may help to design sustainable pest control measures. Abstract True flies and mosquitos (Diptera) live in habitats and consume diets that pose specific demands on their gut bacterial communities (GBCs). Due to diet specializations, dipterans may have highly diverse and species-specific GBCs. Dipterans are also confronted with changes in habitat and food sources over their lifetime, especially during life history processes (molting, metamorphosis). This may prevent the development of a constant species- or diet-specific GBC. Some dipterans are vectors of several human pathogens (e.g., malaria), which interact with GBCs. In this review, we explore the dynamics that shape GBC composition in some Diptera species on the basis of published datasets of GBCs. We thereby focus on the effects of diet, habitats, and life cycle stages as sources of variation in GBC composition. The GBCs reported were more stage-specific than species- or diet-specific. Even though the presence of GBCs has a large impact on the performance of their hosts, the exact functions of GBCs and their interactions with other organisms are still largely unknown, mainly due to the low number of studies to date. Increasing our knowledge on dipteran GBCs will help to design pest management strategies for the reduction of insecticide resistance, as well as for human pathogen control.
Collapse
Affiliation(s)
- Rebekka Sontowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany;
- Institute for Biodiversity, Friedrich-Schiller University, Dornburger Str. 159, 07743 Jena, Germany
- Correspondence:
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany;
- Institute for Biodiversity, Friedrich-Schiller University, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
139
|
Millan S, Jeffery DW, Dall'Acqua S, Masi A. A novel HPLC-MS/MS approach for the identification of biological thiols in vegetables. Food Chem 2020; 339:127809. [PMID: 32877813 DOI: 10.1016/j.foodchem.2020.127809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 11/19/2022]
Abstract
Thiols are important natural molecules with diverse functions, ranging from acting as antioxidants that prevent chronic diseases to contributing aromas to foods and beverages. Biological thiols such as glutathione are of particular interest due to their functional roles, which include helping maintain cellular redox homeostasis and detoxifying reactive oxygen species. However, knowledge of thiol metabolism in plants is limited to studying known compounds, whereas other important thiol-containing metabolites could also exist. This work aimed to develop a new analytical approach for screening of thiols in plants, using four vegetal examples and beginning with HPLC-MS/MS in precursor ion scan mode, after extraction and thiol-specific derivatisation with 4,4'-dithiodipyridine (DTDP). Compound identity for prospective thiols was then proposed using HPLC with high resolution MS, and verified with authentic standards. This approach could lead to prospecting studies that identify thiols with potential roles in metabolic pathways, nutritional value of vegetables, or flavouring of foods.
Collapse
Affiliation(s)
- Silvia Millan
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - David W Jeffery
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy.
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
140
|
Valladares GA, Coll-Aráoz MV, Alderete M, Vera MT, Fernández PC. Previous herbivory alerts conspecific gravid sawflies to avoid unsuitable host plants. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:438-448. [PMID: 31813400 DOI: 10.1017/s0007485319000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The willow sawfly, Nematus oligospilus (Förster), is a pest in Salix commercial forests and has been reported worldwide. Female adults must recognize a suitable host plant to oviposit, since her offspring lack the ability to move to another host. We evaluated the effect of conspecific herbivory on the oviposition choices of N. oligospilus females by providing damaged (DP) and undamaged (UP) plants of Salix humboldtiana, a native willow from South America, as oviposition substrates. Local and systemic effects were studied. For the local treatment, a twig from the DP with damaged leaves was contrasted to a twig from a UP in dual choice experiments. For systemic treatment, a twig from the DP with intact leaves was contrasted to a twig from a UP. We estimated the use of olfactory and contact cues by comparing volatile emission of DP and UP, and by analysing the behaviour of the females during host recognition after landing on the leaf surface. In the context of the preference-performance hypothesis (PPH), we also tested if oviposition site selection maximizes offspring fitness by evaluating neonate hatching, larval performance and survival of larvae that were born and bred on either DP or UP. Our results demonstrate that previous conspecific herbivory on S. humboldtiana has a dramatic impact on female oviposition choices and offspring performance of the sawfly N. oligospilus. Females showed a marked preference for laying eggs on UP of S. humboldtiana. This preference was found for both local and systemic treatments. Volatile emission was quantitatively changed after conspecific damage suggesting that it could be related to N. oligospilus avoidance. In the dual choice preference experiments, the analysis of the behaviour of the females once landing on the leaf surface suggested the use of contact cues triggering egg laying on leaves from UP and avoidance of leaves from DP. Furthermore, 48 h of previous conspecific feeding was sufficient to dramatically impair neonate hatching, as well as larval development and survival, suggesting a rapid and effective reaction of the induced resistance mechanisms of the tree. In agreement with the PPH, these results support the idea that decisions made by colonizing females may result in optimal outcomes for their offspring in a barely studied insect model, and also opens the opportunity for studying tree-induced defences in the unexplored South American willow S. humboldtiana.
