101
|
Schmid E, Neef S, Berlin C, Tomasovic A, Kahlert K, Nordbeck P, Deiss K, Denzinger S, Herrmann S, Wettwer E, Weidendorfer M, Becker D, Schäfer F, Wagner N, Ergün S, Schmitt JP, Katus HA, Weidemann F, Ravens U, Maack C, Hein L, Ertl G, Müller OJ, Maier LS, Lohse MJ, Lorenz K. Cardiac RKIP induces a beneficial β-adrenoceptor-dependent positive inotropy. Nat Med 2015; 21:1298-306. [PMID: 26479924 DOI: 10.1038/nm.3972] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
In heart failure therapy, it is generally assumed that attempts to produce a long-term increase in cardiac contractile force are almost always accompanied by structural and functional damage. Here we show that modest overexpression of the Raf kinase inhibitor protein (RKIP), encoded by Pebp1 in mice, produces a well-tolerated, persistent increase in cardiac contractility that is mediated by the β1-adrenoceptor (β1AR). This result is unexpected, as β1AR activation, a major driver of cardiac contractility, usually has long-term adverse effects. RKIP overexpression achieves this tolerance via simultaneous activation of the β2AR subtype. Analogously, RKIP deficiency exaggerates pressure overload-induced cardiac failure. We find that RKIP expression is upregulated in mouse and human heart failure, indicative of an adaptive role for RKIP. Pebp1 gene transfer in a mouse model of heart failure has beneficial effects, suggesting a new therapeutic strategy for heart failure therapy.
Collapse
Affiliation(s)
- Evelyn Schmid
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Berlin
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Angela Tomasovic
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Katrin Kahlert
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Peter Nordbeck
- Comprehensive Heart Failure Center, Würzburg, Germany.,Department of Internal Medicine I, University of Würzburg, Würzburg, Germany
| | - Katharina Deiss
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Sabrina Denzinger
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Sebastian Herrmann
- Comprehensive Heart Failure Center, Würzburg, Germany.,Department of Internal Medicine I, University of Würzburg, Würzburg, Germany
| | - Erich Wettwer
- Department of Pharmacology and Toxicology, Medical Faculty Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Markus Weidendorfer
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Daniel Becker
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Florian Schäfer
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Joachim P Schmitt
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.,German Centre for Cardiovascular Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Weidemann
- Comprehensive Heart Failure Center, Würzburg, Germany.,Department of Internal Medicine I, University of Würzburg, Würzburg, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Christoph Maack
- Clinic for Internal Medicine III, Saarland University Hospital, Homburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Georg Ertl
- Comprehensive Heart Failure Center, Würzburg, Germany.,Department of Internal Medicine I, University of Würzburg, Würzburg, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.,German Centre for Cardiovascular Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Martin J Lohse
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany.,Comprehensive Heart Failure Center, Würzburg, Germany
| | - Kristina Lorenz
- Department of Pharmacology, Institute of Pharmacology and Toxicology, Würzburg, Germany.,Comprehensive Heart Failure Center, Würzburg, Germany
| |
Collapse
|
102
|
Keller K, Maass M, Dizayee S, Leiss V, Annala S, Köth J, Seemann WK, Müller-Ehmsen J, Mohr K, Nürnberg B, Engelhardt S, Herzig S, Birnbaumer L, Matthes J. Lack of Gαi2 leads to dilative cardiomyopathy and increased mortality in β1-adrenoceptor overexpressing mice. Cardiovasc Res 2015; 108:348-56. [PMID: 26464333 DOI: 10.1093/cvr/cvv235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023] Open
Abstract
AIMS Inhibitory G (Gi) proteins have been proposed to be cardioprotective. We investigated effects of Gαi2 knockout on cardiac function and survival in a murine heart failure model of cardiac β1-adrenoceptor overexpression. METHODS AND RESULTS β1-transgenic mice lacking Gαi2 (β1-tg/Gαi2 (-/-)) were compared with wild-type mice and littermates either overexpressing cardiac β1-adrenoceptors (β1-tg) or lacking Gαi2 (Gαi2 (-/-)). At 300 days, mortality of mice only lacking Gαi2 was already higher compared with wild-type or β1-tg, but similar to β1-tg/Gαi2 (-/-), mice. Beyond 300 days, mortality of β1-tg/Gαi2 (-/-) mice was enhanced compared with all other genotypes (mean survival time: 363 ± 21 days). At 300 days of age, echocardiography revealed similar cardiac function of wild-type, β1-tg, and Gαi2 (-/-) mice, but significant impairment for β1-tg/Gαi2 (-/-) mice (e.g. ejection fraction 14 ± 2 vs. 40 ± 4% in wild-type mice). Significantly increased ventricle-to-body weight ratio (0.71 ± 0.06 vs. 0.48 ± 0.02% in wild-type mice), left ventricular size (length 0.82 ± 0.04 vs. 0.66 ± 0.03 cm in wild types), and atrial natriuretic peptide and brain natriuretic peptide expression (mRNA: 2819 and 495% of wild-type mice, respectively) indicated hypertrophy. Gαi3 was significantly up-regulated in Gαi2 knockout mice (protein compared with wild type: 340 ± 90% in Gαi2 (-/-) and 394 ± 80% in β1-tg/Gαi2 (-/-), respectively). CONCLUSIONS Gαi2 deficiency combined with cardiac β1-adrenoceptor overexpression strongly impaired survival and cardiac function. At 300 days of age, β1-adrenoceptor overexpression alone had not induced cardiac hypertrophy or dysfunction while there was overt cardiomyopathy in mice additionally lacking Gαi2. We propose an enhanced effect of increased β1-adrenergic drive by the lack of protection via Gαi2. Gαi3 up-regulation was not sufficient to compensate for Gαi2 deficiency, suggesting an isoform-specific or a concentration-dependent mechanism.
Collapse
Affiliation(s)
- Kirsten Keller
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Martina Maass
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany
| | - Sara Dizayee
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tuebingen, Germany
| | - Suvi Annala
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Jessica Köth
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Wiebke K Seemann
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | | | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tuebingen, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - Stefan Herzig
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, NIH (Department of Health and Human Services), Durham, USA
| | - Jan Matthes
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| |
Collapse
|
103
|
Odnoshivkina UG, Sytchev VI, Nurullin LF, Giniatullin AR, Zefirov AL, Petrov AM. β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur J Pharmacol 2015; 765:140-53. [PMID: 26297975 DOI: 10.1016/j.ejphar.2015.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
Fenoterol, a β2-adrenoceptor agonist, has anti-apoptotic action in cardiomyocytes and induces a specific pattern of downstream signaling. We have previously reported that exposure to fenoterol (5 μM) results in a delayed positive inotropic effect which is related to changes in both Ca2+ transient and NO. Here, the changes in reactive oxygen species (ROS) production in response to the fenoterol administration and the involvement of ROS in effect of this agonist on contractility were investigated in mouse isolated atria. Stimulation of β2-adrenoceptor increases a level of extracellular ROS, while intracellular ROS level rises only after removal of fenoterol from the bath. NADPH-oxidase inhibitor (apocynin) prevents the increase in ROS production and the Nox2 isoform is immunofluorescently colocalized with β2-adrenoceptor at the atrial myocytes. Treatments with antioxidants (N-acetyl-L-cysteine, NADPH inhibitors, exogenous catalases) significantly inhibit the fenoterol induced increase in the contraction amplitude, probably by attenuating Ca2+ transient and up-regulating NO production. ROS generated in a β2-adrenoceptor-dependent manner can potentiate the activity of some Ca2+ channels. Indeed, inhibition of ryanodine receptors, TRPV-or L-type Ca2+- channels shows a similar efficacy in reduction of positive inotropic effect of both fenoterol and H2O2. In addition, detection of mitochondrial ROS indicates that fenoterol triggers a slow increase in ROS which is prevented by rotenone, but rotenone has no impact on the inotropic effect of fenoterol. We suggest that stimulation of β2-adrenoceptor with fenoterol causes the activation of NADPH-oxidase and after the agonist removal extracellularly generated ROS penetrates into the cell, increasing the atrial contractions probably via Ca2+ channels.
