101
|
Li Z, Zhou W, Zhang Y, Sun W, Yung MMH, Sun J, Li J, Chen CW, Li Z, Meng Y, Chai J, Zhou Y, Liu SS, Cheung ANY, Ngan HYS, Chan DW, Zheng W, Zhu W. ERK Regulates HIF1α-Mediated Platinum Resistance by Directly Targeting PHD2 in Ovarian Cancer. Clin Cancer Res 2019; 25:5947-5960. [PMID: 31285371 PMCID: PMC7449248 DOI: 10.1158/1078-0432.ccr-18-4145] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/18/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Up to 80% of patients with ovarian cancer develop platinum resistance over time to platinum-based chemotherapy. Increased HIF1α level is an important mechanism governing platinum resistance in platinum-resistant ovarian cancer (PROC). However, the mechanism regulating HIF1α stability in PROC remains largely unknown. Here, we elucidate the mechanism of HIF1α stability regulation in PROC and explore therapeutic approaches to overcome cisplatin resistance in ovarian cancer. EXPERIMENTAL DESIGN We first used a quantitative high-throughput combinational screen (qHTCS) to identify novel drugs that could resensitize PROC cells to cisplatin. Next, we evaluated the combination efficacy of inhibitors of HIF1α (YC-1), ERK (selumetinib), and TGFβ1 (SB431542) with platinum drugs by in vitro and in vivo experiments. Moreover, a novel TGFβ1/ERK/PHD2-mediated pathway regulating HIF1α stability in PROC was discovered. RESULTS YC-1 and selumetinib resensitized PROC cells to cisplatin. Next, the prolyl hydroxylase domain-containing protein 2 (PHD2) was shown to be a direct substrate of ERK. Phosphorylation of PHD2 by ERK prevents its binding to HIF1α, thus inhibiting HIF1α hydroxylation and degradation-increasing HIF1α stability. Significantly, ERK/PHD2 signaling in PROC cells is dependent on TGFβ1, promoting platinum resistance by stabilizing HIF1α. Inhibition of TGFβ1 by SB431542, ERK by selumetinib, or HIF1α by YC-1 efficiently overcame platinum resistance both in vitro and in vivo. The results from clinical samples confirm activation of the ERK/PHD2/HIF1α axis in patients with PROC, correlating highly with poor prognoses for patients. CONCLUSIONS HIF1α stabilization is regulated by TGFβ1/ERK/PHD2 axis in PROC. Hence, inhibiting TGFβ1, ERK, or HIF1α is potential strategy for treating patients with PROC.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
- Department of Colorectal Surgery, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Wei Sun
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Mingo M H Yung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Jie Chai
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Stephanie S Liu
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Annie N Y Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David W Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Wei Zheng
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
- GW Cancer Center, The George Washington University, Washington, District of Columbia
| |
Collapse
|
102
|
Abstract
Malignant melanoma is the most aggressive and notorious skin cancer, and metastatic disease is associated with very poor long-term survival outcomes. Although metastatic melanoma patients with oncogenic mutations in the BRAF gene initially respond well to the treatment with specific BRAF inhibitors, most of them will eventually develop resistance to this targeted therapy. As a highly conserved catabolic process, autophagy is responsible for the maintenance of cellular homeostasis and cell survival, and is involved in multiple diseases, including cancer. Recent study results have indicated that autophagy might play a decisive role in the resistance to BRAF inhibitors in BRAF-mutated melanomas. In this review, we will discuss how autophagy is up-regulated by BRAF inhibitors, and how autophagy induces the resistance to these agents.
Collapse
|
103
|
Lian Y, Hu Y, Gan L, Huo YN, Luo HY, Wang XZ. Ssc-novel-miR-106-5p reduces lipopolysaccharide-induced inflammatory response in porcine endometrial epithelial cells by inhibiting the expression of the target gene mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Reprod Fertil Dev 2019; 31:1616-1627. [PMID: 31242957 DOI: 10.1071/rd19097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/12/2019] [Indexed: 12/26/2022] Open
Abstract
As an important gram-negative bacterial outer membrane component, lipopolysaccharide (LPS) plays an important role in bacterial-induced endometritis in sows. However, how LPS induces endometritis is unclear. We stimulated sow endometrial epithelial cells (EECs) with LPS and detected cell viability and tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1) secretion. LPS affected EEC viability and TNF-α and IL-1 secretion in a dose-dependent manner. LPS induced differential expression in 10 of 393 miRNAs in the EECs (downregulated, nine; upregulated, one). MicroRNA (miRNA) high-throughput sequencing of the LPS-induced EECs plus bioinformatics analysis and the dual-luciferase reporter system revealed a novel miRNA target gene: mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Ssc-novel-miR-106-5p mimic, inhibitor and the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation inhibitor Bay11-7085 were used to detect EEC nuclear factor-κB phosphorylation levels (p-NF-κB) and TNF-α and IL-1 secretion. MiR-106-5p mimic downregulated MAP3K14 mRNA and protein expression levels, inhibited p-NF-κB levels and decreased IL-1 and TNF-α secretion, whereas miR-106-5p inhibitor had the opposite effect. Bay11-7085 inhibited p-NF-κB expression and TNF-α and IL-1 secretion. These results suggest that LPS downregulates ssc-novel-miR-106-5p expression in sow EECs to increase MAP3K14 expression, which increases p-NF-κB to promote IL-1 and TNF-α secretion.
Collapse
Affiliation(s)
- Yu Lian
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Yu Hu
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Lu Gan
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Yuan-Nan Huo
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China; and Corresponding author.
| |
Collapse
|
104
|
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 2019; 19:377-391. [PMID: 31209265 DOI: 10.1038/s41568-019-0154-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Malignant melanoma is notorious for its inter- and intratumour heterogeneity, based on transcriptionally distinct melanoma cell phenotypes. It is thought that these distinct phenotypes are plastic in nature and that their transcriptional reprogramming enables heterogeneous tumours both to undergo different stages of melanoma progression and to adjust to drug exposure during treatment. Recent advances in genomic technologies and the rapidly expanding availability of large gene expression datasets have allowed for a refined definition of the gene signatures that characterize these phenotypes and have revealed that phenotype plasticity plays a major role in the resistance to both targeted therapy and immunotherapy. In this Review we discuss the definition of melanoma phenotypes through particular transcriptional states and reveal the prognostic relevance of the related gene expression signatures. We review how the establishment of phenotypes is controlled and which roles phenotype plasticity plays in melanoma development and therapy. Because phenotype plasticity in melanoma bears a great resemblance to epithelial-mesenchymal transition, the lessons learned from melanoma will also benefit our understanding of other cancer types.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
105
|
1,2-Dihydroxyxanthone: Effect on A375-C5 Melanoma Cell Growth Associated with Interference with THP-1 Human Macrophage Activity. Pharmaceuticals (Basel) 2019; 12:ph12020085. [PMID: 31167479 PMCID: PMC6630936 DOI: 10.3390/ph12020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Xanthones have been suggested as prospective candidates for cancer treatment. 1,2- dihydroxyxanthone (1,2-DHX) is known to interfere with the growth of several cancer cell lines. We investigated the effects of 1,2-DHX on the growth of the A375-C5 melanoma cell line and THP-1 human macrophage activity. 1,2-DHX showed a moderate growth inhibition of A375-C5 melanoma cells (concentration that causes a 50% inhibition of cell growth (GI50) = 55.0 ± 2.3 µM), but strongly interfered with THP-1 human macrophage activity. Supernatants from lipopolysaccharide (LPS)-stimulated THP-1 macrophage cultures exposed to 1,2-DHX significantly increased growth inhibition of A375-C5 cells, when compared to supernatants from untreated LPS-stimulated macrophages or to direct treatment with 1,2-DHX only. 1,2-DHX decreased THP-1 secretion of interleukin-1β (IL-1β) and interleukin-10 (IL-10), but stimulated tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) production. This xanthone also inhibited nitric oxide (NO) production by RAW 264.7 murine macrophages, possibly through inhibition of inducible NO synthase production. In conclusion, these findings suggest a potential impact of 1,2-DHX in melanoma treatment, not only due to a direct effect on cancer cells but also by modulation of macrophage activity.
