101
|
Lu Y, Fei R, Zhang J, Zhu G, Mo X, Wan Y, Huang Y, Sun Q, Meng D, Zhao X. Rapid and simultaneous detection of SARS-CoV-2 and influenza A using vertical flow assay based on AAO and SERS nanotags. SENSORS & DIAGNOSTICS 2023; 2:1292-1301. [DOI: 10.1039/d3sd00118k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
A highly sensitive SERS-VFA sensor was developed to determine SARS-CoV-2 or influenza A infection simultaneously, especially during co-pandemics.
Collapse
Affiliation(s)
- Yu Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Ruihua Fei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Jiahe Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Geng Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiufang Mo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yu Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing 210042, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Qingjiang Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dianhuai Meng
- Rehabilitation Medical Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China
- Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
102
|
Rubino R, Imburgia C, Bonura S, Trizzino M, Iaria C, Cascio A. Thromboembolic Events in Patients with Influenza: A Scoping Review. Viruses 2022; 14:2817. [PMID: 36560821 PMCID: PMC9785394 DOI: 10.3390/v14122817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Influenza is an acute respiratory infection that usually causes a short-term and self-limiting illness. However, in high-risk populations, this can lead to several complications, with an increase in mortality. Aside from the well-known extrapulmonary complications, several studies have investigated the relationship between influenza and acute cardio and cerebrovascular events. Reviews of the thromboembolic complications associated with influenza are lacking. OBJECTIVES the study aims to conduct a scoping review to analyze the epidemiological and clinical characteristics of patients suffering from influenza and thromboembolic complications. MATERIALS AND METHODS A computerized search of historical published cases using PubMed and the terms "influenza" or "flu" and "thrombosis", "embolism", "thromboembolism", "stroke", or "infarct" for the last twenty-five years was conducted. Only articles reporting detailed data on patients with thromboembolic complications of laboratory-confirmed influenza were considered eligible for inclusion in the scoping review. RESULTS Fifty-eight cases with laboratory documented influenza A or B and a related intravascular thrombosis were retrieved. Their characteristics were analyzed along with those of a patient who motivated our search. The localizations of thromboembolic events were pulmonary embolism 21/58 (36.2%), DVT 12/58 (20.6%), DVT and pulmonary embolism 3/58 (5.1%), acute ischemic stroke 11/58 (18.9%), arterial thrombosis 4/58 (6.8%), and acute myocardial infarction 5/58 (8.6%). DISCUSSION Our findings are important in clarifying which thromboembolic complications are more frequent in adults and children with influenza. Symptoms of pulmonary embolism and influenza can be very similar, so a careful clinical evaluation is required for proper patient management, possible instrumental deepening, and appropriate pharmacological interventions, especially for patients with respiratory failure.
Collapse
Affiliation(s)
- Raffaella Rubino
- Infectious and Tropical Diseases Unit, AOU Policlinico “P-Giaccone”, 90127 Palermo, Italy
| | | | - Silvia Bonura
- Infectious and Tropical Diseases Unit, AOU Policlinico “P-Giaccone”, 90127 Palermo, Italy
| | - Marcello Trizzino
- Infectious and Tropical Diseases Unit, AOU Policlinico “P-Giaccone”, 90127 Palermo, Italy
| | - Chiara Iaria
- Infectious Diseases Unit, ARNAS Civico, 90127 Palermo, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, AOU Policlinico “P-Giaccone”, 90127 Palermo, Italy
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
103
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
104
|
Ntemafack A, Singh RV, Ali S, Kuiate JR, Hassan QP. Antiviral potential of anthraquinones from Polygonaceae, Rubiaceae and Asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:146-155. [PMID: 36193345 PMCID: PMC9519529 DOI: 10.1016/j.sajb.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Medicinal plants are being used as an alternative source of health management to cure various human ailments. The healing role is attributed to the hidden dynamic groups of various phytoconstituents, most of which have been recorded from plants and their derivatives. Nowadays, medicinal plants have gained more attention due to their pharmacological and industrial potential. Aromatic compounds are one of the dynamic groups of secondary metabolites (SM) naturally present in plants; and anthraquinones of this group are found to be attractive due to their high bioactivity and low toxicity. They have been reported to exhibit anticancer, antimicrobial, immune-suppressive, antioxidant, antipyretic, diuretic and anti-inflammatory activities. Anthraquinones have been also shown to exhibit potent antiviral effects against different species of viruses. Though, it has been reported that a medicinal plant with antiviral activity against one viral infection may be used to combat other types of viral infections. Therefore, in this review, we explored and highlighted the antiviral properties of anthraquinones of Polygonaceae, Rubiaceae and Asphodelaceae families. Anthraquinones from these plant families have been reported for their effects on human respiratory syncytial virus and influenza virus. They are hence presumed to have antiviral potential against SARS-CoV as well. Thus, anthraquinones are potential candidates that need to be screened thoroughly and developed as drugs to combat COVID-19. The information documented in this review could therefore serve as a starting point in developing novel drugs that may help to curb the SARS-COVID-19 pandemic.
Collapse
Affiliation(s)
- Augustin Ntemafack
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Rahul Vikram Singh
- Department of Dietetic and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sabeena Ali
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| | | | - Qazi Parvaiz Hassan
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| |
Collapse
|
105
|
Chavda V, Bezbaruah R, Kalita T, Sarma A, Devi JR, Bania R, Apostolopoulos V. Variant influenza: connecting the missing dots. Expert Rev Anti Infect Ther 2022; 20:1567-1585. [PMID: 36346383 DOI: 10.1080/14787210.2022.2144231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND In June 2009, the World Health Organization declared a new pandemic, the 2009 swine influenza pandemic (swine flu). The symptoms of the swine flu pandemic causing strain were comparable to most of the symptoms noted by seasonal influenza. AREA COVERED Zoonotic viruses that caused the swine flu pandemic and its preventive measures. EXPERT OPINION As per Centers for Disease Control and Prevention (CDC), the clinical manifestations in humans produced by the 2009 H1N1 'swine flu' virus were equivalent to the manifestations caused by related flu strains. The H1N1 vaccination was the most successful prophylactic measure since it prevented the virus from spreading and reduced the intensity and consequences of the pandemic. Despite the availability of therapeutics, the ongoing evolution and appearance of new strains have made it difficult to develop effective vaccines and therapies. Currently, the CDC recommends yearly flu immunization for those aged 6 months and above. The lessons learned from the A/2009/H1N1 pandemic in 2009 indicated that readiness of mankind toward new illnesses caused by mutant viral subtypes that leap from animals to people must be maintained.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Regional College of Pharmaceutical Sciences, RIPT Group of Institution, Sonapur, Guwahati, India
| | - Anupam Sarma
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India
| | - Juti Rani Devi
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, India
| | - Ratnali Bania
- Pratiksha Institute of Pharmaceutical Sciences, India
| | | |
Collapse
|
106
|
Tang P, Cui EH, Chang WC, Yu C, Wang H, Du EQ, Wang JY. Nanoparticle-Based Bivalent Swine Influenza Virus Vaccine Induces Enhanced Immunity and Effective Protection against Drifted H1N1 and H3N2 Viruses in Mice. Viruses 2022; 14:v14112443. [PMID: 36366541 PMCID: PMC9693272 DOI: 10.3390/v14112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Swine influenza virus (SIV) circulates worldwide, posing substantial economic loss and disease burden to humans and animals. Vaccination remains the most effective way to prevent SIV infection and transmission. In this study, we evaluated the protective efficacy of a recombinant, baculovirus-insect cell system-expressed bivalent nanoparticle SIV vaccine in mice challenged with drifted swine influenza H1N1 and H3N2 viruses. After a prime-boost immunization, the bivalent nanoparticle vaccine (BNV) induced high levels of hemagglutination inhibition (HAI) antibodies, virus-neutralization (VN) antibodies, and antigen-specific IgG antibodies in mice, as well as more efficient cytokine levels. The MF59 and CPG1 adjuvant could significantly promote both humoral and cellular immunity of BNV. The MF59 adjuvant showed a balanced Th1/Th2 immune response, and the CPG1 adjuvant tended to show a Th1-favored response. The BALB/c challenge test showed that BNV could significantly reduce lung viral loads and feces viral shedding, and showed fewer lung pathological lesions than those in PBS and inactivated vaccine groups. These results suggest that this novel bivalent nanoparticle swine influenza vaccine can be used as an efficacious vaccine candidate to induce robust immunity and provide broad protection against drifted subtypes in mice. Immune efficacy in pigs needs to be further evaluated.
Collapse
Affiliation(s)
- Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - En-hui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-chi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Yu
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
| | - En-qi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, Xianyang 712100, China
- Correspondence: (E.-q.D.); (J.-y.W.)
| | - Jing-yu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (E.-q.D.); (J.-y.W.)
| |
Collapse
|
107
|
Latha K, Rao S, Sakamoto K, Watford WT. Tumor Progression Locus 2 Protects against Acute Respiratory Distress Syndrome in Influenza A Virus-Infected Mice. Microbiol Spectr 2022; 10:e0113622. [PMID: 35980186 PMCID: PMC9604045 DOI: 10.1128/spectrum.01136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sanjana Rao
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
108
|
Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines (Basel) 2022; 10:vaccines10101718. [PMID: 36298583 PMCID: PMC9610386 DOI: 10.3390/vaccines10101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Equine influenza is a highly contagious disease caused by the H3N8 equine influenza virus (EIV), which is endemically distributed throughout the world. It infects equids, and interspecies transmission to dogs has been reported. The H3N8 Florida lineage, which is divided into clades 1 and 2, is the most representative lineage in the Americas. The EIV infects the respiratory system, affecting the ciliated epithelial cells and preventing the elimination of foreign bodies and substances. Certain factors related to the disease, such as an outdated vaccination plan, age, training, and close contact with other animals, favor the presentation of equine influenza. This review focuses on the molecular, pathophysiological, and epidemiological characteristics of EIV in the Americas to present updated information to achieve prevention and control of the virus. We also discuss the need for monitoring the disease, the use of vaccines, and the appropriate application of those biologicals, among other biosecurity measures that are important for the control of the virus.
