101
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
102
|
Bakalova R, Lazarova D, Sumiyoshi A, Shibata S, Zhelev Z, Nikolova B, Semkova S, Vlaykova T, Aoki I, Higashi T. Redox-Cycling "Mitocans" as Effective New Developments in Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24098435. [PMID: 37176145 PMCID: PMC10179378 DOI: 10.3390/ijms24098435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Our study proposes a pharmacological strategy to target cancerous mitochondria via redox-cycling "mitocans" such as quinone/ascorbate (Q/A) redox-pairs, which makes cancer cells fragile and sensitive without adverse effects on normal cells and tissues. Eleven Q/A redox-pairs were tested on cultured cells and cancer-bearing mice. The following parameters were analyzed: cell proliferation/viability, mitochondrial superoxide, steady-state ATP, tissue redox-state, tumor-associated NADH oxidase (tNOX) expression, tumor growth, and survival. Q/A redox-pairs containing unprenylated quinones exhibited strong dose-dependent antiproliferative and cytotoxic effects on cancer cells, accompanied by overproduction of mitochondrial superoxide and accelerated ATP depletion. In normal cells, the same redox-pairs did not significantly affect the viability and energy homeostasis, but induced mild mitochondrial oxidative stress, which is well tolerated. Benzoquinone/ascorbate redox-pairs were more effective than naphthoquinone/ascorbate, with coenzyme Q0/ascorbate exhibiting the most pronounced anticancer effects in vitro and in vivo. Targeted anticancer effects of Q/A redox-pairs and their tolerance to normal cells and tissues are attributed to: (i) downregulation of quinone prenylation in cancer, leading to increased mitochondrial production of semiquinone and, consequently, superoxide; (ii) specific and accelerated redox-cycling of unprenylated quinones and ascorbate mainly in the impaired cancerous mitochondria due to their redox imbalance; and (iii) downregulation of tNOX.
Collapse
Affiliation(s)
- Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
- Faculty of Medicine, Sofia University, St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Dessislava Lazarova
- Faculty of Medicine, Sofia University, St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Akira Sumiyoshi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Zhivko Zhelev
- Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Severina Semkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tatyana Vlaykova
- Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
103
|
Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol 2023; 102:151321. [PMID: 37137199 DOI: 10.1016/j.ejcb.2023.151321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The ability of cancer cells to finally overcome various lines of treatment in due course has always baffled the scientific community. Even with the most promising therapies, relapse is ultimately seen, and this resilience has proved to be a major hurdle in the management of cancer. Accumulating evidence now attributes this resilience to plasticity. Plasticity is the ability of cells to change their properties and is substantial as it helps in normal tissue regeneration or post-injury repair processes. It also helps in the overall maintenance of homeostasis. Unfortunately, this critical ability of cells, when activated incorrectly, can lead to numerous diseases, including cancer. Therefore, in this review, we focus on the plasticity aspect with an emphasis on cancer stem cells (CSCs). We discuss the various forms of plasticity that provide survival advantages to CSCs. Moreover, we explore various factors that affect plasticity. Furthermore, we provide the therapeutic implications of plasticity. Finally, we provide an insight into the future targeted therapies involving plasticity for better clinical outcomes.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nachiket Kelkar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Carol Tresa Johnson
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
104
|
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, Fiore A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 2023; 8:137. [PMID: 36949046 PMCID: PMC10033890 DOI: 10.1038/s41392-023-01380-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Federica Danzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
105
|
Li Q, Miao J, Shi N, Lin C, Hu X, Shen Y. The lncRNA XIST/miR-29b-3p/COL3A1 axis regulates central carbon metabolism in head and neck squamous cell carcinoma and is associated with poor tumor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:165. [PMID: 36923098 PMCID: PMC10009572 DOI: 10.21037/atm-23-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Background Recent evidence shows that COL3A1 promotes the progression of many types of cancer. The purpose of our study is to explore the correlation between COL3A1 and the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and its potential mechanism. Methods We initially screened the differentially expressed gene COL3A1 in The Cancer Genome Atlas (TCGA) database, and the association between the expression level of COL3A1, prognosis, and the clinical parameters of HNSCC patients was verified. A nomogram was constructed according to the multivariate analysis results. Next, a heatmap of COL3A1 co-expressed genes was constructed in TCGA database. The TargetScan database is used to explore the microRNAs (miRNA) related to COL3A1. The starBase database was used to explore and predict the long non-coding RNAs (lncRNAs) that the candidate miRNAs might bind to. Finally, the potential mechanism of action was investigated using Gene Set Enrichment Analysis (GSEA). Results COL3A1 expression is elevated in HNSCC tumor tissues, and HNSCC patients with high COL3A1 expression have worse prognostic factors. COL3A1 was positively correlated with the central carbon metabolism-related proteins: epidermal growth factor receptor (EGFR), phosphoglycerate mutase 1 (PGAM1), hexokinase 3 (HK3), and phosphofructokinase, platelet (PFKP). The TargetScan database showed that the best candidate miRNA for binding to the three prime untranslated region (3'UTR) end of COL3A1 mRNA was hsa-miR-29b-3p, which was negatively correlated with COL3A1. The starBase database showed that the lncRNA X Inactive Specific Transcript (lncRNA XIST) was the best candidate upstream non-coding RNA for regulating hsa-miR-29b-3p. GSEA showed that COL3A1 may be involved in the poor prognosis of HNSCC by participating in carbon metabolism, glucose metabolism, oxidative stress, and the Wingless-Type MMTV Integration Site Family (Wnt) and vascular endothelial growth factor A-vascular endothelial growth factor receptor 2 (VEGFA-VEGFR2) pathways. Conclusions Low COL3A1 expression can be employed as a new HNSCC predictive biomarker, and the prognosis of HNSCC patients with lower COL3A1 expression can be greatly improved. At the same time, we found that the lncRNA XIST/miR-29b-3p/COL3A1 axis may regulate the central carbon metabolism of HNSCC and is associated with poor prognosis. These findings point to a potential target for developing HNSCC anticancer therapies.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jie Miao
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Shi
- Department of Stomatology, Shanghai Jiao Tong University School of Medicine St. Luke’s Hospital, Shanghai, China
| | - Chaosheng Lin
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Hu
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
106
|
Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043710. [PMID: 36835122 PMCID: PMC9964410 DOI: 10.3390/ijms24043710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma is today the sixth leading cause of cancer-related death worldwide, despite the decreased incidence of chronic hepatitis infections. This is due to the increased diffusion of metabolic diseases such as the metabolic syndrome, diabetes, obesity, and nonalcoholic steatohepatitis (NASH). The current protein kinase inhibitor therapies in HCC are very aggressive and not curative. From this perspective, a shift in strategy toward metabolic therapies may represent a promising option. Here, we review current knowledge on metabolic dysregulation in HCC and therapeutic approaches targeting metabolic pathways. We also propose a multi-target metabolic approach as a possible new option in HCC pharmacology.