Collapse
|
106
|
Yu C, Liu X, Yang J, Zhang M, Jin H, Ma X, Shi H. Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Front Immunol 2019; 10:990. [PMID: 31134073 PMCID: PMC6513976 DOI: 10.3389/fimmu.2019.00990] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/16/2019] [Indexed: 02/05/2023] Open
Abstract
Metastatic melanoma is the most aggressive and obstinate skin cancer with poor prognosis. Variant novel applicable regimens have emerged during the past decades intensively, while the most profound approaches are oncogene-targeted therapy and T-lymphocyte mediated immunotherapy. Although targeted therapies generated remarkable and rapid clinical responses in the majority of patients, acquired resistance was developed promptly within months leading to tumor relapse. By contrast, immunotherapies elicited long-term tumor regression. However, the overall response rate was limited. In view of the above, either targeted therapy or immunotherapy cannot elicit durable clinical responses in large range of patients. Interestingly, the advantages and limitations of these regimens happened to be complementary. An increasing number of preclinical studies and clinical trials proved a synergistic antitumor effect with the combination of targeted therapy and immunotherapy, implying a promising prospect for the treatment of metastatic melanoma. In order to achieve a better therapeutic effectiveness and reduce toxicity in patients, great efforts need to be made to illuminate multifaceted interplay between targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Chune Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiqiao Yang
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhang
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Jin
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
107
|
Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts ER, Izumi V, Zheng M, Jiang S, Yin X, Kim M, Cai J, Haura EB, Koomen JM, Smalley KSM, Wan L. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun 2019; 10:1870. [PMID: 31015455 PMCID: PMC6478693 DOI: 10.1038/s41467-019-09844-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
BRAF plays an indispensable role in activating the MEK/ERK pathway to drive tumorigenesis. Receptor tyrosine kinase and RAS-mediated BRAF activation have been extensively characterized, however, it remains undefined how BRAF function is fine-tuned by stimuli other than growth factors. Here, we report that in response to proinflammatory cytokines, BRAF is subjected to lysine 27-linked poly-ubiquitination in melanoma cells by the ITCH ubiquitin E3 ligase. Lysine 27-linked ubiquitination of BRAF recruits PP2A to antagonize the S365 phosphorylation and disrupts the inhibitory interaction with 14-3-3, leading to sustained BRAF activation and subsequent elevation of the MEK/ERK signaling. Physiologically, proinflammatory cytokines activate ITCH to maintain BRAF activity and to promote proliferation and invasion of melanoma cells, whereas the ubiquitination-deficient BRAF mutant displays compromised kinase activity and reduced tumorigenicity. Collectively, our study reveals a pivotal role for ITCH-mediated BRAF ubiquitination in coordinating the signals between cytokines and the MAPK pathway activation in melanoma cells.
Collapse
Affiliation(s)
- Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Chao Zhang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Evan R Roberts
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mengmeng Zheng
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Shulong Jiang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Oncology, Jining First People's Hospital, Jining, Shandong, 272111, P.R. China
| | - Xiu Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Oncology, Jining First People's Hospital, Jining, Shandong, 272111, P.R. China
| | - Minjung Kim
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
108
|
Modelling of Protein Kinase Signaling Pathways in Melanoma and Other Cancers. Cancers (Basel) 2019; 11:cancers11040465. [PMID: 30987166 PMCID: PMC6520749 DOI: 10.3390/cancers11040465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a highly aggressive tumor with a strong dependence on intracellular signaling pathways. Almost half of all melanomas are driven by mutations in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) with BRAFV600E being the most prevalent mutation. Recently developed targeted treatment directed against mutant BRAF and downstream mitogen-activated protein kinase (MAPK) MAP2K1 (also termed MEK1) have improved overall survival of melanoma patients. However, the MAPK signaling pathway is far more complex than a single chain of consecutively activated MAPK enzymes and it contains nested-, inherent feedback mechanisms, crosstalk with other signaling pathways, epigenetic regulatory mechanisms, and interacting small non-coding RNAs. A more complete understanding of this pathway is needed to better understand melanoma development and mechanisms of treatment resistance. Network reconstruction, analysis, and modelling under the systems biology paradigm have been used recently in different malignant tumors including melanoma to analyze and integrate 'omics' data, formulate mechanistic hypotheses on tumorigenesis, assess and personalize anticancer therapy, and propose new drug targets. Here we review the current knowledge of network modelling approaches in cancer with a special emphasis on melanoma.
Collapse
|
109
|
TAK1 suppresses RIPK1-dependent cell death and is associated with disease progression in melanoma. Cell Death Differ 2019; 26:2520-2534. [PMID: 30850732 DOI: 10.1038/s41418-019-0315-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/23/2022] Open
Abstract
Melanoma cells are highly resistant to conventional genotoxic agents, and BRAFV600/MEK-targeted therapies as well as immunotherapies frequently remain inefficient. Alternative means to treat melanoma, in particular through the induction of programmed cell death modalities such as apoptosis or necroptosis, therefore still need to be explored. Here, we report that melanoma cell lines expressing notable amounts of RIPK1, RIPK3 and MLKL, the key players of necroptosis signal transduction, fail to execute necroptotic cell death. Interestingly, the activity of transforming growth factor β-activated kinase 1 (TAK1) appears to prevent RIPK1 from contributing to cell death induction, since TAK1 inhibition by (5Z)-7-Oxozeaenol, deletion of MAP3K7 or the expression of inactive TAK1 were sufficient to sensitize melanoma cells to RIPK1-dependent cell death in response to TNFα or TRAIL based combination treatments. However, cell death was executed exclusively by apoptosis, even when RIPK3 expression was high. In addition, TAK1 inhibitor (5Z)-7-Oxozeaenol suppressed intrinsic or treatment-induced pro-survival signaling as well as the secretion of cytokines and soluble factors associated with melanoma disease progression. Correspondingly, elevated expression of TAK1 correlates with reduced disease free survival in patients diagnosed with primary melanoma. Overall, our results therefore demonstrate that TAK1 suppresses the susceptibility to RIPK1-dependent cell death and that high expression of TAK1 indicates an increased risk for disease progression in melanoma.
Collapse
|
110
|
Zhou Z, Xia G, Xiang Z, Liu M, Wei Z, Yan J, Chen W, Zhu J, Awasthi N, Sun X, Fung KM, He Y, Li M, Zhang C. A C-X-C Chemokine Receptor Type 2-Dominated Cross-talk between Tumor Cells and Macrophages Drives Gastric Cancer Metastasis. Clin Cancer Res 2019; 25:3317-3328. [PMID: 30796034 DOI: 10.1158/1078-0432.ccr-18-3567] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 12/09/2022]
Abstract
PURPOSE C-X-C chemokine receptor type 2 (CXCR2) is a key regulator that drives immune suppression and inflammation in tumor microenvironment. CXCR2-targeted therapy has shown promising results in several solid tumors. However, the underlying mechanism of CXCR2-mediated cross-talk between gastric cancer cells and macrophages still remains unclear.Experimental Design: The expression of CXCR2 and its ligands in 155 human gastric cancer tissues was analyzed via immunohistochemistry, and the correlations with clinical characteristics were evaluated. A coculture system was established, and functional assays, including ELISA, transwell, cell viability assay, and qPCR, were performed to determine the role of the CXCR2 signaling axis in promoting gastric cancer growth and metastasis. A xenograft gastric cancer model and a lymph node metastasis model were established to study the function of CXCR2 in vivo. RESULTS CXCR2 expression is associated with the prognosis of patients with gastric cancer (P = 0.002). Of all the CXCR2 ligands, CXCL1 and CXCL5 can significantly promote migration of gastric cancer cells. Macrophages are the major sources of CXCL1 and CXCL5 in the gastric cancer microenvironment, and promote migration of gastric cancer cells through activating a CXCR2/STAT3 feed-forward loop. Gastric cancer cells secrete TNF-α to induce release of CXCL1 and CXCL5 from macrophages. Inhibiting CXCR2 pathway of gastric cancer cells can suppress migration and metastasis of gastric cancer in vitro and in vivo. CONCLUSIONS Our study suggested a previously uncharacterized mechanism through which gastric cancer cells interact with macrophages to promote tumor growth and metastasis, suggesting that CXCR2 may serve as a promising therapeutic target to treat gastric cancer.
Collapse
Affiliation(s)
- Zhijun Zhou
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Guanggai Xia
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Xiang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingyang Liu
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhewei Wei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Yan
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Chen
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jintao Zhu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Niranjan Awasthi
- Indiana University School of Medicine, South Bend, and IU Health Goshen Center for Cancer Care, Goshen, Indiana
| | - Xiaotian Sun
- Department of Internal Medicine, Clinic of August First Film Studio, Beijing, China
| | - Kar-Ming Fung
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yulong He
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Changhua Zhang
- Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
111
|
Mandalà M, Rutkowski P. Rational combination of cancer immunotherapy in melanoma. Virchows Arch 2018; 474:433-447. [PMID: 30552520 DOI: 10.1007/s00428-018-2506-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
The recent advances in cancer immunotherapy with unprecedented success in therapy of advanced melanoma represent a turning point in the landscape of melanoma treatment. Given the complexity of activation of immunological system and the physiologic multifactorial homeostatic mechanisms controlling immune responses, combinatorial strategies are eagerly needed in melanoma therapy. Nevertheless, rational selection of immunotherapy combinations should be more biomarker-guided, including not only the cancer immunogram, PD-L1 expression, interferon gene expression signature, mutational burden, and tumor infiltration by CD8+ T cells but also intratumoral T cell exhaustion and microbiota composition. In this review, we summarize the rationale to develop combination treatment strategies in melanoma and discuss biological background that could help to design new combinations in order to improve patients' outcome.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Piazza OMS 1, 24100, Bergamo, Italy.
| | - Piotr Rutkowski
- Maria Sklodowska-Curie Institute, Oncology Center, Warsaw, Poland
| |
Collapse
|
112
|
Seip K, Jørgensen K, Haselager MV, Albrecht M, Haugen MH, Egeland EV, Lucarelli P, Engebraaten O, Sauter T, Mælandsmo GM, Prasmickaite L. Stroma-induced phenotypic plasticity offers phenotype-specific targeting to improve melanoma treatment. Cancer Lett 2018; 439:1-13. [DOI: 10.1016/j.canlet.2018.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
|
113
|
Garandeau D, Noujarède J, Leclerc J, Imbert C, Garcia V, Bats ML, Rambow F, Gilhodes J, Filleron T, Meyer N, Brayer S, Arcucci S, Tartare-Deckert S, Ségui B, Marine JC, Levade T, Bertolotto C, Andrieu-Abadie N. Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Mol Cancer Ther 2018; 18:289-300. [PMID: 30482853 DOI: 10.1158/1535-7163.mct-17-1141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/04/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.
