101
|
Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S. IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res 2008; 1224:1-11. [PMID: 18602091 DOI: 10.1016/j.brainres.2008.05.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/11/2008] [Accepted: 05/24/2008] [Indexed: 01/28/2023]
Abstract
Kilon is a member of the IgLON family belonging to the immunoglobulin superfamily of cell adhesion molecules. In the present study, we investigated temporal and spatial changes of Kilon expression and its modulatory functions for synapse number using hippocampal cultured neurons. Kilon was observed to localize chiefly at axons and presynaptic terminals at early culture stage, however, it was seen mainly at dendritic postsynaptic spine of mature neurons at late culture stages. Kilon was solubilized with detergent treatment at early culture stages, while it resisted to extraction of the detergent in mature neurons. The overexpression of Kilon gene using a plasmid vector decreased the number of dendritic synapses at early culture stages, whereas the overexpression increased the number of dendritic synapses at late culture. These results demonstrate the alteration of modulatory function of Kilon for the number of dendritic synapses concomitant with changes in its localization and detergent solubility during neuronal culture development.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | |
Collapse
|
102
|
Abstract
Bidirectional signaling has emerged as an important signature by which Ephs and ephrins control biological functions. Eph/ephrin signaling participates in a wide spectrum of developmental processes, and cross-regulation with other communication pathways lies at the heart of the complexity underlying their function in vivo. Here, we review in vitro and in vivo data describing molecular, functional, and genetic interactions between Eph/ephrin and other cell surface signaling pathways. The complexity of Eph/ephrin function is discussed in terms of the pathways that regulate Eph/ephrin signaling and also the pathways that are regulated by Eph/ephrin signaling.
Collapse
Affiliation(s)
- Dina Arvanitis
- Université de Toulouse, Centre de Biologie du Développement, 31062 Toulouse cedex 9, France
| | | |
Collapse
|
103
|
Mattick JS, Mehler MF. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 2008; 31:227-33. [PMID: 18395806 DOI: 10.1016/j.tins.2008.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/10/2008] [Accepted: 02/12/2008] [Indexed: 01/09/2023]
Abstract
RNA editing appears to be the major mechanism by which environmental signals overwrite encoded genetic information to modify gene function and regulation, particularly in the brain. We suggest that the predominance of Alu elements in the human genome is the result of their evolutionary co-adaptation as a modular substrate for RNA editing, driven by selection for higher-order cognitive function. We show that RNA editing alters transcripts from loci encoding proteins involved in neural cell identity, maturation and function, as well as in DNA repair, implying a role for RNA editing not only in neural transmission and network plasticity but also in brain development, and suggesting that communication of productive changes back to the genome might constitute the molecular basis of long-term memory and higher-order cognition.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
104
|
Kiselyov VV. WITHDRAWN: NCAM and the FGF-Receptor. Neurochem Res 2008. [PMID: 18368486 DOI: 10.1007/s11064-008-9666-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
In this review, the structural biology of interaction between the neural cell adhesion molecule (NCAM) and the fibroblast growth factor (FGF) receptor is described and a possible mechanism of the FGF-receptor activation by NCAM is discussed. Most of the FGF-receptor molecules are thought to be constantly involved in a transient interaction with NCAM. However, the FGF-receptor becomes activated only when NCAM is involved the trans-homophilic binding (mediating cell-cell adhesion). The trans-homophilic binding between the NCAM molecules is believed to result in formation of either one- or two-dimensional 'zipper'-like arrays of the NCAM molecules, which leads to NCAM clustering and as a result to clustering of the FGF-receptor, which in turn may lead to its activation through a direct receptor-receptor dimerization (and thus activation) due to an increase in the local concentration of the receptor.
Collapse
Affiliation(s)
- Vladislav V Kiselyov
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Niels Steensens Vej 6, 2820, Gentofte, Denmark,
| |
Collapse
|
105
|
Bushell KM, Söllner C, Schuster-Boeckler B, Bateman A, Wright GJ. Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res 2008; 18:622-30. [PMID: 18296487 DOI: 10.1101/gr.7187808] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Extracellular protein-protein interactions are essential for both intercellular communication and cohesion within multicellular organisms. Approximately a fifth of human genes encode membrane-tethered or secreted proteins, but they are largely absent from recent large-scale protein interaction datasets, making current interaction networks biased and incomplete. This discrepancy is due to the unsuitability of popular high-throughput methods to detect extracellular interactions because of the biochemical intractability of membrane proteins and their interactions. For example, cell surface proteins contain insoluble hydrophobic transmembrane regions, and their extracellular interactions are often highly transient, having half-lives of less than a second. To detect transient extracellular interactions on a large scale, we developed AVEXIS (avidity-based extracellular interaction screen), a high-throughput assay that overcomes these technical issues and can detect very transient interactions (half-lives <or= 0.1 sec) with a low false-positive rate. We used it to systematically screen for receptor-ligand pairs within the zebrafish immunoglobulin superfamily and identified novel ligands for both well-known and orphan receptors. Genes encoding receptor-ligand pairs were often clustered phylogenetically and expressed in the same or adjacent tissues, immediately implying their involvement in similar biological processes. Using AVEXIS, we have determined the first systematic low-affinity extracellular protein interaction network, supported by independent biological data. This technique will now allow large-scale extracellular protein interaction mapping in a broad range of experimental contexts.
Collapse
Affiliation(s)
- K Mark Bushell
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | | | | | | | | |
Collapse
|
106
|
Selective targeting of different neural cell adhesion molecule isoforms during motoneuron myotube synapse formation in culture and the switch from an immature to mature form of synaptic vesicle cycling. J Neurosci 2008; 27:14481-93. [PMID: 18160656 DOI: 10.1523/jneurosci.3847-07.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Characterization of neuromuscular junction formation and function in mice lacking all neural cell adhesion molecule (NCAM) isoforms or only the 180 isoform demonstrated that the 180 isoform was required at adult synapses to maintain effective transmission with repetitive stimulation whereas the 140 and/or 120 isoform(s) were sufficient to mediate the downregulation of synaptic vesicle cycling along the axon after synapse formation. However, the expression and targeting of each isoform and its relationship to distinct forms of synaptic vesicle cycling before and after synapse formation was previously unknown. By transfecting chick motoneurons with fluorescently tagged mouse 180, 140 and 120 isoforms, we show that before myotube contact the 180 and 140 isoforms are expressed in distinct puncta along the axon which are sites of an immature form (Brefeldin A sensitive, L-type Ca2+ channel mediated) of vesicle cycling. After myotube contact the 140 and 180 isoforms are downregulated from the axon and selectively targeted to the presynaptic terminal. This coincided with the downregulation of vesicle cycling along the axon and the expression of the mature form (BFA insensitive, P/Q type Ca2+ channel mediated) of vesicle cycling at the terminal. The synaptic targeting of exogenously expressed 180 and 140 isoforms also occurred when chick motoneurons contacted +/+ mouse myotubes; however only the 180 but not the 140 isoform was targeted on contact with NCAM-/- myotubes. These observations indicate that postsynaptic NCAM is required for the synaptic targeting of presynaptic 140 NCAM but that the localization of presynaptic 180 NCAM occurs via a different mechanism.
Collapse
|
107
|
Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Mol Cell Neurosci 2008; 37:56-68. [DOI: 10.1016/j.mcn.2007.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/08/2007] [Accepted: 08/21/2007] [Indexed: 11/24/2022] Open
|
108
|
Mauti O, Domanitskaya E, Andermatt I, Sadhu R, Stoeckli ET. Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system. Neural Dev 2007; 2:28. [PMID: 18088409 PMCID: PMC2238753 DOI: 10.1186/1749-8104-2-28] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/18/2007] [Indexed: 12/21/2022] Open
Abstract
Background During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A) is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS) and the central nervous system (CNS). Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS. Results Downregulation of Sema6A in boundary cap cells by in ovo RNA interference resulted in motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are expressed by both motoneurons and sensory neurons. Knockdown of PlexinA1 reproduced the phenotype seen after loss of Sema6A function both at the ventral motor exit point and at the dorsal root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or Sema6D function had an effect only at the dorsal root entry site but not at the ventral motor axon exit point. Conclusion Sema6A acts as a gate keeper between the PNS and the CNS both ventrally and dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site it organizes the segregation of dorsal roots.