Collapse
|
107
|
Li Y, Chen H, Xie X, Yang B, Wang X, Zhang J, Qiao T, Guan J, Qiu Y, Huang YX, Tian D, Yao X, Lu D, Koeffler HP, Zhang Y, Yin D. PINK1-Mediated Mitophagy Promotes Oxidative Phosphorylation and Redox Homeostasis to Induce Drug-Tolerant Persister Cancer Cells. Cancer Res 2023; 83:398-413. [PMID: 36480196 DOI: 10.1158/0008-5472.can-22-2370] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
UNLABELLED The drug-tolerant persister (DTP) state enables cancer cells to evade cytotoxic stress from anticancer therapy. However, the mechanisms governing DTP generation remain poorly understood. Here, we observed that lung adenocarcinoma (LUAD) cells and organoids entered a quiescent DTP state to survive MAPK inhibitor treatment. DTP cells following MAPK inhibition underwent a metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS). PTEN-induced kinase 1 (PINK1), a serine/threonine kinase that initiates mitophagy, was upregulated to maintain mitochondrial homeostasis during DTP generation. PINK1-mediated mitophagy supported DTP cell survival and contributed to poor prognosis. Mechanistically, MAPK pathway inhibition resulted in MYC-dependent transcriptional upregulation of PINK1, leading to mitophagy activation. Mitophagy inhibition using either clinically applicable chloroquine or depletion of PINK1 eradicated drug tolerance and allowed complete response to MAPK inhibitors. This study uncovers PINK1-mediated mitophagy as a novel tumor protective mechanism for DTP generation, providing a therapeutic opportunity to eradicate DTP and achieve complete responses. SIGNIFICANCE DTP cancer cells that cause relapse after anticancer therapy critically depend on PINK1-mediated mitophagy and metabolic reprogramming, providing a therapeutic opportunity to eradicate persister cells to prolong treatment efficacy.
Collapse
Affiliation(s)
- Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, P. R. China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jingyuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Tian Qiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jiao Guan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yong-Xin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Duanqing Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xinyi Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, Los Angeles, California
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
108
|
Hou J, Guo P, Lu Y, Jin X, Liang K, Zhao N, Xue S, Zhou C, Wang G, Zhu X, Hong H, Chen Y, Lu H, Wang W, Xu C, Han Y, Cai S, Liu Y. A prognostic 15-gene model based on differentially expressed genes among metabolic subtypes in diffuse large B-cell lymphoma. Pathol Oncol Res 2023; 29:1610819. [PMID: 36816541 PMCID: PMC9931744 DOI: 10.3389/pore.2023.1610819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
The outcomes of patients with diffuse large B-cell lymphoma (DLBCL) vary widely, and about 40% of them could not be cured by the standard first-line treatment, R-CHOP, which could be due to the high heterogeneity of DLBCL. Here, we aim to construct a prognostic model based on the genetic signature of metabolic heterogeneity of DLBCL to explore therapeutic strategies for DLBCL patients. Clinical and transcriptomic data of one training and four validation cohorts of DLBCL were obtained from the GEO database. Metabolic subtypes were identified by PAM clustering of 1,916 metabolic genes in the 7 major metabolic pathways in the training cohort. DEGs among the metabolic clusters were then analyzed. In total, 108 prognosis-related DEGs were identified. Through univariable Cox and LASSO regression analyses, 15 DEGs were used to construct a risk score model. The overall survival (OS) and progression-free survival (PFS) of patients with high risk were significantly worse than those with low risk (OS: HR 2.86, 95%CI 2.04-4.01, p < 0.001; PFS: HR 2.42, 95% CI 1.77-3.31, p < 0.001). This model was also associated with OS in the four independent validation datasets (GSE10846: HR 1.65, p = 0.002; GSE53786: HR 2.05, p = 0.02; GSE87371: HR 1.85, p = 0.027; GSE23051: HR 6.16, p = 0.007) and PFS in the two validation datasets (GSE87371: HR 1.67, p = 0.033; GSE23051: HR 2.74, p = 0.049). Multivariable Cox analysis showed that in all datasets, the risk model could predict OS independent of clinical prognosis factors (p < 0.05). Compared with the high-risk group, patients in the low-risk group predictively respond to R-CHOP (p = 0.0042), PI3K inhibitor (p < 0.05), and proteasome inhibitor (p < 0.05). Therefore, in this study, we developed a signature model of 15 DEGs among 3 metabolic subtypes, which could predict survival and drug sensitivity in DLBCL patients.
Collapse
Affiliation(s)
- Jun Hou
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Guo
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujiao Lu
- Burning Rock Biotech, Guangzhou, China
| | | | - Ke Liang
- Burning Rock Biotech, Guangzhou, China
| | - Na Zhao
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shunxu Xue
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengmin Zhou
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xin Zhu
- Burning Rock Biotech, Guangzhou, China
| | - Huangming Hong
- Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yungchang Chen
- Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | | | - Yang Liu
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Yang Liu, ,
| |
Collapse
|
109
|
Gnocchi D, Sabbà C, Mazzocca A. Lactic acid fermentation: A maladaptive mechanism and an evolutionary throwback boosting cancer drug resistance. Biochimie 2023; 208:180-185. [PMID: 36638953 DOI: 10.1016/j.biochi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
110
|
Tsai CH, Chuang YM, Li X, Yu YR, Tzeng SF, Teoh ST, Lindblad KE, Di Matteo M, Cheng WC, Hsueh PC, Kao KC, Imrichova H, Duan L, Gallart-Ayala H, Hsiao PW, Mazzone M, Ivanesevic J, Liu X, de Visser KE, Lujambio A, Lunt SY, Kaech SM, Ho PC. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metab 2023; 35:118-133.e7. [PMID: 36599297 PMCID: PMC10375941 DOI: 10.1016/j.cmet.2022.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023]
Abstract
Immunoediting sculpts immunogenicity and thwarts host anti-tumor responses in tumor cells during tumorigenesis; however, it remains unknown whether metabolic programming of tumor cells can be guided by immunosurveillance. Here, we report that T cell-mediated immunosurveillance in early-stage tumorigenesis instructs c-Myc upregulation and metabolic reprogramming in tumor cells. This previously unexplored tumor-immune interaction is controlled by non-canonical interferon gamma (IFNγ)-STAT3 signaling and supports tumor immune evasion. Our findings uncover that immunoediting instructs deregulated bioenergetic programs in tumor cells to empower them to disarm the T cell-mediated immunosurveillance by imposing metabolic tug-of-war between tumor and infiltrating T cells and forming the suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Chin-Hsien Tsai
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Ming Chuang
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Xiaoyun Li
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Yi-Ru Yu
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Wan-Chen Cheng
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Pei-Chun Hsueh
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Kung-Chi Kao
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Wien, Austria
| | - Likun Duan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, Taiwan
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Julijana Ivanesevic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Wien, Austria
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
111
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
112
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
113
|
Targets, Mechanisms and Cytotoxicity of Half-Sandwich Ir(III) Complexes Are Modulated by Structural Modifications on the Benzazole Ancillary Ligand. Cancers (Basel) 2022; 15:cancers15010107. [PMID: 36612104 PMCID: PMC9818021 DOI: 10.3390/cancers15010107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancers are driven by multiple genetic mutations but evolve to evade treatments targeting specific mutations. Nonetheless, cancers cannot evade a treatment that targets mitochondria, which are essential for tumor progression. Iridium complexes have shown anticancer properties, but they lack specificity for their intracellular targets, leading to undesirable side effects. Herein we present a systematic study on structure-activity relationships of eight arylbenzazole-based Iridium(III) complexes of type [IrCl(Cp*)], that have revealed the role of each atom of the ancillary ligand in the physical chemistry properties, cytotoxicity and mechanism of biological action. Neutral complexes, especially those bearing phenylbenzimidazole (HL1 and HL2), restrict the binding to DNA and albumin. One of them, complex 1[C,NH-Cl], is the most selective one, does not bind DNA, targets exclusively the mitochondria, disturbs the mitochondria membrane permeability inducing proton leak and increases ROS levels, triggering the molecular machinery of regulated cell death. In mice with orthotopic lung tumors, the administration of complex 1[C,NH-Cl] reduced the tumor burden. Cancers are more vulnerable than normal tissues to a treatment that harnesses mitochondrial dysfunction. Thus, complex 1[C,NH-Cl] characterization opens the way to the development of new compounds to exploit this vulnerability.