Collapse
Affiliation(s)
- David Garandeau
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Noujarède
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Leclerc
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Caroline Imbert
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Virginie Garcia
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie-Lise Bats
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Julia Gilhodes
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Thomas Filleron
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Nicolas Meyer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Stéphanie Brayer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Silvia Arcucci
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sophie Tartare-Deckert
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Bruno Ségui
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Thierry Levade
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Laboratoire de Biochimie Métabolique, CHU Toulouse, France
| | - Corine Bertolotto
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Nathalie Andrieu-Abadie
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
114
|
Del Mistro G, Lucarelli P, Müller I, De Landtsheer S, Zinoveva A, Hutt M, Siegemund M, Kontermann RE, Beissert S, Sauter T, Kulms D. Systemic network analysis identifies XIAP and IκBα as potential drug targets in TRAIL resistant BRAF mutated melanoma. NPJ Syst Biol Appl 2018; 4:39. [PMID: 30416750 PMCID: PMC6218484 DOI: 10.1038/s41540-018-0075-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
Metastatic melanoma remains a life-threatening disease because most tumors develop resistance to targeted kinase inhibitors thereby regaining tumorigenic capacity. We show the 2nd generation hexavalent TRAIL receptor-targeted agonist IZI1551 to induce pronounced apoptotic cell death in mutBRAF melanoma cells. Aiming to identify molecular changes that may confer IZI1551 resistance we combined Dynamic Bayesian Network modelling with a sophisticated regularization strategy resulting in sparse and context-sensitive networks and show the performance of this strategy in the detection of cell line-specific deregulations of a signalling network. Comparing IZI1551-sensitive to IZI1551-resistant melanoma cells the model accurately and correctly predicted activation of NFκB in concert with upregulation of the anti-apoptotic protein XIAP as the key mediator of IZI1551 resistance. Thus, the incorporation of multiple regularization functions in logical network optimization may provide a promising avenue to assess the effects of drug combinations and to identify responders to selected combination therapies.
Collapse
Affiliation(s)
- Greta Del Mistro
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| | - Philippe Lucarelli
- Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux, 4367 Luxembourg
| | - Ines Müller
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| | - Sébastien De Landtsheer
- Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux, 4367 Luxembourg
| | - Anna Zinoveva
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, 70569 Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, 70569 Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, 70569 Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, 70569 Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
| | - Thomas Sauter
- Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux, 4367 Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| |
Collapse
|
115
|
Gunda V, Gigliotti B, Ndishabandi D, Ashry T, McCarthy M, Zhou Z, Amin S, Freeman GJ, Alessandrini A, Parangi S. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br J Cancer 2018; 119:1223-1232. [PMID: 30327563 PMCID: PMC6251038 DOI: 10.1038/s41416-018-0296-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/17/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with anaplastic thyroid cancer (ATC) have an extremely poor prognosis despite aggressive multimodal therapy. ATC has a high prevalence of BRAFV600E mutations and is associated with an immunosuppressive microenvironment; we previously demonstrated that the combination of BRAF inhibitor and checkpoint inhibitor immunotherapy synergistically reduce tumour volume in an immunocompetent mouse model of orthotopic ATC. METHODS We again utilised our mouse model of ATC to assess the combination of BRAFV600E inhibitor PLX4720 and anti-PD-L1 or anti-PD-1 antibody on survival, and performed immune cell profiling of lymphoid and myeloid-lineage cells during maximal treatment response and tumour regrowth. RESULTS Combination therapy dramatically improved mouse survival. Maximal tumour reduction was associated with increases in the number and cytotoxicity of CD8+ T cells and NK cells, as well as increases in mostly M1-polarised tumour-associated macrophages (TAM) and decreases in myeloid-derived suppressor-like cells. Regrowth of tumour occurred after 2-3 weeks of ongoing combination therapy, and was most significantly associated with decreased TAMs and a dramatic increase in M2-polarisation. CONCLUSIONS Combination of PLX4720 and anti-PD-L1/PD-1 antibody dramatically reduced tumour volume, prolonged survival and improved the anti-tumour immune profile in murine ATC. Tumour growth inevitably recurred and demonstrated re-emergence of an immunosuppressive tumour microenvironment.
Collapse
Affiliation(s)
- Viswanath Gunda
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Gigliotti
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dorothy Ndishabandi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tameem Ashry
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael McCarthy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiheng Zhou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Salma Amin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alessandro Alessandrini
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
116
|
Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, Mina L, Dragovich T, Gimbel M, Mahmoud F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 2018; 11:7095-7107. [PMID: 30410366 PMCID: PMC6200076 DOI: 10.2147/ott.s182721] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Approximately 50% of melanomas harbor an activating BRAF mutation. Combined BRAF and MEK inhibitors such as dabrafenib and trametinib, vemurafenib and cobimetinib, and encorafenib and binimetinib are US Food and Drug Administration (FDA)-approved to treat patients with BRAFV600-mutated advanced melanoma. Both genetic and epigenetic alterations play a major role in resistance to BRAF inhibitors by reactivation of the MAPK and/or the PI3K–Akt pathways. The role of BRAF inhibitors in modulating the immunomicroenvironment and perhaps enhancing the efficacy of checkpoint inhibitors is gaining interest. This article provides a comprehensive review of mechanisms of resistance to BRAF and MEK inhibitors in melanoma and summarizes landmark trials that led to the FDA approval of BRAF and MEK inhibitors in metastatic melanoma.
Collapse
Affiliation(s)
- Sunilkumar Kakadia
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naveen Yarlagadda
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramez Awad
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Madappa Kundranda
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Jiaxin Niu
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Boris Naraev
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Lida Mina
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Tomislav Dragovich
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Mark Gimbel
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| | - Fade Mahmoud
- TW Lewis Melanoma Center of Excellence, Banner MD Anderson Cancer Center, Gilbert, AZ, USA,
| |
Collapse
|
117
|
Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Front Immunol 2018; 9:1977. [PMID: 30233579 PMCID: PMC6127274 DOI: 10.3389/fimmu.2018.01977] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor cells frequently produce soluble factors that favor myelopoiesis and recruitment of myeloid cells to the tumor microenvironment (TME). Consequently, the TME of many cancer types is characterized by high infiltration of monocytes, macrophages, dendritic cells and granulocytes. Experimental and clinical studies show that most myeloid cells are kept in an immature state in the TME. These studies further show that tumor-derived factors mold these myeloid cells into cells that support cancer initiation and progression, amongst others by enabling immune evasion, tumor cell survival, proliferation, migration and metastasis. The key role of myeloid cells in cancer is further evidenced by the fact that they negatively impact on virtually all types of cancer therapy. Therefore, tumor-associated myeloid cells have been designated as the culprits in cancer. We review myeloid cells in the TME with a focus on the mechanisms they exploit to support cancer cells. In addition, we provide an overview of approaches that are under investigation to deplete myeloid cells or redirect their function, as these hold promise to overcome resistance to current cancer therapies.