Collapse
Affiliation(s)
- Juliana Gonzalez-Obando
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
| | - Jorge Eduardo Forero
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Angélica M Zuluaga-Cabrera
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria Autónoma de las Américas, Circular 73 N°35-04, Medellín 050010, Colombia
| | - Julián Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
- Correspondence:
| |
Collapse
|
109
|
Kelly JN, Laloli L, V’kovski P, Holwerda M, Portmann J, Thiel V, Dijkman R. Comprehensive single cell analysis of pandemic influenza A virus infection in the human airways uncovers cell-type specific host transcriptional signatures relevant for disease progression and pathogenesis. Front Immunol 2022; 13:978824. [PMID: 36268025 PMCID: PMC9576848 DOI: 10.3389/fimmu.2022.978824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
The respiratory epithelium constitutes the first line of defense against invading respiratory pathogens, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), and plays a crucial role in the host antiviral response to infection. Despite its importance, however, it remains unknown how individual cell types within the respiratory epithelium respond to IAV infection or how the latter may influence IAV disease progression and pathogenesis. Here, we used single cell RNA sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to influenza virus infection in its natural target cells – namely, the human respiratory epithelium.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philip V’kovski
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Ronald Dijkman
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
- *Correspondence: Ronald Dijkman,
| |
Collapse
|
110
|
Mentzer SJ, Ackermann M, Jonigk D. Endothelialitis, Microischemia, and Intussusceptive Angiogenesis in COVID-19. Cold Spring Harb Perspect Med 2022; 12:a041157. [PMID: 35534210 PMCID: PMC9524390 DOI: 10.1101/cshperspect.a041157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
COVID-19 has been associated with a range of illness severity-from minimal symptoms to life-threatening multisystem organ failure. The severe forms of COVID-19 appear to be associated with an angiocentric or vascular phase of the disease. In studying autopsy patients succumbing to COVID-19, we found alveolar capillary microthrombi were 9 times more common in COVID-19 than in comparable patients with influenza. Corrosion casting of the COVID-19 microcirculation has revealed microvascular distortion, enhanced bronchial circulation, and striking increases in intussusceptive angiogenesis. In patients with severe COVID-19, endothelial cells commonly demonstrate significant ultrastructural injury. High-resolution imaging suggests that microcirculation perturbations are linked to ischemic changes in microanatomic compartments of the lung (secondary lobules). NanoString profiling of these regions has confirmed a transcriptional signature compatible with microischemia. We conclude that irreversible tissue ischemia provides an explanation for the cystic and fibrotic changes associated with long-haul COVID-19 symptoms.
Collapse
Affiliation(s)
- Steven J Mentzer
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, 42283 Wuppertal, Germany; Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hanover, Germany; Member of the German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease Hannover, 30625 Hanover, Germany
| |
Collapse
|
111
|
Read IWO, Musacchio A. Influenza pandemics throughout Brazilian history. HISTORIA, CIENCIAS, SAUDE--MANGUINHOS 2022; 29:1013-1031. [PMID: 36542035 DOI: 10.1590/s0104-59702022000400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 06/04/2023]
Abstract
Brazil has experienced several major epidemics of influenza, and the most destructive was in 1918-1919. This article focuses on mortality, mitigation policies, and the consequences of pandemic influenza during the national period. We provide the first mortality estimates for the 1890-1894 influenza pandemic and correct figures for later epidemics. The 1918-1919 episode cost more lives than assumed, although some cities suffered less, possibly because of public health actions. Influenza caused pandemics in 1957, 1968, 1976, and 2009, but these did not cause unusual outbreaks in Brazil.
Collapse
Affiliation(s)
| | - Aldo Musacchio
- Brandeis University. Waltham - MA - USA
- National Bureau of Economic Research. Cambridge - MA - USA
| |
Collapse
|
112
|
Mayuramart O, Poomipak W, Rattanaburi S, Khongnomnan K, Anuntakarun S, Saengchoowong S, Chavalit T, Chantaravisoot N, Payungporn S. IRF7-deficient MDCK cell based on CRISPR/Cas9 technology for enhancing influenza virus replication and improving vaccine production. PeerJ 2022; 10:e13989. [PMID: 36164603 PMCID: PMC9508885 DOI: 10.7717/peerj.13989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The influenza virus is a cause of seasonal epidemic disease and enormous economic injury. The best way to control influenza outbreaks is through vaccination. The Madin-Darby canine kidney cell line (MDCK) is currently approved to manufacture influenza vaccines. However, the viral load from cell-based production is limited by host interferons (IFN). Interferon regulating factor 7 (IRF7) is a transcription factor for type-I IFN that plays an important role in regulating the anti-viral mechanism and eliminating viruses. We developed IRF7 knock-out MDCK cells (IRF7-/ - MDCK) using CRISPR/Cas9 technology. The RNA expression levels of IRF7 in the IRF7-/ - MDCK cells were reduced by 94.76% and 95.22% under the uninfected and infected conditions, respectively. Furthermore, the IRF7 protein level was also significantly lower in IRF7-/ - MDCK cells for both uninfected (54.85% reduction) and viral infected conditions (32.27% reduction) compared to WT MDCK. The differential expression analysis of IFN-related genes demonstrated that the IRF7-/ - MDCK cell had a lower interferon response than wildtype MDCK under the influenza-infected condition. Gene ontology revealed down-regulation of the defense response against virus and IFN-gamma production in IRF7-/ - MDCK. The evaluation of influenza viral titers by RT-qPCR and hemagglutination assay (HA) revealed IRF7-/ - MDCK cells had higher viral titers in cell supernatant, including A/pH1N1 (4 to 5-fold) and B/Yamagata (2-fold). Therefore, the IRF7-/ - MDCK cells could be applied to cell-based influenza vaccine production with higher capacity and efficiency.
Collapse
Affiliation(s)
- Oraphan Mayuramart
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Songtham Anuntakarun
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Saengchoowong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Chavalit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
113
|
Lee MC, Yu CP, Chen XH, Liu MT, Yang JR, Chen AY, Huang CH. Influenza A virus NS1 protein represses antiviral immune response by hijacking NF-κB to mediate transcription of type III IFN. Front Cell Infect Microbiol 2022; 12:998584. [PMID: 36189352 PMCID: PMC9519859 DOI: 10.3389/fcimb.2022.998584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Non-structural protein 1 (NS1), one of the viral proteins of influenza A viruses (IAVs), plays a crucial role in evading host antiviral immune response. It is known that the IAV NS1 protein regulates the antiviral genes response mainly through several different molecular mechanisms in cytoplasm. Current evidence suggests that NS1 represses the transcription of IFNB1 gene by inhibiting the recruitment of Pol II to its exons and promoters in infected cells. However, IAV NS1 whether can utilize a common mechanism to antagonize antiviral response by interacting with cellular DNA and immune-related transcription factors in the nucleus, is not yet clear. Methods Chromatin immunoprecipitation and sequencing (ChIP-seq) was used to determine genome-wide transcriptional DNA-binding sites for NS1 and NF-κB in viral infection. Next, we used ChIP-reChIP, luciferase reporter assay and secreted embryonic alkaline phosphatase (SEAP) assay to provide information on the dynamic binding of NS1 and NF-κB to chromatin. RNA sequencing (RNA-seq) transcriptomic analyses were used to explore the critical role of NS1 and NF-κB in IAV infection as well as the detailed processes governing host antiviral response. Results Herein, NS1 was found to co-localize with NF-κB using ChIP-seq. ChIP-reChIP and luciferase reporter assay confirmed the co-localization of NS1 and NF-κB at type III IFN genes, such as IFNL1, IFNL2, and IFNL3. We discovered that NS1 disturbed binding manners of NF-κB to inhibit IFNL1 expression. NS1 hijacked NF-κB from a typical IFNL1 promoter to the exon-intron region of IFNL1 and decreased the enrichment of RNA polymerase II and H3K27ac, a chromatin accessibility marker, in the promoter region of IFNL1 during IAV infection, consequently reducing IFNL1 gene expression. NS1 deletion enhanced the enrichment of RNA polymerase II at the IFNL1 promoter and promoted its expression. Conclusion Overall, NS1 hijacked NF-κB to prevent its interaction with the IFNL1 promoter and restricted the open chromatin architecture of the promoter, thereby abating antiviral gene expression.