Collapse
Affiliation(s)
- G A Valladares
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Florentino Ameghino S/N. B° Mercantil (4105), El Manantial, Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M V Coll-Aráoz
- PROIMI-CONICET, Av. Manuel Belgrano 2960 (T4001MVB), S. M. de Tucumán, Tucumán, Argentina
| | - M Alderete
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, M. Lillo 205 (4000), S. M. de Tucumán, Tucumán, Argentina
| | - M T Vera
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Florentino Ameghino S/N. B° Mercantil (4105), El Manantial, Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - P C Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
- INTA EEA Delta del Paraná, Paraná de las Palmas y Cl Comas S/N (2804), Campana, Buenos Aires, Argentina
- Cátedra de Química de Biomoléculas, Departamento de Química Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 (C1417DSE), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
141
|
Fernández-Calvo P, Iñigo S, Glauser G, Vanden Bossche R, Tang M, Li B, De Clercq R, Nagels Durand A, Eeckhout D, Gevaert K, De Jaeger G, Brady SM, Kliebenstein DJ, Pauwels L, Goossens A, Ritter A. FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. THE NEW PHYTOLOGIST 2020; 227:1124-1137. [PMID: 32266972 DOI: 10.1111/nph.16586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/25/2020] [Indexed: 05/24/2023]
Abstract
The sessile lifestyle of plants requires accurate physiology adjustments to be able to thrive in a changing environment. Plants integrate environmental timing signals to control developmental and stress responses. Here, we identified Far1 Related Sequence (FRS) 7 and FRS12, two transcriptional repressors that accumulate in short-day conditions, as regulators of Arabidopsis glucosinolate (GSL) biosynthesis. Loss of function of FRS7 and FRS12 results in plants with increased amplitudes of diurnal expression of GSL pathway genes. Protein interaction analyses revealed that FRS7 and FRS12 recruit the NOVEL INTERACTOR OF JAZ (NINJA) to assemble a transcriptional repressor complex. Genetic and molecular evidence demonstrated that FRS7, FRS12 and NINJA jointly regulate the expression of GSL biosynthetic genes, and thus constitute a molecular mechanism that modulates specialized metabolite accumulation.
Collapse
Affiliation(s)
- Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Sabrina Iñigo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Graduate Group in Plant Biology, University of California, Davis, CA, 95616, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Rebecca De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
142
|
Brosset A, Saunier A, Kivimäenpää M, Blande JD. Does ozone exposure affect herbivore-induced plant volatile emissions differently in wild and cultivated plants? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30448-30459. [PMID: 32468369 PMCID: PMC7378123 DOI: 10.1007/s11356-020-09320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/14/2020] [Indexed: 05/03/2023]
Abstract
Concentrations of tropospheric ozone have more than doubled in the Northern Hemisphere since pre-industrial times. Plant responses to single abiotic or biotic stresses, such as ozone exposure and herbivore-feeding, have received substantial attention, especially for cultivated plants. Modern cultivated plants have been subjected to selective breeding that has altered plant chemical defences. To understand how ozone might affect plant responses to herbivore-feeding in wild and cultivated plants, we studied the volatile emissions of brassicaceous plants after exposure to ambient (~ 15 ppb) or elevated ozone (80 ppb), with and without Plutella xylostella larvae-feeding. Results indicated that most of the wild and cultivated plants increased volatile emissions in response to herbivore-feeding. Ozone alone had a weaker and less consistent effect on volatile emissions, but appeared to have a greater effect on wild plants than cultivated plants. This study highlights that closely related species of the Brassicaceae have variable responses to ozone and herbivore-feeding stresses and indicates that the effect of ozone may be stronger in wild than cultivated plants. Further studies should investigate the mechanisms by which elevated ozone modulates plant volatile emissions in conjunction with biotic stressors.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211, Kuopio, Finland.
| | - Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211, Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211, Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211, Kuopio, Finland
| |
Collapse
|
143
|
Oduor AMO, van Kleunen M, Stift M. Allelopathic effects of native and invasive Brassica nigra do not support the novel-weapons hypothesis. AMERICAN JOURNAL OF BOTANY 2020; 107:1106-1113. [PMID: 32767569 DOI: 10.1002/ajb2.1516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The novel-weapons hypothesis predicts that some plants are successful invaders because they release allelopathic compounds that are highly suppressive to naïve competitors in invaded ranges but are relatively ineffective against competitors in the native range. For its part, the evolution of enhanced weaponry hypothesis predicts that invasive populations may evolve increased expression of the allelopathic compounds. However, these predictions have rarely been tested empirically. METHODS Here, we made aqueous extracts of roots and shoots of invasive (North American) and native (European) Brassica nigra plants. Seeds of nine species from North America and nine species from Europe were exposed to these extracts. As control solutions, we used pure distilled water and distilled water with the osmotic potential adjusted with polyethylene glycol (PEG) to match that of root and shoot extracts of B. nigra. RESULTS The extracts had a strong negative effect on germination rates and seedling root lengths of target species compared to the water-control. Compared to the osmolality-adjusted controls, the extracts had a negative effect on seedling root length. We found no differences between the effects of B. nigra plant extracts from the invasive vs. native populations on germination rates and seedling root growth of target plant species. Responses were largely independent of whether the target plant species were from the invaded or native range of B. nigra. CONCLUSIONS The results show that B. nigra can interfere with other species through allelochemical interactions, but do not support predictions of the novel-weapons hypothesis and evolution of increased allelopathy.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P. O. Box 52428-00200, Nairobi, Kenya
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P.R. China
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitsätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P.R. China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitsätsstrasse 10, D-78457, Konstanz, Germany
| |
Collapse
|
144
|
Schall P, Marutschke L, Grimm B. The Flavoproteome of the Model Plant Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21155371. [PMID: 32731628 PMCID: PMC7432721 DOI: 10.3390/ijms21155371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes, which catalyze a broad spectrum of vital reactions. This paper intends to compile all potential FAD/FMN-binding proteins encoded by the genome of Arabidopsis thaliana. Several computational approaches were applied to group the entire flavoproteome according to (i) different catalytic reactions in enzyme classes, (ii) the localization in subcellular compartments, (iii) different protein families and subclasses, and (iv) their classification to structural properties. Subsequently, the physiological significance of several of the larger flavoprotein families was highlighted. It is conclusive that plants, such as Arabidopsis thaliana, use many flavoenzymes for plant-specific and pivotal metabolic activities during development and for signal transduction pathways in response to biotic and abiotic stress. Thereby, often two up to several homologous genes are found encoding proteins with high protein similarity. It is proposed that these gene families for flavoproteins reflect presumably their need for differential transcriptional control or the expression of similar proteins with modified flavin-binding properties or catalytic activities.
Collapse
|
145
|
Müller C, Caspers BA, Gadau J, Kaiser S. The Power of Infochemicals in Mediating Individualized Niches. Trends Ecol Evol 2020; 35:981-989. [PMID: 32723498 DOI: 10.1016/j.tree.2020.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
Infochemicals, including hormones, pheromones, and allelochemicals, play a central role in mediating information and shaping interactions within and between individuals. Due to their high plasticity, infochemicals are predestined mediators in facilitating individualized niches of organisms. Only recently it has become clear that individual differences are essential to understand how and why individuals realize a tiny subset of the species' niche. Moreover, individual differences have a central role in both ecological adjustment and evolutionary adaptation in a rapidly changing world. Here we highlight that infochemicals act as key signals or cues and empower the realization of the individualized niche through three proposed processes: niche choice, niche conformance, and niche construction.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Behavioral Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
146
|
Associational effects of plant ontogeny on damage by a specialist insect herbivore. Oecologia 2020; 193:593-602. [PMID: 32621031 DOI: 10.1007/s00442-020-04702-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Intraspecific variation in plant traits is a major cause of variation in herbivore feeding and performance. Plant defensive traits change as a plant grows, such that ontogeny may account for a substantial portion of intraspecific trait variation. We tested how the ontogenic stage of an individual plant, of an individual in the context of its neighboring plants, and of a patch of plants with mixed or uniform stages affect plant-herbivore interactions. To do this, we conducted an experimental study of the interactions between Lepidium draba, a perennial brassicaceous weed, and Plutella xylostella, a common herbivore of L. draba. We found that L. draba foliar glucosinolates, secondary metabolites often implicated in defense, decreased in concentration with plant age. In single-stage patches, herbivores performed similarly on L. draba plants of different ages. Furthermore, we found no difference in the cumulative performance of herbivores reared on mixed- or even-staged patches of L. draba. However, in mixed-stage patches, the damage experienced by a focal plant depended on the stage of neighboring plants, suggesting a preference hierarchy of the herbivore among plant stages. In our study, the amount of herbivory depended on the ontogenic neighborhood in which the plant grew. However, from the herbivore's perspective, variation in plant ontogenic stage was unimportant to its success in terms of feeding rate and final weight.