Collapse
|
118
|
She L, Qin Y, Wang J, Liu C, Zhu G, Li G, Wei M, Chen C, Liu G, Zhang D, Chen X, Wang Y, Qiu Y, Tian Y, Zhang X, Liu Y, Huang D. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell Int 2018; 18:120. [PMID: 30181713 PMCID: PMC6114178 DOI: 10.1186/s12935-018-0620-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
Background Alternatively activated macrophages in tumor microenvironment is defined as M2 tumor-associated macrophages (M2 TAMs) that promote cancer progression. However, communicative mechanisms between M2 TAMs and cancer cells in squamous cell carcinoma of head and neck (SCCHN) remain largely unknown. Methods Quantitative real-time PCR, western blotting, enzyme-linked immunosorbent assay and flow cytometry were applied to quantify mRNA and protein expression of genes related to M2 TAMs, epithelial–mesenchymal transition (EMT) and stemness. Wounding-healing and Transwell invasion assays were performed to detect the invasion and migration. Sphere formation assay was used to detect the stemness of SCCHN cells. RNA-sequencing and following bioinformatics analysis were used to determine the alterations of transcriptome. Results THP-1 monocytes were successfully polarized into M2-like TAMs, which was manifested by increased mRNA and protein expression of CCL18, IL-10 and CD206. Conditioned medium from M2-like TAMs promoted the migration and invasion of SCCHN cells, which was accompanied by the occurrence of EMT and enhanced stemness. Importantly, CCL18 neutralizing antibody partially abrogated these effects that caused by conditional medium from M2-like TAMs. In addition, recombinant human CCL18 (rhCCL18) correspondingly promoted the malignant biological behaviors of SCCHN in vitro. Finally, RNA-sequencing analysis identified 331 up-regulated and 363 down-regulated genes stimulated by rhCCL18, which were statistically enriched in 10 cancer associated signaling pathways. Conclusion These findings indicate that CCL18 derived from M2-like TAMs promotes metastasis via inducing EMT and cancer stemness in SCCHN in vitro. Electronic supplementary material The online version of this article (10.1186/s12935-018-0620-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li She
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yuexiang Qin
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Juncheng Wang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Chao Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Gangcai Zhu
- 3Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410010 Hunan People's Republic of China
| | - Guo Li
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Ming Wei
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Changhan Chen
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Guancheng Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Diekuo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xiyu Chen
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yunyun Wang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yuanzheng Qiu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yongquan Tian
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Xin Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Yong Liu
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| | - Donghai Huang
- 1Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008 Hunan People's Republic of China
| |
Collapse
|
119
|
Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, Liu SY, Yin K, Chen RL, Huang SM, Chen ZH, Yang JJ, Tu HY, Zhou Q, Zhong WZ, Zhang XC, Wu YL. Strong Programmed Death Ligand 1 Expression Predicts Poor Response and De Novo Resistance to EGFR Tyrosine Kinase Inhibitors Among NSCLC Patients With EGFR Mutation. J Thorac Oncol 2018; 13:1668-1675. [PMID: 30056164 DOI: 10.1016/j.jtho.2018.07.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION This study evaluated whether tumor expression of programmed death ligand 1 (PD-L1) could predict the response of EGFR-mutated NSCLC to EGFR tyrosine kinase inhibitor (TKI) therapy. METHODS We retrospectively evaluated patients who received EGFR-TKIs for advanced NSCLC at the Guangdong Lung Cancer Institute between April 2016 and September 2017 and were not enrolled in clinical studies. The patients' EGFR and PD-L1 statuses were simultaneously evaluated. RESULTS Among the 101 eligible patients, strong PD-L1 expression significantly decreased objective response rate, compared with weak or negative PD-L1 expression (35.7% versus 63.2% versus 67.3%, p = 0.002), and shortened progression-free survival (3.8 versus 6.0 versus 9.5 months, p < 0.001), regardless of EGFR mutation type (19del or L858R). Furthermore, positive PD-L1 expression was predominantly observed among patients with de novo resistance rather than acquired resistance to EGFR-TKIs (66.7% versus 30.2%, p = 0.009). Notably, we found a high proportion of PD-L1 and cluster of differentiation 8 (CD8) dual-positive cases among patients with de novo resistance (46.7%, 7 of 15). Finally, one patient with de novo resistance to EGFR-TKIs and PD-L1 and CD8 dual positivity experienced a favorable response to anti-programmed death 1 therapy. CONCLUSIONS This study revealed the adverse effects of PD-L1 expression on EGFR-TKI efficacy, especially in NSCLC patients with de novo resistance. The findings indicate the reshaping of an inflamed immune phenotype characterized by PD-L1 and CD8 dual positivity and suggest potential therapeutic sensitivity to programmed death 1 blockade.
Collapse
Affiliation(s)
- Shan Su
- Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Fa Li
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Yin
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rui-Lian Chen
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shu-Mei Huang
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
120
|
Usman MW, Gao J, Zheng T, Rui C, Li T, Bian X, Cheng H, Liu P, Luo F. Macrophages confer resistance to PI3K inhibitor GDC-0941 in breast cancer through the activation of NF-κB signaling. Cell Death Dis 2018; 9:809. [PMID: 30042442 PMCID: PMC6057974 DOI: 10.1038/s41419-018-0849-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023]
Abstract
The PI3K pathway is one of the most dysregulated signaling pathways in epithelial cancers and has become an attractive therapeutic target under active preclinical and clinical development. However, recent clinical trial studies revealed that blockade of PI3K activity in advanced cancer often leads to the development of resistance and relapse of the diseases. Intense efforts have been made to elucidate resistance mechanisms and identify rational drug combinations with PI3K inhibitors in solid tumors. In the current study, we found that PI3K inhibition by GDC-0941 increased macrophage infiltration and induced the expression of macrophage-associated cytokines and chemokines in the mouse 4T1 breast tumor model. Using the in vitro co-culture system, we showed that the presence of macrophages led to the activation of NF-κB signaling in 4T1 tumor cells, rendering tumor cells resistant to PI3K inhibition by GDC-0941. Furthermore, we found that Aspirin could block the activation of NF-κB signaling induced by PI3K inhibition, and combined use of GDC-0941 and Aspirin resulted in attenuated cell growth and enhanced apoptosis of 4T1 cells in the in vitro co-culture system with the presence of macrophages. Consistently, the combination treatment also effectively reduced tumor burden, macrophage infiltration and pulmonary metastasis in in vivo 4T1 breast tumor model. Together, our results suggested macrophages in microenvironment may contribute to the resistance of breast cancer cells to PI3K inhibition and reveal a new combination paradigm to improve the efficacy of PI3K-targeted therapy.
Collapse
Affiliation(s)
- Muhammad Waqas Usman
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jing Gao
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Tiezheng Zheng
- Department of Physiology, Institute of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chunhua Rui
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Ting Li
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xing Bian
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Hailing Cheng
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Pixu Liu
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China. .,College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Fuwen Luo
- Cancer Institute, Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
121
|
Noguchi K, Dincman TA, Dalton AC, Howley BV, McCall BJ, Mohanty BK, Howe PH. Interleukin-like EMT inducer (ILEI) promotes melanoma invasiveness and is transcriptionally up-regulated by upstream stimulatory factor-1 (USF-1). J Biol Chem 2018; 293:11401-11414. [PMID: 29871931 PMCID: PMC6065179 DOI: 10.1074/jbc.ra118.003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-like EMT inducer (ILEI, FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell-biological process that confers metastatic properties to a tumor cell. However, very little is known about how ILEI is regulated. Here we demonstrate that ILEI is an in vivo regulator of melanoma invasiveness and is transcriptionally up-regulated by the upstream stimulatory factor-1 (USF-1), an E-box-binding, basic-helix-loop-helix family transcription factor. shRNA-mediated knockdown of ILEI in melanoma cell lines attenuated lung colonization but not primary tumor formation. We also identified the mechanism underlying ILEI transcriptional regulation, which was through a direct interaction of USF-1 with the ILEI promoter. Of note, stimulation of endogenous USF-1 by UV-mediated activation increased ILEI expression, whereas shRNA-mediated USF-1 knockdown decreased ILEI gene transcription. Finally, we report that knocking down USF-1 decreases tumor cell migration. In summary, our work reveals that ILEI contributes to melanoma cell invasiveness in vivo without affecting primary tumor growth and is transcriptionally up-regulated by USF-1.
Collapse
Affiliation(s)
- Ken Noguchi
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Buckley J McCall
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Charleston, South Carolina 29425; Hollings Cancer Center, Charleston, South Carolina 29425.
| |
Collapse
|
122
|
Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J, Wellbrock C. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene 2018; 37:3166-3182. [PMID: 29545604 PMCID: PMC5992128 DOI: 10.1038/s41388-018-0209-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 01/15/2023]
Abstract
Despite the general focus on an invasive and de-differentiated phenotype as main driver of cancer metastasis, in melanoma patients many metastatic lesions display a high degree of pigmentation, indicative for a differentiated phenotype. Indeed, studies in mice and fish show that melanoma cells switch to a differentiated phenotype at secondary sites, possibly because in melanoma differentiation is closely linked to proliferation through the lineage-specific transcriptional master regulator MITF. Importantly, while a lot of effort has gone into identifying factors that induce the de-differentiated/invasive phenotype, it is not well understood how the switch to the differentiated/proliferative phenotype is controlled. We identify collagen as a contributor to this switch. We demonstrate that collagen stiffness induces melanoma differentiation through a YAP/PAX3/MITF axis and show that in melanoma patients increased collagen abundance correlates with nuclear YAP localization. However, the interrogation of large patient datasets revealed that in the context of the tumour microenvironment, YAP function is more complex. In the absence of fibroblasts, YAP/PAX3-mediated transcription prevails, but in the presence of fibroblasts tumour growth factor-β suppresses YAP/PAX3-mediated MITF expression and induces YAP/TEAD/SMAD-driven transcription and a de-differentiated phenotype. Intriguingly, while high collagen expression is correlated with poorer patient survival, the worst prognosis is seen in patients with high collagen expression, who also express MITF target genes such as the differentiation markers TRPM1, TYR and TYRP1, as well as CDK4. In summary, we reveal a distinct lineage-specific route of YAP signalling that contributes to the regulation of melanoma pigmentation and uncovers a set of potential biomarkers predictive for poor survival.