Collapse
Affiliation(s)
- Meng-Chang Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Xing-Hong Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chih-Heng Huang,
| |
Collapse
|
114
|
Eryildiz B, Ozgun H, Ersahin ME, Koyuncu I. Antiviral drugs against influenza: Treatment methods, environmental risk assessment and analytical determination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115523. [PMID: 35779301 DOI: 10.1016/j.jenvman.2022.115523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, antiviral drugs against influenza are considered emerging contaminants since they cause environmental toxicity even at low concentrations. They have been found in environmental matrices all around the world, showing that conventional treatment methods fail to remove them from water and wastewater. In addition, the metabolites and transformation products of these drugs can be more persistent than original in the environment. Several techniques to degrade/remove antiviral drugs against influenza have been investigated to prevent this contamination. In this study, the characteristics of antiviral drugs against influenza, their measurement by analytical methods, and their removal in both water and wastewater treatment plants (WWTPs) were presented. Different treatment methods, such as traditional procedures (biological processes, filtration, coagulation, flocculation, and sedimentation), advanced oxidation processes (AOPs), adsorption and combined methods, were assessed. Ecotoxicological effects of both the antiviral drug and its metabolites as well as the transformation products formed as a result of treatment were evaluated. In addition, future perspectives for improving the removal of antiviral drugs against influenza, their metabolites and transformation products were further discussed. The research indicated that the main tested techniques in this study were ozonation, photolysis and photocatalysis. Combined methods, particularly those that use renewable energy and waste materials, appear to be the optimum approach for the treatment of effluents containing antiviral drugs against influenza. In light of high concentrations or probable antiviral resistance, this comprehensive assessment suggests that antiviral drug monitoring is required, and some of those substances may cause toxicological effects.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
115
|
Liu B, Chen X, Zhou L, Li J, Wang D, Yang W, Wu H, Yao J, Yang G, Wang C, Feng J, Jiang T. The gut microbiota of bats confers tolerance to influenza virus (H1N1) infection in mice. Transbound Emerg Dis 2022; 69:e1469-e1487. [PMID: 35156318 DOI: 10.1111/tbed.14478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Pathogens from wild animals cause approximately 60% of emerging infectious diseases (EIDs). Studies on the immune systems of natural hosts are helpful for preventing the spread of EIDs. Bats are natural hosts for many emerging infectious pathogens and have a unique immune system that often coexists with pathogens without infection. Previous studies have shown that some genes and proteins may help bats fight virus infection, but little is known about the function of the bat gut microbiome on immunity. Here, we transplanted gut microbiota from wild bats (Great Himalayan Leaf-nosed bats, Hipposideros armiger) into antibiotic-treated mice, and found that the gut microbiota from bats regulated the immune system faster than mice after antibiotic treatment. Moreover, we infected mice with H1N1, and found that the gut microbiota of bats could effectively protect mice, leading to decreased inflammatory response and increased survival rate. Finally, metabolomics analysis showed that the gut microbiota of bats produced more flavonoid and isoflavones. Our results demonstrate that the quick-start innate immune response endowed by bat gut microbiota and the regulatory and antiviral effects of gut microbiota metabolites successfully ensured mouse survival after viral challenge. To our knowledge, our study was the first to use fecal microbiota transplantation (FMT) to transplant the gut microbiota of bats into mice, and the first to provide evidence that the gut microbiota of bats confers tolerance to viral infections.
Collapse
Affiliation(s)
- Boyu Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xiaolei Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Lei Zhou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Dan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Hui Wu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiyuan Yao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
116
|
Daniell H, Nair SK, Guan H, Guo Y, Kulchar RJ, Torres MDT, Shahed-Al-Mahmud M, Wakade G, Liu YM, Marques AD, Graham-Wooten J, Zhou W, Wang P, Molugu SK, de Araujo WR, de la Fuente-Nunez C, Ma C, Short WR, Tebas P, Margulies KB, Bushman FD, Mante FK, Ricciardi RP, Collman RG, Wolff MS. Debulking different Corona (SARS-CoV-2 delta, omicron, OC43) and Influenza (H1N1, H3N2) virus strains by plant viral trap proteins in chewing gums to decrease infection and transmission. Biomaterials 2022; 288:121671. [PMID: 35953331 PMCID: PMC9290430 DOI: 10.1016/j.biomaterials.2022.121671] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
Because oral transmission of SARS-CoV-2 is 3-5 orders of magnitude higher than nasal transmission, we investigated debulking of oral viruses using viral trap proteins (CTB-ACE2, FRIL) expressed in plant cells, delivered through the chewing gum. In omicron nasopharyngeal (NP) samples, the microbubble count (based on N-antigen) was significantly reduced by 20 μg of FRIL (p < 0.0001) and 0.925 μg of CTB-ACE2 (p = 0.0001). Among 20 delta or omicron NP samples, 17 had virus load reduced below the detection level of spike protein in the RAPID assay, after incubation with the CTB-ACE2 gum powder. A dose-dependent 50% plaque reduction with 50-100 ng FRIL or 600-800 μg FRIL gum against Influenza strains H1N1, H3N2, and Coronavirus HCoV-OC43 was observed with both purified FRIL, lablab bean powder or gum. In electron micrographs, large/densely packed clumps of overlapping influenza particles and FRIL protein were observed. Chewing simulator studies revealed that CTB-ACE2 release was time/dose-dependent and release was linear up to 20 min chewing. Phase I/II placebo-controlled, double-blinded clinical trial (IND 154897) is in progress to evaluate viral load in saliva before or after chewing CTB-ACE2/placebo gum. Collectively, this study advances the concept of chewing gum to deliver proteins to debulk oral viruses and decrease infection/transmission.
Collapse
Affiliation(s)
- Henry Daniell
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Smruti K Nair
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hancheng Guan
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuwei Guo
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rachel J Kulchar
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marcelo D T Torres
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Md Shahed-Al-Mahmud
- Genomics Research Center, Taiwan Academy of Sciences, 128 Academia Rd. Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Geetanjali Wakade
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yo-Min Liu
- Genomics Research Center, Taiwan Academy of Sciences, 128 Academia Rd. Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Andrew D Marques
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jevon Graham-Wooten
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wan Zhou
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ping Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sudheer K Molugu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William R de Araujo
- Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, Sao Paulo, 13083-970, Brazil
| | | | - Che Ma
- Genomics Research Center, Taiwan Academy of Sciences, 128 Academia Rd. Section 2, Nangang District, Taipei, 11529, Taiwan
| | - William R Short
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth B Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Frederic D Bushman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Francis K Mante
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert P Ricciardi
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ronald G Collman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark S Wolff
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
117
|
Zhang H, Alford T, Liu S, Zhou D, Wang J. Influenza virus causes lung immunopathology through down-regulating PPARγ activity in macrophages. Front Immunol 2022; 13:958801. [PMID: 36091002 PMCID: PMC9452838 DOI: 10.3389/fimmu.2022.958801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Fatal influenza (flu) virus infection often activates excessive inflammatory signals, leading to multi-organ failure and death, also referred to as cytokine storm. PPARγ (Peroxisome proliferator-activated receptor gamma) agonists are well-known candidates for cytokine storm modulation. The present study identified that influenza infection reduced PPARγ expression and decreased PPARγ transcription activity in human alveolar macrophages (AMs) from different donors. Treatment with PPARγ agonist Troglitazone ameliorated virus-induced proinflammatory cytokine secretion but did not interfere with the IFN-induced antiviral pathway in human AMs. In contrast, PPARγ antagonist and knockdown of PPARγ in human AMs further enhanced virus-stimulated proinflammatory response. In a mouse model of influenza infection, flu virus dose-dependently reduced PPARγ transcriptional activity and decreased expression of PPARγ. Moreover, PPARγ agonist troglitazone significantly reduced high doses of influenza infection-induced lung pathology. In addition, flu infection reduced PPARγ expression in all mouse macrophages, including AMs, interstitial macrophages, and bone-marrow-derived macrophages but not in alveolar epithelial cells. Our results indicate that the influenza virus specifically targets the PPARγ pathway in macrophages to cause acute injury to the lung.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Dongming Zhou, ; Hongbo Zhang,
| | - Taylor Alford
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Shuangquan Liu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Dongming Zhou, ; Hongbo Zhang,
| | - Jieru Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
118
|
Gautam V, Kumar R, Jain VK, Nagpal S. An overview of advancement in aptasensors for influenza detection. Expert Rev Mol Diagn 2022; 22:705-724. [PMID: 35994712 DOI: 10.1080/14737159.2022.2116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The platforms for early identification of infectious diseases such as influenza has seen a surge in recent years as delayed diagnosis of such infections can lead to dreadful effects causing large numbers of deaths. The time taken in detection of an infectious disease may vary from a few days to a few weeks depending upon the choice of the techniques. So, there is an urgent need for advanced methodologies for early diagnosis of the influenza. AREAS COVERED The emergence of "Aptasensor" synergistically with biosensors for diagnosis has opened a new era for sensitive, selective and early detection approaches. This review described various conventional as well as advanced methods based on artificial immunogenic nucleotide sequences complementing a part of the virus, i.e., aptamers based aptasensors for influenza diagnosis and the challenges faced in their commercialization. EXPERT OPINION Although numerous traditional methods are available for influenza detection but mostly associated with low sensitivity, specificity, high cost, trained personnel, and animals required for virus culture/ antibody raising as the major drawbacks. Aptamers can be manufactured invitro as 'chemical antibodies' at commercial level, no animal required. Following these advantages, aptamers can pave the way for an efficient diagnostic technique as compared to other existing conventional methods..
Collapse
Affiliation(s)
- Varsha Gautam
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Ramesh Kumar
- Department of Biotechnology, Indira Gandhi University, Meerpur, India
| | - Vinod Kumar Jain
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Suman Nagpal
- Department of Environmental sciences, Indira Gandhi University, Meerpur, India
| |
Collapse
|
119
|
Okoli GN, Reddy VK, Lam OLT, Racovitan F, Al-Yousif Y, Askin N. Characteristics and methodological standards across systematic reviews with Meta-analysis of efficacy and/or effectiveness of influenza vaccines: an overview of reviews. Infect Dis (Lond) 2022; 54:861-880. [PMID: 36000220 DOI: 10.1080/23744235.2022.2114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND While systematic reviews (SR) generally suggest that vaccination is an effective way to prevent influenza infection, it is not clear if these conclusions are based on high quality SR methods. As such, we systematically identified, critically appraised, and summarised the characteristics and adherence to methodological standards in SRs with meta-analysis of efficacy/effectiveness of influenza vaccines. METHODS We searched MEDLINE, Embase, Scopus, CINAHL, Global Health, and CDSR for English-language SR publications up to July 11, 2022. We summarised the characteristics, adherence to methodological standards and SR quality (AMSTAR 2). RESULTS From 11,193 retrieved citations, we included 48 publications (47 SRs). Seventy-five percent were of a critically low quality, 19% of a low quality, 2% of a moderate quality, and 4% of a high quality. Thirteen percent were industry-funded, about 13% co-authored by industry employee(s), and 4% commissioned by an organisation or authority. Only 45% percent reported protocol registration, 6% reported collaboration with a knowledge synthesis librarian/information specialist, and 60% utilised a reporting checklist (e.g. PRISMA). CONCLUSIONS AND RELEVANCE SRs with meta-analysis of efficacy/effectiveness of influenza vaccines are mostly of critically low quality and even the more recent reviews did not follow current best SR practices. These findings are significant in view of the controversies that surround influenza vaccines, and the use of SRs in informed decision-making. However, the findings do not justify curtailment or cessation of influenza vaccine use as vaccines continue to offer substantial net public health benefit.HighlightsWe systematically identified, critically appraised, and summarised the characteristics and adherence to methodological standards in 47 systematic reviews with meta-analysis of efficacy/effectiveness of influenza vaccines.13% of the reviews were industry-funded.About 13% of the reviews were co-authored by industry employee(s).4% of the reviews were commissioned by an organisation/authority.45% of the reviews reported protocol registration.6% of the reviews reported collaborating with a knowledge synthesis librarian/information specialist to prepare the search strategy.60% of the reviews reported using the PRISMA (or similar) checklist.75% of the reviews were judged to be of critically low quality; 19% of low quality; 2% of moderate quality; 4% of high quality.