Collapse
Affiliation(s)
- Ulia G Odnoshivkina
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Vaycheslav I Sytchev
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Leniz F Nurullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Biophysics of Synaptic Processes, Lobatchevsky str. 2/31, P.O. 30, Kazan 420111, Russia
| | - Arthur R Giniatullin
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Andrei L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia
| | - Alexey M Petrov
- Department of Normal Physiology, Kazan State Medical University, Butlerova st., 49, Kazan 420012, Russia.
| |
Collapse
|
104
|
Pecha S, Flenner F, Söhren KD, Lorenz K, Eschenhagen T, Christ T. β 1 Adrenoceptor antagonistic effects of the supposedly selective β 2 adrenoceptor antagonist ICI 118,551 on the positive inotropic effect of adrenaline in murine hearts. Pharmacol Res Perspect 2015; 3:e00168. [PMID: 26516580 PMCID: PMC4618639 DOI: 10.1002/prp2.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 01/14/2023] Open
Abstract
Studies on the relative contribution of β1- and β2-adrenoceptors (AR) generally employ selective β1- and β2-AR antagonists such as CGP 20712A and ICI 118,551, respectively, and assume that antagonism by one of these compounds indicates mediation by the respective AR subtype. Here, we evaluated the β2-AR-selectivity of ICI 118,551 in ventricular muscle strips of transgenic mice lacking β1-AR (β1-KO), β2-AR (β2-KO), or both (β1/β2-KO). Strips were electrically driven and force development was measured. In wild type (WT), ICI 118,551 (100 nmol/L) shifted the concentration–response curve (CRC) for adrenaline by about 0.5 log units to the right, corresponding to the known affinity of ICI 118,551 to β1-AR but not to β2-AR. Conversely, the phosphodiesterase inhibitor rolipram (10 μmol/L) shifted the CRC to the left, but did not enlarge the ICI 118,551 shift, indicating exclusive β1-AR mediation even when PDE4 is inactive. In line with this, rolipram and ICI 118,551 had similar effects in β2-KO than in WT. In contrast, β1-KO did not show any inotropic reaction to adrenaline (+/− rolipram). In WT, the β1-AR selective antagonist CGP 20712A (100 nmol/L) shifted the CRC for isoprenaline by 2.1 log units, corresponding to the affinity of CGP 20712A to β1-AR. Rolipram increased the sensitivity to adrenaline independently of the presence of CGP 20712A. We conclude that effects sensitive to the β2-AR antagonist ICI 118,551 are not necessarily β2-AR-mediated and CGP 20712A-resistant effects cannot be simply interpreted as β2-AR-mediated. Catecholamine effects in murine ventricles strictly depend on β1-AR, even if PDE 4 is blocked.
Collapse
Affiliation(s)
- Simon Pecha
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Cardiovascular Surgery, University Heart Center Hamburg Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| | - Klaus-Dieter Söhren
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| | - Kristina Lorenz
- Department of Pharmacology and Toxicology, University of Wuerzburg Wuerzburg, Germany ; Comprehensive Heart Failure Center, University of Wuerzburg Wuerzburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; DZHK (German Centre for Cardiovascular Research) Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
105
|
Harima M, Arumugam S, Wen J, Pitchaimani V, Karuppagounder V, Afrin MR, Sreedhar R, Miyashita S, Nomoto M, Ueno K, Nakamura M, Watanabe K. Effect of carvedilol against myocardial injury due to ischemia–reperfusion of the brain in rats. Exp Mol Pathol 2015; 98:558-62. [DOI: 10.1016/j.yexmp.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/26/2023]
|
106
|
Wang X, Cheng Y, Xue H, Yue Y, Zhang W, Li X. Fargesin as a potential β₁ adrenergic receptor antagonist protects the hearts against ischemia/reperfusion injury in rats via attenuating oxidative stress and apoptosis. Fitoterapia 2015; 105:16-25. [PMID: 26025856 DOI: 10.1016/j.fitote.2015.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023]
Abstract
Fargesin displayed similar chromatographic retention peak to metoprolol in the cardiac muscle/cell membrane chromatography (CM/CMC) and β1 adrenergic receptor/cell membrane chromatography (β1AR/CMC) models. To provide more biological information about fargesin, we investigated the effects of fargesin on isoproterenol-(ISO-) induced cells injury in the high expression β1 adrenergic receptor/Chinese hamster ovary-S (β1AR/CHO-S) cells and occluding the left coronary artery- (LAD-) induced myocardial ischemia/reperfusion (MI/R) injury in rats. The results in vitro showed that ISO-induced canonical cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) levels were decreased by fargesin in β1AR/CHO-S cells. Fargesin attenuated the serum creatine kinase (CK), lactate dehydrogenase (LDH), and improved histopathological changes of ischemic myocardium compared with the I/R rats. Similar results were obtained with Evans Blue/TTC staining, in which fargesin notably reduced infarct size. Moreover, compared with the I/R group, fargesin increased COX release and the activities of some endogenous antioxidative enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), but suppressed malondialdehyde (MDA), and intracellular ROS release. Additionally, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated fargesin suppressed myocardial apoptosis, which may be related to inhibition of caspase-3 activity. Taken together, these results provided substantial evidences that fargesin as a potential β1AR antagonist through cAMP/PKA pathway could protect against myocardial ischemia/reperfusion injury in rats. The underlining mechanism may be related to inhibiting oxidative stress and myocardial apoptosis.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yongjie Cheng
- Shanxi Pharmaceutical Vocational College, Taiyuan 030001, People's Republic of China
| | - Hui Xue
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Yuan Yue
- School of Life Sciences, Tsinghua University, Beijing 100083, People's Republic of China
| | - Weifang Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Xiaoni Li
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, People's Republic of China.
| |
Collapse
|
107
|
Badalzadeh R, Mokhtari B, Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. J Physiol Sci 2015; 65:201-15. [PMID: 25726180 PMCID: PMC10717803 DOI: 10.1007/s12576-015-0365-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Ischemic heart disease is one of the major causes of death worldwide. Ischemia is a condition in which blood flow of the myocardium declines, leading to cardiomyocyte death. However, reperfusion of ischemic regions decreases the rate of mortality, but it can also cause later complications. In a clinical setting, ischemic heart disease is always coincident with other co-morbidities such as diabetes. The risk of heart disease increases 2-3 times in diabetic patients. Apoptosis is considered to be one of the main pathophysiological mechanisms of myocardial ischemia-reperfusion injury. Diabetes can disrupt the anti-apoptotic intracellular signaling cascades involved in myocardial protection. Therefore, targeting these changes may be an effective cardioprotective approach in the diabetic myocardium against ischemia-reperfusion injury. In this article, we review the interaction of diabetes with the pathophysiology of myocardial ischemia-reperfusion injury, focusing on the contribution of apoptosis in this context, and then discuss the alterations of pro-apoptotic or anti-apoptotic pathways probably responsible for the loss of cardioprotection in diabetes.
Collapse
Affiliation(s)
- Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mokhtari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Yavari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
108
|
Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:151-88. [PMID: 26055058 DOI: 10.1016/bs.pmbts.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Adrenergic receptors (βARs), prototypical G-protein-coupled receptors, play a pivotal role in regulating neuronal and cardiovascular responses to catecholamines during stress. Agonist-induced receptor endocytosis is traditionally considered as a primary mechanism to turn off the receptor signaling (or receptor desensitization). However, recent progress suggests that intracellular trafficking of βAR presents a mean to translocate receptor signaling machinery to intracellular organelles/compartments while terminating the signaling at the cell surface. Moreover, the apparent multidimensionality of ligand efficacy in space and time in a cell has forecasted exciting pathophysiological implications, which are just beginning to be explored. As we begin to understand how these pathways impact downstream cellular programs, this will have significant implications for a number of pathophysiological conditions in heart and other systems, that in turn open up new therapeutic opportunities.
Collapse
|
109
|
Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation. PLoS One 2015; 10:e0124776. [PMID: 25915642 PMCID: PMC4411165 DOI: 10.1371/journal.pone.0124776] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/08/2015] [Indexed: 12/13/2022] Open
Abstract
Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC. The main result of this study indicates that the head exposure to cold during whole-body cryostimulation may not be the main factor responsible for the effects of cryostimulation on the ANS.