Collapse
|
114
|
Sciacovelli M, Dugourd A, Jimenez LV, Yang M, Nikitopoulou E, Costa ASH, Tronci L, Caraffini V, Rodrigues P, Schmidt C, Ryan DG, Young T, Zecchini VR, Rossi SH, Massie C, Lohoff C, Masid M, Hatzimanikatis V, Kuppe C, Von Kriegsheim A, Kramann R, Gnanapragasam V, Warren AY, Stewart GD, Erez A, Vanharanta S, Saez-Rodriguez J, Frezza C. Dynamic partitioning of branched-chain amino acids-derived nitrogen supports renal cancer progression. Nat Commun 2022; 13:7830. [PMID: 36539415 PMCID: PMC9767928 DOI: 10.1038/s41467-022-35036-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is critical for tumor initiation and progression. However, the exact impact of specific metabolic changes on cancer progression is poorly understood. Here, we integrate multimodal analyses of primary and metastatic clonally-related clear cell renal cancer cells (ccRCC) grown in physiological media to identify key stage-specific metabolic vulnerabilities. We show that a VHL loss-dependent reprogramming of branched-chain amino acid catabolism sustains the de novo biosynthesis of aspartate and arginine enabling tumor cells with the flexibility of partitioning the nitrogen of the amino acids depending on their needs. Importantly, we identify the epigenetic reactivation of argininosuccinate synthase (ASS1), a urea cycle enzyme suppressed in primary ccRCC, as a crucial event for metastatic renal cancer cells to acquire the capability to generate arginine, invade in vitro and metastasize in vivo. Overall, our study uncovers a mechanism of metabolic flexibility occurring during ccRCC progression, paving the way for the development of novel stage-specific therapies.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- Department of Molecular and Clinical Cancer Medicine; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Aurelien Dugourd
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lorea Valcarcel Jimenez
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- Matterworks, Somerville, MA, 02143, USA
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Veronica Caraffini
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Paulo Rodrigues
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany
| | - Dylan Gerard Ryan
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Timothy Young
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Vincent R Zecchini
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Sabrina H Rossi
- Early Detection Programme, CRUK Cambridge Centre, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Charlie Massie
- Early Detection Programme, CRUK Cambridge Centre, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Caroline Lohoff
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Maria Masid
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alex Von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincent Gnanapragasam
- Department of Surgery, University of Cambridge and Cambridge University Hospitals NHS Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Y Warren
- Department of Histopathology-Cambridge University Hospitals NHS, Box 235 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge and Cambridge University Hospitals NHS Cambridge Biomedical Campus, Cambridge, UK
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sakari Vanharanta
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197 Biomedical Campus, Cambridge, CB2 0XZ, UK.
- CECAD Research Center, Faculty of Medicine-University Hospital Cologne, 50931, Cologne, Germany.
| |
Collapse
|
115
|
Rai Y, Singh S, Pandey S, Sah D, Sah RK, Roy BG, Dwarakanath BS, Bhatt AN. Mitochondrial uncoupler DNP induces coexistence of dual-state hyper-energy metabolism leading to tumor growth advantage in human glioma xenografts. Front Oncol 2022; 12:1063531. [PMID: 36591481 PMCID: PMC9800826 DOI: 10.3389/fonc.2022.1063531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Cancer bioenergetics is an essential hallmark of neoplastic transformation. Warburg postulated that mitochondrial OXPHOS is impaired in cancer cells, leading to aerobic glycolysis as the primary metabolic pathway. However, mitochondrial function is altered but not entirely compromised in most malignancies, and that mitochondrial uncoupling is known to increase the carcinogenic potential and modifies treatment response by altering metabolic reprogramming. Our earlier study showed that transient DNP exposure increases glycolysis in human glioma cells (BMG-1). The current study investigated the persistent effect of DNP on the energy metabolism of BMG-1 cells and its influence on tumor progression in glioma xenografts. Methods BMG-1 cells were treated with 2,4-dinitrophenol (DNP) in-vitro, to establish the OXPHOS-modified (OPM-BMG) cells. Further cellular metabolic characterization was carried out in both in-vitro cellular model and in-vivo tumor xenografts to dissect the role of metabolic adaptation in these cells and compared them with their parental phenotype. Results and Discussion Chronic exposure to DNP in BMG-1 cells resulted in dual-state hyper-energy metabolism with elevated glycolysis++ and OXPHOS++ compared to parental BMG-1 cells with low glycolysis+ and OXPHOS+. Tumor xenograft of OPM-BMG cells showed relatively increased tumor-forming potential and accelerated tumor growth in nude mice. Moreover, compared to BMG-1, OPM-BMG tumor-derived cells also showed enhanced migration and invasion potential. Although mitochondrial uncouplers are proposed as a valuable anti-cancer strategy; however, our findings reveal that prolonged exposure to uncouplers provides tumor growth advantage over the existing glioma phenotype that may lead to poor clinical outcomes.