Collapse
Affiliation(s)
- Olivier Mauti
- Developmental Neuroscience, Institute of Zoology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
109
|
Expression of mKirre in the developing sensory pathways: Its close apposition to nephrin-expressing cells. Neuroscience 2007; 150:880-6. [DOI: 10.1016/j.neuroscience.2007.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 11/18/2022]
|
110
|
Garver LS, Xi Z, Dimopoulos G. Immunoglobulin superfamily members play an important role in the mosquito immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 32:519-31. [PMID: 18036658 PMCID: PMC2483948 DOI: 10.1016/j.dci.2007.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 08/29/2007] [Accepted: 09/03/2007] [Indexed: 05/15/2023]
Abstract
Immunoglobulin superfamily (IgSF) proteins are known for their ability to specifically recognize and adhere to other molecules, mediating cell-surface reception and pathogen recognition. Mammalian IgSF proteins such as antibodies are among the best characterized molecules of the immune system; in contrast, the involvement of invertebrate IgSF members in immunity has not been broadly studied. Analysis of the predicted Anopheles gambiae transcriptome identified 138 proteins that have at least one immunoglobulin domain. Challenge with Plasmodium, Gram-negative or Gram-positive bacteria resulted in significant regulation of 85 IgSF genes, indicating potential roles for these molecules in infection responses and immunity. Based on sequence and expression data, six infection-responsive with immunoglobulin domain (IRID 1-6) genes were chosen and functionally characterized with regard to their role in innate immunity. Reverse-genetic gene-silencing assays showed IRID3, IRID5 and IRID6 contribute to viability upon bacterial infection while IRID4 and IRID6 are involved in limiting Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Lindsey S Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
111
|
Aricescu AR, Jones EY. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol 2007; 19:543-50. [PMID: 17935964 DOI: 10.1016/j.ceb.2007.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 11/17/2022]
Abstract
The latest structural studies of immunoglobulin superfamily cell adhesion molecules are driving a shift in perspective; increasingly the view is not focused solely on the individual molecule but rather is on the molecular assembly. Two common themes are emerging, revealing mechanisms for ectodomain-dependent regulation of cell surface receptors' signalling abilities. The first is the propensity of many such molecules to arrange in zipper-type or array-type assemblies driven by a network of highly specific cis and trans interactions. The second is the use of the extracellular dimensions of a molecule or adhesion complex as properties which, in combination with characteristic intercellular spacings, can determine the co-localisation or exclusion of particular protein populations at cell interfaces and junctions.
Collapse
Affiliation(s)
- A Radu Aricescu
- Cancer Research UK Receptor Structure Research Group, Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | |
Collapse
|
112
|
Shapiro L, Love J, Colman DR. Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci 2007; 30:451-74. [PMID: 17600523 DOI: 10.1146/annurev.neuro.29.051605.113034] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unparalleled complexity of intercellular connections in the nervous system presents requirements for high levels of both specificity and diversity for the proteins that mediate cell adhesion. Here we describe recent advances toward understanding the molecular mechanisms that underlie adhesive binding, specificity, and diversity for several well-characterized families of adhesion molecules in the nervous system. Although many families of adhesion proteins, including cadherins and immunoglobulin superfamily members, are utilized in neural and nonneural contexts, nervous system-specific diversification mechanisms, such as precisely regulated alternative splicing, provide an important means to enable their function in the complex context of the nervous system.
Collapse
Affiliation(s)
- Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, 2Edward S. Harkness Eye Institute, Columbia University, New York, New York 10032 USA.
| | | | | |
Collapse
|
113
|
Dolan J, Walshe K, Alsbury S, Hokamp K, O'Keeffe S, Okafuji T, Miller SFC, Tear G, Mitchell KJ. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 2007; 8:320. [PMID: 17868438 PMCID: PMC2235866 DOI: 10.1186/1471-2164-8-320] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 09/14/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Leucine-rich repeats (LRRs) are highly versatile and evolvable protein-ligand interaction motifs found in a large number of proteins with diverse functions, including innate immunity and nervous system development. Here we catalogue all of the extracellular LRR (eLRR) proteins in worms, flies, mice and humans. We use convergent evidence from several transmembrane-prediction and motif-detection programs, including a customised algorithm, LRRscan, to identify eLRR proteins, and a hierarchical clustering method based on TribeMCL to establish their evolutionary relationships. RESULTS This yields a total of 369 proteins (29 in worm, 66 in fly, 135 in mouse and 139 in human), many of them of unknown function. We group eLRR proteins into several classes: those with only LRRs, those that cluster with Toll-like receptors (Tlrs), those with immunoglobulin or fibronectin-type 3 (FN3) domains and those with some other domain. These groups show differential patterns of expansion and diversification across species. Our analyses reveal several clusters of novel genes, including two Elfn genes, encoding transmembrane proteins with eLRRs and an FN3 domain, and six genes encoding transmembrane proteins with eLRRs only (the Elron cluster). Many of these are expressed in discrete patterns in the developing mouse brain, notably in the thalamus and cortex. We have also identified a number of novel fly eLRR proteins with discrete expression in the embryonic nervous system. CONCLUSION This study provides the necessary foundation for a systematic analysis of the functions of this class of genes, which are likely to include prominently innate immunity, inflammation and neural development, especially the specification of neuronal connectivity.
Collapse
Affiliation(s)
- Jackie Dolan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Karen Walshe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Samantha Alsbury
- MRC Centre for Developmental Neurobiology, New Hunts House, Guys Campus, King's College London SE1 1UL, UK
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Sean O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Suzanne FC Miller
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, New Hunts House, Guys Campus, King's College London SE1 1UL, UK
| | - Kevin J Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
114
|
Besse F, Mertel S, Kittel RJ, Wichmann C, Rasse TM, Sigrist SJ, Ephrussi A. The Ig cell adhesion molecule Basigin controls compartmentalization and vesicle release at Drosophila melanogaster synapses. ACTA ACUST UNITED AC 2007; 177:843-55. [PMID: 17548512 PMCID: PMC2064284 DOI: 10.1083/jcb.200701111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synapses can undergo rapid changes in size as well as in their vesicle release function during both plasticity processes and development. This fundamental property of neuronal cells requires the coordinated rearrangement of synaptic membranes and their associated cytoskeleton, yet remarkably little is known of how this coupling is achieved. In a GFP exon-trap screen, we identified Drosophila melanogaster Basigin (Bsg) as an immunoglobulin domain-containing transmembrane protein accumulating at periactive zones of neuromuscular junctions. Bsg is required pre- and postsynaptically to restrict synaptic bouton size, its juxtamembrane cytoplasmic residues being important for that function. Bsg controls different aspects of synaptic structure, including distribution of synaptic vesicles and organization of the presynaptic cortical actin cytoskeleton. Strikingly, bsg function is also required specifically within the presynaptic terminal to inhibit nonsynchronized evoked vesicle release. We thus propose that Bsg is part of a transsynaptic complex regulating synaptic compartmentalization and strength, and coordinating plasma membrane and cortical organization.
Collapse
Affiliation(s)
- Florence Besse
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
115
|
Conchonaud F, Nicolas S, Amoureux MC, Ménager C, Marguet D, Lenne PF, Rougon G, Matarazzo V. Polysialylation increases lateral diffusion of neural cell adhesion molecule in the cell membrane. J Biol Chem 2007; 282:26266-74. [PMID: 17623676 DOI: 10.1074/jbc.m608590200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Polysialic acid (PSA) is a polymer of N-acetylneuraminic acid residues added post-translationally to the membrane-bound neural cell adhesion molecule (NCAM). The large excluded volume created by PSA polymer is thought to facilitate cell migration by decreasing cell adhesion. Here we used live cell imaging (spot fluorescence recovery after photobleaching and fluorescence correlation spectroscopy) combined with biochemical approaches in an attempt to uncover a link between cell motility and the impact of polysialylation on NCAM dynamics. We show that PSA regulates specifically NCAM lateral diffusion and this is dependent on the integrity of the cytoskeleton. However, whereas the glial-derivative neurotrophic factor chemotactic effect is dependent on PSA, the molecular dynamics of PSA-NCAM is not directly affected by glial-derivative neurotrophic factor. These findings reveal a new intrinsic mechanism by which polysialylation regulates NCAM dynamics and thereby a biological function like cell migration.