Collapse
|
110
|
Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep 2015; 12:130-140. [PMID: 25475180 PMCID: PMC4474734 DOI: 10.1007/s11897-014-0247-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sepsis is a systemic inflammatory response that follows bacterial infection. Cardiac dysfunction is an important consequence of sepsis that affects mortality and has been attributed to either elevated inflammation or suppression of both fatty acid and glucose oxidation and eventual ATP depletion. Moreover, cardiac adrenergic signaling is compromised in septic patients and this aggravates further heart function. While anti-inflammatory therapies are important for the treatment of the disease, administration of anti-inflammatory drugs did not improve survival in septic patients. This review article summarizes findings on inflammatory and other mechanisms that are triggered in sepsis and affect cardiac function and mortality. Particularly, it focuses on the effects of the disease in metabolic pathways, as well as in adrenergic signaling and the potential interplay of the latter with inflammation. It is suggested that therapeutic approaches should include combination of anti-inflammatory treatments, stimulation of energy production, and restoration of adrenergic signaling in the heart.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, MERB-951, Philadelphia, PA 19140, USA
| | - Anastasios Lymperopoulos
- Neurohormonal Control of the Circulation Lab, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S. University Dr., Health Professions Division (Terry) Bldg/Room 1338, Fort Lauderdale, FL 33328, USA
| | - Peter Johannes Kennel
- Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nina Pollak
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - P. Christian Schulze
- Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes & Metabolism, NYU-Langone School of Medicine, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
111
|
Dalal J, Low LP, Van Phuoc D, Abdul Rahman AR, Reyes E, Ann Soenarta A, Tomlinson B. The use of medications in the secondary prevention of coronary artery disease in the Asian region. Curr Med Res Opin 2015; 31:423-33. [PMID: 25629795 DOI: 10.1185/03007995.2015.1010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cardiovascular diseases, to which coronary artery disease (CAD) is a significant contributor, are a leading cause of long-term morbidity and mortality worldwide. In the years ahead, it is estimated that approximately half of the world's cardiovascular burden will occur in the Asian region. Currently there is a large gap in secondary prevention, with unrealized health gains resulting from underuse of evidence-based medications, including beta-blockers, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), aspirin and other antiplatelet agents, and lipid-lowering drugs. Despite the almost universal recommendation for these drugs in unstable CAD, their under-prescription is well documented for patients with acute heart failure, non-obstructive CAD, and for secondary prevention of CAD. OBJECTIVE This article reviews the burden of CAD in Asian countries together with guidelines supporting evidence-based medication use from a secondary prevention perspective. METHODS The MEDLINE database was searched from 2000 to 2013, inclusive, for country-specific data related to CAD and supplemented with unpublished registry data. RESULTS In the post-discharge setting following hospital admission for acute coronary syndromes, medication prescription rates were low. Beta-blocker prescription rates ranged from 49% in China to 99% in Singapore, ACE-inhibitor/ARB prescription rates ranged from 28% in China to 96% in Singapore, and lipid-lowering therapy rates ranged from 47% in China to 97% in Singapore. Aspirin/antiplatelet drug prescription rates ranged from 86% in Indonesia to 99.5% in Singapore. Recommendations are provided to improve patient outcomes and reduce the disease burden in Asia. CONCLUSIONS Despite recommendations issued in international and national guidelines, use of CAD medications in Asia remains suboptimal. In the absence of clear contraindications, all patients with unstable CAD should receive these agents as secondary prevention. This averts the need to target drug use according to risk, with high-risk features paradoxically associated with under-prescribing of such drugs.
Collapse
Affiliation(s)
- Jamshed Dalal
- Centre for Cardiac Sciences, Kokilaben Dhirubhai Ambani Hospital , Mumbai , India
| | | | | | | | | | | | | |
Collapse
|
112
|
Kum JJ, Khan ZA. Mechanisms of propranolol action in infantile hemangioma. DERMATO-ENDOCRINOLOGY 2015; 6:e979699. [PMID: 26413184 PMCID: PMC4580045 DOI: 10.4161/19381980.2014.979699] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
Infantile hemangioma is a common tumor of infancy. Although most hemangiomas spontaneously regress, treatment is indicated based on complications, risk to organ development and function, and disfigurement. The serendipitous discovery of propranolol, a non-selective β-adrenergic receptor blocker, as an effective means to regress hemangiomas has made this a first-line therapy for hemangioma patients. Propranolol has shown remarkable response rates. There are, however, some adverse effects, which include changes in sleep, acrocyanosis, hypotension, and hypoglycemia. Over the last few years, researchers have focused on understanding the mechanisms by which propranolol causes hemangioma regression. This has entailed study of cultured vascular endothelial cells including endothelial cells isolated from hemangioma patients. In this article, we review recent studies offering potential mechanisms of how various cell types found in hemangioma may respond to propranolol.
Collapse
Affiliation(s)
- Jina Jy Kum
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine & Dentistry; Western University ; London, Ontario Canada
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine; Schulich School of Medicine & Dentistry; Western University ; London, Ontario Canada ; Metabolism and Diabetes Research Program; Lawson Health Research Institute ; London, Ontario Canada ; Division of Genetics and Development; Children's Hospital Research Institute ; London, Ontario Canada
| |
Collapse
|
113
|
Pinnamaneni S, Dutta T, Melcer J, Aronow WS. Neurogenic stress cardiomyopathy associated with subarachnoid hemorrhage. Future Cardiol 2015; 11:77-87. [PMID: 25606704 DOI: 10.2217/fca.14.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cardiac manifestations are recognized complications of subarachnoid hemorrhage. Neurogenic stress cardiomyopathy is one complication that is seen in acute subarachnoid hemorrhage. It can present as transient diffuse left ventricular dysfunction or as transient regional wall motion abnormalities. It occurs more frequently with neurologically severe-grade subarachnoid hemorrhage and is associated with increased morbidity and poor clinical outcomes. Managing this subset of patients is challenging. Early identification followed by a multidisciplinary team approach can potentially improve outcomes.
Collapse
|
114
|
Shin SY, Kim T, Lee HS, Kang JH, Lee JY, Cho KH, Kim DH. The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat Commun 2014; 5:5777. [PMID: 25517116 PMCID: PMC4284638 DOI: 10.1038/ncomms6777] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023] Open
Abstract
How cell fate (survival or death) is determined and whether such determination depends on the strength of stimulation has remained unclear. In this study, we discover that the cell fate of cardiomyocytes switches from survival to death with the increase of β-adrenergic receptor (β-AR) stimulation. Mathematical simulations combined with biochemical experimentation of β-AR signalling pathways show that the gradual increment of isoproterenol (a non-selective β1/β2-AR agonist) induces the switching response of Bcl-2 expression from the initial increase followed by a decrease below its basal level. The ERK1/2 and ICER-mediated feed-forward loop is the hidden design principle underlying such cell fate switching characteristics. Moreover, we find that β1-blocker treatment increases the survival effect of β-AR stimuli through the regulation of Bcl-2 expression leading to the resistance to cell death, providing new insight into the mechanism of therapeutic effects. Our systems analysis further suggests a novel potential therapeutic strategy for heart disease. The contribution of signal strength on cell fate decisions is often not reflected in signalling networks. By combining mathematical simulation and biochemical experiments in cultured adult cardiomyocytes, Shin et al. show that the concentration of a β-adrenergic receptor agonist affects the expression of Bcl-2, influencing the balance between cell survival and death.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Taeyong Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | - Ho-Sung Lee
- 1] Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jun Hyuk Kang
- 1] Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Ji Young Lee
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | - Kwang-Hyun Cho
- 1] Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| |
Collapse
|
115
|
Toledo M, Springer J, Busquets S, Tschirner A, López-Soriano FJ, Anker SD, Argilés JM. Formoterol in the treatment of experimental cancer cachexia: effects on heart function. J Cachexia Sarcopenia Muscle 2014; 5:315-20. [PMID: 25167857 PMCID: PMC4248407 DOI: 10.1007/s13539-014-0153-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIMS Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species, resulting in skeletal muscle hypertrophy. Previous studies carried out in our laboratory have shown that formoterol treatment in tumour-bearing animals resulted in an amelioration of muscle loss through different mechanisms that include muscle apoptosis and proteolysis. METHODS The study presented involved rats bearing the Yoshida AH-130 ascites tumour model-which induces a high degree of cachexia-treated with the beta-2 agonist formoterol (0.3 mg/kg BW). RESULTS The administration of formoterol to cachectic tumour-bearing rats resulted in a significant reduction of muscle weight loss. The treatment also increased lean body mass and body water. The treatment, however, did not influence heart weight, which was much decreased as a result of tumour burden. Untreated tumour-bearing rats showed important changes in parameters related with heart function:, left ventricle (LV) ejection fraction, fractional shortening, LV diameter and volume (diastolic) and LV stroke volume, LV mass and posterior wall thickness (PWT) (both systolic and diastolic). The administration of formoterol affected LV diameter and volume, LV stroke volume and LV mass. CONCLUSIONS The results suggest that formoterol treatment, in addition to reducing muscle wasting, does not negatively alter heart function-in fact, some cardiac parameters are improved-in animals affected by cancer cachexia.
