101
|
Liu J, Chen K, Valego NK, Carey LC, Rose JC. Ontogeny and effects of thyroid hormone on beta1-adrenergic receptor mRNA expression in ovine fetal kidney cortex. ACTA ACUST UNITED AC 2006; 12:563-9. [PMID: 16325745 DOI: 10.1016/j.jsgi.2005.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Previous studies indicate that thyroidectomy (TX) decreases renin gene expression in ovine fetal renal cortex in late gestation. Fetal ovine renin-containing renocortical cells become increasingly responsive to beta-adrenergic stimulation as gestation proceeds. Increases in plasma thyroid hormone concentrations parallel this change, suggesting that there is a positive developmental relationship between the two. To examine this hypothesis, we determined the ontogeny of beta1-adrenergic receptor (beta1R) mRNA expression, and the effect of thyroid hormone on in vivo and in vitro expression in fetal sheep. METHODS Renocortical tissue was obtained from naive, TX, and sham-operated fetuses to determine beta1R mRNA levels. Renin-containing renocortical cells from TX or sham fetuses were treated with isoproterenol (Iso) or forskolin (FSK) for analysis of cellular cyclic adenosine monophosphate (cAMP) levels. Renocortical cells from naive fetuses were treated with triiodothyronine (T3) to assess cellular beta1R mRNA levels. Fetal plasma thyroxine (T4) level was determined. RESULTS Renocortical beta1R mRNA expression increased significantly between 100 and 140 days' gestational age (dGA), while TX attenuated this increase (P <.01). Renocortical cellular cAMP levels were higher in sham compared to TX fetuses following incubation with Iso or FSK (P <.05). Cells incubated with T3 exhibited significantly increased beta1R mRNA expression (P <.05). CONCLUSION The data suggest that thyroid hormone may be involved in modulating ovine fetal renocortical beta1R gene expression during development. We speculate that the increased beta1R mRNA expression in renal cortical cells as development progresses may mediate the increases in renin gene response to beta-adrenergic stimulation in late gestation.
Collapse
Affiliation(s)
- Jingfang Liu
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
102
|
Milasta S, Evans N, Ormiston L, Wilson S, Lefkowitz R, Milligan G. The sustainability of interactions between the orexin-1 receptor and beta-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem J 2006; 387:573-84. [PMID: 15683363 PMCID: PMC1134986 DOI: 10.1042/bj20041745] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The orexin-1 receptor interacts with beta-arrestin-2 in an agonist-dependent manner. In HEK-293T cells, these two proteins became co-internalized into acidic endosomes. Truncations from the C-terminal tail did not prevent agonist-induced internalization of the orexin-1 receptor or alter the pathway of internalization, although such mutants failed to interact with beta-arrestin-2 in a sustained manner or produce its co-internalization. Mutation of a cluster of three threonine and one serine residue at the extreme C-terminus of the receptor greatly reduced interaction and abolished co-internalization of beta-arrestin-2-GFP (green fluorescent protein). Despite the weak interactions of this C-terminally mutated form of the receptor with beta-arrestin-2, studies in wild-type and beta-arrestin-deficient mouse embryo fibroblasts confirmed that agonist-induced internalization of this mutant required expression of a beta-arrestin. Although without effect on agonist-mediated elevation of intracellular Ca2+ levels, the C-terminally mutated form of the orexin-1 receptor was unable to sustain phosphorylation of the MAPKs (mitogen-activated protein kinases) ERK1 and ERK2 (extracellular-signal-regulated kinases 1 and 2) to the same extent as the wild-type receptor. These studies indicate that a single cluster of hydroxy amino acids within the C-terminal seven amino acids of the orexin-1 receptor determine the sustainability of interaction with beta-arrestin-2, and indicate an important role of beta-arrestin scaffolding in defining the kinetics of orexin-1 receptor-mediated ERK MAPK activation.