Collapse
Affiliation(s)
- Zsofia Miskolczi
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jorge Barriuso
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
123
|
Herraiz C, Jiménez-Cervantes C, Sánchez-Laorden B, García-Borrón JC. Functional interplay between secreted ligands and receptors in melanoma. Semin Cell Dev Biol 2018; 78:73-84. [PMID: 28676423 DOI: 10.1016/j.semcdb.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
Melanoma, the most aggressive form of skin cancer, results from the malignant transformation of melanocytes located in the basement membrane separating the epidermal and dermal skin compartments. Cutaneous melanoma is often initiated by solar ultraviolet radiation (UVR)-induced mutations. Melanocytes intimately interact with keratinocytes, which provide growth factors and melanocortin peptides acting as paracrine regulators of proliferation and differentiation. Keratinocyte-derived melanocortins activate melanocortin-1 receptor (MC1R) to protect melanocytes from the carcinogenic effect of UVR. Accordingly, MC1R is a major determinant of susceptibility to melanoma. Despite extensive phenotypic heterogeneity and high mutation loads, the molecular basis of melanomagenesis and the molecules mediating the crosstalk between melanoma and stromal cells are relatively well understood. Mutations of intracellular effectors of receptor tyrosine kinase (RTK) signalling, notably NRAS and BRAF, are major driver events more frequent than mutations in RTKs. Nevertheless, melanomas often display aberrant signalling from RTKs such as KIT, ERRB1-4, FGFR, MET and PDGFR, which contribute to disease progression and resistance to targeted therapies. Progress has also been made to unravel the role of the tumour secretome in preparing the metastatic niche. However, key aspects of the melanoma-stroma interplay, such as the molecular determinants of dormancy, remain poorly understood.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - Celia Jiménez-Cervantes
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - Berta Sánchez-Laorden
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - José C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, and Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain.
| |
Collapse
|
124
|
Ahmed F, Haass NK. Microenvironment-Driven Dynamic Heterogeneity and Phenotypic Plasticity as a Mechanism of Melanoma Therapy Resistance. Front Oncol 2018; 8:173. [PMID: 29881716 PMCID: PMC5976798 DOI: 10.3389/fonc.2018.00173] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistance constitutes a major challenge in designing melanoma therapies. Microenvironment-driven tumor heterogeneity and plasticity play a key role in this phenomenon. Melanoma is highly heterogeneous with diverse genomic alterations and expression of different biological markers. In addition, melanoma cells are highly plastic and capable of adapting quickly to changing microenvironmental conditions. These contribute to variations in therapy response and durability between individual melanoma patients. In response to changing microenvironmental conditions, like hypoxia and nutrient starvation, proliferative melanoma cells can switch to an invasive slow-cycling state. Cells in this state are more aggressive and metastatic, and show increased intrinsic drug resistance. During continuous treatment, slow-cycling cells are enriched within the tumor and give rise to a new proliferative subpopulation with increased drug resistance, by exerting their stem cell-like behavior and phenotypic plasticity. In melanoma, the proliferative and invasive states are defined by high and low microphthalmia-associated transcription factor (MITF) expression, respectively. It has been observed that in MITFhigh melanomas, inhibition of MITF increases the efficacy of targeted therapies and delays the acquisition of drug resistance. Contrarily, MITF is downregulated in melanomas with acquired drug resistance. According to the phenotype switching theory, the gene expression profile of the MITFlow state is predominantly regulated by WNT5A, AXL, and NF-κB signaling. Thus, different combinations of therapies should be effective in treating different phases of melanoma, such as the combination of targeted therapies with inhibitors of MITF expression during the initial treatment phase, but with inhibitors of WNT5A/AXL/NF-κB signaling during relapse.
Collapse
Affiliation(s)
- Farzana Ahmed
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K. Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
125
|
Samaniego R, Gutiérrez-González A, Gutiérrez-Seijo A, Sánchez-Gregorio S, García-Giménez J, Mercader E, Márquez-Rodas I, Avilés JA, Relloso M, Sánchez-Mateos P. CCL20 Expression by Tumor-Associated Macrophages Predicts Progression of Human Primary Cutaneous Melanoma. Cancer Immunol Res 2018; 6:267-275. [PMID: 29362221 DOI: 10.1158/2326-6066.cir-17-0198] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
The chemokine axis CCR6/CCL20 is involved in cancer progression in a variety of tumors. Here, we show that CCR6 is expressed by melanoma cells. The CCR6 ligand, CCL20, induces migration and proliferation in vitro, and enhances tumor growth and metastasis in vivo Confocal analysis of melanoma tissues showed that CCR6 is expressed by tumor cells, whereas CCL20 is preferentially expressed by nontumoral cells in the stroma of certain tumors. Stromal CCL20, but not tumoral CCR6, predicted poor survival in a cohort of 40 primary melanoma patients. Tumor-associated macrophages (TAM), independently of their M1/M2 polarization profile, were identified as the main source of CCL20 in primary melanomas that developed metastasis. In addition to CCL20, TAMs expressed TNF and VEGF-A protumoral cytokines, suggesting that melanoma progression is supported by macrophages with a differential activation state. Our data highlight the synergistic interaction between melanoma tumor cells and prometastatic macrophages through a CCR6/CCL20 paracrine loop. Stromal levels of CCL20 in primary melanomas may be a clinically useful marker for assessing patient risk, making treatment decisions, and planning or analyzing clinical trials. Cancer Immunol Res; 6(3); 267-75. ©2018 AACR.
Collapse
Affiliation(s)
- Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | | | - Alba Gutiérrez-Seijo
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Sandra Sánchez-Gregorio
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jorge García-Giménez
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Enrique Mercader
- Servicio de Cirugía General, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | - Iván Márquez-Rodas
- Servicio de Oncología, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | - José Antonio Avilés
- Servicio de Dermatología, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | - Miguel Relloso
- Grupo de Inmuno-fisiología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
126
|
Brighton HE, Angus SP, Bo T, Roques J, Tagliatela AC, Darr DB, Karagoz K, Sciaky N, Gatza ML, Sharpless NE, Johnson GL, Bear JE. New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging. Cancer Res 2018; 78:542-557. [PMID: 29180473 PMCID: PMC6132242 DOI: 10.1158/0008-5472.can-17-1653] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022]
Abstract
Targeted therapeutics that are initially effective in cancer patients nearly invariably engender resistance at some stage, an inherent challenge in the use of any molecular-targeted drug in cancer settings. In this study, we evaluated resistance mechanisms arising in metastatic melanoma to MAPK pathway kinase inhibitors as a strategy to identify candidate strategies to limit risks of resistance. To investigate longitudinal responses, we developed an intravital serial imaging approach that can directly visualize drug response in an inducible RAF-driven, autochthonous murine model of melanoma incorporating a fluorescent reporter allele (tdTomatoLSL). Using this system, we visualized formation and progression of tumors in situ, starting from the single-cell level longitudinally over time. Reliable reporting of the status of primary murine tumors treated with the selective MEK1/2 inhibitor (MEKi) trametinib illustrated a time-course of initial drug response and persistence, followed by the development of drug resistance. We found that tumor cells adjacent to bundled collagen had a preferential persistence in response to MEKi. Unbiased transcriptional and kinome reprogramming analyses from selected treatment time points suggested increased c-Kit and PI3K/AKT pathway activation in resistant tumors, along with enhanced expression of epithelial genes and epithelial-mesenchymal transition downregulation signatures with development of MEKi resistance. Similar trends were observed following simultaneous treatment with BRAF and MEK inhibitors aligned to standard-of-care combination therapy, suggesting these reprogramming events were not specific to MEKi alone. Overall, our results illuminate the integration of tumor-stroma dynamics with tissue plasticity in melanoma progression and provide new insights into the basis for drug response, persistence, and resistance.Significance: A longitudinal study tracks the course of MEKi treatment in an autochthonous imageable murine model of melanoma from initial response to therapeutic resistance, offering new insights into the basis for drug response, persistence, and resistance. Cancer Res; 78(2); 542-57. ©2017 AACR.