Collapse
Affiliation(s)
- Míriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
SIGNIFICANCE Heart failure (HF) is a common end point for many underlying cardiovascular diseases. Down-regulation and desensitization of β-adrenergic receptors (β-AR) caused by G-protein-coupled receptor (GPCR) kinase 2 (GRK2) are prominent features of HF. Recent Advances and Critical Issues: Significant progress has been made to understand the pathological role of GRK2 in the heart both as a GPCR kinase and as a molecule that can exert GPCR-independent effects. Inhibition of cardiac GRK2 has proved to be therapeutic in the failing heart and may offer synergistic and additional benefits to β-blocker therapy. However, the mechanisms of how GRK2 directly contributes to the pathogenesis of HF need further investigation, and additional verification of the mechanistic details are needed before GRK2 inhibition can be used for the treatment of HF. FUTURE DIRECTIONS The newly identified characteristics of GRK2, including the S-nitrosylation of GRK2 and the localization of GRK2 on mitochondria, merit further investigation. They may contribute to it being a pro-death kinase and result in HF under stressed conditions through regulation of intracellular signaling, including cardiac reduction-oxidation (redox) balance. A thorough understanding of the functions of GRK2 in the heart is necessary in order to finalize it as a candidate for drug development.
Collapse
Affiliation(s)
- Zheng Maggie Huang
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
117
|
|
118
|
Niu X, Zhao L, Li X, Xue Y, Wang B, Lv Z, Chen J, Sun D, Zheng Q. β3-Adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation. PLoS One 2014; 9:e98713. [PMID: 24911015 PMCID: PMC4049583 DOI: 10.1371/journal.pone.0098713] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
β3-adrenergic receptor (AR) and the downstream signaling, nitric oxide synthase (NOS) isoforms, have been emerged as novel modulators of heart function and even potential therapeutic targets for cardiovascular diseases. However, it is not known whether β3-AR plays cardioprotective effects against myocardial infarction (MI) injury. Therefore, the present study was designed to determine the effects of β3-AR on MI injury and to elucidate the underlying mechanism. MI model was constructed by left anterior descending (LAD) artery ligation. Animals were administrated with β3-AR agonist BRL37344 (BRL) or β3-AR inhibitor SR59230A (SR) respectively at 0.1 mg/kg/hour one day after MI operation. The scar area, cardiac function and the apoptosis of myocardial were assessed by Masson's trichrome stain, echocardiography and TUNEL assay respectively. Western blot analysis was performed to elucidate the expressions of target proteins. β3-AR activation with BRL administration significantly attenuated fibrosis and decreased scar area after MI. Moreover, BRL also preserved heart function, and reduced the apoptosis of cardiomyocyte induced by MI. Furthermore, BRL treatment altered the phosphorylation status of endothelial NOS (eNOS) and increased the expression of neuronal NOS (nNOS). These results suggested that β3-AR stimulation has a substantial effect on recovery of heart function. In addition, the activations of both eNOS and nNOS may be associated with the cardiac protective effects of β3-AR.
Collapse
Affiliation(s)
- Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lianyou Zhao
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yusheng Xue
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bin Wang
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zongqiang Lv
- Cadet Brigade of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianghong Chen
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (QZ); (DS)
| | - Qiangsun Zheng
- Department of Cardiology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (QZ); (DS)
| |
Collapse
|
119
|
Propranolol inhibits growth of hemangioma-initiating cells but does not induce apoptosis. Pediatr Res 2014; 75:381-8. [PMID: 24296797 PMCID: PMC3951485 DOI: 10.1038/pr.2013.231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Infantile hemangioma (IH) is the most common tumor of infancy. The first-line therapy for IH is propranolol, a nonselective β-adrenergic receptor antagonist. However, mechanisms for the therapeutic effect of propranolol and regrowth of IH following cessation of treatment in some cases are not clear. We have recently shown that IH arises from multipotent stem cells. Whether IH stem cells are responsive to propranolol and are selectively targeted is unknown, and this is the focus of this study. METHODS IH stem cells were exposed to propranolol and were assayed for cellular and molecular alterations. We used endothelial cells (ECs) as controls and bone marrow-derived mesenchymal progenitor cells (bm-MPCs) as normal stem/progenitor counterparts to determine selectivity. RESULTS Our results show that propranolol significantly reduced IH stem cell growth but failed to induce caspase-3 activation. Normal bm-MPCs and mature ECs showed maintained or increased caspase-3 activation and significantly reduced cyclin-D1 levels. We further show that IH stem cells may escape apoptosis by inducing antiapoptotic pathways. CONCLUSION This study reveals that propranolol does not induce apoptosis in IH stem cells, which is in contrast with the result for ECs. Escape from apoptosis in IH stem cells may involve induction of antiapoptotic pathways.
Collapse
|
120
|
Wright PT, Nikolaev VO, O'Hara T, Diakonov I, Bhargava A, Tokar S, Schobesberger S, Shevchuk AI, Sikkel MB, Wilkinson R, Trayanova NA, Lyon AR, Harding SE, Gorelik J. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 2014; 67:38-48. [PMID: 24345421 PMCID: PMC4266930 DOI: 10.1016/j.yjmcc.2013.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of β2-adrenergic receptor (β2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate β2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of β2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased β2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, β2AR response could only be generated in T-tubules. However, the normally compartmentalized β2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial β2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of β2AR and compartmentation of β2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors.
Collapse
Affiliation(s)
- Peter T Wright
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Viacheslav O Nikolaev
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK; Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, Heart Research Center Göttingen, Georg August University, Göttingen, Germany
| | - Thomas O'Hara
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ivan Diakonov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Anamika Bhargava
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Sergiy Tokar
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Sophie Schobesberger
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | | | - Markus B Sikkel
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Ross Wilkinson
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander R Lyon
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK; Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Sian E Harding
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
121
|
Somvanshi RK, Zou S, Qiu X, Kumar U. Somatostatin receptor-2 negatively regulates β-adrenergic receptor mediated Ca(2+) dependent signaling pathways in H9c2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:735-45. [PMID: 24412308 DOI: 10.1016/j.bbamcr.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/06/2023]
Abstract
In the present study, we report that somatostatin receptor 2 (SSTR2) plays a crucial role in modulation of β1AR and β2AR mediated signaling pathways that are associated with increased intracellular Ca(2+) and cardiac complications. In H9c2 cells, SSTR2 colocalizes with β1AR or β2AR in receptor specific manner. SSTR2 selective agonist inhibits isoproterenol and formoterol stimulated cAMP formation and PKA phosphorylation in concentration dependent manner. In the presence of SSTR2 agonist, the expression of PKCα and PKCβ was comparable to the basal condition, however SSTR2 agonist inhibits isoproterenol or formoterol induced PKCα and PKCβ expression, respectively. Furthermore, the activation of SSTR2 not only inhibits calcineurin expression and its activity, but also blocks NFAT dephosphorylation and its nuclear translocation. SSTR2 selective agonist abrogates isoproterenol mediated increase in cell size and protein content (an index of hypertrophy). Taken together, the results described here provide direct evidence in support of cardiac protective role of SSTR2 via modulation of Ca(2+) associated signaling pathways attributed to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Xiaofan Qiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
122
|
Cardioprotective mechanism of S-nitroso-N-acetylcysteine via S-nitrosated betadrenoceptor-2 in the LDLr−/− mice. Nitric Oxide 2014; 36:58-66. [DOI: 10.1016/j.niox.2013.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/16/2013] [Accepted: 12/05/2013] [Indexed: 11/22/2022]
|
123
|
Wybraniec M, Mizia-Stec K, Krzych L. Stress cardiomyopathy: yet another type of neurocardiogenic injury: 'stress cardiomyopathy'. Cardiovasc Pathol 2013; 23:113-20. [PMID: 24462197 DOI: 10.1016/j.carpath.2013.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 01/29/2023] Open
Abstract
Tako-tsubo syndrome pertains to rare acquired cardiomyopathies, characterized by left ventricular dyskinesia and symptomatology typical for acute myocardial infarction (AMI). Despite its low incidence and relatively benign course, stress cardiomyopathy should be thoroughly differentiated from AMI. The importance of tako-tsubo consists of the fact that its manifestation initially resembles AMI. Despite seemingly low incidence of tako-tsubo, acute coronary syndromes globally constitute a major epidemiological issue and both clinical entities should be accurately differentiated. Many patients present with only mild troponin release, certain extent of regional wall motion abnormalities (RWMA) and absence of hemodynamically significant coronary artery stenosis. In such instances, a careful interview aimed at preceding emotional or physical traumatic event should be undertaken. The subsequent verification of the diagnosis is based upon prompt recovery of contractile function. Although precise diagnostic criteria were formulated, symptomatology of tako-tsubo might be clinically misleading due to the possibility of concomitant coronary vasospasm, atypical pattern of RWMA and presence of non-significant coronary disease. For this reason, its exact rate might be underestimated. Stress cardiomyopathy reflects merely a single aspect of a much wider range of neurocardiogenic injury, which encompasses cardiac dysfunction associated with subarachnoid hemorrhage, intracranial hypertension and cerebral ischemia. Both psychological and physical insult to central nervous system may trigger a disastrous response of sympathetic nervous system, eventually leading to end-organ catecholamine-mediated damage. This review sought to delineate the phenomenon of tako-tsubo cardiomyopathy and deliver evidence for common pathophysiology of the broad spectrum of neurocardiogenic injury.