Collapse
Affiliation(s)
- Fabien Conchonaud
- Institut de Biologie du Développement de Marseille-Luminy and Centre d'Immunologie de Marseille Luminy, MOSAIC Group, Université de la Méditerranée, 13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Hall SH, Yenugu S, Radhakrishnan Y, Avellar MCW, Petrusz P, French FS. Characterization and functions of beta defensins in the epididymis. Asian J Androl 2007; 9:453-62. [PMID: 17589782 DOI: 10.1111/j.1745-7262.2007.00298.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The epididymal beta-defensins have evolved by repeated gene duplication and divergence to encode a family of proteins that provide direct protection against pathogens and also support the male reproductive tract in its primary function. Male tract defensins also facilitate recovery from pathogen attack. The beta-defensins possess ancient conserved sequence and structural features widespread in multi-cellular organisms, suggesting fundamental roles in species survival. Primate SPAG11, the functional fusion of two ancestrally independent beta-defensin genes, produces a large family of alternatively spliced transcripts that are expressed according to tissue-specific and species-specific constraints. The complexity of SPAG11 varies in different branches of mammalian evolution. Interactions of human SPAG11D with host proteins indicate involvement in multiple signaling pathways.
Collapse
Affiliation(s)
- Susan H Hall
- Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC 27599 USA.
| | | | | | | | | | | |
Collapse
|
117
|
Lepagnol-Bestel AM, Maussion G, Ramoz N, Moalic JM, Gorwood P, Simonneau M. Nrsf silencing induces molecular and subcellular changes linked to neuronal plasticity. Neuroreport 2007; 18:441-6. [PMID: 17496800 DOI: 10.1097/wnr.0b013e328011dc81] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurite outgrowth involves various molecular mechanisms generating complex brain connections. These mechanisms have been linked to plasticity and learning and are thought to be deregulated in neuropsychiatric diseases. The transcription factor REST/NRSF regulates a subset of genes encoding neurite outgrowth molecules. We demonstrate here the downregulation of Rest/Nrsf expression in a mouse neuroblastoma cell line. This downregulation induced a clear increase in neurite length. Quantitative polymerase chain reaction showed deregulation of the candidate genes L1cam, Elmo2, Ulip1 and Ulip2. These genes are bona fide candidates known to be involved in dendrite and axonal outgrowth. This approach could be adapted to high-throughput techniques for determination of the mammalian neurite outgrowth gene repertoire.
Collapse
|
118
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
119
|
Nakata A, Kamiguchi H. Serine phosphorylation by casein kinase II controls endocytic L1 trafficking and axon growth. J Neurosci Res 2007; 85:723-34. [PMID: 17253643 DOI: 10.1002/jnr.21185] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cell adhesion molecule L1 plays crucial roles in axon tract development. In vitro, L1 presented as a culture substrate stimulates axon elongation by binding to L1 expressed on the growth cone. In migrating growth cones, L1 is endocytosed via the AP-2/clathrin-mediated pathway at the central domain, followed by anterograde vesicular transport and recycling to the plasma membrane of the leading front. It has previously been shown that this endocytic trafficking of L1 is critical for axon elongation (Kamiguchi and Yoshihara [2001] J. Neurosci. 21:9194-9203). Adjacent to the AP-2 recognition site, the L1 cytoplasmic domain has a cluster of acidic amino acids containing Ser1181 that can be phosphorylated by casein kinase II (CKII; Wong et al. [1996a] J. Neurochem. 66:779-786). In this paper, we demonstrate that Ser1181 phosphorylation by CKII is implicated in both normal endocytic trafficking of L1 and L1-stimulated axon growth. Whereas L1 is sorted into transferrin-positive endosomes after endocytosis, pharmacological inhibition of CKII caused some population of L1 to be internalized into transferrin-negative compartments. Single-amino-acid mutations at Ser1181, which either prevent or mimic phosphorylation by CKII, caused similar missorting of internalized L1. Furthermore, dorsal root ganglion neurons that had been treated with a CKII inhibitor or transfected with the L1 mutants showed impaired ability to extend axons on an L1 substrate but not on other control substrates. These results demonstrate the novel role of CKII in L1-mediated axon elongation and stress the importance of functional linkage between L1 phosphorylation and L1 trafficking in migrating growth cones.
Collapse
Affiliation(s)
- Asuka Nakata
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | |
Collapse
|
120
|
Tsukioka F, Wakayama T, Tsukatani T, Miwa T, Furukawa M, Iseki S. Expression and localization of the cell adhesion molecule SgIGSF during regeneration of the olfactory epithelium in mice. Acta Histochem Cytochem 2007; 40:43-52. [PMID: 17576432 PMCID: PMC1874509 DOI: 10.1267/ahc.06027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/20/2007] [Indexed: 11/23/2022] Open
Abstract
Spermatogenic immunoglobulin superfamily (SgIGSF) is a cell adhesion molecule originally discovered in mouse testis. SgIGSF is expressed not only in spermatogenic cells but also in lung and liver epithelial cells and in neurons and glia of the central and peripheral nervous systems. In the present study, we examined the expression and localization of SgIGSF in mouse olfactory epithelium before and after transection of the olfactory nerves, by RT-PCR, Western blotting and immunohistochemistry. In normal olfactory mucosa, SgIGSF showed 100 kDa in molecular weight, which was identical with that in the lung but different from that in the brain. SgIGSF was expressed on the membrane of all olfactory, sustentacular and basal cells, but more abundantly in the apical portions of the olfactory epithelium where the dendrites of olfactory cells are in contact with sustentacular cells. After olfactory nerve transection, mature olfactory cells disappeared in 4 days but were regenerated around 7–15 days by proliferation and differentiation of basal cells into mature olfactory cells through the step of immature olfactory cells. During this period, both the mRNA and protein for SgIGSF showed a transient increase, with peak levels at 7 days and 11 days, respectively, after the transection. Immunohistochemistry showed that the enriched immunoreactivity for SgIGSF at 7–11 days was localized primarily to the membrane of immature olfactory cells. These results suggested that, during regeneration of the olfactory epithelium, the adhesion molecule SgIGSF plays physiological roles in differentiation, migration, and maturation of immature olfactory cells.
Collapse
Affiliation(s)
- Fusae Tsukioka
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshiaki Tsukatani
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takaki Miwa
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Furukawa
- Department of Otorhinolaryngology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Correspondence to: Shoichi Iseki, M.D., Ph.D., Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, 13–1 Takara-machi, Kanazawa 920–8640, Japan. E-mail:
| |
Collapse
|
121
|
Yamada M, Hashimoto T, Hayashi N, Higuchi M, Murakami A, Nakashima T, Maekawa S, Miyata S. Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. Brain Res 2007; 1165:5-14. [PMID: 17658490 DOI: 10.1016/j.brainres.2007.04.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/13/2007] [Accepted: 04/22/2007] [Indexed: 11/23/2022]
Abstract
Opioid-binding cell adhesion molecule (OBCAM) is the member of the IgLON family, a subgroup of the immunoglobulin superfamily. In the present study, the functions and dynamics of OBCAM were investigated in hippocampal neurons in vitro. Western blotting revealed that OBCAM expression was low at early stages of culture but it was increased as culture development. Double labeling immunofluorescence microscopy showed that OBCAM immunoreactivity was localized mainly at postsynaptic spines labeled with phalloidin and anti-PSD-95. The inhibition of OBCAM function with the specific antibody resulted in a significant decrease in the number of synapses on dendrites compared with control mouse IgG. The suppression of OBCAM expression using the antisense oligodeoxynucleotide also impaired the formation of synapses compared with control universal ones. The overexpression of OBCAM mRNA using a plasmid vector augmented the formation of synapses. Moreover, the internalization of OBCAM was promoted with increased neuronal activity by 4-aminopyridine. This internalization was reduced with the treatment of filipin, a sterol agent, indicating that this process is a raft-dependent pathway. These results indicate that OBCAM is a synaptic cell adhesion molecule concerning synaptogenesis and its surface localization is dynamically regulated in response to neuronal activity.