Collapse
Affiliation(s)
- Sandra Milasta
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Nicholas A. Evans
- †GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K
| | - Laura Ormiston
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Shelagh Wilson
- †GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K
| | - Robert J. Lefkowitz
- ‡Department of Medicine, HHMI/Duke University Medical Center, Durham, NC 27710, U.S.A
| | - Graeme Milligan
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
103
|
Abstract
Recent studies of G protein-coupled receptors have highlighted two "new" and interactive elements involved in their function and regulation: their ability to localize to different cell surface and intracellular compartments and their ability to interact with partners other than their classic heterotrimeric G proteins. The effects mediated by these receptors can be markedly different depending on the compartment in which they reside and the partners with which they interact in each compartment. The studies in this issue of Molecular Pharmacology by Milojević et al. (page 1083) merge these two themes by identifying the ubiquitin-specific protease Usp4 as a partner for the carboxyl-terminal tail of adenosine A2A receptors and showing that this interaction allows processing and delivery to the cell surface of newly synthesized A2A receptors, which are otherwise predominantly intracellular. Their studies suggest that the intracellular A2A receptors are ubiquitinated, presumably because of misfolding and intervention of the "endoplasmic reticulum quality control" mechanism leading to degradation of the receptors by proteasomes. Increasing Usp4 expression stimulates receptor de-ubiquitination and increases cell surface expression of functional receptors. Evidence is presented for tight specificity of this interaction, with another Usp family member failing to rescue A2A receptors and Usp4 failing to rescue another intracellular receptor. The background and significance of this study are highlighted here, including puzzles that remain to be solved and the potential for pharmacological targeting of such interactions to manipulate the expression, location, and function of G protein-coupled receptors for therapeutic benefit.
Collapse
Affiliation(s)
- Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
104
|
Schwartz MA, Madhani HD. Control of MAPK signaling specificity by a conserved residue in the MEK-binding domain of the yeast scaffold protein Ste5. Curr Genet 2006; 49:351-63. [PMID: 16463042 DOI: 10.1007/s00294-006-0061-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/17/2006] [Accepted: 01/18/2006] [Indexed: 11/30/2022]
Abstract
The yeast kinase scaffold Ste5 has been proposed to prevent unwanted cross-talk between the pheromone response pathway and other MAPK cascades. Protein fusion experiments have demonstrated that covalently tethering signaling components to each other or to Ste5 can determine the outcome of signaling. However, these do not fully test the role of scaffolds in signaling specificity, since fusing components precludes differential dissociation of subpopulations. We performed a targeted genetic screen on STE5 and repeatedly identified recessive mutations in a conserved residue, E756, in the Ste7/MEK-binding domain that caused erroneous activation of the filamentation MAPK pathway by pheromone signaling. Mutant cells exhibited a shift in the MAPK activation pattern such that the filamentation MAPK Kss1 was predominately activated in response to pheromone. Velocity sedimentation studies showed that the mutant scaffold was defective in binding to a phosphorylated subpopulation of Ste7. Our data suggest that increased dissociation of activated Ste7 kinase from the mutant scaffold may cause the observed shift in MAPK activation from Fus3 to Kss1 and the resulting loss of specificity. Cross-talk in ste5-E756G cells was due to both increased activation of Kss1 and reduced Fus3-dependent degradation of the filamentation pathway transcription factor Tec1. These studies demonstrate a role for an endogenous scaffold in signaling specificity.
Collapse
Affiliation(s)
- Monica A Schwartz
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th St, 94143-2200, USA
| | | |
Collapse
|
105
|
Bikkavilli RK, Tsang SY, Tang WM, Sun JX, Ngai SM, Lee SST, Ko WH, Wise H, Cheung WT. Identification and characterization of surrogate peptide ligand for orphan G protein-coupled receptor mas using phage-displayed peptide library. Biochem Pharmacol 2006; 71:319-37. [PMID: 16336942 DOI: 10.1016/j.bcp.2005.10.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/28/2005] [Accepted: 10/31/2005] [Indexed: 12/12/2022]
Abstract
In the present study, a phage-displayed random peptide library was used to identify surrogate peptide ligands for orphan GPCR mas. Sequence analysis of the isolated phage clones indicated a selective enrichment of some peptide sequences. Moreover, multiple alignments of the isolated phage clones gave two conserved peptide motifs from which we synthesized peptide MBP7 for further evaluation. Characterization of the representative phage clones and the synthetic peptide MBP7 by immunocytochemistry revealed a strong punctate cell surface staining in CHO cells expressing mas-GFP fusion protein. The isolated phage clones and synthetic peptide MBP7 induced mas internalization in a stable CHO cell clone (MC0M80) over-expressing mas. In addition, MBP7-stimulated phospholipase C activity and intracellular calcium mobilization in these same cells. In summary, we have demonstrated a systematic approach to derive surrogate peptide ligands for orphan GPCRs. With this technique, we have identified two conserved peptide motifs which allow us to identify potential protein partners for mas, and have generated a peptide agonist MBP7 which will be invaluable for functional characterization of the mas oncogene.