Collapse
Affiliation(s)
- Maciej Wybraniec
- First Department of Cardiology, Medical University of Silesia, Upper Silesian Medical Centre in Katowice, Poland.
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, Medical University of Silesia, Upper Silesian Medical Centre in Katowice, Poland
| | - Lukasz Krzych
- Department of Cardiac Surgery, Medical University of Silesia, Upper Silesian Medical Centre in Katowice, Poland
| |
Collapse
|
124
|
Lymperopoulos A, Negussie S. βArrestins in cardiac G protein-coupled receptor signaling and function: partners in crime or "good cop, bad cop"? Int J Mol Sci 2013; 14:24726-24741. [PMID: 24351844 PMCID: PMC3876138 DOI: 10.3390/ijms141224726] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/12/2022] Open
Abstract
βArrestin (βarr)-1 and -2 (βarrs) (or Arrestin-2 and -3, respectively) are universal G protein-coupled receptor (GPCR) adapter proteins expressed abundantly in extra-retinal tissues, including the myocardium. Both were discovered in the lab of the 2012 Nobel Prize in Chemistry co-laureate Robert Lefkowitz, initially as terminators of signaling from the β-adrenergic receptor (βAR), a process known as functional desensitization. They are now known to switch GPCR signaling from G protein-dependent to G protein-independent, which, in the case of βARs and angiotensin II type 1 receptor (AT1R), might be beneficial, e.g., anti-apoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac GPCR signaling and function (or dysfunction in disease), remain unknown. The current consensus is that, whereas both βarr isoforms can desensitize and internalize cardiac GPCRs, they play quite different (even opposing in certain instances) roles in the G protein-independent signaling pathways they initiate in the cardiovascular system, including in the myocardium. The present review will discuss the current knowledge in the field of βarrs and their roles in GPCR signaling and function in the heart, focusing on the three most important, for cardiac physiology, GPCR types (β1AR, β2AR & AT1R), and will also highlight important questions that currently remain unanswered.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- The Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
125
|
Cang X, Yang L, Yang J, Luo C, Zheng M, Yu K, Yang H, Jiang H. Cholesterol-β1AR interaction versus cholesterol-β2AR interaction. Proteins 2013; 82:760-70. [DOI: 10.1002/prot.24456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaohui Cang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
- Institute of Genetics; College of Life Science; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Linlin Yang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Jing Yang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Cheng Luo
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Mingyue Zheng
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Kunqian Yu
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Huaiyu Yang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| | - Hualiang Jiang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai 201203 China
| |
Collapse
|
126
|
Chakraborti S, Roy S, Mandal A, Chowdhury A, Chakraborti T. Role of PKC-ζ in NADPH oxidase-PKCα-Giα axis dependent inhibition of β-adrenergic response by U46619 in pulmonary artery smooth muscle cells. Arch Biochem Biophys 2013; 540:133-44. [PMID: 24184446 DOI: 10.1016/j.abb.2013.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/23/2013] [Indexed: 02/04/2023]
Abstract
Treatment of bovine pulmonary artery smooth muscle cells (BPASMCs) with U46619 attenuated isoproterenol caused stimulation of adenyl cyclase activity and cAMP production. Pretreatment with SQ29548 (Tp receptor antagonist), apocynin (NADPH oxidase inhibitor) and Go6976 (PKC-α inhibitor) eliminated U46619 caused attenuation of isoproterenol stimulated adenyl cyclase activity. Pretreatment with SQ29548 and apocynin prevented U46619 induced increase in NADPH oxidase activity, PKC-α activity and Giα phosphorylation. However, pretreatment with CZI, a PKC-ζ inhibitor, markedly, but not completely, inhibited U46619 induced increase in NADPH oxidase activity, PKC-α activity, Giα phosphorylation and also significantly eliminated U46619 caused attenuation of isoproterenol stimulated adenyl cyclase activity. Pretreatment with Go6976 inhibited U46619 induced increase in Giα phosphorylation, but not PKC-ζ activity and NADPH oxidase activity. Pretreatment with pertussis toxin eliminated U46619 caused attenuation of isoproterenol stimulated adenyl cyclase activity without any discernible change in PKC-ζ, NADPH oxidase and PKC-α activities. Transfection of the cells with Tp, PKC-ζ and PKC-α siRNA duplexes corroborate the findings observed with their respective pharmacological inhibitors on the responses produced by U46619. Taken together, we suggest involvement of PKC-ζ in U46619 caused attenuation of isoproterenol stimulated β-adrenergic response, which is regulated by NADPH oxidase-PKCα-Giα axis in pulmonary artery smooth muscle cells.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia 741235, West Bengal, India.
| | | | | | | | | |
Collapse
|
127
|
Lataro RM, Silva CAA, Fazan R, Rossi MA, Prado CM, Godinho RO, Salgado HC. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. Am J Physiol Regul Integr Comp Physiol 2013; 305:R908-16. [DOI: 10.1152/ajpregu.00102.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acetylcholinesterase inhibitor pyridostigmine on sympathovagal balance, cardiac remodeling, and cardiac function in the onset of HF following myocardial infarction. Myocardial infarction was elicited in adult male Wistar rats. After 4 wk of pyridostigmine administration, per os, methylatropine and propranolol were used to evaluate the cardiac sympathovagal balance. The tachycardic response caused by methylatropine was considered to be the vagal tone, whereas the bradycardic response caused by propranolol was considered to be the sympathetic tone. In conscious HF rats, pyridostigmine reduced the basal heart rate, increased vagal, and reduced sympathetic control of heart rate. Pyridostigmine reduced the myocyte diameter and collagen density of the surviving left ventricle. Pyridostigmine also increased vascular endothelial growth factor protein in the left ventricle, suggesting myocardial angiogenesis. Cardiac function was assessed by means of the pressure-volume conductance catheter system. HF rats treated with pyridostigmine exhibited a higher stroke volume, ejection fraction, cardiac output, and contractility of the left ventricle. It was demonstrated that the long-term administration of pyridostigmine started right after coronary artery ligation augmented cardiac vagal and reduced sympathetic tone, attenuating cardiac remodeling and left ventricular dysfunction during the progression of HF in rats.
Collapse
Affiliation(s)
| | | | | | - Marcos A. Rossi
- Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil and
| | - Cibele M. Prado
- Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil and
| | - Rosely O. Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
128
|
Siryk-Bathgate A, Dabul S, Lymperopoulos A. Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Des Devel Ther 2013; 7:1209-1222. [PMID: 24143078 PMCID: PMC3797606 DOI: 10.2147/dddt.s35905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there have been significant advances in the therapy of heart failure in recent decades, such as the introduction of β-blockers and antagonists of the renin-angiotensin-aldosterone system, this devastating disease still carries tremendous morbidity and mortality in the western world. G protein-coupled receptors, such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, ie, myocytes, fibroblasts, and endothelial cells, play crucial roles in regulation of cardiac function in health and disease. Their importance is reflected by the fact that, collectively, they represent the direct targets of over one-third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart failure therapy. Here, we review these possible targets for heart failure therapy that have emerged from studies of cardiac G protein-coupled receptor signaling in health and disease, with a particular focus on the main cardiac G protein-coupled receptor types, ie, the β-adrenergic and the angiotensin II type 1 receptors. We also highlight key issues that need to be addressed to improve the chances of success of novel therapies directed against these targets.