Collapse
Affiliation(s)
- Yogesh Rai
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Saurabh Singh
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sanjay Pandey
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Dhananjay Sah
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raj Kumar Sah
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B. G. Roy
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Bilikere S. Dwarakanath
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India,Indian Academy Degree College, Bengaluru, India
| | - Anant Narayan Bhatt
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India,*Correspondence: Anant Narayan Bhatt, ;
| |
Collapse
|
116
|
Parma B, Wurdak H, Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat 2022; 65:100888. [DOI: 10.1016/j.drup.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
117
|
Ying M, Hu X. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Semin Cancer Biol 2022; 87:32-47. [PMID: 36374644 DOI: 10.1016/j.semcancer.2022.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells are characterized by sustained proliferation, which requires a huge demand of fuels to support energy production and biosynthesis. Energy is produced by the oxidation of the fuels during catabolism, and biosynthesis is achieved by the reduction of smaller units or precursors. Therefore, the oxidation-reduction (redox) reactions in cancer cells are more active compared to those in the normal counterparts. The higher activity of redox metabolism also induces a more severe oxidative stress, raising the question of how cancer cells maintain the redox balance. In this review, we overview the redox metabolism of cancer cells in an electron-tracing view. The electrons are derived from the nutrients in the tumor microenvironment and released during catabolism. Most of the electrons are transferred to NAD(P) system and then directed to four destinations: energy production, ROS generation, reductive biosynthesis and antioxidant system. The appropriate distribution of these electrons achieved by the function of redox regulation network is essential to maintain redox homeostasis in cancer cells. Interfering with the electron distribution and disrupting redox balance by targeting the redox regulation network may provide therapeutic implications for cancer treatment.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| |
Collapse
|
118
|
Cell Type-Specific Metabolic Response to Amino Acid Starvation Dictates the Role of Sestrin2 in Regulation of mTORC1. Cells 2022; 11:cells11233863. [PMID: 36497120 PMCID: PMC9736985 DOI: 10.3390/cells11233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Targeting cancer metabolism has become one of the strategies for a rational anti-tumor therapy. However, cellular plasticity, driven by a major regulator of cellular growth and metabolism, mTORC1, often leads toward treatment resistance. Sestrin2, a stress-inducible protein, has been described as an mTORC1 inhibitor upon various types of stress signals. Immune assays and online measurements of cellular bioenergetics were employed to investigate the nature of Sestrin2 regulation, and finally, by silencing the SESN2 gene, to identify the role of induced Sestrin2 upon a single amino acid deprivation in cancer cells of various origins. Our data suggest that a complex interplay of either oxidative, energetic, nutritional stress, or in combination, play a role in Sestrin2 regulation upon single amino acid deprivation. Therefore, cellular metabolic background and sequential metabolic response dictate Sestrin2 expression in the absence of an amino acid. While deprivations of essential amino acids uniformly induce Sestrin2 levels, non-essential amino acids regulate Sestrin2 differently, drawing a characteristic Sestrin2 expression fingerprint, which could serve as a first indication of the underlying cellular vulnerability. Finally, we show that canonical GCN2-ATF4-mediated Sestrin2 induction leads to mTORC1 inhibition only in amino acid auxotroph cells, where the amino acid cannot be replenished by metabolic reprogramming.
Collapse
|
119
|
THBS1, a fatty acid-related metabolic gene, can promote the development of laryngeal cancer. Sci Rep 2022; 12:18809. [PMID: 36335208 PMCID: PMC9637133 DOI: 10.1038/s41598-022-23500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022] Open
Abstract
Laryngeal cancer is the second most prevalent head and neck tumor and it is one of the most common malignancies of the upper respiratory tract. Fatty acid metabolism affects cancer cell biology in several ways, and alterations in fatty acid metabolism are characteristic of both tumorigenesis and metastasis. Despite advances in laryngeal cancer diagnosis and treatment over the years, there has been no significant improvement in survival or mortality. Studying the role of fatty acid metabolism-related genes in laryngeal cancer will facilitate our search for valuable biomarkers to guide prognostic management and treatment selection. We constructed a prognostic risk score model for fatty acid metabolism-related genes by downloading and analyzing laryngeal cancers from the TCGA and GEO databases. We predicted survival outcomes of laryngeal cancer patients using a prognostic risk score model of fatty acid metabolism-related genes and analyzed the resistance of laryngeal cancer in different individuals to multiple drugs. In addition, the relationship between the prognostic risk score model and cellular infiltration characteristics of the tumor microenvironment were investigated. Through the prognostic risk scoring model, the genes with risk-prompting effect and related to prognosis were screened out for further research. Through the study of gene expression levels in the TCGA database, we screened out 120 differentially expressed fatty acid metabolism genes. LASSO-Cox and Cox regression analyses identified nine genes associated with prognosis to construct a prognostic risk score model for genes related to fatty acid metabolism. Both TCGA and GEO confirmed that samples in the high-risk score group had a worse prognosis than those in the low-risk score group. We found significant differences between the high-risk and low-risk groups for 22 drugs (P < 0.05). In addition, we found differences in immune cell infiltration between the different risk score groups. Finally, through the risk assessment model, combined with multiple databases, THBS1, a high-risk and prognosis-related gene, was screened. We also found that THBS1 could promote the migration, invasion and proliferation of laryngeal cancer cells by constructing THBS1 knockout cell lines. In our study, we identified key fatty acid-related genes differentially expressed in laryngeal carcinoma that can be used to adequately predict prognosis using a comprehensive bioinformatic experimental approach. It was also found that THBS1, a high-risk and prognosis-related gene, may regulate the occurrence and development of laryngeal cancer through fatty acid metabolism, which has further helped us to explore the role of fatty acid metabolism genes in laryngeal cancer.
Collapse
|
120
|
Kalyanaraman B. NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol 2022; 57:102497. [PMID: 36242913 PMCID: PMC9563555 DOI: 10.1016/j.redox.2022.102497] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) has been used as a direct scavenger of reactive oxygen species (hydrogen peroxide, in particular) and an antioxidant in cancer biology and immuno-oncology. NAC is the antioxidant drug most frequently employed in studies using tumor cells, immune cells, and preclinical mouse xenografts. Most studies use redox-active fluorescent probes such as dichlorodihydrofluorescein, hydroethidine, mitochondria-targeted hydroethidine, and proprietary kit-based probes (i.e., CellROX Green and CellROX Red) for intracellular detection of superoxide or hydrogen peroxide. Inhibition of fluorescence by NAC was used as a key experimental observation to support the formation of reactive oxygen species and redox mechanisms proposed for ferroptosis, tumor metastasis, and redox signaling in the tumor microenvironment. Reactive oxygen species such as superoxide and hydrogen peroxide stimulate or abrogate tumor cells and immune cells depending on multiple factors. Understanding the mechanism of antioxidants is crucial for interpretation of the results. Because neither NAC nor the fluorescent probes indicated above react directly with hydrogen peroxide, it is critically important to reinterpret the results to advance our understanding of the mechanism of action of NAC and shed additional mechanistic insight on redox-regulated signaling in tumor biology. To this end, this review is focused on how NAC could affect multiple pathways in cancer cells, including iron signaling, ferroptosis, and the glutathione-dependent antioxidant and redox signaling mechanism, and how NAC could inhibit oxidation of the fluorescent probes through multiple mechanisms.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
121
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
122
|
Zakirova NF, Kondrashova AS, Golikov MV, Ivanova ON, Ivanov AV, Isaguliants MG, Bayurova EO. Expression of HIV-1 Reverse Transcriptase in Murine Cancer Cells Increases Mitochondrial Respiration. Mol Biol 2022; 56:723-734. [DOI: 10.1134/s0026893322050168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 04/17/2025]
|
123
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
124
|
Ortmayr K, Zampieri M. Sorting-free metabolic profiling uncovers the vulnerability of fatty acid β-oxidation in in vitro quiescence models. Mol Syst Biol 2022; 18:e10716. [PMID: 36094015 PMCID: PMC9465820 DOI: 10.15252/msb.202110716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Quiescent cancer cells are rare nondiving cells with the unique ability to evade chemotherapies and resume cell division after treatment. Despite the associated risk of cancer recurrence, how cells can reversibly switch between rapid proliferation and quiescence remains a long-standing open question. By developing a unique methodology for the cell sorting-free separation of metabolic profiles in cell subpopulations in vitro, we unraveled metabolic characteristics of quiescent cells that are largely invariant to basal differences in cell types and quiescence-inducing stimuli. Consistent with our metabolome-based analysis, we show that impairing mitochondrial fatty acid β-oxidation (FAO) can induce apoptosis in quiescence-induced cells and hamper their return to proliferation. Our findings suggest that in addition to mediating energy and redox balance, FAO can play a role in preventing the buildup of toxic intermediates during transitioning to quiescence. Uncovering metabolic strategies to enter, maintain, and exit quiescence can reveal fundamental principles in cell plasticity and new potential therapeutic targets beyond cancer.