Collapse
Affiliation(s)
- Mayumi Yamada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Funada M, Hara H, Sasagawa H, Kitagawa Y, Kadowaki T. A honey bee Dscam family member, AbsCAM, is a brain-specific cell adhesion molecule with the neurite outgrowth activity which influences neuronal wiring during development. Eur J Neurosci 2007; 25:168-80. [PMID: 17241278 DOI: 10.1111/j.1460-9568.2006.05270.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immunoglobulin superfamily (IgSF) has been indicated as functioning in the development and maintenance of nervous systems through cell-cell recognition and communication in several model invertebrates, Drosophila melanogaster and Caenorhabditis elegans. To further explore the functions of the IgSF in the brain of an invertebrate with more complex behavior, we identified and characterized a novel brain-specific Dscam family member, AbsCAM, from honey bee (Apis mellifera). The level of the AbsCAM protein was high in newly hatched bees and was dramatically reduced with age. The AbsCAM protein level was constant among worker bees of the same age performing different tasks, suggesting that it was primarily determined by age and not task in adult brains. Two different AbsCAM transcripts (AbsCAM-Ig7A and B) were generated by the alternative splicing of exon 11 encoding immunoglobulin domain 7 in an age-dependent manner. AbsCAM was expressed in the major brain neuropils where the synaptic density was high. AbsCAM can mediate the isoform-specific homophilic cell adhesion in vitro, and affected the axonal projections in Drosophila embryonic central nervous system and adult mushroom body by ectopic expression. Furthermore, AbsCAM promoted the neurite outgrowth of cultured neurons isolated from honey bee pupal brains. These results thus suggest that AbsCAM is the first honey bee IgSF implicated as functioning in neuronal wiring during honey bee brain development.
Collapse
Affiliation(s)
- Masahiro Funada
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
123
|
Abstract
Many cell adhesion molecules are localized at synaptic sites in neuronal axons and dendrites. These molecules bridge pre- and postsynaptic specializations but do far more than simply provide a mechanical link between cells. In this review, we will discuss the roles these proteins have during development and at mature synapses. Synaptic adhesion proteins participate in the formation, maturation, function and plasticity of synaptic connections. Together with conventional synaptic transmission mechanisms, these molecules are an important element in the trans-cellular communication mediated by synapses.
Collapse
Affiliation(s)
- Matthew B Dalva
- University of Pennsylvania Medical Center, Department of Neuroscience, BRB II/III, Room 1114, 421 Curie Blvd., Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
124
|
Bechara A, Falk J, Moret F, Castellani V. Modulation of semaphorin signaling by Ig superfamily cell adhesion molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 600:61-72. [PMID: 17607947 DOI: 10.1007/978-0-387-70956-7_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During axon navigation, growth cones continuously interact with molecular cues in their environment, some of which control adherence and bundle assembly, others axon elongation and direction. Growth cone responses to these different environmental cues are tightly coordinated during the development of neuronal projections. Several recent studies show that axon sensitivity to guidance cues is modulated by extracellular and intracellular signals. This regulation may enable different classes of cues to combine their effects and may also represent important means for diversifying pathway choices and for compensating for the limited number of guidance cues. This chapter focuses on the modulation exerted by Ig Super-family cell adhesion molecules (IgSFCAMs) on guidance cues of the class III secreted semaphorins.
Collapse
Affiliation(s)
- Ahmad Bechara
- Centre de Génétique Moléculaire et Cellulaire UMR CNRS 5534, Université Claude Bernard, Villeurbanne, France
| | | | | | | |
Collapse
|
125
|
Empson RM, Buckby LE, Kraus M, Bates KJ, Crompton MR, Gundelfinger ED, Beesley PW. The cell adhesion molecule neuroplastin-65 inhibits hippocampal long-term potentiation via a mitogen-activated protein kinase p38-dependent reduction in surface expression of GluR1-containing glutamate receptors. J Neurochem 2006; 99:850-60. [PMID: 16925595 DOI: 10.1111/j.1471-4159.2006.04123.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuroplastin-65 is a brain-specific, synapse-enriched member of the immunoglobulin (Ig) superfamily of cell adhesion molecules. Previous studies highlighted the importance of neuroplastin-65 for long-term potentiation (LTP), but the mechanism was unclear. Here, we show how neuroplastin-65 activation of mitogen-activated protein kinase p38 (p38MAPK) modified synapse strength by altering surface glutamate receptor expression. Organotypic hippocampal slice cultures treated with the complete extracellular fragment of neuroplastin-65 (FcIg1-3) sustained an increase in the phosphorylation of p38MAPK and an inability to induce LTP at hippocampal synapses. The LTP block was reversed by application of the p38MAPK inhibitor SB202190, suggesting that p38MAPK activation occurred downstream of neuroplastin-65 binding and upstream of the loss of LTP. Further investigation revealed that the mechanism underlying neuroplastin-65-dependent prevention of LTP was a p38MAPK-dependent acceleration of the loss of surface-exposed glutamate receptor subunits that was reversed by pretreatment with the p38MAPK inhibitor SB202190. Our results indicate that neuroplastin-65 binding and associated stimulation of p38MAPK activity are upstream of a mechanism to control surface glutamate receptor expression and thereby influence plasticity at excitatory hippocampal synapses.
Collapse
Affiliation(s)
- Ruth M Empson
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
126
|
Gerke P, Benzing T, Höhne M, Kispert A, Frotscher M, Walz G, Kretz O. Neuronal expression and interaction with the synaptic protein CASK suggest a role for Neph1 and Neph2 in synaptogenesis. J Comp Neurol 2006; 498:466-75. [PMID: 16874800 DOI: 10.1002/cne.21064] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Formation, differentiation, and plasticity of synapses require interactions between pre- and postsynaptic partners. Recently, it was shown that the transmembrane immunoglobulin superfamily protein SYG-1 is required for providing synaptic specificity in C. elegans. However, it is unclear whether the mammalian orthologs of SYG-1 are also involved in local cell interactions to determine specificity during synapse formation. We used in situ hybridization, immunohistochemistry, and immunogold electron microscopy to study the temporal and spatial expression of Neph1 and Neph2 in the developing and adult mouse brain. Both proteins show similar patterns with neuronal expression starting around embryonic days 12 and 11, respectively. Expression is strongest in areas of high migratory activity. In the adult brain, Neph1 and Neph2 are predominantly seen in the olfactory nerve layer and the glomerular layer of the olfactory bulb, in the hippocampus, and in Purkinje cells of the cerebellum. At the ultrastructural level, Neph1 and Neph2 are detectable within the dendritic shafts of pyramidal neurons. To a lesser extent, there is also synaptic localization of Neph1 within the stratum pyramidale of the hippocampal CA1 and CA3 region on both pre- and postsynaptic sites. Here it colocalizes with the synaptic scaffolder calmodulin-associated serin/threonin kinase (CASK), and both Neph1 and Neph2 interact with the PDZ domain of CASK via their cytoplasmic tail. Our results show that Neph proteins are expressed in the developing nervous system of mammals and suggest that these proteins may have a conserved function in synapse formation or neurogenesis.