Collapse
Affiliation(s)
- George N Okoli
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Vaccine and Drug Evaluation Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Viraj K Reddy
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Otto L T Lam
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Florentin Racovitan
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Yahya Al-Yousif
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nicole Askin
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
120
|
Influenza virus and its subtypes circulating during 2018-2019: A hospital-based study from Assam. Indian J Med Microbiol 2022; 40:525-530. [PMID: 36002356 DOI: 10.1016/j.ijmmb.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Influenza virus can cause serious respiratory illness sometimes resulting in epidemics and pandemics associated with significant morbidity and mortality across the globe. Hence, continuous surveillance of the activity of the influenza virus and its subtypes is necessary to help the policy makers to take effective and appropriate decisions regarding its control. The study aimed to determine distribution of influenza viruses in Assam of north-east India having subtropical climate that may lead to viral subtype divergence. METHODS Clinically suspected ninety cases with Influenza like illness (ILI) were included, irrespective of age and sex during the period 1st July 2018 to 30th June 2019. Aseptically collected Nasopharyngeal swabs in viral transport media (VTM) were tested by conventional Reverse Transcriptase Polymerase Chain Reaction (RT PCR) for detection of Influenza A and Influenza B viruses which were further processed for detection of subtypes such as H1N1 pdm09, H3N2 and Influenza B (Yamagata and Victoria lineage). Normally distributed continuous variables were summarised by mean and standard deviation. All categorical variables were summarised as percentages. RESULTS Influenza activity was seen in 42.2% of ILI cases with male predominance (57.9%). Influenza A was the predominant type (84.2%). Among the subtypes, A(H1N1) pdm09 was predominant (76.3%) followed by Influenza B (Victoria lineages) (15.8%) and AH3N2 (7.9%). Significant difference was observed between different subtypes with regard to age distribution only. Influenza activity in Assam showed two seasonal peaks; the primary one from May to July and the secondary from November to February. CONCLUSION The study described the distribution of different Influenza viruses and its subtypes in Assam along with their seasonal activities. These findings will help to formulate the policy for its prevention and control in Assam as well as to monitor the efficacy of the current influenza vaccine.
Collapse
|
121
|
Wu W, Alexander JS, Metcalf JP. In Vivo and In Vitro Studies of Cigarette Smoke Effects on Innate Responses to Influenza Virus: A Matter of Models? Viruses 2022; 14:1824. [PMID: 36016446 PMCID: PMC9415757 DOI: 10.3390/v14081824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Cigarette smoke (CS) is a significant public health problem and a leading risk factor for the development of chronic obstructive pulmonary disease (COPD) in the developed world. Respiratory viral infections, such as the influenza A virus (IAV), are associated with acute exacerbations of COPD and are more severe in cigarette smokers. To fight against viral infection, the host has developed an innate immune system, which has complicated mechanisms regulating the expression and activation of cytokines and chemokines to maximize the innate and adaptive antiviral response, as well as limiting the immunopathology that leads to exaggerated lung damage. In the case of IAV, responders include airway and alveolar epithelia, lung macrophages and dendritic cells. To achieve a successful infection, IAV must overcome these defenses. In this review, we summarize the detrimental role of CS in influenza infections. This includes both immunosuppressive and proinflammatory effects on innate immune responses during IAV infection. Some of the results, with respect to CS effects in mouse models, appear to have discordant results, which could be at least partially addressed by standardization of animal viral infection models to evaluate the effect of CS exposure in this context.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeremy S. Alexander
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jordan P. Metcalf
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
122
|
Ling YH, Wang H, Han MQ, Wang D, Hu YX, Zhou K, Li Y. Nucleoporin 85 interacts with influenza A virus PB1 and PB2 to promote its replication by facilitating nuclear import of ribonucleoprotein. Front Microbiol 2022; 13:895779. [PMID: 36051755 PMCID: PMC9426659 DOI: 10.3389/fmicb.2022.895779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription and replication of the influenza A virus (IAV) genome take place in the nucleus of infected cells, which rely on host factors to aid viral ribonucleoprotein (vRNP) to cross the nuclear pore complex (NPC) and complete the bidirectional nucleocytoplasmic trafficking. Here, we showed that nucleoporin 85 (NUP85), a component of NPC, interacted with RNP subunits polymerase basic 1 (PB1) and polymerase basic 2 (PB2) in an RNA-dependent manner during IAV infection. Knockdown of NUP85 delayed the nuclear import of vRNP, PB1 and PB2, inhibiting polymerase activity and ultimately suppressing viral replication. Further analysis revealed that NUP85 assisted the binding of PB1 to nuclear transport factor Ran-binding protein 5 (RanBP5) and the binding of PB2 to nuclear transport factor importin α1 and importin α7. We also found that NUP85 expression was downregulated upon IAV infection. Together, our study demonstrated that NUP85 positively regulated IAV infection by interacting with viral PB1 and PB2, which may provide new insight into the process of vRNP nuclear import and a novel target for effective antivirals.
Collapse
Affiliation(s)
- Yue-Huan Ling
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Hao Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Mei-Qing Han
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Di Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Yi-Xiang Hu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, China
| | - Kun Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute, Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Yan Li,
| |
Collapse
|
123
|
Zarkoob H, Allué-Guardia A, Chen YC, Garcia-Vilanova A, Jung O, Coon S, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Iben J, Li T, Fu J, Porter FD, Yewdell J, Martinez-Sobrido L, Cherry S, Torrelles JB, Ferrer M, Lee EM. Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents. Commun Biol 2022; 5:810. [PMID: 35962146 PMCID: PMC9373898 DOI: 10.1038/s42003-022-03753-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.
Collapse
Affiliation(s)
- Hoda Zarkoob
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anna Allué-Guardia
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Andreu Garcia-Vilanova
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olive Jung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.,Biomedical Ultrasonics & Biotherapy Laboratory, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, UK
| | - Steven Coon
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jun-Gyu Park
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Fatai Oladunni
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jesse Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ivan Kosik
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,High Throughput Screening Core, University of Pennsylvania, Philadelphia, PA, USA
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Tianwei Li
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Jiaqi Fu
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Jonathan Yewdell
- National Institute for Allergies and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis Martinez-Sobrido
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sara Cherry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordi B Torrelles
- Host-Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Emily M Lee
- 3D Tissue Bioprinting Lab, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
124
|
Saengchoowong S, Nimsamer P, Khongnomnan K, Poomipak W, Praianantathavorn K, Rattanaburi S, Poovorawan Y, Zhang Q, Payungporn S. Enhancing the yield of seasonal influenza viruses through manipulation of microRNAs in Madin-Darby canine kidney cells. Exp Biol Med (Maywood) 2022; 247:1335-1349. [PMID: 35666095 PMCID: PMC9442458 DOI: 10.1177/15353702221098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/15/2022] [Indexed: 02/03/2023] Open
Abstract
Annual influenza vaccine is recommended to reduce the occurrence of seasonal influenza and its complications. Thus far, Madin-Darby canine kidney (MDCK) cell line has been used to manufacture cell-based influenza vaccines. Even though host microRNAs may facilitate viral replication, the interaction between MDCK cells-derived microRNAs and seasonal influenza viruses has been less frequently investigated. Therefore, this study highlighted microRNA profiles of MDCK cells to increase the yield of seasonal influenza virus production by manipulating cellular microRNAs. MDCK cells were infected with influenza A or B virus at a multiplicity of infection (MOI) of 0.01, and microRNA collections were then subjected to MiSeq (Illumina) Sequencing. The validated profiles revealed that cfa-miR-340, cfa-miR-146b, cfa-miR-197, and cfa-miR-215 were the most frequently upregulated microRNAs. The effect of candidate microRNA inhibition and overexpression on viral replication was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). The hybridization pattern between candidate miRNAs and viral genes was performed using miRBase and RNAhybrid web-based programs. Moreover, the predicted microRNA-binding sites were validated by a 3'-UTR reporter assay. The results indicated that cfa-miR-146b could directly target the PB1 gene of A/pH1N1 and the PA gene of B/Yamagata. Furthermore, cfa-miR-215 could silence the PB1 gene of A/pH1N1 and the PB1 gene of B/Victoria. However, the PB2 gene of the A/H3N2 virus was silenced by cfa-miR-197. In addition, the HA and NA sequences of influenza viruses harvested from the cell cultures treated with microRNA inhibitors were analyzed. The sequencing results revealed no difference in the antigenic HA and NA sequences between viruses isolated from the cells treated with microRNA inhibitors and the parental viruses. In conclusion, these findings suggested that MDCK cell-derived microRNAs target viral genes in a strain-specific manner for suppressing viral replication. Conversely, the use of such microRNA inhibitors may facilitate the production of influenza viruses.