Collapse
Affiliation(s)
- Karin Ortmayr
- Institute of Molecular Systems Biology, ETHZürichSwitzerland
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETHZürichSwitzerland
| |
Collapse
|
125
|
Chen L, Yang CS, Chen SD, Zhou QX, Wang GQ, Cai SL, Li WH, Luo HZ. Multi-omics characterization of the unsaturated fatty acid biosynthesis pathway in colon cancer. Am J Cancer Res 2022; 12:3985-4000. [PMID: 36119831 PMCID: PMC9442000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023] Open
Abstract
The biosynthesis of unsaturated fatty acids is involved in the initiation and progression of colon adenocarcinoma (COAD). In this study, we aimed to investigate the multi-omics characteristics of unsaturated fatty acid biosynthesis-related genes and explore their prognostic value in colon cancer by analyzing the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. An unsaturated fatty acid biosynthesis pathway related-genes enrichment score (BUFAS) was constructed utilizing the single sample gene set enrichment analysis (ssGSEA). We discovered that a high BUFAS was associated with longer overall survival (OS) in both the training and the validation sets. Multivariable analysis including the clinical characteristics further verified the independent prognostic value of the BUFAS in both the TCGA-COAD and the GSE39582 datasets. In addition, GSEA analysis revealed that BUFAS was positively associated with several signaling pathways, including MTORC1, peroxisome, and pathways related to fatty acid metabolism, while was negatively associated with other signaling pathways, such as hedgehog, NOTCH, and Wnt/beta-catenin pathway. Furthermore, in the COAD cell lines of the Genomics of Drug Sensitivity in Cancer (GDSC) database, we found that BUFAS was positively correlated with the drug sensitivities of cisplatin, gemcitabine, camptothecin, lapatinib, and afatinib, while was negatively correlated with that of ponatinib. Moreover, in the COAD single-cell transcriptomic dataset (GSE146771), the BUFAS varied among different cell types and was enriched in mast cells and fibroblasts. Taken together, the BUFAS we constructed could be used as an independent prognostic signature in predicting the OS and drug resistance of colon cancer. Unsaturated fatty acid biosynthesis pathway might serve as potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Ling Chen
- Department of Gastrointestinal Surgery, Xiangya HospitalNo. 87 Xiangya Road, Changsha, Hunan, China
| | - Chang-Shun Yang
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical UniversityNo. 134 East Street, Fuzhou, Fujian, China
| | - Si-Dong Chen
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Qiao-Xia Zhou
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Guo-Qiang Wang
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Shang-Li Cai
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Wei-Hua Li
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical UniversityNo. 134 East Street, Fuzhou, Fujian, China
| | - Hong-Zhi Luo
- Department of Tumor Surgery, Zhongshan City People’s HospitalNo. 2 Sunwen Middle Road, Zhongshan, Guangdong, China
| |
Collapse
|
126
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
127
|
Gnocchi D, Kurzyk A, Mintrone A, Lentini G, Sabbà C, Mazzocca A. Inhibition of LPAR6 overcomes sorafenib resistance by switching glycolysis into oxidative phosphorylation in hepatocellular carcinoma. Biochimie 2022; 202:180-189. [PMID: 35952946 DOI: 10.1016/j.biochi.2022.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most threatening tumours in the world today. Pharmacological treatments for HCC mainly rely on protein kinase inhibitors, such as sorafenib and regorafenib. Even so, these approaches exhibit side effects and acquired drug resistance, which is an obstacle to HCC treatment. We have previously shown that selective lysophosphatidic acid receptor 6 (LPAR6) chemical antagonists inhibit HCC growth. Here, we investigated whether LPAR6 mediates resistance to sorafenib by affecting energy metabolism in HCC. To uncover the role of LPAR6 in drug resistance and cancer energy metabolism, we used a gain-of-function and loss-of-function approach in 2D tissue and 3D spheroids. LPAR6 was ectopically expressed in HLE cells (HLE-LPAR6) and knocked down in HepG2 (HepG2 LPAR6-shRNA). Measurements of oxygen consumption and lactate and pyruvate production were performed to assess the energy metabolism response of HCC cells to sorafenib treatment. We found that LPAR6 mediates the resistance of HCC cells to sorafenib by promoting lactic acid fermentation at the expense of oxidative phosphorylation (OXPHOS) and that the selective LPAR6 antagonist 9-xanthenyl acetate (XAA) can effectively overcome this resistance. Our study shows for the first time that an LPAR6-mediated metabolic mechanism supports sorafenib resistance in HCC and proposes a pharmacological approach to overcome it.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy
| | - Agata Kurzyk
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Antonella Mintrone
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4 - 70125, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
128
|
Van Nyen T, Planque M, van Wagensveld L, Duarte JAG, Zaal EA, Talebi A, Rossi M, Körner PR, Rizzotto L, Moens S, De Wispelaere W, Baiden-Amissah REM, Sonke GS, Horlings HM, Eelen G, Berardi E, Swinnen JV, Berkers CR, Carmeliet P, Lambrechts D, Davidson B, Agami R, Fendt SM, Annibali D, Amant F. Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nat Commun 2022; 13:4578. [PMID: 35931688 PMCID: PMC9355973 DOI: 10.1038/s41467-022-32272-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.
Collapse
Affiliation(s)
- Tom Van Nyen
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Lilian van Wagensveld
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht, The Netherlands
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
| | - Joao A G Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Pierre-René Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Lara Rizzotto
- TRACE PDX Platform, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Stijn Moens
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Regina E M Baiden-Amissah
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Emanuele Berardi
- Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Ben Davidson
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Erasmus MC, Department of Genetics, Rotterdam University, 3015 GD, Rotterdam, The Netherlands
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Frédéric Amant
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven and Department of Oncology, 3000, Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, The Netherlands.
| |
Collapse
|
129
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
130
|
Pei Y, Ning R, Hu W, Li P, Zhang Z, Deng Y, Hong Z, Sun Y, Guo X, Zhang Q. Carbon Ion Radiotherapy Induce Metabolic Inhibition After Functional Imaging-Guided Simultaneous Integrated Boost for Prostate Cancer. Front Oncol 2022; 12:845583. [PMID: 35936669 PMCID: PMC9354483 DOI: 10.3389/fonc.2022.845583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeAs local recurrence remains a challenge and the advantages of the simultaneous integrated boost (SIB) technique have been validated in photon radiotherapy, we applied the SIB technique to CIRT. The aim was to investigate the metabolomic changes of the CIRT with concurrent androgen deprivation therapy (ADT) in localized prostate cancer (PCa) and the unique metabolic effect of the SIB technique.Material and MethodsThis study enrolled 24 pathologically confirmed PCa patients. All patients went through CIRT with concurrent ADT. The gross target volume (GTV) boost was defined as positive lesions on both 68Ga-PSMA PET/CT and mpMRI images. Urine samples collected before and after CIRT were analyzed by the Q-TOF UPLC-MS/MS system. R platform and MetDNA were used for peak detection and identification. Statistical analysis and metabolic pathway analysis were performed on Metaboanalyst.ResultsThe metabolite profiles were significantly altered after CIRT. The most significantly altered metabolic pathway is PSMA participated alanine, aspartate and glutamate metabolism. Metabolites in this pathway showed a trend to be better suppressed in the SIB group. A total of 11 identified metabolites were significantly discriminative between two groups and all of them were better down-regulated in the SIB group. Meanwhile, among these metabolites, three metabolites in DNA damage and repair related purine metabolism were down-regulated to a greater extent in the SIB group.ConclusionMetabolic dysfunction was one of the typical characteristics of PCa. CIRT with ADT showed a powerful inhibition of PCa metabolism, especially in PSMA participated metabolic pathway. The SIB CIRT showed even better performance on down-regulation of most metabolism than uniform-dose-distribution CIRT. Meanwhile, the SIB CIRT also showed its unique superiority to inhibit purine metabolism. PSMA PET/CT guided SIB CIRT showed its potentials to further benefit PCa patients.