Collapse
Affiliation(s)
- Rama Kamesh Bikkavilli
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Stanasila L, Abuin L, Diviani D, Cotecchia S. Ezrin directly interacts with the alpha1b-adrenergic receptor and plays a role in receptor recycling. J Biol Chem 2005; 281:4354-63. [PMID: 16352594 DOI: 10.1074/jbc.m511989200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.
Collapse
Affiliation(s)
- Laura Stanasila
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne, Switzerland
| | | | | | | |
Collapse
|
107
|
Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42:311-92. [PMID: 16281738 DOI: 10.1080/10408360591001895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
108
|
Granier S, Jean-Alphonse F, Déméné H, Guillon G, Pascal R, Mendre C. Design and synthesis of cyclic and linear peptide-agarose tools for baiting interacting protein partners of GPCRs. Bioorg Med Chem Lett 2005; 16:521-4. [PMID: 16289816 DOI: 10.1016/j.bmcl.2005.10.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 11/29/2022]
Abstract
A ligation strategy for the synthesis of cyclic and linear peptides covalently linked to agarose beads designed as baits to identify new interacting partners of intracellular loops of the V2 vasopressin receptor, a member of the G-protein-coupled receptor family, is reported. The peptide-resin conjugates were subsequently shown to interact specifically with a fraction of proteins present in cellular lysates.
Collapse
Affiliation(s)
- Sébastien Granier
- UMR 5203 CNRS, U 661 INSERM, Université Montpellier 1, Université Montpellier 2, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Alpha1-Adrenergic receptors (AR) play an important role in the regulation of physiological responses mediated by norepinephrine and epinephrine, particularly in the cardiovascular system. The three cloned alpha1-AR subtypes (alpha1A, alpha1B, and alpha1D) are G protein-coupled receptors that signal through the Gq/11 signaling pathway, each showing distinct pharmacological properties and tissue distributions. However, due to the lack of highly subtype-selective drugs, the functional roles of individual subtypes are still not clear. Development of new subtype-specific drugs will greatly facilitate the identification of the functions of each subtype. Conopeptide rho-TIA has been found to be a new alpha1B-AR selective antagonist with different modes of inhibition at alpha1-AR subtypes. In addition, recent studies using genetically engineered mice have shed some light on alpha1-AR functions in vivo, especially in the cardiovascular system and brain. Several proteins have been shown to interact directly with particular alpha1-AR, and may be important in regulating receptor function. Receptor heterodimerization has been shown to be important for cell surface expression, signaling and internalization. These new observations are likely to help elucidate the functional roles of individual alpha1-AR subtypes.