Collapse
Affiliation(s)
- Peter Gerke
- Renal Division, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006; 80:129-64. [PMID: 17029752 DOI: 10.1016/j.pneurobio.2006.08.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/04/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
Polysialic acid (PSA) is a linear homopolymer of alpha2-8-N acetylneuraminic acid whose major carrier in vertebrates is the neural cell adhesion molecule (NCAM). PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. PSA on NCAM is developmentally regulated thus playing a prominent role in different forms of neural plasticity spanning from embryonic to adult nervous system, including axonal growth, outgrowth and fasciculation, cell migration, synaptic plasticity, activity-induced plasticity, neuronal-glial plasticity, embryonic and adult neurogenesis. The cellular distribution, developmental changes and possible function(s) of PSA-NCAM in the central nervous system of mammals here are reviewed, along with recent findings and theories about the relationships between NCAM protein and PSA as well as the role of different polysialyltransferases. Particular attention is focused on postnatal/adult neurogenesis, an issue which has been deeply investigated in the last decade as an example of persisting structural plasticity with potential implications for brain repair strategies. Adult neurogenic sites, although harbouring all subsequent steps of cell differentiation, from stem cell division to cell replacement, do not faithfully recapitulate development. After birth, they undergo morphological and molecular modifications allowing structural plasticity to adapt to the non-permissive environment of the mature nervous tissue, that are paralled by changes in the expression of PSA-NCAM. The use of PSA-NCAM as a marker for exploring differences in structural plasticity and neurogenesis among mammalian species is also discussed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| |
Collapse
|
128
|
Zipursky SL, Wojtowicz WM, Hattori D. Got diversity? Wiring the fly brain with Dscam. Trends Biochem Sci 2006; 31:581-8. [PMID: 16919957 DOI: 10.1016/j.tibs.2006.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/17/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
The Drosophila gene Dscam, encoding Down syndrome cell-adhesion molecule, is required for the development of neural circuits. Alternative splicing of Dscam mRNA potentially generates 38016 isoforms of a cell-surface recognition protein of the immunoglobulin superfamily. These isoforms include 19008 different ectodomains joined to one of two alternative transmembrane segments. Each ectodomain comprises a unique combination of three variable immunoglobulin domains. Biochemical studies support a model in which each isoform preferentially binds to the same isoform on opposing cell surfaces. This homophilic binding requires matching at all three variable immunoglobulin domains. These findings raise the intriguing possibility that specificity of binding by the Dscam isoforms mediates cell-surface recognition events required for wiring the fly brain.
Collapse
Affiliation(s)
- S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662, USA.
| | | | | |
Collapse
|
129
|
Burket CT, Higgins CE, Hull LC, Berninsone PM, Ryder EF. The C. elegans gene dig-1 encodes a giant member of the immunoglobulin superfamily that promotes fasciculation of neuronal processes. Dev Biol 2006; 299:193-205. [PMID: 16928366 DOI: 10.1016/j.ydbio.2006.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
The adhesion of growing neurites into appropriate bundles or fascicles is important for the development of correct synaptic connectivity in the nervous system. We describe fasciculation defects of animals with mutations in the C. elegans gene dig-1 and show that dig-1 encodes a giant molecule (13,100 amino acids) of the immunoglobulin superfamily. Five new alleles of dig-1 were isolated in a screen for mutations affecting the morphology or function of several classes of head sensory neurons. Mutants showed process defasciculation of several classes of neurons. Analysis of a temperature-sensitive allele revealed that dig-1 is required during embryogenesis for normal process fasciculation of one class of head sensory neuron. Partial sequencing of two alleles, RNA interference (RNAi) and rescuing experiments showed that dig-1 encodes a giant molecule of the immunoglobulin superfamily. DIG-1 protein contains many domains associated with adhesion, is likely secreted, and has some features of proteoglycans. dig-1 mutants were originally isolated due to their displaced gonads [Thomas, J.H., Stern, M.J., Horvitz, H.R., 1990. Cell interactions coordinate the development of the C. elegans egg-laying system. Cell 62, 1041-52]; thus, dig-1 alleles were also characterized for their effects on gonad placement. Mutant phenotypes suggest that DIG-1 may mediate cell movement as well as process fasciculation and that different regions of the protein may mediate these functions.
Collapse
Affiliation(s)
- Christopher T Burket
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA 01609, USA
| | | | | | | | | |
Collapse
|
130
|
Jia L, Emmons SW. Genes that control ray sensory neuron axon development in the Caenorhabditis elegans male. Genetics 2006; 173:1241-58. [PMID: 16624900 PMCID: PMC1526702 DOI: 10.1534/genetics.106.057000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/13/2006] [Indexed: 11/18/2022] Open
Abstract
We have studied how a set of male-specific sensory neurons in Caenorhabditis elegans establish axonal connections during postembryonic development. In the adult male, 9 bilateral pairs of ray sensory neurons innervate an acellular fan that serves as a presumptive tactile and olfactory organ during copulation. We visualized ray axon commissures with a ray neuron-specific reporter gene and studied both known and new mutations that affect the establishment of connections to the pre-anal ganglion. We found that the UNC-6/netrin-UNC-40/DCC pathway provides the primary dorsoventral guidance cue to ray axon growth cones. Some axon growth cones also respond to an anteroposterior cue, following a segmented pathway, and most or all also have a tendency to fasciculate. Two newly identified genes, rax-1 and rax-4, are highly specific to the ray neurons and appear to be required for ray axon growth cones to respond to the dorsoventral cue. Among other genes we identified, rax-2 and rax-3 affect anteroposterior signaling or fate specification and rax-5 and rax-6 affect ray identities. We identified a mutation in sax-2 and show that the sax-2/Furry and sax-1/Tricornered pathway affects ectopic neurite outgrowth and establishment of normal axon synapses. Finally, we identified mutations in genes for muscle proteins that affect axon pathways by distorting the conformation of the body wall. Thus ray axon pathfinding relies on a variety of general and more ray neuron-specific genes and provides a potentially fruitful system for further studies of how migrating axon growth cones locate their targets. This system is applicable to the study of mechanisms underlying topographic mapping of sensory neurons into target circuitry where the next stage of information processing is carried out.
Collapse
Affiliation(s)
- Lingyun Jia
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
131
|
Fujimura Y, Iwashita M, Matsuzaki F, Yamamoto T. MDGA1, an IgSF molecule containing a MAM domain, heterophilically associates with axon- and muscle-associated binding partners through distinct structural domains. Brain Res 2006; 1101:12-9. [PMID: 16782075 DOI: 10.1016/j.brainres.2006.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 05/02/2006] [Accepted: 05/08/2006] [Indexed: 01/30/2023]
Abstract
Molecules belonging to the immunoglobulin superfamily (IgSF) are reported to be involved in intercellular communication in the developing nervous system. We have identified a novel GPI-anchored IgSF molecule containing a MAM (meprin, A5 protein, PTPmu) domain, named MDGA1, by screening for genes that are expressed by subpopulations of cells in the embryonic chick spinal cord. MDGA1 is selectively expressed by brachial LMCm motor neurons, some populations of DRG neurons, and interneurons. We found that MDGA1 interacts heterophilically with axon-rich regions, mainly through its MAM domain. Interestingly, MDGA1 also interacts with differentiating muscle through its N-terminal region, which contains Ig domains. These results suggest that MDGA1 functions in MDGA1-expressing nerves en route to and at their target site.
Collapse
Affiliation(s)
- Yuiko Fujimura
- Cell Resource Center for Biomedical Research, Institute of Development, Cancer and Aging, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
132
|
Fusaoka E, Inoue T, Mineta K, Agata K, Takeuchi K. Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian. Genes Cells 2006; 11:541-55. [PMID: 16629906 DOI: 10.1111/j.1365-2443.2006.00962.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection.
Collapse
Affiliation(s)
- Eri Fusaoka
- Department of Biological Science, Nagoya University Graduate School of Science, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
133
|
Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. ACTA ACUST UNITED AC 2006; 52:293-304. [PMID: 16759710 DOI: 10.1016/j.brainresrev.2006.04.001] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/29/2022]
Abstract
The 67 and 65 kDa isoforms of glutamic acid decarboxylase, the key enzymes for GABA biosynthesis, are expressed at altered levels in postmortem brain of subjects diagnosed with schizophrenia and related disorders, including autism and bipolar illness. The predominant finding is a decrease in GAD67 mRNA levels, affecting multiple brain regions, including prefrontal and temporal cortex. Postmortem studies, in conjunction with animal models, identified several mechanisms that contribute to the dysregulation of GAD67 in cerebral cortex. These include disordered connectivity formation during development, abnormal expression of Reelin and neural cell adhesion molecule (NCAM) glycoproteins, defects in neurotrophin signaling and alterations in dopaminergic and glutamatergic neurotransmission. These mechanisms are likely to operate in conjunction with genetic risk factors for psychosis, including sequence polymorphisms residing in the promoter of GAD1 (2q31), the gene encoding GAD67. We propose an integrative model, with multiple molecular and cellular mechanisms contributing to transcriptional dysregulation of GAD67 and cortical dysfunction in psychosis.