Collapse
Affiliation(s)
- Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tao Bo
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jose Roques
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alicia C Tagliatela
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David B Darr
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kubra Karagoz
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L Johnson
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
127
|
Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat Med 2018; 24:203-212. [DOI: 10.1038/nm.4472] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023]
|
128
|
Ye N, Wang L, Dou Z, Huang J. Ghrelin accelerates the cartilagic differentiation of rabbit mesenchymal stem cells through the ERK1/2 pathway. Cytotechnology 2017; 70:415-421. [PMID: 29230632 DOI: 10.1007/s10616-017-0156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into chondroblasts, adipocytes, or cartilage under appropriate stimulation. Identifying a mechanism triggering the differentiation of MSCs into cartilage may help develop novel therapeutic approaches for treating heterotopic ossification, the pathological formation of lamellar bone in soft tissue outside the skeleton that can lead to debilitating immobility. Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, stimulates growth hormone secretion, and has both orexigenic and adipogenic effects. This study sought to understand the potential involvement of the ERK1/2 signaling pathway in the ghrelin-induced growth of rat MSCs (rMSCs). We applied various concentrations of ghrelin to cultured rMSCs by observing the changes in the phosphorylation state of ERK1/2, p38, JNK as well as the type II collagen expression levels by western blot. The highest expression level for both type II collagen was obtained with 600 ng/mL ghrelin at 24 h. We found that the ghrelin-induced differentiation of rMSCs into cartilage was promoted primarily by the ERK1/2 pathway. Our study suggests that ghrelin induced differentiation of rMSCs into cartilage primarily through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Nan Ye
- Department of Cervical Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Muslims Camp Square Road No 1, Hohhot, China
| | - Lin Wang
- Department of Cervical Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Muslims Camp Square Road No 1, Hohhot, China
| | - Zhe Dou
- Department of Cervical Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Muslims Camp Square Road No 1, Hohhot, China
| | - Jian Huang
- Department of Cervical Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Muslims Camp Square Road No 1, Hohhot, China.
| |
Collapse
|
129
|
Cohen-Solal KA, Kaufman HL, Lasfar A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment Cell Melanoma Res 2017; 31:241-252. [DOI: 10.1111/pcmr.12666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Karine A. Cohen-Solal
- Rutgers Cancer Institute of New Jersey; New Brunswick NJ USA
- Section of Surgical Oncology Research; Department of Surgery; Rutgers Robert Wood Johnson Medical School; Rutgers, The State University of New Jersey; New Brunswick NJ USA
| | - Howard L. Kaufman
- Department of Surgery; Rutgers University; New Brunswick NJ USA
- Department of Medicine; Rutgers University; New Brunswick NJ USA
| | - Ahmed Lasfar
- Rutgers Cancer Institute of New Jersey; New Brunswick NJ USA
- Department of Pharmacology and Toxicology; Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
130
|
The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies. Cancer Metastasis Rev 2017; 36:53-75. [PMID: 28210865 DOI: 10.1007/s10555-017-9657-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.
Collapse
|
131
|
Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:387. [PMID: 29114545 PMCID: PMC5653517 DOI: 10.21037/atm.2017.06.09] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
The discovery of activating mutations in the serine/threonine (S/T) kinase BRAF followed by a wave of follow-up research manifested that the MAPK-pathway plays a critical role in melanoma initiation and progression. BRAF and MEK inhibitors produce an unparalleled response rate in melanoma, but it is now clear that most responses are transient, and while some patients show long lasting responses the majority progress within 1 year. In accordance with the key role played by the MAPK-pathway in BRAF mutant melanomas, disease progression is mostly due to the appearance of drug-resistance mechanisms leading to restoration of MAPK-pathway activity. In the present article we will review the development, application and clinical effects of BRAF and MEK inhibitors both, as single agent and in combination in the context of targeted therapy in melanoma. We will then describe the most prominent mechanisms of resistance found in patients progressed on these targeted therapies. Finally we will discuss strategies for further optimizing the use of MAPK inhibitors and will describe the potential of alternative combination therapies to either delay the onset of resistance to MAPK inhibitors or directly target specific mechanisms of resistance to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Imanol Arozarena
- Navarrabiomed-Fundación Miguel Servet-Idisna, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
132
|
Pérez-Guijarro E, Day CP, Merlino G, Zaidi MR. Genetically engineered mouse models of melanoma. Cancer 2017; 123:2089-2103. [PMID: 28543694 DOI: 10.1002/cncr.30684] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
133
|
Smith MP, Rowling EJ, Miskolczi Z, Ferguson J, Spoerri L, Haass NK, Sloss O, McEntegart S, Arozarena I, von Kriegsheim A, Rodriguez J, Brunton H, Kmarashev J, Levesque MP, Dummer R, Frederick DT, Andrews MC, Cooper ZA, Flaherty KT, Wargo JA, Wellbrock C. Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med 2017; 9:1011-1029. [PMID: 28606996 PMCID: PMC5538298 DOI: 10.15252/emmm.201607156] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF-induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re-activation in a paracrine manner. Most importantly, EDN1 not only supports MITF-high populations through the endothelin receptor B (EDNRB), but also AXL-high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL-high-expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL-high cells.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Loredana Spoerri
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Nikolas K Haass
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Olivia Sloss
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Navarrabiomed-Fundación Miguel Servet-Idisna, Pamplona, Spain
| | | | - Javier Rodriguez
- Systems Biology Ireland, School of Medicine, UCD, Dublin 4, Ireland
| | - Holly Brunton
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jivko Kmarashev
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Miles C Andrews
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
134
|
Reddy SM, Reuben A, Wargo JA. Influences of BRAF Inhibitors on the Immune Microenvironment and the Rationale for Combined Molecular and Immune Targeted Therapy. Curr Oncol Rep 2017; 18:42. [PMID: 27215436 DOI: 10.1007/s11912-016-0531-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The identification of key driver mutations in melanoma has led to the development of targeted therapies aimed at BRAF and MEK, but responses are often limited in duration. There is growing evidence that MAPK pathway activation impairs antitumor immunity and that targeting this pathway may enhance responses to immunotherapies. There is also evidence that immune mechanisms of resistance to targeted therapy exist, providing the rationale for combining targeted therapy with immunotherapy. Preclinical studies have demonstrated synergy in combining these strategies, and combination clinical trials are ongoing. It is, however, becoming clear that additional translational studies are needed to better understand toxicity, proper timing, and sequence of therapy, as well as the utility of multidrug regimens and effects of other targeted agents on antitumor immunity. Insights gained through translational research in preclinical models and clinical studies will provide mechanistic insight into therapeutic response and resistance and help devise rational strategies to enhance therapeutic responses.
Collapse
Affiliation(s)
- Sangeetha M Reddy
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Unit 463, Houston, TX, 77030, USA
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
135
|
Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026781. [PMID: 28213438 DOI: 10.1101/cshperspect.a026781] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer evolution plays a key role in both the development of tumors and their response to therapy. Like all evolutionary processes, tumor evolution is shaped by the environment. In tumors, this consists of a complex mixture of nontransformed cell types and extracellular matrix. Chemotherapy or radiotherapy imposes further strong selective pressures on cancer cells during cancer treatment. Here, we review how different components of the tumor microenvironment can modulate the response to chemo- and radiotherapy. We further describe how therapeutic strategies directly alter the composition, or function, of the tumor microenvironment, thereby further altering the selective pressures to which cancer cells are exposed. Last, we explore the consequences of these interactions for therapy outcomes and how to exploit our increasing understanding of the tumor microenvironment for therapeutic benefit.
Collapse
Affiliation(s)
- Eishu Hirata
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Erik Sahai
- Tumor Cell Biology Laboratory, Francis Crick Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
136
|
Bai Q, Liu L, Xia Y, Wang J, Xi W, Qu Y, Xiong Y, Long Q, Xu J, Guo J. IRF5 is associated with adverse postoperative prognosis of patients with non-metastatic clear cell renal cell carcinoma. Oncotarget 2017; 8:44186-44194. [PMID: 28562332 PMCID: PMC5546472 DOI: 10.18632/oncotarget.17777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND IRF5 is one member of IRFs family, and is critical for host immunity and cell response. In the present study, we sought to search the clinical and prognostic value of IFR5 in patients with non-metastatic ccRCC. RESULTS IRF5 proved to be an adverse independent prognostic factor for overall survival (p < 0.001) and recurrence free survival (p = 0.002). The newly built nomograms could give better prediction for overall survival and recurrence free survival in ccRCC patients. MATERIALS AND METHODS We included 264 individuals who were diagnosed with non-metastatic clear cell renal cell carcinoma in the present study. Immunohistochemistry staining was performed on tissue microarrays to evaluate the IRF5 expression. χ2 test, Fisher's exact test, t test, Kaplan-Meier method and Cox proportional hazard model were applied to evaluate the prognostic value of IRF5. Two nomograms were constructed to predict clinical outcomes for ccRCC patients after surgery. CONCLUSIONS IRF5 was an adverse independent prognostic factor for both overall survival and recurrence free survival in patients with non-metastatic ccRCC.
Collapse
Affiliation(s)
- Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
137
|
Young HL, Rowling EJ, Bugatti M, Giurisato E, Luheshi N, Arozarena I, Acosta JC, Kamarashev J, Frederick DT, Cooper ZA, Reuben A, Gil J, Flaherty KT, Wargo JA, Vermi W, Smith MP, Wellbrock C, Hurlstone A. An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J Exp Med 2017; 214:1691-1710. [PMID: 28450382 PMCID: PMC5460994 DOI: 10.1084/jem.20160855] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of tumor-associated macrophages and fibroblasts contribute to treatment tolerance through a cytokine-signaling network that involves macrophage-derived IL-1β and fibroblast-derived CXCR2 ligands. Fibroblasts require IL-1β to produce CXCR2 ligands, and loss of host IL-1R signaling in vivo reduces melanoma growth. In tumors from patients on treatment, signaling from inflammatory niches is amplified in the presence of MAPK inhibitors. Signaling from inflammatory niches counteracts combined BRAF/MEK (MAPK/extracellular signal-regulated kinase kinase) inhibitor treatment, and consequently, inhibiting IL-1R or CXCR2 signaling in vivo enhanced the efficacy of MAPK inhibitors. We conclude that melanoma inflammatory niches adapt to and confer drug tolerance toward BRAF and MEK inhibitors early during treatment.