Collapse
Affiliation(s)
- Yulei Pei
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
| | - Renli Ning
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
| | - Yong Deng
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhengshan Hong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- *Correspondence: Qing Zhang, ; Xiaomao Guo, ; Yun Sun,
| | - Xiaomao Guo
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- *Correspondence: Qing Zhang, ; Xiaomao Guo, ; Yun Sun,
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- *Correspondence: Qing Zhang, ; Xiaomao Guo, ; Yun Sun,
| |
Collapse
|
131
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
132
|
Parker AL, Toulabi L, Oike T, Kanke Y, Patel D, Tada T, Taylor S, Beck JA, Bowman E, Reyzer ML, Butcher D, Kuhn S, Pauly GT, Krausz KW, Gonzalez FJ, Hussain SP, Ambs S, Ryan BM, Wang XW, Harris CC. Creatine riboside is a cancer cell-derived metabolite associated with arginine auxotrophy. J Clin Invest 2022; 132:157410. [PMID: 35838048 PMCID: PMC9282934 DOI: 10.1172/jci157410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/25/2022] [Indexed: 12/17/2022] Open
Abstract
The metabolic dependencies of cancer cells have substantial potential to be exploited to improve the diagnosis and treatment of cancer. Creatine riboside (CR) is identified as a urinary metabolite associated with risk and prognosis in lung and liver cancer. However, the source of high CR levels in patients with cancer as well as their implications for the treatment of these aggressive cancers remain unclear. By integrating multiomics data on lung and liver cancer, we have shown that CR is a cancer cell–derived metabolite. Global metabolomics and gene expression analysis of human tumors and matched liquid biopsies, together with functional studies, revealed that dysregulation of the mitochondrial urea cycle and a nucleotide imbalance were associated with high CR levels and indicators of a poor prognosis. This metabolic phenotype was associated with reduced immune infiltration and supported rapid cancer cell proliferation that drove aggressive tumor growth. CRhi cancer cells were auxotrophic for arginine, revealing a metabolic vulnerability that may be exploited therapeutically. This highlights the potential of CR not only as a poor-prognosis biomarker but also as a companion biomarker to inform the administration of arginine-targeted therapies in precision medicine strategies to improve survival for patients with cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Takahiro Oike
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Yasuyuki Kanke
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Daxeshkumar Patel
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Takeshi Tada
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Sheryse Taylor
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jessica A Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Elise Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Michelle L Reyzer
- National Research Resource for Imaging Mass Spectrometry, Vanderbilt University, Nashville, Tennessee, USA
| | - Donna Butcher
- Pathology and Histotechnology Laboratory, Frederick National Laboratory, Frederick, Maryland, USA
| | - Skyler Kuhn
- Center for Cancer Research Collaborative Bioinformatics Resource
| | | | | | | | - S Perwez Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.,Liver Cancer Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
133
|
Isaguliants MG, Trotsenko I, Buonaguro FM. An overview of "Chronic viral infection and cancer, openings for vaccines" virtual symposium of the TechVac Network - December 16-17, 2021. Infect Agent Cancer 2022; 17:28. [PMID: 35804391 PMCID: PMC9263434 DOI: 10.1186/s13027-022-00436-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
This is a report on the research activities currently ongoing in virology, oncology and virus-associated cancers and possibilities of their treatment and prevention by vaccines and immunotherapies as outlined at the symposium “Chronic viral infection and cancer, openings for vaccines” virtually held on December 16–17, 2021. Experts from the various disciplines involved in the study of the complex relationships between solid tumors and viruses met to discuss recent developments in the field and to report their personal contributions to the specified topics. Secondary end point was to sustain the TECHVAC Network established in 2016 as a multidisciplinary work group specifically devoted to development of vaccines and immunotherapies against chronic viral infections and associated cancers, with the aim to identify areas of common interest, promote research cooperation, establish collaborative cross-border programs and projects, and to coordinate clinical and research activities.
Collapse
Affiliation(s)
- Maria G Isaguliants
- Riga Stradins University, Riga, Latvia. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Ivan Trotsenko
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| |
Collapse
|
134
|
Wang MM, Xu FJ, Su Y, Geng Y, Qian XT, Xue XL, Kong YQ, Yu ZH, Liu HK, Su Z. A New Strategy to Fight Metallodrug Resistance: Mitochondria-Relevant Treatment through Mitophagy to Inhibit Metabolic Adaptations of Cancer Cells. Angew Chem Int Ed Engl 2022; 61:e202203843. [PMID: 35384194 DOI: 10.1002/anie.202203843] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Metabolic adaptations can help cancer cells to escape from chemotherapeutics, mainly involving autophagy and ATP production. Herein, we report a new rhein-based cyclometalated IrIII complex, Ir-Rhein, that can accurately target mitochondria and effectively inhibit metabolic adaptations. The complex Ir-Rhein induces severe mitochondrial damage and initiates mitophagy to reduce the number of mitochondria and subsequently inhibit both mitochondrial and glycolytic bioenergetics, which eventually leads to ATP starvation death. Moreover, Ir-Rhein can overcome cisplatin resistance. Co-incubation experiment, 3D tumor spheroids experiment and transcriptome analysis reveal that Ir-Rhein shows promising antiproliferation performance for cisplatin-resistant cancer cells with the regulation of platinum resistance-related transporters. To our knowledge, this is a new strategy to overcome metallodrug resistance with a mitochondria-relevant treatment.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fu-Jie Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.,Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiao-Ting Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xu-Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ya-Qiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
135
|
Delaunay S, Pascual G, Feng B, Klann K, Behm M, Hotz-Wagenblatt A, Richter K, Zaoui K, Herpel E, Münch C, Dietmann S, Hess J, Benitah SA, Frye M. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature 2022; 607:593-603. [PMID: 35768510 PMCID: PMC9300468 DOI: 10.1038/s41586-022-04898-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications—5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2–4)—drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.