Collapse
Affiliation(s)
- Ashley Siryk-Bathgate
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Samalia Dabul
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
129
|
The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:594213. [PMID: 24191197 PMCID: PMC3804439 DOI: 10.1155/2013/594213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC) signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.
Collapse
|
130
|
Cannavo A, Liccardo D, Koch WJ. Targeting cardiac β-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 2013; 4:264. [PMID: 24133451 PMCID: PMC3783981 DOI: 10.3389/fphys.2013.00264] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022] Open
Abstract
Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs). β-adrenergic receptors (βARs) are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS). In compromised conditions such as heart failure (HF), chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data accumulated over the last two decades indicates that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2), which was originally known as βARK1 (for βAR kinase). GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition; in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
131
|
Costa VM, Carvalho F, Duarte JA, Bastos MDL, Remião F. The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol 2013; 26:1285-1311. [PMID: 23902227 DOI: 10.1021/tx400130v] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The heart is a target organ for oxidative stress-related injuries. Because of its very high energetic metabolic demand, the heart has the highest rate of production of reactive oxygen species, namely, hydrogen peroxide (H2O2), per gram of tissue. Additionally, the heart has lower levels of antioxidants and total activity of antioxidant enzymes when compared to other organs. Furthermore, drugs that have relevant antioxidant activity and that are used in the treatment of oxidative stress related cardiac diseases demonstrate better clinical cardiac outcomes than other drugs with similar receptor affinity but with no antioxidant activity. Several xenobiotics particularly target the heart and promote toxicity. Anticancer drugs, like anthracyclines, cyclophosphamide, mitoxantrone, and more recently tyrosine kinase targeting drugs, are well-known cardiac toxicants whose therapeutic application has been associated to a high prevalence of heart failure. High levels of catecholamines or drugs of abuse, namely, amphetamines, cocaine, and even the consumption of alcohol for long periods of time, are linked to cardiovascular abnormalities. Oxidative stress may be one common link for the cardiac toxicity elicited by these compounds. We aim to revise the mechanisms involved in cardiac lesions caused by the above-mentioned substances specially focusing in oxidative stress related pathways. Oxidative stress biomarkers can be useful in the early recognition of cardiotoxicity in patients treated with these drugs and aid to minimize the setting of cardiac irreversible events.
Collapse
Affiliation(s)
- Vera Marisa Costa
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto , Porto, Portugal
| | | | | | | | | |
Collapse
|
132
|
Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol 2013; 4:240. [PMID: 24027534 PMCID: PMC3761154 DOI: 10.3389/fphys.2013.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of PharmacyFort Lauderdale, FL, USA
| |
Collapse
|
133
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 2013; 113:739-753. [PMID: 23989716 PMCID: PMC3843360 DOI: 10.1161/circresaha.113.300308] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, and Division of Cardiology, Fondazione Salvatore Maugeri, Telese Terme, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
134
|
Salazar NC, Vallejos X, Siryk A, Rengo G, Cannavo A, Liccardo D, De Lucia C, Gao E, Leosco D, Koch WJ, Lymperopoulos A. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal 2013; 11:64. [PMID: 23984976 PMCID: PMC3846709 DOI: 10.1186/1478-811x-11-64] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND β1- and β2-adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF). RESULTS We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular "brake" that PDE4D poses on β2AR signaling to contractility stimulation is thus "released". Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed. CONCLUSIONS GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in post-MI HF is augmented by βARKct, although this effect is short-lived.
Collapse
Affiliation(s)
- Norma C Salazar
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Ximena Vallejos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Ashley Siryk
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Giuseppe Rengo
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Alessandro Cannavo
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Daniela Liccardo
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Claudio De Lucia
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dario Leosco
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
135
|
Fajardo G, Zhao M, Urashima T, Farahani S, Hu DQ, Reddy S, Bernstein D. Deletion of the β2-adrenergic receptor prevents the development of cardiomyopathy in mice. J Mol Cell Cardiol 2013; 63:155-64. [PMID: 23920331 DOI: 10.1016/j.yjmcc.2013.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 07/22/2013] [Accepted: 07/27/2013] [Indexed: 01/03/2023]
Abstract
Beta adrenergic receptor (β-AR) subtypes act through diverse signaling cascades to modulate cardiac function and remodeling. Previous in vitro studies suggest that β1-AR signaling is cardiotoxic whereas β2-AR signaling is cardioprotective, and may be the case during ischemia/reperfusion in vivo. The objective of this study was to assess whether β2-ARs also play a cardioprotective role in the pathogenesis of non-ischemic forms of cardiomyopathy. To dissect the role of β1 vs β2-ARs in modulating MLP (Muscle LIM Protein) cardiomyopathy, we crossbred MLP-/- with β1-/- or β2-/- mice. Deletion of the β2-AR improved survival, cardiac function, exercise capacity and myocyte shortening; by contrast haploinsufficency of the β1-AR reduced survival. Pathologic changes in Ca(2+) handling were reversed in the absence of β2-ARs: peak Ca(2+) and SR Ca(2+) were decreased in MLP-/- and β1+/-/MLP-/- but restored in β2-/-MLP-/-. These changes were associated with reversal of alterations in troponin I and phospholamban phosphorylation. Gi inhibition increased peak and baseline Ca(2+), recapitulating changes observed in the β2-/-/MLP-/-. The L-type Ca(2+) blocker verapamil significantly decreased cardiac function in β2-/-MLP-/- vs WT. We next tested if the protective effects of β2-AR ablation were unique to the MLP model using TAC-induced heart failure. Similar to MLP, β2-/- mice demonstrated delayed progression of heart failure with restoration of myocyte shortening and peak Ca(2+) and Ca(2+) release. Deletion of β2-ARs prevents the development of MLP-/- cardiomyopathy via positive modulation of Ca(2+) due to removal of inhibitory Gi signaling and increased phosphorylation of troponin I and phospholamban. Similar effects were seen after TAC. Unlike previous models where β2-ARs were found to be cardioprotective, in these two models, β2-AR signaling appears to be deleterious, potentially through negative regulation of Ca(2+) dynamics.
Collapse
Affiliation(s)
- Giovanni Fajardo
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Sucharov CC, Hijmans JG, Sobus RD, Melhado WFA, Miyamoto SD, Stauffer BL. β-Adrenergic receptor antagonism in mice: a model for pediatric heart disease. J Appl Physiol (1985) 2013; 115:979-87. [PMID: 23887897 DOI: 10.1152/japplphysiol.00627.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Children with heart failure are treated with similar medical therapy as adults with heart failure. In contrast to adults with heart failure, these treatment regiments are not associated with improved outcomes in children. Recent studies have demonstrated age-related pathophysiological differences in the molecular mechanisms of heart failure between children and adults. There are no animal models of pediatric cardiomyopathy to allow mechanistic studies. The purpose of the current experiments was to develop a mouse model of pediatric heart disease and test whether the influence of β-adrenergic receptor (β-AR) antagonism could be modeled in this system. We hypothesized that isoproterenol treatment of young mice would provide a model system of cardiac pathology, and that nonselective β-AR blockade would provide benefit in adult, but not young, mice, similar to clinical trial data. We found that isoproterenol treatment (through osmotic minipump implantation) of young and adult mice produced similar degrees of cardiac hypertrophy and recapitulated several age-related molecular abnormalities in human heart failure, including phospholamban phosphorylation and β-AR expression. We also found that nonselective β-AR blockade effectively prevented pathological cardiac growth and collagen expression in the adult but not young mice, and that selective β1-AR blockade was effective in both young and adult isoproterenol-treated mice. In conclusion, we have developed the first model system for β-AR-mediated pediatric heart disease. Furthermore, we have generated novel data suggesting beneficial effects of selective β1-AR blockade in the pediatric heart.