Collapse
Affiliation(s)
- Suthat Saengchoowong
- Joint Chulalongkorn
University-University of Liverpool Doctoral Program in Biomedical Sciences and
Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
- Faculty of Veterinary Medicine and
Applied Zoology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Kritsada Khongnomnan
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Kesmanee Praianantathavorn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical
Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Qibo Zhang
- Department of Clinical Infection,
Microbiology and Immunology, Institute of Infection, Veterinary and Ecological
Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| |
Collapse
|
125
|
Wang J, Yu X, Zhao S, Zhang N, Lin Z, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Construction of a peacock immortalized fibroblast cell line for avian virus production. Poult Sci 2022; 101:102147. [PMID: 36191515 PMCID: PMC9529503 DOI: 10.1016/j.psj.2022.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian-derived MDCK cells are the most widely used for avian virus vaccine production at present. The use of heterologous cell systems for avian virus preparation may cause security risks. An avian cell line is available for avian virus vaccines urgently needed. In this study, a peacock immortalized fibroblast cell line that is suitable for avian virus vaccine production was generated. The primary peacock fibroblast cells were prepared, and the immortal cells PEF-1 were obtained by transferring hTERT into the primary cells and screening with G418. The PEF-1 has high cell viability and expresses exogenous TERT protein. More importantly, the virus replication ability was stronger in PEF-1 than in MDCK cells as evaluated by virus fluorescence and TCID50, after being infected with NDV-GFP, VSV-GFP, and AIV. In conclusion, the peacock immortalized PEF cells are expected to be used for the production of peacock and other avian virus vaccines.
Collapse
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Xiangyu Yu
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Shurui Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Nian Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Zhenyu Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China.
| |
Collapse
|
126
|
Ren Q, Yu N, Zou P, He Q, Macharia DK, Sheng Y, Zhu B, Lin Y, Wu G, Chen Z. Reusable Cu 2-xS-modified masks with infrared lamp-driven antibacterial and antiviral activity for real-time personal protection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 441:136043. [PMID: 35370448 PMCID: PMC8956354 DOI: 10.1016/j.cej.2022.136043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Disposable surgical masks are widely used by the general public since the onset of the coronavirus outbreak in 2019. However, current surgical masks cannot self-sterilize for reuse or recycling for other purposes, resulting in high economic and environmental costs. To solve these issue, herein we report a novel low-cost surgical mask decorated with copper sulfide (Cu2-xS) nanocrystals for photothermal sterilization in a short time (6 min). With the spun-bonded nonwoven fabrics (SNF) layer from surgical masks as the substrate, Cu2-xS nanocrystals are in-situ grown on their surface with the help of a commercial textile adhesion promoter. The SNF-Cu2-xS layer possesses good hydrophobicity and strong near infrared absorption. Under the irradiation with an infrared baking lamp (IR lamp, 50 mW cm-2), the surface temperature of SNF-Cu2-xS layer on masks can quickly increase to over 78 °C, resulting from the high photothermal effects of Cu2-xS nanocrystals. As a result, the polluted masks exhibit an outstanding antibacterial rate of 99.9999% and 85.4% for the Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) as well as the inactivation of human coronavirus OC43 (3.18-log10 decay) and influenza A virus A/PR/8/34 (H1N1) (3.93-log10 decay) after 6 min irradiation, and achieve rapid sterilization for reuse and recycling. Therefore, such Cu2-xS-modified masks with IR lamp-driven antibacterial and antiviral activity have great potential for real-time personal protection.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peng Zou
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qiang He
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yangyi Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guoyi Wu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
127
|
Therapeutic Effects of a Dry Powder Prepared from the Green Microalga Coccomyxa sp. KJ in Mice Infected with Influenza A Virus. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Influenza virus is a seasonal respiratory pathogen that produces global pandemics by genome reassortments. This rapid evolution creates difficulty in producing vaccines. Although several anti-influenza drugs have been developed, acquisition of rapid drug resistance by viruses is common. Therefore, it is important to develop novel therapeutic and prophylactic strategies. In this study, we evaluated the antiviral effects of a microalgae Coccomyxa sp. KJ (IPOD FERM BP-22254) extract in a BALB/c mouse model of influenza. Oral administration of dry algal powder (5 mg/day or 20 mg/day) before infection with influenza A virus (IFV) suppressed viral proliferation in the lungs and bronchoalveolar lavage fluid (BALF). It also exhibited stimulatory effects on systemic and local production of neutralizing antibodies. These results suggest that this powder is a promising candidate for the therapeutic and prophylactic management of influenza.
Collapse
|
128
|
Narasimhan H, Wu Y, Goplen NP, Sun J. Immune determinants of chronic sequelae after respiratory viral infection. Sci Immunol 2022; 7:eabm7996. [DOI: 10.1126/sciimmunol.abm7996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as “long COVID-19,” are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.
Collapse
Affiliation(s)
- Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nick P. Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, MN 55905, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
129
|
Cruz A, Joseph S. Interaction of the Influenza A Virus NS1 Protein with the 5'-m7G-mRNA·eIF4E·eIF4G1 Complex. Biochemistry 2022; 61:1485-1494. [PMID: 35797022 PMCID: PMC10164398 DOI: 10.1021/acs.biochem.2c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influenza A virus (IAV) is responsible for seasonal epidemics that result in hundreds of thousands of deaths worldwide annually. The non-structural protein 1 (NS1) of the IAV inflicts various antagonistic processes on the host during infection. These processes include inhibition of the host interferon system, inhibition of the apoptotic response, and enhancement of viral mRNA translation, all of which contribute to the overall virulence of the IAV. Although the mechanism by which NS1 stimulates translation is unknown, NS1 has been shown to bind both poly-A binding Protein 1 and eukaryotic initiation factor 4 gamma 1 (eIF4G1), two proteins necessary for cap-dependent translation. We directly analyzed the interaction between NS1 and eIF4G1 within the context of the 5'-m7G-mRNA·eIF4E·eIF4G1 complex. Interestingly, our studies show that NS1 can bind this complex in the presence or absence of 5'-m7G-mRNA. Additionally, we were interested in investigating whether NS1 interacts with eIF4E directly. Our results indicate that NS1 can bind to eIF4E only in the absence of 5'-m7G-mRNA. Considering previous data, we propose that NS1 stimulates translation by binding to eIF4G1 and recruiting the 43S pre-translation initiation complex to the mRNA.
Collapse
Affiliation(s)
- Alejandro Cruz
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314 United States
| |
Collapse
|
130
|
Thompson R, Wood JG, Tempia S, Muscatello DJ. Global variation in early epidemic growth rates and reproduction number of seasonal influenza. Int J Infect Dis 2022; 122:382-388. [PMID: 35718299 DOI: 10.1016/j.ijid.2022.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Little is known about global variation in early epidemic growth rates and effective reproduction numbers (Re) of seasonal influenza. We aimed to estimate global variation in Re of influenza type A and B during a single period. METHODS Country influenza detection time series from September 2017 through January 2019 were obtained from an international database. Type A and B epidemics by country were selected based on Re estimates for a five-week moving window advanced by week. Associations of Re with absolute latitude, Human Development Index, percent of the population aged <15 years and percent living rurally in each country were assessed. RESULTS Time series were included for 119 of 169 available countries. There were 100 countries with influenza A and 79 with B epidemics. Median Re for both influenza A and B epidemics was 1.23 (ranges: A 1.10, 1.60; B 1.06, 1.58). Re of influenza B, but not A, was independently associated with absolute latitude, increasing by 0.022 (95% CI 0.002, 0.043) per 10 degrees. CONCLUSIONS Re of influenza A and B were similar. Only Re of influenza B was associated with country characteristics; increasing with distance from the equator. The approach may be suitable for continuous Re surveillance.
Collapse
Affiliation(s)
- R Thompson
- School of Population Health, University of New South Wales, Australia; School of Population Health, University of New South Wales, Australia
| | - J G Wood
- School of Population Health, University of New South Wales, Australia; School of Population Health, University of New South Wales, Australia
| | - S Tempia
- National Institute for Communicable Diseases, South Africa; School of Population Health, University of New South Wales, Australia
| | - D J Muscatello
- School of Population Health, University of New South Wales, Australia; School of Population Health, University of New South Wales, Australia.
| |
Collapse
|
131
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
132
|
Days of Flooding Associated with Increased Risk of Influenza. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:8777594. [PMID: 35692665 PMCID: PMC9187473 DOI: 10.1155/2022/8777594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
Influenza typically causes mild infection but can lead to severe outcomes for those with compromised lung health. Flooding, a seasonal problem in Iowa, can expose many Iowans to molds and allergens shown to alter lung inflammation, leading to asthma attacks and decreased viral clearance. Based on this, the hypothesis for this research was that there would be geographically specific positive associations in locations with flooding with influenza diagnosis. An ecological study was performed using influenza diagnoses and positive influenza polymerase chain reaction tests from a de-identified large private insurance database and Iowa State Hygienic Lab. After adjustment for multiple confounding factors, Poisson regression analysis resulted in a consistent 1% associated increase in influenza diagnoses per day above flood stage (95% confidence interval: 1.00–1.04). This relationship remained after removal of the 2009–2010 influenza pandemic year. There was no associated risk between flooding and influenza-like illness as a nonspecific diagnosis. Associated risks between flooding and increased influenza diagnoses were geographically specific, with the greatest risk in the most densely populated areas. This study indicates that populations who live, work, or volunteer in flooded environments should consider preventative measures to avoid environmental exposures to mitigate illness from influenza in the following year.