Collapse
Affiliation(s)
- Helen L Young
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Nadia Luheshi
- Division of Oncology, MedImmune Ltd, Cambridge CB21 6GH, England, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Juan-Carlos Acosta
- Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XR, Scotland, UK
| | - Jivko Kamarashev
- Department of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alexandre Reuben
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jesus Gil
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, England, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Adam Hurlstone
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
138
|
The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. J Transl Med 2017; 97:649-656. [PMID: 28263292 DOI: 10.1038/labinvest.2017.9] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.
Collapse
|
139
|
Liu F, Jiang CC, Yan XG, Tseng HY, Wang CY, Zhang YY, Yari H, La T, Farrelly M, Guo ST, Thorne RF, Jin L, Wang Q, Zhang XD. BRAF/MEK inhibitors promote CD47 expression that is reversible by ERK inhibition in melanoma. Oncotarget 2017; 8:69477-69492. [PMID: 29050218 PMCID: PMC5642493 DOI: 10.18632/oncotarget.17704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
The expression of CD47 on the cancer cell surface transmits "don't eat me" signalling that not only inhibits phagocytosis of cancer cells by phagocytes but also impairs anti-cancer T cell responses. Here we report that oncogenic activation of ERK plays an important role in transcriptional activation of CD47 through nuclear respiratory factor 1 (NRF-1) in melanoma cells. Treatment with BRAF/MEK inhibitors upregulated CD47 in cultured melanoma cells and fresh melanoma isolates. Similarly, melanoma cells selected for resistance to the BRAF inhibitor vemurafenib expressed higher levels of CD47. The increase in CD47 expression was mediated by ERK signalling, as it was associated with rebound activation of ERK and co-knockdown of ERK1/2 by siRNA diminished upregulation of CD47 in melanoma cells after exposure to BRAF/MEK inhibitors. Furthermore, ERK1/2 knockdown also reduced the constitutive expression of CD47 in melanoma cells. We identified a DNA fragment that was enriched with the consensus binding sites for NRF-1 and was transcriptionally responsive to BRAF/MEK inhibitor treatment. Knockdown of NRF-1 inhibited the increase in CD47, indicating that NRF-1 has a critical role in transcriptional activation of CD47 by ERK signalling. Functional studies showed that melanoma cells resistant to vemurafenib were more susceptible to macrophage phagocytosis when CD47 was blocked. So these results suggest that NRF-1-mediated regulation of CD47 expression is a novel mechanism by which ERK signalling promotes the pathogenesis of melanoma, and that the combination of CD47 blockade and BRAF/MEK inhibitors may be a useful approach for improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Fen Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.,School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Hsin-Yi Tseng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Chun Yan Wang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Yuan Yuan Zhang
- School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Hamed Yari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Su Tang Guo
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| | - Rick F Thorne
- School of Environmental and Life Sciences, University of Newcastle, NSW, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, NSW, Australia
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, Australia
| |
Collapse
|
140
|
Hartung N, Huynh CTK, Gaudy-Marqueste C, Flavian A, Malissen N, Richard-Lallemand MA, Hubert F, Grob JJ. Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision. PLoS One 2017; 12:e0176080. [PMID: 28472075 PMCID: PMC5417482 DOI: 10.1371/journal.pone.0176080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
Background Evolution of metastatic melanoma (MM) under B-RAF inhibitors (BRAFi) is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making. Patients and methods We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets) were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival. Results Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow growing mets in a same patient) were pejorative markers. At the first assessment after BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added independent information over RECIST progression in multivariate analysis. Metastatic growth rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but they were often more heterogeneous than before. Conclusions Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides information for predictive mathematical modelling. Disease kinetics deserves more interest
Collapse
Affiliation(s)
- Niklas Hartung
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Cécilia T.-K. Huynh
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
| | - Caroline Gaudy-Marqueste
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
- Aix-Marseille Université, UMR_S 911 CRO2, Marseille, France
- * E-mail:
| | - Antonin Flavian
- APHM, Hopital Timone, Radiology department, Marseille, France
| | - Nausicaa Malissen
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
| | - Marie-Aleth Richard-Lallemand
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
- Aix-Marseille Université, UMR_S 911 CRO2, Marseille, France
| | - Florence Hubert
- Aix-Marseille Université, I2M, UMR 7373, CNRS, Centrale Marseille, Marseille, France
| | - Jean-Jacques Grob
- Aix-Marseille Université, APHM, Dermatology and skin cancers Department, Marseille, France
- Aix-Marseille Université, UMR_S 911 CRO2, Marseille, France
| |
Collapse
|
141
|
Safonov A, Jiang T, Bianchini G, Győrffy B, Karn T, Hatzis C, Pusztai L. Immune Gene Expression Is Associated with Genomic Aberrations in Breast Cancer. Cancer Res 2017; 77:3317-3324. [PMID: 28428277 DOI: 10.1158/0008-5472.can-16-3478] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 04/14/2017] [Indexed: 12/27/2022]
Abstract
The presence of tumor-infiltrating lymphocytes (TIL) is a favorable prognostic factor in breast cancer, but what drives immune infiltration remains unknown. Here we examine if clonal heterogeneity, total mutation load, neoantigen load, copy number variations (CNV), gene- or pathway-level somatic mutations, or germline polymorphisms (SNP) are associated with immune metagene expression in breast cancer subtypes. Thirteen published immune metagenes correlated separately with genomic metrics in the three major breast cancer subtypes. We analyzed RNA-Seq, DNA copy number, mutation and germline SNP data of 627 ER+, 207 HER2+, and 191 triple-negative (TNBC) cancers from The Cancer Genome Atlas. P-values were adjusted for multiple comparisons, and permutation testing was used to assess false discovery rates. Increased immune metagene expression associated significantly with lower clonal heterogeneity estimated by MATH score in all subtypes and with a trend for lower overall mutation, neoantigen, and CNV loads in TNBC and HER2+ cancers. In ER+ cancers, mutation load, neoantigen load, and CNV load weakly but positively associated with immune infiltration, which reached significance for overall mutation load only. No highly recurrent single gene or pathway level mutations associated with immune infiltration. High immune gene expression and lower clonal heterogeneity in TNBC and HER2+ cancers suggest an immune pruning effect and equilibrium between immune surveillance and clonal expansion. Thus, immune checkpoint inhibitors may tip the balance in favor of immune surveillance in these cancers. Cancer Res; 77(12); 3317-24. ©2017 AACR.
Collapse
Affiliation(s)
- Anton Safonov
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Tingting Jiang
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group & Semmelweis University Second Department of Pediatrics, Budapest, Hungary
| | - Thomas Karn
- Department of Obstetrics and Gynecology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christos Hatzis
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
142
|
Koetz-Ploch L, Hanniford D, Dolgalev I, Sokolova E, Zhong J, Díaz-Martínez M, Bernstein E, Darvishian F, Flaherty KT, Chapman PB, Tawbi H, Hernando E. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res 2017; 30:328-338. [PMID: 28140520 DOI: 10.1111/pcmr.12578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Melanoma patients with BRAFV600E -mutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug-resistant disease. Here, we report that microRNA-125a (miR-125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR-125a induction confers resistance to BRAFV600E melanoma cells to BRAFi by directly suppressing pro-apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug-resistant melanoma cells. We demonstrate that miR-125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug resensitization. Finally, we show that miR-125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR-125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically.
Collapse
Affiliation(s)
- Lisa Koetz-Ploch
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Douglas Hanniford
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Igor Dolgalev
- Genomics Technology Center, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Elena Sokolova
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Judy Zhong
- NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,Division of Biostatistics, Department of Environmental Medicine, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | | | | | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Keith T Flaherty
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Paul B Chapman
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Eva Hernando
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
143
|
CpG-based immunotherapy impairs antitumor activity of BRAF inhibitors in a B-cell-dependent manner. Oncogene 2017; 36:4081-4086. [PMID: 28263973 PMCID: PMC5509483 DOI: 10.1038/onc.2017.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
Abstract
Combining immunotherapy with targeted therapy has increasingly become an appealing therapeutic paradigm for cancer treatment due to its great potential for generating durable and synergistic antitumor response. In this study, however, we unexpectedly found that two types of CpG-based tumor peptide vaccine treatments consistently negated the antitumor activity of a selective BRAF inhibitor in tumors with BRAF mutation rather than showing a synergistic antitumor effect. Our further studies demonstrated that CpG alone was sufficient to dampen BRAF inhibitor-induced antitumor responses, suggesting that the impaired antitumor activity of the BRAF inhibitor observed in mice receiving CpG-based peptide vaccine is mainly dependent upon the use of CpG. Mechanistically, CpG increased the number of circulating B cells, which produced elevated amounts of tumor necrosis factor-α (TNFα) that contributed to the increased tumor resistance to BRAF inhibitors. More importantly, B-cell depletion or TNFα neutralization can restore the antitumor effect of BRAF inhibition in mice receiving CpG treatment, indicating that TNFα-secreting B cells play an indispensable role in BRAF inhibitor resistance induced by CpG. Taken together, our results strongly suggest that precautions must be implemented when designing combinatorial approaches for cancer treatment, because distinct regimens, despite their respective therapeutic benefit as monotherapy, may together provide antagonistic clinical outcomes.