Collapse
Affiliation(s)
- Sylvain Delaunay
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Bohai Feng
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of Otorhinolaryngology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Klann
- Institute of Biochemistry II, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mikaela Behm
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Karim Zaoui
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Christian Münch
- Institute of Biochemistry II, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jochen Hess
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Michaela Frye
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
136
|
Patel SB, Nemkov T, D'Alessandro A, Welner RS. Deciphering Metabolic Adaptability of Leukemic Stem Cells. Front Oncol 2022; 12:846149. [PMID: 35756656 PMCID: PMC9213881 DOI: 10.3389/fonc.2022.846149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic targeting of leukemic stem cells is widely studied to control leukemia. An emerging approach gaining popularity is altering metabolism as a potential therapeutic opportunity. Studies have been carried out on hematopoietic and leukemic stem cells to identify vulnerable pathways without impacting the non-transformed, healthy counterparts. While many metabolic studies have been conducted using stem cells, most have been carried out in vitro or on a larger population of progenitor cells due to challenges imposed by the low frequency of stem cells found in vivo. This creates artifacts in the studies carried out, making it difficult to interpret and correlate the findings to stem cells directly. This review discusses the metabolic difference seen between hematopoietic stem cells and leukemic stem cells across different leukemic models. Moreover, we also shed light on the advancements of metabolic techniques and current limitations and areas for additional research of the field to study stem cell metabolism.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States.,Divison of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at, Birmingham, AL, United States
| |
Collapse
|
137
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
138
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
139
|
Wang S, Wei J. Distinguishing the Pros and Cons of Metabolic Reprogramming in Oncolytic Virus Immunotherapy. Int J Cancer 2022; 151:1654-1662. [PMID: 35633046 DOI: 10.1002/ijc.34139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Oncolytic viruses (OVs) represent a class of cancer immunotherapies that rely on hijacking the host cell factory for replicative oncolysis and eliciting immune responses for tumor clearance. An increasing evidence suggests that the metabolic state of tumor cells and immune cells is a putative determinant of the efficacy of cancer immunotherapy. However, how therapeutic intervention with OVs affects metabolic fluxes within the tumor microenvironment (TME) remains poorly understood. Herein, we review the complexities of metabolic reprogramming involving the effects of viruses and their consequences on tumor cells and immune cells. We highlight the inherent drawback of oncolytic virotherapy, namely that treatment with OVs inevitably further exacerbates the depletion of nutrients and the accumulation of metabolic wastes in the TME, leading to a metabolic barrier to antitumor immune responses. We also describe targeted metabolic strategies that can be used to unlock the therapeutic potential of OVs.
Collapse
Affiliation(s)
- Shiqun Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
140
|
Early Steps of Resistance to Targeted Therapies in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112613. [PMID: 35681591 PMCID: PMC9179469 DOI: 10.3390/cancers14112613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with lung cancer benefit from more effective treatments, such as targeted therapies, and the overall survival has increased in the past decade. However, the efficacy of targeted therapies is limited due to the emergence of resistance. Growing evidence suggests that resistances may arise from a small population of drug-tolerant persister (DTP) cells. Understanding the mechanisms underlying DTP survival is therefore crucial to develop therapeutic strategies to prevent the development of resistance. Herein, we propose an overview of the current scientific knowledge about the characterisation of DTP, and summarise the new therapeutic strategies that are tested to target these cells. Abstract Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.
Collapse
|
141
|
Kiesel VA, Sheeley MP, Donkin SS, Wendt MK, Hursting SD, Teegarden D. Increased Ammonium Toxicity in Response to Exogenous Glutamine in Metastatic Breast Cancer Cells. Metabolites 2022; 12:469. [PMID: 35629973 PMCID: PMC9145280 DOI: 10.3390/metabo12050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/03/2023] Open
Abstract
Several cancers, including breast cancers, show dependence on glutamine metabolism. The purpose of the present study was to determine the mechanistic basis and impact of differential glutamine metabolism in nonmetastatic and metastatic murine mammary cancer cells. Universally labeled 13C5-glutamine metabolic tracing, qRT-PCR, measures of reductive-oxidative balance, and exogenous ammonium chloride treatment were used to assess glutamine reprogramming. Results show that 4 mM media concentration of glutamine, compared with 2 mM, reduced viability only in metastatic cells, and that this decrease in viability was accompanied by increased incorporation of glutamine-derived carbon into the tricarboxylic acid (TCA) cycle. While increased glutamine metabolism in metastatic cells occurred in tandem with a decrease in the reduced/oxidized glutathione ratio, treatment with the antioxidant molecule N-acetylcysteine did not rescue cell viability. However, the viability of metastatic cells was more sensitive to ammonium chloride treatment compared with nonmetastatic cells, suggesting a role of metabolic reprogramming in averting nitrogen cytotoxicity in nonmetastatic cells. Overall, these results demonstrate the ability of nonmetastatic cancer cells to reprogram glutamine metabolism and that this ability may be lost in metastatic cells.
Collapse
Affiliation(s)
- Violet A. Kiesel
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (V.A.K.); (M.P.S.)
| | - Madeline P. Sheeley
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (V.A.K.); (M.P.S.)
| | - Shawn S. Donkin
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA;
- The Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (V.A.K.); (M.P.S.)
- The Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
142
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
143
|
Wang M, Xu F, Su Y, Geng Y, Qian X, Xue X, Kong Y, Yu Z, Liu H, Su Z. A New Strategy to Fight Metallodrug Resistance: Mitochondria‐Relevant Treatment through Mitophagy to Inhibit Metabolic Adaptations of Cancer Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meng‐Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fu‐Jie Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- Department of Rheumatology and Immunology Jinling Hospital Medical School of Nanjing University Nanjing 210002 China
| | - Yun Geng
- Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China
| | - Xiao‐Ting Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xu‐Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ya‐Qiong Kong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Zheng‐Hong Yu
- Department of Rheumatology and Immunology Jinling Hospital Medical School of Nanjing University Nanjing 210002 China
| | - Hong‐Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
144
|
Guo C, Wan R, He Y, Lin SH, Cao J, Qiu Y, Zhang T, Zhao Q, Niu Y, Jin Y, Huang HY, Wang X, Tan L, Thomas RK, Zhang H, Chen L, Wong KK, Hu L, Ji H. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. NATURE CANCER 2022; 3:614-628. [PMID: 35449308 DOI: 10.1038/s43018-022-00358-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.