Collapse
|
133
|
G Protein Subunit β1 Facilitates Influenza A Virus Replication by Promoting the Nuclear Import of PB2. J Virol 2022; 96:e0049422. [PMID: 35604143 DOI: 10.1128/jvi.00494-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G protein subunit β1 (GNB1), the beta subunit of the G protein family, plays an important role in regulating transmembrane signal transduction. Although a recent study has demonstrated that GNB1 can bind the matrix protein 1 (M1) to facilitate M1 transport to budding sites and promote the release of progeny influenza A virus (IAV), whether the GNB1 protein has other functions in IAV replication requires further study. Here, we found that GNB1 promoted IAV replication, as virus yield decreased in GNB1 knockdown or knockout cells. GNB1 interacted with polymerase subunits PB2, PB1, and PA. Overexpressed GNB1 facilitated PB2 binding to importin α3, α5, and α7 promoting the nuclear import of PB2, enhancing viral RNA synthesis and polymerase activity. Altogether, our results demonstrated that GNB1 positively regulates virus replication by interacting with polymerase subunits and facilitating the nuclear import of PB2, which provide novel insights into the molecular mechanism of IAV. IMPORTANCE Until now, there has been only one article on the role of GNB1 in IAV budding. No study has investigated the role of GNB1 in IAV replication. In this study, our research demonstrated that GNB1 could increase the interaction between PB2 and the importin α isoform and mediate the nuclear import of PB2. Therefore, GNB1 could promote viral replication and transcription. Our results provide a better understanding of the molecular mechanisms of viral replication and provide potential antiviral drug targets.
Collapse
|
134
|
Abstract
Influenza viruses cause respiratory tract infections, which lead to human disease outbreaks and pandemics. Influenza A virus (IAV) circulates in diverse animal species, predominantly aquatic birds. This often results in the emergence of novel viral strains causing severe human disease upon zoonotic transmission. Innate immune sensing of the IAV infection promotes host cell death and inflammatory responses to confer antiviral host defense. Dysregulated respiratory epithelial cell death and excessive proinflammatory responses drive immunopathology in highly pathogenic influenza infections. Here, we discuss the critical mechanisms regulating IAV-induced cell death and proinflammatory responses. We further describe the essential role of the Z-form nucleic acid sensor ZBP1/DAI and RIPK3 in triggering apoptosis, necroptosis, and pyroptosis during IAV infection and their impact on host defense and pathogenicity in vivo. We also discuss the functional importance of ZBP1-RIPK3 signaling in recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral infections. Understanding these mechanisms of RNA virus-induced cytopathic and pathogenic inflammatory responses is crucial for targeting pathogenic lung infections and human respiratory illness.
Collapse
|
135
|
Uribe M, Rodríguez-Posada ME, Ramirez-Nieto GC. Molecular Evidence of Orthomyxovirus Presence in Colombian Neotropical Bats. Front Microbiol 2022; 13:845546. [PMID: 35558106 PMCID: PMC9087557 DOI: 10.3389/fmicb.2022.845546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
The Orthomyxoviridae family includes the genera Influenzavirus, Isavirus, Quaranjavirus, and Thogotovirus. In turn, Influenzavirus can be classified into four types: α, β, γ, and δ (Formerly A, B, C, and D), from which Alphainfluenzavirus (AIV) has the broadest host range, including birds, mammals, reptiles, and amphibians. Additionally, AIV has shown global epidemiological relevance owing to its pandemic potential. The epidemiological relevance of Chiropteran due to its multiple functional characteristics makes them ideal reservoirs for many viral agents. Recently, new influenza-like subtypes have been reported in Neotropical bats, but little is known about the relevance of bats as natural reservoirs of influenza viruses. Therefore, the current study aimed to determine the presence of AIV and new influenza-like subtypes in South American bats. For a better understanding of the drivers and interactions between AIV and bats, we used molecular assays with different gene targets (i.e., M, NP, and PB1) to identify AIV in New World bats. A housekeeping gene (CytB) PCR was used to check for nucleic acid preservation and to demonstrate the bat-origin of the samples. A total of 87 free-living bats belonging to 25 different species of the families Phyllostomidae and Vespertilionidae were collected in Casanare, Colombia. As a result, this study found seven AIV-positive bat species, three of them reported for the first time as AIV prone hosts. Neither of the AIV-like analyzed samples were positive for H17N10/H18/N11 subtypes. Although additional information is needed, the presence of a completely new or divergent AIV subtype in neotropical bats cannot be discarded. Collectively, the results presented here expand the epidemiological knowledge and distribution of AIV in neotropical free-ranging bats and emphasize the need to continue studying these viruses to establish the role they could play as a threat to animal and public health.
Collapse
Affiliation(s)
- Manuel Uribe
- Microbiología y Epidemiologia Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia.,CIBAV Research Group, Veterinary Medicine School, Universidad de Antioquia, Medellín, Colombia
| | - Miguel E Rodríguez-Posada
- Research Center Fundación Reserva Natural La Palmita, Grupo de Investigaciones Territoriales Parael uso y Conservación de la Biodiversidad, Trinidad, Colombia
| | - Gloria C Ramirez-Nieto
- Microbiología y Epidemiologia Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
136
|
Skelton RM, Huber VC. Comparing Influenza Virus Biology for Understanding Influenza D Virus. Viruses 2022; 14:1036. [PMID: 35632777 PMCID: PMC9147167 DOI: 10.3390/v14051036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The newest type of influenza virus, influenza D virus (IDV), was isolated in 2011. IDV circulates in several animal species worldwide, causing mild respiratory illness in its natural hosts. Importantly, IDV does not cause clinical disease in humans and does not spread easily from person to person. Here, we review what is known about the host-pathogen interactions that may limit IDV illness. We focus on early immune interactions between the virus and infected host cells in our summary of what is known about IDV pathogenesis. This work establishes a foundation for future research into IDV infection and immunity in mammalian hosts.
Collapse
Affiliation(s)
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
137
|
Kwon JW, Quan H, Song J, Chung H, Jung D, Hong JJ, Na YR, Seok SH. Liposomal Dexamethasone Reduces A/H1N1 Influenza-Associated Morbidity in Mice. Front Microbiol 2022; 13:845795. [PMID: 35495698 PMCID: PMC9048800 DOI: 10.3389/fmicb.2022.845795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/23/2022] [Indexed: 01/20/2023] Open
Abstract
Re-emerging viral threats have continued to challenge the medical and public health systems. It has become clear that a significant number of severe viral infection cases are due to an overreaction of the immune system, which leads to hyperinflammation. In this study, we aimed to demonstrate the therapeutic efficacy of the dexamethasone nanomedicine in controlling the symptoms of influenza virus infection. We found that the A/Wisconsin/WSLH34939/2009 (H1N1) infection induced severe pneumonia in mice with a death rate of 80%, accompanied by significant epithelial cell damage, infiltration of immune cells, and accumulation of pro-inflammatory cytokines in the airway space. Moreover, the intranasal delivery of liposomal dexamethasone during disease progression reduced the death rate by 20%. It also significantly reduced the protein level of tumor necrosis factor-alpha (TNFα), interleukin-1β (IL-1β), IL-6, and the C-X-C motif chemokine ligand 2 (CXCL2) as well as the number of infiltrated immune cells in the bronchoalveolar lavage fluids as compared to the control and free dexamethasone. The liposomal dexamethasone was mainly distributed into the monocyte/macrophages as a major cell population for inducing the cytokine storm in the lungs. Taken together, the intranasal delivery of liposomal dexamethasone may serve as a novel promising therapeutic strategy for the treatment of influenza A-induced pneumonia.
Collapse
Affiliation(s)
- Jung Won Kwon
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hailian Quan
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Juha Song
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyewon Chung
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Daun Jung
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea.,KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
138
|
Matsubara T, Ogami A, Kori H, Hashizume M, Sato T. Detection of Influenza Virus by Agglutination of Microparticles Immobilized a Mixed Glycan Receptor Produced from Cells. ACS APPLIED BIO MATERIALS 2022; 5:2130-2134. [DOI: 10.1021/acsabm.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Ayaka Ogami
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Haruka Kori
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Mineo Hashizume
- Department of Industrial Chemistry, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
139
|
Jones RP, Ponomarenko A. System Complexity in Influenza Infection and Vaccination: Effects upon Excess Winter Mortality. Infect Dis Rep 2022; 14:287-309. [PMID: 35645214 PMCID: PMC9149983 DOI: 10.3390/idr14030035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Unexpected outcomes are usually associated with interventions in complex systems. Excess winter mortality (EWM) is a measure of the net effect of all competing forces operating each winter, including influenza(s) and non-influenza pathogens. In this study over 2400 data points from 97 countries are used to look at the net effect of influenza vaccination rates in the elderly aged 65+ against excess winter mortality (EWM) each year from the winter of 1980/81 through to 2019/20. The observed international net effect of influenza vaccination ranges from a 7.8% reduction in EWM estimated at 100% elderly vaccination for the winter of 1989/90 down to a 9.3% increase in EWM for the winter of 2018/19. The average was only a 0.3% reduction in EWM for a 100% vaccinated elderly population. Such outcomes do not contradict the known protective effect of influenza vaccination against influenza mortality per se—they merely indicate that multiple complex interactions lie behind the observed net effect against all-causes (including all pathogen causes) of winter mortality. This range from net benefit to net disbenefit is proposed to arise from system complexity which includes environmental conditions (weather, solar cycles), the antigenic distance between constantly emerging circulating influenza clades and the influenza vaccine makeup, vaccination timing, pathogen interference, and human immune diversity (including individual history of host-virus, host-antigen interactions and immunosenescence) all interacting to give the observed outcomes each year. We propose that a narrow focus on influenza vaccine effectiveness misses the far wider complexity of winter mortality. Influenza vaccines may need to be formulated in different ways, and perhaps administered over a shorter timeframe to avoid the unanticipated adverse net outcomes seen in around 40% of years.