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, 01604, USA.
| | | |
Collapse
|
134
|
Huang J, Sakai R, Furuichi T. The docking protein Cas links tyrosine phosphorylation signaling to elongation of cerebellar granule cell axons. Mol Biol Cell 2006; 17:3187-96. [PMID: 16687575 PMCID: PMC1483050 DOI: 10.1091/mbc.e05-12-1122] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.
Collapse
Affiliation(s)
- Jinhong Huang
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| | - Ryuichi Sakai
- Growth Factor Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Teiichi Furuichi
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| |
Collapse
|
135
|
Ramírez-Lugo L, Zavala-Vega S, Bermúdez-Rattoni F. NMDA and muscarinic receptors of the nucleus accumbens have differential effects on taste memory formation. Learn Mem 2006; 13:45-51. [PMID: 16452653 PMCID: PMC1360132 DOI: 10.1101/lm.103206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animals recognize a taste cue as aversive when it has been associated with post-ingestive malaise; this associative learning is known as conditioned taste aversion (CTA). When an animal consumes a new taste and no negative consequences follow, it becomes recognized as a safe signal, leading to an increase in its consumption in subsequent presentations (attenuation of neophobia, AN). It has been shown that the nucleus accumbens (NAcc) has an important role in taste learning. To elucidate the involvement of N-methyl-D-aspartate (NMDA) and muscarinic receptors in the NAcc during safe and aversive taste memory formation, we administrated bilateral infusions of DL-2-amino-5-phosphonopentanoic acid (APV) or scopolamine in the NAcc shell or core respectively. Our results showed that pre-training injections of APV in the NAcc core and shell disrupted aversive but not safe taste memory formation, whereas pre-training injections of scopolamine in the NAcc shell, but not core, disrupted both CTA and AN. These results suggest that muscarinic receptors seem to be necessary for processing taste stimuli for either safe or aversive taste memory, whereas NMDA receptors are only involved in the aversive taste memory trace formation.
Collapse
Affiliation(s)
- Leticia Ramírez-Lugo
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, A.P. 70-253 México D.F., 04510, México
| | | | | |
Collapse
|
136
|
Marchalonis JJ, Adelman MK, Schluter SF, Ramsland PA. The antibody repertoire in evolution: chance, selection, and continuity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:223-47. [PMID: 16083959 DOI: 10.1016/j.dci.2005.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All jawed vertebrates contain the genetic elements essential for the function of the adaptive/combinatorial immune response, have diverse sets of natural antibodies resulting from segmental gene recombination, express comparable functional repertoires and can produce specific antibodies following appropriate immunization. Profound variability occurs in the third hypervariable (CDR3) segments of light and heavy chains even within antibodies of the same ostensible specificity. Germline VH and VL elements, as well as the joining (J) segments are highly conserved among the distinct vertebrate species. Conservation is particularly noted among the VH3-like sequences of all jawed vertebrates in the FR2 and FR3 segments, as well as in the FGXGT(R or K)L J-segment characteristic of light chains and TCRs and the WGXGT(uncharged)VT JH segments. Human VH3-53 and Vlambda6 family orthologs may be present over the entire range of vertebrates. Models of the three-dimensional structures of shark VH/VL combining sites indicate similarity in framework structure and comparable CDR usage to those of man. Although carcharhine shark VH regions show greater than 50% identity to the human VH germline prototype, searches of lower deuterostome and invertebrate databases fail to detect molecules with significant relatedness. Overall, antibodies of jawed vertebrates show tremendous individual diversity, but are constructed incorporating design features that arose with the evolutionary emergence of the jawed vertebrates and have been conserved through at least 450 million years of evolutionary time.
Collapse
Affiliation(s)
- John J Marchalonis
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724-5049, USA.
| | | | | | | |
Collapse
|
137
|
Faure C, Chalazonitis A, Rhéaume C, Bouchard G, Sampathkumar SG, Yarema KJ, Gershon MD. Gangliogenesis in the enteric nervous system: Roles of the polysialylation of the neural cell adhesion molecule and its regulation by bone morphogenetic protein-4. Dev Dyn 2006; 236:44-59. [PMID: 16958105 DOI: 10.1002/dvdy.20943] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neural crest-derived cells that colonize the fetal bowel become patterned into two ganglionated plexuses. The hypothesis that bone morphogenetic proteins (BMPs) promote ganglionation by regulating neural cell adhesion molecule (NCAM) polysialylation was tested. Transcripts encoding the sialyltransferases, ST8Sia IV (PST) and ST8Sia II (STX), which polysialylate NCAM, were detectable in fetal rat gut by E12 but were downregulated postnatally. PSA-NCAM-immunoreactive neuron numbers, but not those of NCAM, were developmentally regulated similarly. Circular smooth muscle was transiently (E16-20) PSA-NCAM-immunoreactive when it is traversed by migrating precursors of submucosal neurons. Neurons developing in vitro from crest-derived cells immunoselected at E12 with antibodies to p75(NTR) expressed NCAM and PSA-NCAM. BMP-4 promoted neuronal NCAM polysialylation and clustering. N-butanoylmannosamine, which blocks NCAM polysialylation, but not N-propanoylmannosamine, which does not, interfered with BMP-4-induced neuronal clustering. Observations suggest that BMP signaling enhances NCAM polysialylation, which allows precursors to migrate and form ganglionic aggregates during the remodeling of the developing ENS.
Collapse
Affiliation(s)
- Christophe Faure
- Division of Gastroenterology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
138
|
Biederer T. Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 2006; 87:139-50. [PMID: 16311015 DOI: 10.1016/j.ygeno.2005.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/31/2005] [Accepted: 08/15/2005] [Indexed: 12/20/2022]
Abstract
SynCAM 1 (synaptic cell adhesion molecule 1, alternatively named Tslc1 and nectin-like protein 3) belongs to the immunoglobulin superfamily and is an adhesion molecule that operates in a variety of important contexts. Exemplary are its roles in adhesion at synapses in the central nervous system and as tumor suppressor. Here, I describe a family of genes homologous to SynCAM 1 comprising four genes found solely in vertebrates. All SynCAM genes encode proteins with three immunoglobulin-like domains of the V-set, C1-set, and I-set subclasses. Comparison of genomic with cDNA sequences provides their exon-intron structure. Alternative splicing generates isoforms of SynCAM proteins, and diverse SynCAM 1 and 2 isoforms are created in an extracellular region rich in predicted O-glycosylation sites. Protein interaction motifs in the cytosolic sequence are highly conserved among all four SynCAM proteins, indicating their critical functional role. These findings aim to facilitate the understanding of SynCAM genes and provide the framework to examine the physiological functions of this family of vertebrate-specific adhesion molecules.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
139
|
Pasquier LD. Germline and somatic diversification of immune recognition elements in Metazoa. Immunol Lett 2005; 104:2-17. [PMID: 16388857 DOI: 10.1016/j.imlet.2005.11.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 12/31/2022]
Abstract
The histories of the immune systems of Metazoa during evolution are envisaged like as many adaptations to the continuous diversification of immune receptors and effectors genes under the pressure of changing environments. A basic diversity of potential immune receptor genes existed in primitive Metazoa. Their subsequent recruitment into immunity, their diversification revolving around the conservation of signaling cascades was paralleled by cell specialization and the introduction of regulatory networks. Polymorphism, duplication and somatic mechanisms of diversification affected independently and still affect different gene families in many phyla, creating a greater variety of immune system exhibiting sometimes little homology but much analogy to one another. Diversity and multiplicity of receptors was generated by duplication and creation of multigene families. Independently in several phyla further diversity is created somatically by alternate splicing, somatic mutation, gene conversion and gene rearrangement. In several instances combinatorial usage of polypeptide chains or genes segments increases the repertoire of the recognition structures. Metazoa had to adapt to the conditions generated by this diversity: the control of expression of multiple genes and the risk of autoimmunity.