Collapse
|
144
|
Charbe N, McCarron PA, Tambuwala MM. Three-dimensional bio-printing: A new frontier in oncology research. World J Clin Oncol 2017; 8:21-36. [PMID: 28246583 PMCID: PMC5309712 DOI: 10.5306/wjco.v8.i1.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/02/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
Current research in oncology deploys methods that rely principally on two-dimensional (2D) mono-cell cultures and animal models. Although these methodologies have led to significant advancement in the development of novel experimental therapeutic agents with promising anticancer activity in the laboratory, clinicians still struggle to manage cancer in the clinical setting. The disappointing translational success is attributable mainly to poor representation and recreation of the cancer microenvironment present in human neoplasia. Three-dimensional (3D) bio-printed models could help to simulate this micro-environment, with recent bio-printing of live human cells demonstrating that effective in vitro replication is achievable. This literature review outlines up-to-date advancements and developments in the use of 3D bio-printed models currently being used in oncology research. These innovative advancements in 3D bio-printing open up a new frontier for oncology research and could herald an era of progressive clinical cancer therapeutics.
Collapse
|
145
|
McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017; 168:613-628. [PMID: 28187284 DOI: 10.1016/j.cell.2017.01.018] [Citation(s) in RCA: 1786] [Impact Index Per Article: 223.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Intratumor heterogeneity, which fosters tumor evolution, is a key challenge in cancer medicine. Here, we review data and technologies that have revealed intra-tumor heterogeneity across cancer types and the dynamics, constraints, and contingencies inherent to tumor evolution. We emphasize the importance of macro-evolutionary leaps, often involving large-scale chromosomal alterations, in driving tumor evolution and metastasis and consider the role of the tumor microenvironment in engendering heterogeneity and drug resistance. We suggest that bold approaches to drug development, harnessing the adaptive properties of the immune-microenvironment while limiting those of the tumor, combined with advances in clinical trial-design, will improve patient outcome.
Collapse
Affiliation(s)
- Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK; Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London NW1 2BU, UK.
| |
Collapse
|
146
|
Mandalà M, Massi D. Immunotolerance as a Mechanism of Resistance to Targeted Therapies in Melanoma. Handb Exp Pharmacol 2017; 249:129-143. [PMID: 28238077 DOI: 10.1007/164_2017_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The therapy of metastatic melanoma (MM) was radically changed by the introduction of inhibitors of BRAF, an oncogene mutated in ≈40-50% of patients. Oncogenic BRAF promotes an immune-compromised tumour microenvironment (TME). Inhibition of MAPK pathway signaling with BRAF (BRAFi) and MEK inhibitors (MEKi) attenuates immune escape and increases the melanoma immunogenicity through multiple mechanisms, including elevation of melanoma antigen expression and improved T cell infiltration and function. These changes sustain the TME for response to immunotherapy. In this chapter we discuss preclinical and clinical data supporting the immunomodulating activities of targeted therapies, the immunotolerance as a mechanisms of resistance and highlight the rationale for novel combinations of targeted therapies and immunotherapies with the potential to significantly improve the future treatment of MM patients.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Piazza OMS 1, 24100, Bergamo, Italy.
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
147
|
Abstract
Metastatic melanoma is associated with poor outcome and is largely refractory to the historic standard of care. In recent years, the development of targeted small-molecule inhibitors and immunotherapy has revolutionised the care and improved the overall survival of these patients. Therapies targeting BRAF and MEK to block the mitogen-activated protein kinase (MAPK) pathway were the first to show unprecedented clinical responses. Following these encouraging results, antibodies targeting immune checkpoint inhibition molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death (PD)-1, and PD-ligand1(PD-L1) demonstrated sustained tumour regression in a significant subset of patients by enabling an anti-tumour immunologic response. Despite these landmark changes in practice, the majority of patients are either intrinsically resistant or rapidly acquire resistance to MAPK pathway inhibitors and immune checkpoint blockade treatment. The lack of response can be driven by mutations and non-mutational events in tumour cells, as well as by changes in the surrounding tumour microenvironment. Common resistance mechanisms bypass the dependence of tumour cells on initial MAPK pathway driver mutations during targeted therapy, and permit evasion of the host immune system to allow melanoma growth and survival following immunotherapy. This highlights the requirement for personalised treatment regimens that take into account patient-specific genetic and immunologic characteristics. Here we review the mechanisms by which melanomas display intrinsic resistance or acquire resistance to targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Matthew Winder
- Skin Cancer and Ageing, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Amaya Virós
- Skin Cancer and Ageing, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK. .,Salford Royal NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
148
|
Falletta P, Sanchez-Del-Campo L, Chauhan J, Effern M, Kenyon A, Kershaw CJ, Siddaway R, Lisle R, Freter R, Daniels MJ, Lu X, Tüting T, Middleton M, Buffa FM, Willis AE, Pavitt G, Ronai ZA, Sauka-Spengler T, Hölzel M, Goding CR. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev 2017; 31:18-33. [PMID: 28096186 PMCID: PMC5287109 DOI: 10.1101/gad.290940.116] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022]
Abstract
The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.
Collapse
Affiliation(s)
- Paola Falletta
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Luis Sanchez-Del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Maike Effern
- Department of Clinical Chemistry and Clinical Pharmacology, Unit for RNA Biology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Amy Kenyon
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Matthew J Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Mark Middleton
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Graham Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ze'ev A Ronai
- Tumour Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Perbys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Tatjana Sauka-Spengler
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Michael Hölzel
- Department of Clinical Chemistry and Clinical Pharmacology, Unit for RNA Biology, University Hospital of Bonn, D-53127 Bonn, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
149
|
Smith MP, Wellbrock C. Molecular Pathways: Maintaining MAPK Inhibitor Sensitivity by Targeting Nonmutational Tolerance. Clin Cancer Res 2016; 22:5966-5970. [PMID: 27797970 PMCID: PMC5300098 DOI: 10.1158/1078-0432.ccr-16-0954] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022]
Abstract
Targeting hyperactive MAPK signaling has proven to be an effective treatment for a variety of different cancers. Responses to the BRAF inhibitors vemurafenib and dabrafenib and the MEK inhibitors trametinib and cobimetinib are, however, transient, and complete remission is rarely observed; rather, outgrowth of resistant clones within progressed tumors appears inevitable. These resistant tumors display great heterogeneity, which poses a major challenge to any salvage therapy. Recent focus has, therefore, been on the early dynamics of inhibitor response during tumor regression. During this time, cells can persist in an adapted tolerant state, which results in a phase of nonmutational drug tolerance. In this article, we discuss how inhibition of the MAPK pathway leads to an adaptive rewiring that evolves from the relief of immediate negative feedback loops to short-term gene expression changes and adaptation of intracellular signaling. Tolerance can also be mediated by external signaling from the tumor microenvironment, which itself adapts upon treatment and the selection for cells with an innate drug-tolerant phenotype. In preclinical models, combination treatment with receptor tyrosine kinase (RTK) inhibitors (lapatinib and dasatinib), histone deacetylase (HDAC) inhibitors (vorinostat and entinostat), or drugs targeting cancer-specific mechanisms (nelfinavir in melanoma) can overcome this early tolerance. A better understanding of how nonmutational tolerance is created and supported may hold the key to better combinational strategies that maintain drug sensitivity. Clin Cancer Res; 22(24); 5966-70. ©2016 AACR.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
150
|
Lin WM, Fisher DE. Signaling and Immune Regulation in Melanoma Development and Responses to Therapy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:75-102. [PMID: 27959628 DOI: 10.1146/annurev-pathol-052016-100208] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma is a complex and genomically diverse malignancy, and new genes and signaling pathways involved in pathogenesis continue to be discovered. Mechanistic insights into gene and immune regulation in melanoma have led to the development of numerous successful and innovative pharmacologic agents over recent years. Multiple targeted therapies and immunotherapies have already entered the clinic, becoming new standards of care and transforming the prognosis for many patients with malignant melanoma. In this review, we provide an overview of the current understanding of signaling and immune regulation in melanoma and implications for responses to treatment, organized in the framework of hallmark characteristics in cancer.
Collapse
Affiliation(s)
- William M Lin
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114;
| |
Collapse
|