Collapse
Affiliation(s)
- Rodney P. Jones
- Healthcare Analysis & Forecasting, Wantage OX12 0NE, UK
- Correspondence:
| | - Andriy Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine;
| |
Collapse
|
140
|
Abstract
Fermented foods (FFs) hold global attention because of their huge advantages. Their health benefits, palatability, preserved, tasteful, and aromatic properties impart potential importance in the comprehensive evaluation of FFs. The bioactive components, such as minerals, vitamins, fatty acids, amino acids, and other phytochemicals synthesized during fermentation, provide consumers with several health benefits. Fermentation of food is an ancient process that has met with many remarkable changes owing to the development of scientific technologies over the years. Initially, fermentation relied on back-slapping. Nowadays, starter cultures strains are specifically chosen for the type of fermentation process. Modern biotechnological methods are being implemented in the fermentation process to achieve the desired product in high quality. Respiratory and gastrointestinal tract infections are the most severe health issues affecting human beings of all age groups, especially children and older adults, during this COVID-19 pandemic period. Studies suggest that the consumption of probiotic Lactobacillus strains containing fermented foods protects the subjects from common infectious diseases (CIDs, which is classified as upper respiratory tract infections, lower respiratory tract infections and gastrointestinal infections) by improving the host’s immune system. Further studies are obligatory to develop probiotic-based functional FFs that are effective against CIDs. Presently, we are urged to find alternative, safe, and cost-effective prevention measures against CIDs. The current manuscript briefs the production of FFs, functional properties of FFs, and their beneficial effects against respiratory tract infections. It summarizes the outcomes of clinical trials using human subjects on the effects of supplementation of FFs.
Collapse
|
141
|
Kaler L, Iverson E, Bader S, Song D, Scull MA, Duncan GA. Influenza A virus diffusion through mucus gel networks. Commun Biol 2022; 5:249. [PMID: 35318436 PMCID: PMC8941132 DOI: 10.1038/s42003-022-03204-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Mucus in the lung plays an essential role as a barrier to infection by viral pathogens such as influenza A virus (IAV). Previous work determined mucin-associated sialic acid acts as a decoy receptor for IAV hemagglutinin (HA) binding and the sialic-acid cleaving enzyme, neuraminidase (NA), facilitates virus passage through mucus. However, it has yet to be fully addressed how the physical structure of the mucus gel influences its barrier function and its ability to trap viruses via glycan mediated interactions to prevent infection. To address this, IAV and nanoparticle diffusion in human airway mucus and mucin-based hydrogels is quantified using fluorescence video microscopy. We find the mobility of IAV in mucus is significantly influenced by the mesh structure of the gel and in contrast to prior reports, these effects likely influence virus passage through mucus gels to a greater extent than HA and NA activity. In addition, an analytical approach is developed to estimate the binding affinity of IAV to the mucus meshwork, yielding dissociation constants in the mM range, indicative of weak IAV-mucus binding. Our results provide important insights on how the adhesive and physical barrier properties of mucus influence the dissemination of IAV within the lung microenvironment. Influenza A virus movement in mucus is found to be affected by the mesh structure of the gel network and further analysis reveals weak IAV-mucus binding.
Collapse
Affiliation(s)
- Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD, USA
| | - Ethan Iverson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Shahed Bader
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Margaret A Scull
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Gregg A Duncan
- Biophysics Program, University of Maryland, College Park, MD, USA. .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
142
|
Varghese PM, Kishore U, Rajkumari R. Human C1q Regulates Influenza A Virus Infection and Inflammatory Response via Its Globular Domain. Int J Mol Sci 2022; 23:3045. [PMID: 35328462 PMCID: PMC8949502 DOI: 10.3390/ijms23063045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
The Influenza A virus (IAV) is a severe respiratory pathogen. C1q is the first subcomponent of the complement system's classical pathway. C1q is composed of 18 polypeptide chains. Each of these chains contains a collagen-like region located at the N terminus, and a C-terminal globular head region organized as a heterotrimeric structure (ghA, ghB and ghC). This study was aimed at investigating the complement activation-independent modulation by C1q and its individual recombinant globular heads against IAV infection. The interaction of C1q and its recombinant globular heads with IAV and its purified glycoproteins was examined using direct ELISA and far-Western blotting analysis. The effect of the complement proteins on IAV replication kinetics and immune modulation was assessed by qPCR. The IAV entry inhibitory properties of C1q and its recombinant globular heads were confirmed using cell binding and luciferase reporter assays. C1q bound IAV virions via HA, NA and M1 IAV proteins, and suppressed replication in H1N1, while promoting replication in H3N2-infected A549 cells. C1q treatment further triggered an anti-inflammatory response in H1N1 and pro-inflammatory response in H3N2-infected cells as evident from differential expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Furthermore, C1q treatment was found to reduce luciferase reporter activity of MDCK cells transfected with H1N1 pseudotyped lentiviral particles, indicative of an entry inhibitory role of C1q against infectivity of IAV. These data appear to demonstrate the complement-independent subtype specific modulation of IAV infection by locally produced C1q.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London UB8 3PH, UK;
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
143
|
Paulikat AD, Tölken LA, Jachmann LH, Burchhardt G, Hammerschmidt S, Siemens N. <b><i>Streptococcus pneumoniae</i></b> Impairs Maturation of Human Dendritic Cells and Consequent Activation of CD4<sup>+</sup> T Cells via Pneumolysin. J Innate Immun 2022; 14:569-580. [PMID: 35249041 PMCID: PMC9485967 DOI: 10.1159/000522339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023] Open
Abstract
Influenza A Virus (IAV), Staphylococcus aureus (staphylococci), and Streptococcus pneumoniae (pneumococci) are leading viral and bacterial causes of pneumonia. Dendritic cells (DCs) are present in the lower respiratory tract. They are characterized by low expression of co-stimulatory molecules, including CD80 and CD86 and high capacity of antigen uptake. Subsequently, DCs upregulate co-stimulatory signals and cytokine secretion to effectively induce T-cell priming. Here, we investigated these processes in response to bacterial and viral single as well as coinfections using human monocyte-derived (mo)DCs. Irrespective of single or coinfections, moDCs matured in response to IAV and/or staphylococcal infections, secreted a wide range of cytokines, and activated CD4<sup>+</sup>, CD8<sup>+</sup> as well as double-negative T cells. In contrast, pneumococcal single and coinfections impaired moDC maturation, which was characterized by low expression of CD80 and CD86, downregulated expression of CD40, and a mild cytokine release resulting in abrogated CD4<sup>+</sup> T-cell activation. These actions were attributed to the cholesterol-dependent cytotoxin pneumolysin (Ply). Infections with a ply-deficient mutant resulted in restored moDC maturation and exclusive CD4<sup>+</sup> T-cell activation. These findings show that Ply has important immunomodulatory functions, supporting further investigations in specific modalities of Ply-DC interplay.
Collapse
|
144
|
Significance of Immune Status of SARS-CoV-2 Infected Patients in Determining the Efficacy of Therapeutic Interventions. J Pers Med 2022; 12:jpm12030349. [PMID: 35330349 PMCID: PMC8955701 DOI: 10.3390/jpm12030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now being investigated for its distinctive patterns in the course of disease development which can be indicated with miscellaneous immune responses in infected individuals. Besides this series of investigations on the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant fundamental immunological and physiological processes are indispensable to address clinical markers of COVID-19 disease and essential to identify or design effective therapeutics. Recent developments in the literature suggest that deficiency of type I interferon (IFN) in serum samples can be used to represent a severe progression of COVID-19 disease and can be used as the basis to develop combined immunotherapeutic strategies. Precise control over inflammatory response is a significant aspect of targeting viral infections. This account presents a brief review of the pathophysiological characteristics of the SARS-CoV-2 virus and the understanding of the immune status of infected patients. We further discuss the immune system’s interaction with the SARS-CoV-2 virus and their subsequent involvement of dysfunctional immune responses during the progression of the disease. Finally, we highlight some of the implications of the different approaches applicable in developing promising therapeutic interventions that redirect immunoregulation and viral infection.
Collapse
|
145
|
Pushparaj S, Zhu Z, Huang C, More S, Liang Y, Lin K, Vaddadi K, Liu L. Regulation of influenza A virus infection by Lnc-PINK1-2:5. J Cell Mol Med 2022; 26:2285-2298. [PMID: 35201667 PMCID: PMC8995437 DOI: 10.1111/jcmm.17249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza virus causes approximately 291,000 to 646,000 human deaths worldwide annually. It is also a disease of zoonotic importance, affecting animals such as pigs, horses, and birds. Even though vaccination is being used to prevent influenza virus infection, there are limited options available to treat the disease. Long noncoding RNAs (lncRNAs) are RNA molecules with more than 200 nucleotides that do not translate into proteins. They play important roles in the physiological and pathological processes. In this study, we identified a novel transcript, Lnc‐PINK1‐2:5 that was upregulated by influenza virus. This lncRNA was predominantly located in the nucleus and was not affected by type I interferons. Overexpression of Lnc‐PINK1‐2:5 reduced the influenza viral mRNA and protein levels in cells as well as titres in culture media. Knockdown of Lnc‐PINK1‐2:5 using CRISPR interference enhanced the virus replication. Antiviral activity of Lnc‐PINK1‐2:5 was independent of influenza virus strains. RNA sequencing analysis revealed that Lnc‐PINK1‐2:5 upregulated thioredoxin interacting protein (TXNIP) during influenza virus infection. Overexpression of TXNIP reduced influenza virus infection, suggesting that TXNIP is an antiviral gene. Knockdown of TXNIP abolished the Lnc‐PINK1‐2:5‐mediated increase in influenza virus infection. In conclusion, the newly identified Lnc‐PINK1‐2:5 isoform is an anti‐influenza lncRNA acting through the upregulation of TXNIP gene expression.