Collapse
Affiliation(s)
- Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruijie Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shu-Hai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yujia Niu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Pathology, Medical Faculty, University Hospital Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
145
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
146
|
Simm C, Weerasinghe H, Thomas DR, Harrison PF, Newton HJ, Beilharz TH, Traven A. Disruption of Iron Homeostasis and Mitochondrial Metabolism Are Promising Targets to Inhibit Candida auris. Microbiol Spectr 2022; 10:e0010022. [PMID: 35412372 PMCID: PMC9045333 DOI: 10.1128/spectrum.00100-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
Fungal infections are a global threat, but treatments are limited due to a paucity in antifungal drug targets and the emergence of drug-resistant fungi such as Candida auris. Metabolic adaptations enable microbial growth in nutrient-scarce host niches, and they further control immune responses to pathogens, thereby offering opportunities for therapeutic targeting. Because it is a relatively new pathogen, little is known about the metabolic requirements for C. auris growth and its adaptations to counter host defenses. Here, we establish that triggering metabolic dysfunction is a promising strategy against C. auris. Treatment with pyrvinium pamoate (PP) induced metabolic reprogramming and mitochondrial dysfunction evident in disrupted mitochondrial morphology and reduced tricarboxylic acid (TCA) cycle enzyme activity. PP also induced changes consistent with disrupted iron homeostasis. Nutrient supplementation experiments support the proposition that PP-induced metabolic dysfunction is driven by disrupted iron homeostasis, which compromises carbon and lipid metabolism and mitochondria. PP inhibited C. auris replication in macrophages, which is a relevant host niche for this yeast pathogen. We propose that PP causes a multipronged metabolic hit to C. auris: it restricts the micronutrient iron to potentiate nutritional immunity imposed by immune cells, and it further causes metabolic dysfunction that compromises the utilization of macronutrients, thereby curbing the metabolic plasticity needed for growth in host environments. Our study offers a new avenue for therapeutic development against drug-resistant C. auris, shows how complex metabolic dysfunction can be caused by a single compound triggering antifungal inhibition, and provides insights into the metabolic needs of C. auris in immune cell environments. IMPORTANCE Over the last decade, Candida auris has emerged as a human pathogen around the world causing life-threatening infections with wide-spread antifungal drug resistance, including pandrug resistance in some cases. In this study, we addressed the mechanism of action of the antiparasitic drug pyrvinium pamoate against C. auris and show how metabolism could be inhibited to curb C. auris proliferation. We show that pyrvinium pamoate triggers sweeping metabolic and mitochondrial changes and disrupts iron homeostasis. PP-induced metabolic dysfunction compromises the utilization of both micro- and macronutrients by C. auris and reduces its growth in vitro and in immune phagocytes. Our findings provide insights into the metabolic requirements for C. auris growth and define the mechanisms of action of pyrvinium pamoate against C. auris, demonstrating how this compound works by inhibiting the metabolic flexibility of the pathogen. As such, our study characterizes credible avenues for new antifungal approaches against C. auris.
Collapse
Affiliation(s)
- Claudia Simm
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Centre to Impact AMR, Monash University, Victoria, Australia
| | - Harshini Weerasinghe
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Centre to Impact AMR, Monash University, Victoria, Australia
| | - David R. Thomas
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Traude H. Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Ana Traven
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Centre to Impact AMR, Monash University, Victoria, Australia
| |
Collapse
|
147
|
Impact of Lipid Metabolism on Antitumor Immune Response. Cancers (Basel) 2022; 14:cancers14071850. [PMID: 35406621 PMCID: PMC8997602 DOI: 10.3390/cancers14071850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary One of the causes of failure of anticancer therapies is the reprogramming of lipid metabolism. Cells of innate and adaptive immunity present in the tumor microenvironment can be affected by this metabolic switch and thus present changes in their anti- or protumor phenotype. In this review, modifications induced by lipid metabolism will be described for innate immune cells, such as macrophages, dendritic cells and MDSCs, and also for adaptive immune cells, such as CD4+ and CD8+ T cells and B cells. Finally, antitumor therapeutic strategies targeting lipid metabolism will be presented. Abstract Over the past decade, metabolic reprogramming has been defined as a hallmark of cancer. More recently, a large number of studies have demonstrated that metabolic reprogramming can modulate the differentiation and functions of immune cells, and thus modify the antitumor response. Increasing evidence suggests that modified energy metabolism could be responsible for the failure of antitumor immunity. Indeed, tumor-infiltrating immune cells play a key role in cancer, and metabolic switching in these cells has been shown to help determine their phenotype: tumor suppressive or immune suppressive. Recent studies in the field of immunometabolism focus on metabolic reprogramming in the tumor microenvironment (TME) by targeting innate and adaptive immune cells and their associated anti- or protumor phenotypes. In this review, we discuss the lipid metabolism of immune cells in the TME as well as the effects of lipids; finally, we expose the link between therapies and lipid metabolism.
Collapse
|
148
|
Phenotypic plasticity during metastatic colonization. Trends Cell Biol 2022; 32:854-867. [DOI: 10.1016/j.tcb.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
|
149
|
A Heme-Binding Transcription Factor BACH1 Regulates Lactate Catabolism Suggesting a Combined Therapy for Triple-Negative Breast Cancer. Cells 2022; 11:cells11071177. [PMID: 35406740 PMCID: PMC8997507 DOI: 10.3390/cells11071177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The oncogenic expression or mutation of tumor suppressors drives metabolic alteration, causing cancer cells to utilize diverse nutrients. Lactate is a known substrate for cancer cells, yet the regulatory mechanisms of lactate catabolism are limited. Here, we show that a heme-binding transcription factor, BACH1, negatively regulates lactate catabolic pathways in triple-negative breast cancer (TNBC) cells. BACH1 suppresses the transcriptional expression of monocarboxylate transporter 1 (MCT1) and lactate dehydrogenase B, inhibiting lactate-mediated mitochondrial metabolism. In our studies, the depletion of BACH1 either genetically or pharmacologically increased the lactate use of TNBC cells, increasing their sensitivity to MCT1 inhibition. Thus, small inhibitory molecules (SR13800 and AZD3965) blocking MCT1 better suppressed the growth of BACH1-depleted TNBC cells than did the controls. Particularly, hemin treatment degrading BACH1 proteins induced lactate catabolism in TNBC cells, generating synthetic lethality with MCT1 inhibition. Our data indicates that targeting BACH1 generates metabolic vulnerability and increases sensitivity to lactate transporter inhibition, suggesting a potential novel combination therapy for cancer patients with TNBC.
Collapse
|
150
|
Herst PM, Carson GM, Eccles DA, Berridge MV. Bioenergetic and Metabolic Adaptation in Tumor Progression and Metastasis. Front Oncol 2022; 12:857686. [PMID: 35372069 PMCID: PMC8968714 DOI: 10.3389/fonc.2022.857686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
The ability of cancer cells to adjust their metabolism in response to environmental changes is a well-recognized hallmark of cancer. Diverse cancer and non-cancer cells within tumors compete for metabolic resources. Metabolic demands change frequently during tumor initiation, progression and metastasis, challenging our quest to better understand tumor biology and develop novel therapeutics. Vascularization, physical constraints, immune responses and genetic instability promote tumor evolution resulting in immune evasion, opportunities to breach basement membrane barriers and spread through the circulation and lymphatics. In addition, the unfolded protein response linked to the ubiquitin proteasome system is a key player in addressing stoichiometric imbalances between nuclear and mitochondrially-encoded protein subunits of respiratory complexes, and nuclear-encoded mitochondrial ribosomal protein subunits. While progressive genetic changes, some of which affect metabolic adaptability, contribute to tumorigenesis and metastasis through clonal expansion, epigenetic changes are also important and more dynamic in nature. Understanding the role of stromal and immune cells in the tumor microenvironment in remodeling cancer cell energy metabolism has become an increasingly important area of research. In this perspective, we discuss the adaptations made by cancer cells to balance mitochondrial and glycolytic energy metabolism. We discuss how hypoxia and nutrient limitations affect reductive and oxidative stress through changes in mitochondrial electron transport activity. We propose that integrated responses to cellular stress in cancer cells are central to metabolic flexibility in general and bioenergetic adaptability in particular and are paramount in tumor progression and metastasis.
Collapse
Affiliation(s)
- Patries M. Herst
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Georgia M. Carson
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David A. Eccles
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Michael V. Berridge
- Department of Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|