Collapse
Affiliation(s)
- Louis Du Pasquier
- University of Basel, Institute of Zoology and Evolutionary Biology, Vesalgassel, CH-4051 Basel, Switzerland.
| |
Collapse
|
140
|
Andressen C, Adrian S, Fässler R, Arnhold S, Addicks K. The contribution of beta1 integrins to neuronal migration and differentiation depends on extracellular matrix molecules. Eur J Cell Biol 2005; 84:973-82. [PMID: 16325506 DOI: 10.1016/j.ejcb.2005.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 11/22/2022] Open
Abstract
The interaction of beta1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the beta1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major beta1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and beta1 integrin -/- neurones - as determined by MAP-2- and HNK-1-immunoreactive processes - was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in beta1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as beta1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.
Collapse
|
141
|
Zhang Y, Bo X, Schoepfer R, Holtmaat AJDG, Verhaagen J, Emson PC, Lieberman AR, Anderson PN. Growth-associated protein GAP-43 and L1 act synergistically to promote regenerative growth of Purkinje cell axons in vivo. Proc Natl Acad Sci U S A 2005; 102:14883-8. [PMID: 16195382 PMCID: PMC1253563 DOI: 10.1073/pnas.0505164102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Indexed: 01/19/2023] Open
Abstract
Neuronal expression of growth-associated protein 43 (GAP-43) and the cell adhesion molecule L1 has been correlated with CNS axonal growth and regeneration, but it is not known whether expression of these molecules is necessary for axonal regeneration to occur. We have taken advantage of the fact that Purkinje cells do not express GAP-43 or L1 in adult mammals or regenerate axons into peripheral nerve grafts to test the importance of these molecules for axonal regeneration in vivo. Transgenic mice were generated in which Purkinje cells constitutively express L1 or both L1 and GAP-43 under the Purkinje cell-specific L7 promoter, and regeneration of Purkinje cell axons into peripheral nerve grafts implanted into the cerebellum was examined. Purkinje cells expressing GAP-43 or L1 showed minor enhancement of axonal sprouting. Purkinje cells expressing both GAP-43 and L1 showed more extensive axonal sprouting and axonal growth into the proximal portion of the graft. When a predegenerated nerve graft was implanted into double-transgenic mice, penetration of the graft by Purkinje cell axonal sprouts was strongly enhanced, and some axons grew along the entire intracerebral length of the graft (2.5-3.0 mm) and persisted for several months. The results demonstrate that GAP-43 and L1 coexpressed in Purkinje cells can act synergistically to switch these regeneration-incompetent CNS neurons into a regeneration-competent phenotype and show that coexpression of these molecules is a key regulator of the regenerative ability of intrinsic CNS neurons in vivo.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Yamada O, Tamura K, Yagihara H, Isotani M, Washizu T, Bonkobara M. Neuronal expression of keratinocyte-associated transmembrane protein-4, KCT-4, in mouse brain and its up-regulation by neurite outgrowth of Neuro-2a cells. Neurosci Lett 2005; 392:226-30. [PMID: 16203089 DOI: 10.1016/j.neulet.2005.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/04/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
One group of proteins that regulates neurite outgrowth and maintains neuronal networks is the immunoglobulin superfamily (IgSF). We previously identified a new member of the IgSF, keratinocyte-associated transmembrane protein-4 (KCT-4), by the signal sequence-trap method from primary cultured human keratinocytes. The KCT-4 mRNA has been found to be highly expressed in the adult human brain, although it is also distributed in various tissues. In the present study, to gain insight into the role of KCT-4 in the nervous system, we examined the expression profile and localization of KCT-4 mRNA in mouse brain. We also evaluated changes in KCT-4 mRNA expression in the differentiation of the neuroblastoma cell line Neuro-2a as the in vitro model of neurite outgrowth. KCT-4 mRNA was detected broadly in various regions of the adult mouse brain by RT-PCR. In situ hybridization revealed that it was expressed highly selectively by neurons but not by glial cells. Moreover, expression of KCT-4 mRNA was induced by neurite outgrowth of Neuro-2a. These data suggest that KCT-4 participates in the regulation of neurite outgrowth and maintenance of the neural network in the adult brain.
Collapse
Affiliation(s)
- Osamu Yamada
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Animal Science University, Musashino-shi, Tokyo 180-8602, Japan
| | | | | | | | | | | |
Collapse
|
143
|
Kiselyov VV, Soroka V, Berezin V, Bock E. Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 2005; 94:1169-79. [PMID: 16045455 DOI: 10.1111/j.1471-4159.2005.03284.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.
Collapse
Affiliation(s)
- Vladislav V Kiselyov
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, School of Medicine, University of Copenhagen, Blegdamsvej 3C, Building 6.2, Copenhagen, Denmark
| | | | | | | |
Collapse
|
144
|
diIorio PJ, Runko A, Farrell CA, Roy N. Sid4: A secreted vertebrate immunoglobulin protein with roles in zebrafish embryogenesis. Dev Biol 2005; 282:55-69. [PMID: 15936329 DOI: 10.1016/j.ydbio.2005.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 02/22/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The small members of the immunoglobulin superfamily (IGSF) are a molecularly diverse group of proteins composed solely of immunoglobulin domains. They may be secreted or tethered to the cell mebrane via GPI linkages and are proposed to have important functions in vivo. However, very few small IGSFs have been functionally characterized. During an ongoing in situ hybridization analysis of expressed sequence tags in zebrafish we identified secreted immunoglobulin domain 4 (sid4), a gene encoding a soluble vertebrate protein composed solely of four immunoglobulin domains. Throughout development, sid4 is expressed in regions of the embryo undergoing active cell division and migration. Functional analysis using morpholino antisense oligonucleotides demonstrates that timing of gene expression is normal in morphants, but these embryos are smaller and exhibit defects in epiboly and patterning of axial and prechordal mesoderm. Analyses of chordin, pax2, krox20, and dlx2 expression in morphants demonstrate that early brain patterning is normal but later organization of hindbrain neurons and development of cranial neural crest are perturbed. Levels of apoptosis in morphants were normal prior to 90% epiboly, but were elevated after 10 h post-fertilization (hpf). Apoptosis does not account for early patterning defects of axial mesoderm, but likely contributes to overall reduction in embryo size. Phylogenetic analysis demonstrates that Sid4 is strikingly similar to the fibronectin binding Ig domains of Perlecan/HSPG2. Overall, our data demonstrate a fundamental role for sid4, possibly as a co-factor in extracellular matrix (ECM) interactions, in processes underlying tissue patterning and organogenesis in a vertebrate.