Collapse
|
147
|
Tewes LJ, Müller C. Interactions of Bunias orientalis plant chemotypes and fungal pathogens with different host specificity in vivo and in vitro. Sci Rep 2020; 10:10750. [PMID: 32612111 PMCID: PMC7330031 DOI: 10.1038/s41598-020-67600-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
Within several plant species, a high variation in the composition of particular defence metabolites can be found, forming distinct chemotypes. Such chemotypes show different effects on specialist and generalist plant enemies, whereby studies examining interactions with pathogens are underrepresented. We aimed to determine factors mediating the interaction of two chemotypes of Bunias orientalis (Brassicaceae) with two plant pathogenic fungal species of different host range, Alternaria brassicae (narrow host range = specialist) and Botrytis cinerea (broad host-range = generalist) using a combination of controlled bioassays. We found that the specialist, but not the generalist, was sensitive to differences between plant chemotypes in vivo and in vitro. The specialist fungus was more virulent (measured as leaf water loss) on one chemotype in vivo without differing in biomass produced during infection, while extracts from the same chemotype caused strong growth inhibition in that species in vitro. Furthermore, fractions of extracts from B. orientalis had divergent in vitro effects on the specialist versus the generalist, supporting presumed adaptations to certain compound classes. This study underlines the necessity to combine various experimental approaches to elucidate the complex interplay between plants and different pathogens.
Collapse
Affiliation(s)
- Lisa Johanna Tewes
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
148
|
Sikorska-Zimny K, Beneduce L. The glucosinolates and their bioactive derivatives in Brassica: a review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit Rev Food Sci Nutr 2020; 61:2544-2571. [PMID: 32584172 DOI: 10.1080/10408398.2020.1780193] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Storage and Postharvest Physiology of Fruit and Vegetables Laboratory, Research Institute of Horticulture, Skierniewice, Poland.,Stefan Batory State University, Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| |
Collapse
|
149
|
Paniagua Voirol LR, Weinhold A, Johnston PR, Fatouros NE, Hilker M. Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Appl Environ Microbiol 2020; 86:e00596-20. [PMID: 32276976 PMCID: PMC7267186 DOI: 10.1128/aem.00596-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying Pieris brassicae, a multivoltine butterfly species feeding on different brassicaceous plants across generations. We investigated how disturbance of the parental bacterial community by antibiotic treatment affects F1 larval traits. We tested the effects depending on whether F1 larvae are feeding on the same plant species as their parents or on a different one. The parental treatment alone had no impact on the biomass of F1 larvae feeding on the parental plant species. However, the parental treatment had a detrimental effect on F1 larval biomass when F1 larvae had a different host plant than their parents. This effect was linked to higher larval prophenoloxidase activity and greater downregulation of the major allergen gene (MA), a glucosinolate detoxification gene of P. brassicae Bacterial abundance in untreated adult parents was high, while it was very low in F1 larvae from either parental type, and thus unlikely to directly influence larval traits. Our results suggest that transgenerational effects of the parental microbiome on the offspring's phenotype become evident when the offspring is exposed to a transgenerational host plant shift.IMPORTANCE Resident bacterial communities are almost absent in larvae of butterflies and thus are unlikely to affect their host. In contrast, adult butterflies contain conspicuous amounts of bacteria. While the host plant and immune state of adult parental butterflies are known to affect offspring traits, it has been unclear whether also the parental microbiome imposes direct effects on the offspring. Here, we show that disturbance of the bacterial community in parental butterflies by an antibiotic treatment has a detrimental effect on those offspring larvae feeding on a different host plant than their parents. Hence, the study indicates that disturbance of an insect's parental microbiome by an antibiotic treatment shapes how the offspring individuals can adjust themselves to a novel host plant.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nina E Fatouros
- Department of Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
150
|
Aguirrebengoa M, Menéndez R, Müller C, González‐Megías A. Altered rainfall patterns reduce plant fitness and disrupt interactions between below‐ and aboveground insect herbivores. Ecosphere 2020. [DOI: 10.1002/ecs2.3127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Rosa Menéndez
- Lancaster Environment Centre Lancaster University Lancaster LAI 4YW UK
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld 33501 Germany
| | | |
Collapse
|