Collapse
Affiliation(s)
- Carmen C Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | | | | | |
Collapse
|
137
|
Perera RK, Nikolaev VO. Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 2013; 207:650-62. [PMID: 23383621 DOI: 10.1111/apha.12077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/27/2012] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger critically involved in the regulation of heart function. It has been shown to act in discrete subcellular signalling compartments formed by differentially localized receptors, phosphodiesterases and protein kinases. Cardiac diseases such as hypertrophy or heart failure are associated with structural and functional remodelling of these microdomains which leads to changes in cAMP compartmentation. In this review, we will discuss recent key findings which provided new insights into cAMP compartmentation in cardiomyocytes with a particular focus on its alterations in heart disease.
Collapse
Affiliation(s)
- R. K. Perera
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| | - V. O. Nikolaev
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| |
Collapse
|
138
|
Abstract
Heart failure is increasing in incidence throughout the world, especially in industrialized countries. Although the current therapeutic modalities have been successful in stabilizing the course of heart failure, morbidity and mortality remain quite high and there remains a great need for innovative breakthroughs that will offer new treatment strategies for patients with advanced forms of the disease. The past few years have witnessed a greater understanding of the molecular underpinnings of the failing heart, paving the way for novel strategies in modulating the cellular environment. As such, gene therapy has recently emerged as a powerful tool offering the promise of a new paradigm for alleviating heart failure. Current gene therapy research for heart failure is focused on exploring potential cellular targets and preclinical and clinical studies are ongoing toward the realization of this goal. Efforts also include the development of sophisticated viral vectors and vector delivery methods for efficient transduction of cardiomyocytes.
Collapse
Affiliation(s)
- Razmig Garo Kratlian
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
139
|
Shi T, Moravec CS, Perez DM. Novel proteins associated with human dilated cardiomyopathy: selective reduction in α(1A)-adrenergic receptors and increased desensitization proteins. J Recept Signal Transduct Res 2013; 33:96-106. [PMID: 23384050 DOI: 10.3109/10799893.2013.764897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Therapeutics to treat human heart failure (HF) and the identification of proteins associated with HF are still limited. We analyzed α(1)-adrenergic receptor (AR) subtypes in human HF and performed proteomic analysis on more uniform samples to identify novel proteins associated with human HF. Six failing hearts with end-stage dilated cardiomyopathy (DCM) and four non-failing heart controls were subjected to proteomic analysis. Out of 48 identified proteins, 26 proteins were redundant between samples. Ten of these 26 proteins were previously reported to be associated with HF. Of the newly identified proteins, we found several muscle proteins and mitochondrial/electron transport proteins, while novel were functionally similar to previous reports. However, we also found novel proteins involved in functional classes such as β-oxidation and G-protein coupled receptor signaling and desensitization not previously associated with HF. We also performed radioligand-binding studies on the heart samples and not only confirmed a large loss of β(1)-ARs in end-stage DCM, but also found a selective decrease in the α(1A)-AR subtype not previously reported. We have identified new proteins and functional categories associated with end-stage DCM. We also report that similar to the previously characterized loss of β(1)-AR in HF, there is also a concomitant loss of α(1A)-ARs, which are considered cardioprotective proteins.
Collapse
Affiliation(s)
- Ting Shi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, OH, USA
| | | | | |
Collapse
|
140
|
Abstract
Heart rate variability (HRV) non-invasively assesses the activity of the autonomic nervous system. During the past 30 years, an increasing number of studies have related the imbalance of the autonomic nervous system (as assessed by HRV) to several pathophysiogical conditions, particularly in the setting of cardiovascular disease. Sudden death, coronary artery disease, heart failure, or merely cardiovascular risk factors (smoking, diabetes, hyperlipidemia, and hypertension) are the best-known clinical circumstances that can affect and/or be affected by the autonomic nervous system. Analyses of HRV variables have been proposed as a component of the clinical evaluation for patient risk stratification due to its independent prognostic information. Yet the potential for HRV to be used widely in clinical practice remains to be established.
Collapse
Affiliation(s)
- Borejda Xhyheri
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale. University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
141
|
Gorelik J, Wright PT, Lyon AR, Harding SE. Spatial control of the βAR system in heart failure: the transverse tubule and beyond. Cardiovasc Res 2013; 98:216-24. [PMID: 23345264 DOI: 10.1093/cvr/cvt005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The beta1-adrenoceptors (β(1)AR) and beta-2 (β(2)AR) adrenoceptors represent the predominant pathway for sympathetic control of myocardial function. Diverse mechanisms have evolved to translate signalling via these two molecules into differential effects on physiology. In this review, we discuss how the functions of the βAR are organized from the level of secondary messengers to the whole heart to achieve this. Using novel microscopy and bio-imaging methods researchers have uncovered subtle organization of the control of cyclic adenosine monophosphate (cAMP), the predominant positively inotropic pathway for the βAR. The β(2)AR in particular is demonstrated to give rise to highly compartmentalized, spatially confined cAMP signals. Organization of β(2)AR within the T-tubule and caveolae of cardiomyocytes concentrates this receptor with molecules which buffer and shape its cAMP signal to give fine control. This situation is undermined in various forms of heart failure. Human and animal models of heart failure demonstrate disruption of cellular micro-architecture which contributes to the change in response to cardiac βARs. Loss of cellular structure has proved key to the observed loss of confined β(2)AR signalling. Some pharmacological and genetic treatments have been successful in returning failing cells to a more structured phenotype. Within these cells it has been possible to observe the partial restoration of normal β(2)AR signalling. At the level of the organ, the expression of the two βAR subtypes varies between regions with the β(2)AR forming a greater proportion of the βAR population at the apex. This distribution may contribute to regional wall motion abnormalities in Takotsubo cardiomyopathy, a syndrome of high sympathetic activity, where the phosphorylated β(2)AR can signal via Gi protein to produce negatively inotropic effects.
Collapse
Affiliation(s)
- Julia Gorelik
- Department of Cardiovascular Medicine, National Heart and Lung Institute, Imperial College, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
142
|
Arrestins in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:297-334. [PMID: 23764059 DOI: 10.1016/b978-0-12-394440-5.00012-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.
Collapse
|
143
|
Pérez-Schindler J, Philp A, Hernandez-Cascales J. Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur J Pharmacol 2012. [PMID: 23183106 DOI: 10.1016/j.ejphar.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
β-adrenoceptors are members of the G protein-coupled receptor superfamily which play a key role in the regulation of myocardial function. Their activation increases cardiac performance but can also induce deleterious effects such as cardiac arrhythmias or myocardial apoptosis. In fact, inhibition of β-adrenoceptors exerts a protective effect in patients with sympathetic over-stimulation during heart failure. Although β(2)-adrenoceptor is not the predominant subtype in the heart, it seems to importantly contribute to the cardiac effects of adrenergic stimulation; however, the mechanism by which this occurs is not fully understood. This review summarizes the current knowledge on the role of β(2)-adrenoceptors in the regulation of cardiac contractility, metabolism, cardiomyocyte survival and cardiac arrhythmias. In addition, therapeutic considerations relating to stimulation of the β(2)-adrenoceptor such as an increase in cardiac contractility with low arrythmogenic effect, protection of the myocardium again apoptosis or positive regulation of heart metabolism are discussed.
Collapse
|
144
|
Total beta-adrenoceptor knockout slows conduction and reduces inducible arrhythmias in the mouse heart. PLoS One 2012; 7:e49203. [PMID: 23133676 PMCID: PMC3486811 DOI: 10.1371/journal.pone.0049203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Beta-adrenoceptors (β-AR) play an important role in the neurohumoral regulation of cardiac function. Three β-AR subtypes (β(1), β(2), β(3)) have been described so far. Total deficiency of these adrenoceptors (TKO) results in cardiac hypotrophy and negative inotropy. TKO represents a unique mouse model mimicking total unselective medical β-blocker therapy in men. Electrophysiological characteristics of TKO have not yet been investigated in an animal model. METHODS In vivo electrophysiological studies using right heart catheterisation were performed in 10 TKO mice and 10 129SV wild type control mice (WT) at the age of 15 weeks. Standard surface ECG, intracardiac and electrophysiological parameters, and arrhythmia inducibility were analyzed. RESULTS The surface ECG of TKO mice revealed a reduced heart rate (359.2±20.9 bpm vs. 461.1±33.3 bpm; p<0.001), prolonged P wave (17.5±3.0 ms vs. 15.1±1.2 ms; p = 0.019) and PQ time (40.8±2.4 ms vs. 37.3±3.0 ms; p = 0.013) compared to WT. Intracardiac ECG showed a significantly prolonged infra-Hisian conductance (HV-interval: 12.9±1.4 ms vs. 6.8±1.0 ms; p<0.001). Functional testing showed prolonged atrial and ventricular refractory periods in TKO (40.5±15.5 ms vs. 21.3±5.8 ms; p = 0.004; and 41.0±9.7 ms vs. 28.3±6.6 ms; p = 0.004, respectively). In TKO both the probability of induction of atrial fibrillation (12% vs. 24%; p<0.001) and of ventricular tachycardias (0% vs. 26%; p<0.001) were significantly reduced. CONCLUSION TKO results in significant prolongations of cardiac conduction times and refractory periods. This was accompanied by a highly significant reduction of atrial and ventricular arrhythmias. Our finding confirms the importance of β-AR in arrhythmogenesis and the potential role of unspecific beta-receptor-blockade as therapeutic target.