Collapse
Affiliation(s)
- P J diIorio
- Division of Diabetes, University of Massachusetts Medical School, 373 Plantation Street, Suite 218, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
145
|
Ensslen-Craig SE, Brady-Kalnay SM. PTP mu expression and catalytic activity are required for PTP mu-mediated neurite outgrowth and repulsion. Mol Cell Neurosci 2005; 28:177-88. [PMID: 15607952 DOI: 10.1016/j.mcn.2004.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/10/2004] [Accepted: 08/25/2004] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion molecules (CAMs) regulate neural development via both homophilic and heterophilic binding interactions. Various members of the receptor protein tyrosine phosphatase (RPTP) subfamily of CAMs mediate neurite outgrowth, yet in many cases, their ligands remain unknown. However, the PTP mu subfamily members are homophilic binding proteins. PTP mu is a growth-permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGC neurites. Whether PTP mu regulates these distinct behaviors via homophilic or heterophilic binding interactions is not currently known. In this manuscript, we demonstrate that PTP mu influences RGC axon guidance behaviors only in the E8 retina and not earlier in development. In addition, we demonstrate that PTP mu is permissive only for neurites from ventral-nasal retina and is repulsive to neurites from all other retinal quadrants. Furthermore, we show that PTP mu-mediated nasal neurite outgrowth and temporal repulsion require PTP mu expression and catalytic activity. These results are consistent with PTP mu homophilic binding generating a tyrosine phosphatase-dependent signal that ultimately leads to axon outgrowth or repulsion and that PTP mu's role in regulating axon guidance may be tightly regulated developmentally. In summary, these data demonstrate that PTP mu expression and catalytic activity are important in vertebrate axon guidance.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-7960, USA
| | | |
Collapse
|
146
|
Ohta Y, Itoh K, Yaoi T, Tando S, Fukui K, Fushiki S. Spatiotemporal patterns of expression of IGSF4 in developing mouse nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:23-31. [PMID: 15862624 DOI: 10.1016/j.devbrainres.2005.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/17/2005] [Accepted: 01/20/2005] [Indexed: 11/27/2022]
Abstract
IGSF4 is a novel immunoglobulin (Ig)-like intercellular adhesion molecule. Since IGSF4 has been characterized by several independent research groups, this molecule is called by three names, TSLC1, SgIGSF and SynCAM. In the experiments to study global changes of gene expression in fetal murine brains after prenatal exposure to low-doses of X-rays, we have found IGSF4 as one of down-regulated genes after X-irradiation. In order to elucidate the expression of spatiotemporal expression of IGSF4 in the developing brain, we have produced polyclonal antibody against IGSF4 and studied the expression of IGSF4 with immunohistochemistry and Western blot analysis. At embryonic day (E) 12.5, IGSF4-immunoreactivity (IR) was observed diffusely in the telencephalic wall, whereas it became rather confined to the subplate, the cortical plate and the subventricular zone as the development proceeded. Noteworthy was a distinct radial pattern found in the cortical plate of E16.5. IGSF4-IR gradually decreased after birth and disappeared in adulthood. In the cerebellum, IGSF4 was expressed in the molecular layer at postnatal day (P) 0 through P14. By Western blot analysis, IGSF4 remained at low levels throughout embryonic stage, whereas it increased after birth. These spatiotemporal patterns of the expression suggest that IGSF4 plays crucial roles in the development of both telencephalon and cerebellum.
Collapse
Affiliation(s)
- Yoshimi Ohta
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|
147
|
Kim JK, Choi EM, Shin HI, Kim CH, Hwang SH, Kim SM, Kwon BS. Characterization of monoclonal antibody specific to the Z39Ig protein, a member of immunoglobulin superfamily. Immunol Lett 2005; 99:153-61. [PMID: 16009265 DOI: 10.1016/j.imlet.2005.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
Z39Ig, a recently identified immunoglobulin (Ig) superfamily member, is localized in the pericentromeric region of human chromosome X and detectable in all human tissue, but it is predominantly expressed in fetal human tissues as well as in adult lungs and placenta. In the present study, we generated a monoclonal antibody against Z39Ig protein to investigate the immunological role of Z39Ig protein on various immune cells. The anti-Z39Ig mAb that we generated specifically bound to Z39Ig protein on human promonocytic THP-1 cells, monocytes isolated from human peripheral blood mononuclear cells (PBMC) and mature CD14(+) dendritic cells (DC) differentiated from umbilical-cord blood CD34(+) hematopoietic progenitor cells. In addition, a signal through the Z39Ig protein induced an obvious cell surface expression of HLA-DR on THP-1 cells mediated by MHC class II transactivator (CIITA). These data suggest that the Z39Ig protein might be a critical molecule to regulate an immune response mediated by phagocytosis and/or antigen presentation.
Collapse
Affiliation(s)
- Jin-Kyung Kim
- Immunomodulation Research Center, University of Ulsan, South Korea
| | | | | | | | | | | | | |
Collapse
|
148
|
Sasakura H, Inada H, Kuhara A, Fusaoka E, Takemoto D, Takeuchi K, Mori I. Maintenance of neuronal positions in organized ganglia by SAX-7, a Caenorhabditis elegans homologue of L1. EMBO J 2005; 24:1477-88. [PMID: 15775964 PMCID: PMC1142545 DOI: 10.1038/sj.emboj.7600621] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 02/17/2005] [Indexed: 02/01/2023] Open
Abstract
The L1 family of cell adhesion molecules is predominantly expressed in the nervous system. Mutations in human L1 cause neuronal diseases such as HSAS, MASA, and SPG1. Here we show that sax-7 gene encodes an L1 homologue in Caenorhabditis elegans. In sax-7 mutants, the organization of ganglia and positioning of neurons are abnormal in the adult stage, but these abnormalities are not observed in early larval stage. Misplacement of neurons in sax-7 mutants is triggered by mechanical force linked to body movement. Short and long forms of SAX-7 exhibited strong and weak homophilic adhesion activities in in vitro aggregation assay, respectively, which correlated with their different activities in vivo. SAX-7 was localized on plasma membranes of neurons in vivo. Expression of SAX-7 only in a single neuron in sax-7 mutants cell-autonomously restored its normal neuronal position. Expression of SAX-7 in two different head neurons in sax-7 mutants led to the forced attachment of these neurons. We propose that both homophilic and heterophilic interactions of SAX-7 are essential for maintenance of neuronal positions in organized ganglia.
Collapse
Affiliation(s)
- Hiroyuki Sasakura
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hitoshi Inada
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Atsushi Kuhara
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Eri Fusaoka
- Department of Cell Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Daisuke Takemoto
- Department of Cell Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kosei Takeuchi
- Department of Cell Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
- KAN Research Institute, Kyoto, Japan
| | - Ikue Mori
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan. Tel.: +81 52 789 4560; Fax: +81 52 789 4558; E-mail:
| |
Collapse
|
149
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
150
|
Sara Y, Biederer T, Atasoy D, Chubykin A, Mozhayeva MG, Südhof TC, Kavalali ET. Selective capability of SynCAM and neuroligin for functional synapse assembly. J Neurosci 2005; 25:260-70. [PMID: 15634790 PMCID: PMC6725191 DOI: 10.1523/jneurosci.3165-04.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 10/28/2004] [Accepted: 11/12/2004] [Indexed: 11/21/2022] Open
Abstract
Synaptic cell adhesion is central for synapse formation and function. Recently, the synaptic cell adhesion molecules neuroligin 1 (NL1) and SynCAM were shown to induce presynaptic differentiation in cocultured neurons when expressed in a non-neuronal cell. However, it is uncertain how similar the resulting artificial synapses are to regular synapses. Are these molecules isofunctional, or do all neuronal cell adhesion molecules nonspecifically activate synapse formation? To address these questions, we analyzed the properties of artificial synapses induced by NL1 and SynCAM, compared the actions of these molecules with those of other neuronal cell adhesion molecules, and examined the functional effects of NL1 and SynCAM overexpression in neurons. We found that only NL1 and SynCAM specifically induced presynaptic differentiation in cocultured neurons. The induced nerve terminals were capable of both spontaneous and evoked neurotransmitter release, suggesting that a full secretory apparatus was assembled. By all measures, SynCAM- and NL1-induced artificial synapses were identical. Overexpression in neurons demonstrated that only SynCAM, but not NL1, increased synaptic function in immature developing excitatory neurons after 8 d in vitro. Tests of chimeric molecules revealed that the dominant-positive effect of SynCAM on synaptic function in developing neurons was mediated by its intracellular cytoplasmic tail. Interestingly, morphological analysis of neurons overexpressing SynCAM or NL1 showed the opposite of the predictions from electrophysiological results. In this case, only NL1 increased the synapse number, suggesting a role for NL1 in morphological synapse induction. These results suggest that both NL1 and SynCAM act similarly and specifically in artificial synapse induction but that this process does not reflect a shared physiological function of these molecules.
Collapse
Affiliation(s)
- Yildirim Sara
- Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA
| | | | | | | | | | | | | |
Collapse
|