Collapse
Affiliation(s)
- Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
146
|
Viral PB1-F2 and host IFN-γ guide ILC2 and T cell activity during influenza virus infection. Proc Natl Acad Sci U S A 2022; 119:2118535119. [PMID: 35169077 PMCID: PMC8872759 DOI: 10.1073/pnas.2118535119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 12/28/2022] Open
Abstract
The regulation of functional immune cell plasticity is poorly understood. Host environmental cues are critical, but the possible influence of pathogen-derived virulence factors has not been described. We have used reverse-engineered influenza A viruses that differ in PB1-F2 activity to analyze influenza in mice in the presence or absence of host interferon (IFN)-γ. In the absence of functional PB1-F2 and IFN-γ, lung ILC2s initiated robust IL-5 responses following viral challenge, which led to improved tissue integrity and survival. Conversely, functional PB1-F2 suppressed IL-5+ ILC2 responses and induced a dominant IL-13+ CD8 T cell response regardless of host IFN-γ. These findings demonstrate the critical interplay between the viral virulence factors and host cytokines in regulating protective pulmonary immunity during influenza virus infection. Functional plasticity of innate lymphoid cells (ILCs) and T cells is regulated by host environmental cues, but the influence of pathogen-derived virulence factors has not been described. We now report the interplay between host interferon (IFN)-γ and viral PB1-F2 virulence protein in regulating the functions of ILC2s and T cells that lead to recovery from influenza virus infection of mice. In the absence of IFN-γ, lung ILC2s from mice challenged with the A/California/04/2009 (CA04) H1N1 virus, containing nonfunctional viral PB1-F2, initiated a robust IL-5 response, which also led to improved tissue integrity and increased survival. Conversely, challenge with Puerto Rico/8/1934 (PR8) H1N1 virus expressing fully functional PB1-F2, suppressed IL-5+ ILC2 responses, and induced a dominant IL-13+ CD8 T cell response, regardless of host IFN-γ expression. IFN-γ–deficient mice had increased survival and improved tissue integrity following challenge with lethal doses of CA04, but not PR8 virus, and increased resistance was dependent on the presence of IFN-γR+ ILC2s. Reverse-engineered influenza viruses differing in functional PB1-F2 activity induced ILC2 and T cell phenotypes similar to the PB1-F2 donor strains, demonstrating the potent role of viral PB1-F2 in host resistance. These results show the ability of a pathogen virulence factor together with host IFN-γ to regulate protective pulmonary immunity during influenza infection.
Collapse
|
147
|
Auladell M, Phuong HVM, Mai LTQ, Tseng YY, Carolan L, Wilks S, Thai PQ, Price D, Duong NT, Hang NLK, Thanh LT, Thuong NTH, Huong TTK, Diep NTN, Bich VTN, Khvorov A, Hensen L, Duong TN, Kedzierska K, Anh DD, Wertheim H, Boyd SD, Good-Jacobson KL, Smith D, Barr I, Sullivan S, van Doorn HR, Fox A. Influenza virus infection history shapes antibody responses to influenza vaccination. Nat Med 2022; 28:363-372. [PMID: 35177857 DOI: 10.1038/s41591-022-01690-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Studies of successive vaccination suggest that immunological memory against past influenza viruses may limit responses to vaccines containing current strains. The impact of memory induced by prior infection is rarely considered and is difficult to ascertain, because infections are often subclinical. This study investigated influenza vaccination among adults from the Ha Nam cohort (Vietnam), who were purposefully selected to include 72 with and 28 without documented influenza A(H3N2) infection during the preceding 9 years (Australian New Zealand Clinical Trials Registry 12621000110886). The primary outcome was the effect of prior influenza A(H3N2) infection on hemagglutinin-inhibiting antibody responses induced by a locally available influenza vaccine administered in November 2016. Baseline and postvaccination sera were titrated against 40 influenza A(H3N2) strains spanning 1968-2018. At each time point (baseline, day 14 and day 280), geometric mean antibody titers against 2008-2018 strains were higher among participants with recent infection (34 (29-40), 187 (154-227) and 86 (72-103)) than among participants without recent infection (19 (17-22), 91 (64-130) and 38 (30-49)). On days 14 and 280, mean titer rises against 2014-2018 strains were 6.1-fold (5.0- to 7.4-fold) and 2.6-fold (2.2- to 3.1-fold) for participants with recent infection versus 4.8-fold (3.5- to 6.7-fold) and 1.9-fold (1.5- to 2.3-fold) for those without. One of 72 vaccinees with recent infection versus 4 of 28 without developed symptomatic A(H3N2) infection in the season after vaccination (P = 0.021). The range of A(H3N2) viruses recognized by vaccine-induced antibodies was associated with the prior infection strain. These results suggest that recall of immunological memory induced by prior infection enhances antibody responses to inactivated influenza vaccine and is important to attain protective antibody titers.
Collapse
Affiliation(s)
- Maria Auladell
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - Yeu-Yang Tseng
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sam Wilks
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Ha Noi, Vietnam
| | - David Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Reference Laboratory Epidemiology Unit and The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | | | - Le Thi Thanh
- National Institute of Hygiene and Epidemiology, Ha Noi, Vietnam
| | - Nguyen Thi Hong Thuong
- Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, National Hospital of Tropical Diseases, Ha Noi, Vietnam
| | - Tran Thi Kieu Huong
- Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, National Hospital of Tropical Diseases, Ha Noi, Vietnam
| | - Nguyen Thi Ngoc Diep
- Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, National Hospital of Tropical Diseases, Ha Noi, Vietnam
| | - Vu Thi Ngoc Bich
- Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, National Hospital of Tropical Diseases, Ha Noi, Vietnam
| | - Arseniy Khvorov
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Ha Noi, Vietnam
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Ha Noi, Vietnam
| | - Heiman Wertheim
- Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, National Hospital of Tropical Diseases, Ha Noi, Vietnam.,Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Scott D Boyd
- Stanford University Medical Centre, Stanford University, Stanford, CA, USA
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Derek Smith
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sheena Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Africa Asia Programme, National Hospital of Tropical Diseases, Ha Noi, Vietnam.,Centre of Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Annette Fox
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia. .,WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia. .,Department of Infectious Diseases, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
148
|
Marchenko V, Zelinskaya I, Toropova Y, Shmakova T, Podyacheva E, Lioznov D, Zhilinskaya IN. Influenza A Virus Causes Histopathological Changes and Impairment in Functional Activity of Blood Vessels in Different Vascular Beds. Viruses 2022; 14:v14020396. [PMID: 35215989 PMCID: PMC8874985 DOI: 10.3390/v14020396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
It has been established that blood vessels are a target for influenza virus; however, the mechanism by which virus affects the cardiovascular system remains unknown. The aim of the study is the identification of histological changes and changes in the functional activity of the pulmonary and mesenteric blood vessels of Wistar rats. Wistar rats were intranasally infected with the influenza A(H1N1)pdm09 virus. At 24 and 96 h post infection (hpi), histopathological changes were observed in lung tissues with the absence of histological changes in mesenteric tissues. The functional activity of pulmonary and mesenteric arteries was determined using wire myography. In pulmonary arteries, there was a tendency towards an increase in integral response to the vasodilator and a decrease in the integral response to the vasoconstrictor at 24 hpi (compared with control). At 96 hpi, a tendency towards a decrease in the integral response to the vasoconstrictor persisted, while the response to acetylcholine was slightly increased. The functional activity of the mesenteric blood vessels was inverted: a significant decrease in the integral response to the vasodilator and an increase in the response to the vasoconstrictor at 24 hpi were observed; at 96 hpi, the integral response to the vasoconstrictor persisted, while the response to the vasodilator remained significantly reduced. Obtained data indicate the development of endothelial dysfunction in non-lethal and clinically non-severe experimental influenza virus infection.
Collapse
Affiliation(s)
- Vladimir Marchenko
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia; (D.L.); (I.N.Z.)
- Correspondence:
| | - Irina Zelinskaya
- Almazov National Medical Research Centre, Russian Ministry of Health, 197341 St. Petersburg, Russia; (I.Z.); (Y.T.); (T.S.); (E.P.)
| | - Yana Toropova
- Almazov National Medical Research Centre, Russian Ministry of Health, 197341 St. Petersburg, Russia; (I.Z.); (Y.T.); (T.S.); (E.P.)
| | - Tatyana Shmakova
- Almazov National Medical Research Centre, Russian Ministry of Health, 197341 St. Petersburg, Russia; (I.Z.); (Y.T.); (T.S.); (E.P.)
| | - Ekaterina Podyacheva
- Almazov National Medical Research Centre, Russian Ministry of Health, 197341 St. Petersburg, Russia; (I.Z.); (Y.T.); (T.S.); (E.P.)
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia; (D.L.); (I.N.Z.)
| | - Irina N. Zhilinskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia; (D.L.); (I.N.Z.)
| |
Collapse
|
149
|
Lee D, Bhardwaj J, Jang J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci Rep 2022; 12:2311. [PMID: 35145121 PMCID: PMC8831593 DOI: 10.1038/s41598-022-06101-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-μl samples (concentration: 100 pg/ml–100 ng/ml) were needed to form the antigen–antibody complexes during 20–30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea. .,Department of Urban and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
150
|
Bystander T cells in cancer immunology and therapy. NATURE CANCER 2022; 3:143-155. [PMID: 35228747 DOI: 10.1038/s43018-022-00335-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023]
Abstract
Cancer-specific T cells are required for effective anti-cancer immunity and have a central role in cancer immunotherapy. However, emerging evidence suggests that only a small fraction of tumor-infiltrating T cells are cancer specific, and T cells that recognize cancer-unrelated antigens (so-called 'bystanders') are abundant. Although the role of cancer-specific T cells in anti-cancer immunity has been well established, the implications of bystander T cells in tumors are only beginning to be understood. It is becoming increasingly clear that bystander T cells are not a homogeneous group of cells but, instead, they differ in their specificities, their activation states and effector functions. In this Perspective, we discuss recent studies of bystander T cells in tumors, including experimental and computational approaches that enable their identification and functional analysis and viewpoints on how these insights could be used to develop new therapeutic approaches for cancer immunotherapy.
Collapse
|