Collapse
|
145
|
Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2012; 55:31-41. [PMID: 22982369 DOI: 10.1016/j.yjmcc.2012.09.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/01/2012] [Accepted: 09/06/2012] [Indexed: 01/19/2023]
Abstract
Heart failure (HF) frequently is the unfavorable outcome of pathological heart hypertrophy. In contrast to physiological cardiac hypertrophy, which occurs in response to exercise and leads to full adaptation of contractility to the increased wall stress, pathological hypertrophy occurs in response to volume or pressure overload, ultimately leading to contractile dysfunction and HF. Because cardiac hypertrophy impairs the relationship between ATP demand and production, mitochondrial bioenergetics must keep up with the cardiac hypertrophic phenotype. We review data regarding the mitochondrial proteomic and energetic remodeling in cardiac hypertrophy, as well as the temporal and causal relationships between mitochondrial failure to match the increased energy demand and progression to cardiac decompensation. We suggest that the maladaptive effect of sustained neuroendocrine signals on mitochondria leads to bioenergetic fading which contributes to the progression from cardiac hypertrophy to failure. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106‐4981, USA
| | | | | |
Collapse
|
146
|
Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D. Myocardial β(2) -adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 2012; 166:2348-2361. [PMID: 22452704 PMCID: PMC3448898 DOI: 10.1111/j.1476-5381.2012.01954.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether β(2) -adrenoceptor overexpression could promote angiogenesis and improve blood perfusion and left ventricular (LV) remodeling of the failing heart. EXPERIMENTAL APPROACH We explored the angiogenic effects of β(2) -adrenoceptor overexpression in a rat model of post-myocardial infarction (MI) heart failure (HF). Cardiac adenoviral-mediated β(2) -adrenoceptor overexpression was obtained via direct intramyocardial injection 4-weeks post-MI. Adenovirus(Ad)-GFP and saline injected rats served as controls. Furthermore, we extended our observation to β(2) -adrenoceptor -/- mice undergoing MI. KEY RESULTS Transgenes were robustly expressed in the LV at 2 weeks post-gene therapy, whereas their expression was minimal at 4-weeks post-gene delivery. In HF rats, cardiac β(2) -adrenoceptor overexpression resulted in enhanced basal and isoprenaline-stimulated cardiac contractility at 2-weeks post-gene delivery. At 4 weeks post-gene transfer, Ad-β(2) -adrenoceptor HF rats showed improved LV remodeling and cardiac function. Importantly, β(2) -adrenoceptor overexpression was associated with a markedly increased capillary and arteriolar length density and enhanced in vivo myocardial blood flow and coronary reserve. At the molecular level, cardiac β(2) -adrenoceptor gene transfer induced the activation of the VEGF/PKB/eNOS pro-angiogenic pathway. In β(2) -adrenoceptor-/- mice, we found a ~25% reduction in cardiac capillary density compared with β(2) -adrenoceptor+/+ mice. The lack of β(2) -adrenoceptors was associated with a higher mortality rate at 30 days and LV dilatation, and a worse global cardiac contractility compared with controls. CONCLUSIONS AND IMPLICATION β(2) -Adrenoceptors play an important role in the regulation of the angiogenic response in HF. The activation of VEGF/PKB/eNOS pathway seems to be strongly involved in this mechanism.
Collapse
Affiliation(s)
- G Rengo
- Salvatore Maugeri Foundation, IRCCS, Telese Terme (BN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Miyamoto SD, Stauffer BL, Nakano S, Sobus R, Nunley K, Nelson P, Sucharov CC. Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. Eur Heart J 2012; 35:33-41. [PMID: 22843448 DOI: 10.1093/eurheartj/ehs229] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although the pathophysiology and treatment of adult heart failure (HF) are well studied, HF in children remains poorly understood. In adults, adrenergic receptor (AR)-mediated adaptation plays a central role in cardiac abnormalities in HF, and these patients respond well to β-blocker (BB) therapy. However, in children with HF, there is a growing body of literature suggesting a lack of efficacy of adult HF therapies. Due to these unanticipated differences in response to therapy and the paucity of data regarding the molecular adaptation of the paediatric heart, we investigated the molecular characteristics of HF in children. METHODS AND RESULTS Explanted hearts from adults and children with idiopathic dilated cardiomyopathy and non-failing controls were used in the study. Our results show that the molecular characteristics of paediatric HF are strikingly different from their adult counterparts. These differences include: (i) down-regulation of β1- and β2-AR in children, whereas β2-AR expression is maintained in adults; (ii) up-regulation of connexin43 in children, whereas down-regulation is observed in adults; (iii) no differences in phosphatase expression, whereas up-regulation is observed in adults; (iv) no decrease in the phosphorylation of phospholamban at the Ser16 or Thr17 sites in children, which are known characteristics of adult HF. CONCLUSION There is a different adaptation of β-AR and adrenergic signalling pathways in children with HF compared with adults. Our results begin to address the disparities in cardiovascular research specific to children and suggest that age-related differences in adaptation could influence the response to therapy. These findings could lead to a paradigm shift in the contemporary management of children with HF.
Collapse
Affiliation(s)
- Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Wachter SB, Gilbert EM. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 2012; 122:104-12. [PMID: 22759389 DOI: 10.1159/000339271] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 01/08/2023]
Abstract
β-Adrenergic receptors (β-AR) are central to the overall regulation of cardiac function. From the first proposed receptor/transmitter concept to the latest clinical β-blocker trials β-AR have been shown to play an important role in cardiac disease and heart failure in particular. This study provides a historical perspective, reviews the latest discoveries and beliefs, and discusses the current clinical practices of β-AR and their modulation with their associated guanine-nucleotide regulatory protein/adenylylcyclasesignal transduction pathways.
Collapse
Affiliation(s)
- S Blake Wachter
- Division of Cardiology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
149
|
Benes J, Novakova M, Rotkova J, Farar V, Kvetnansky R, Riljak V, Myslivecek J. Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice. Cell Mol Neurobiol 2012; 32:859-69. [PMID: 22222438 PMCID: PMC11498497 DOI: 10.1007/s10571-011-9781-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/03/2011] [Indexed: 01/22/2023]
Abstract
We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| | - Martina Novakova
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| | - Jana Rotkova
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| | - Vladimir Farar
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Riljak
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| | - Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| |
Collapse
|
150
|
[Acute heart failure]. Med Klin Intensivmed Notfmed 2012; 107:397-423; quiz 424-5. [PMID: 22689257 DOI: 10.1007/s00063-012-0118-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 01/10/2023]
Abstract
Acute decompensated heart failure (ADHF) is a major public health problem throughout the world and its importance is continuing to grow. More than 50% of ADHF patients have coronary artery disease, which is generally associated with a history of hypertension. Recent data suggest that half of the patients presenting with acute heart failure have preserved left ventricular systolic function. The diagnosis of ADHF may be difficult at times, and the clinical assessment and patient profiling is essential for appropriate therapy. Immediate therapeutic goals are not only to improve symptoms, restore oxygenation and stabilize hemodynamic conditions, but also to improve short- and long-term survival. In addition to general supportive measures such as oxygen supplementation, noninvasive ventilation, analgesia, diuretics, vasodilators together with inotropic agents and/or vasopressors remain the cornerstone of therapy in patients with ADHF.
Collapse
|