Collapse
Affiliation(s)
- Zhong-jian Chen
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
110
|
Iaccarino G, Ciccarelli M, Sorriento D, Galasso G, Campanile A, Santulli G, Cipolletta E, Cerullo V, Cimini V, Altobelli GG, Piscione F, Priante O, Pastore L, Chiariello M, Salvatore F, Koch WJ, Trimarco B. Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system. Circ Res 2005; 97:1182-9. [PMID: 16239589 DOI: 10.1161/01.res.0000191541.06788.bb] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beta2-adrenergic receptors (beta2ARs) are widely expressed, although their physiological relevance in many tissues is not yet fully understood. In vascular endothelial cells, they regulate NO release and vessel tone. Here we provide novel evidence that beta2ARs can regulate neoangiogenesis in response to chronic ischemia. We used in vivo adenoviral-mediated gene transfer of the human beta2AR to the endothelium of the rat femoral artery and increased beta2AR signaling resulting in ameliorated angiographic blood flow and hindlimb perfusion after chronic ischemia. Histological analysis confirmed that beta2AR overexpression also produced benefits on capillary density. The same maneuver partially rescued impaired angiogenesis in spontaneously hypertensive rats (SHR), whereas gene delivery of the G-protein-coupling defective mutant Ile164 beta2AR failed to provide ameliorations. Stimulation of endogenous and overexpressed beta2AR on endothelial cells in vitro was found to regulate cell number by inducing proliferation and [3H]-thymidine incorporation through means of extracellular receptor-activated kinase and vascular endothelial growth factor. The beta2AR also has novel effects on endothelial cell number through stimulation of proapoptosis and antiapoptosis pathways involving p38 mitogen-activated protein kinase and PI3-kinase/Akt activation. Therefore, beta2ARs play a critical role in endothelial cell proliferation and function including revascularization, suggesting a novel and physiologically relevant role in neoangiogenesis in response to ischemia.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Extracellular Signal-Regulated MAP Kinases/physiology
- Genetic Therapy
- Humans
- Hypertension/physiopathology
- Ischemia/physiopathology
- Neovascularization, Physiologic
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Adrenergic, beta-2/analysis
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/physiology
- Signal Transduction
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Guido Iaccarino
- Dipartimento di Medicina Clinica e Scienze Cardiovascolari ed Immunologiche, Università Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Luttrell LM. Composition and function of g protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J Mol Neurosci 2005; 26:253-64. [PMID: 16012199 DOI: 10.1385/jmn:26:2-3:253] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Seven membrane-spanning G protein-coupled receptors (GPCRs) function as ligand-activated guanine nucleotide exchange factors for heterotrimeric guanine nucleotide-binding (G) proteins that relay extracellular stimuli by activating intracellular effector enzymes or ion channels. Recent work, however, has shown that GPCRs also participate in numerous other protein-protein interactions that generate intracellular signals in conjunction with, or even independent of, G-protein activation. Nowhere has the importance of protein complex assembly in GPCR signaling been demonstrated more clearly than in the control of the spatial and temporal activity of the extracellular signal-regulated kinase (ERK1/2) mitogen-activated protein (MAP) kinase cascade. ERK1/2 activation by GPCRs often involves cross talk with classical receptor tyrosine kinases or focal adhesion complexes, which scaffold the assembly of a Ras activation complex. Even more surprising is the phenomenon of G protein-independent signaling using beta-arrestins, proteins originally characterized for their role in homologous GPCR desensitization, as scaffolds for the assembly of a multiprotein signalsome directly upon the GPCR. Although both forms of signaling lead to MAP kinase activation, the pathways appear to be functionally, as well as mechanistically, distinct. Transactivated receptor tyrosine kinases mediate rapid and transient MAP kinase activation that favors nuclear translocation of the kinases and transcriptional activation. In contrast, beta-arrestin-dependent signaling produces a slower and more sustained increase in MAP kinase activity that is often restricted to the cytosol. Together, these highly organized signaling complexes dictate the location, duration, and ultimate function of GPCR-stimulated MAP kinase activity.
Collapse
Affiliation(s)
- Louis M Luttrell
- Departments of Medicine and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
112
|
Gesty-Palmer D, El Shewy H, Kohout TA, Luttrell LM. β-Arrestin 2 Expression Determines the Transcriptional Response to Lysophosphatidic Acid Stimulation in Murine Embryo Fibroblasts. J Biol Chem 2005; 280:32157-67. [PMID: 16027114 DOI: 10.1074/jbc.m507460200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors often employ novel signaling mechanisms, such as transactivation of epidermal growth factor (EGF) receptors or G protein-independent signals transmitted by beta-arrestins, to control the activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this study we investigated the role of beta-arrestins in lysophosphatidic acid (LPA) receptor-stimulated ERK1/2 activation using fibroblast lines derived from wild type, beta-arrestin 1, beta-arrestin 2, and beta-arrestin 1/2 knock-out mice. LPA stimulation produced robust ERK1/2 phosphorylation in all four backgrounds. In cells lacking beta-arrestin 2, >80% of LPA-stimulated ERK1/2 phosphorylation was mediated by transactivated EGF receptors. In contrast, ERK1/2 activation in cells expressing beta-arrestin 2 was predominantly EGF receptor-independent. Introducing FLAG epitope-tagged beta-arrestin 2 into the beta-arrestin 1/2 null background restored EGF receptor-independent ERK1/2 activation, indicating that beta-arrestin 2 expression confers ERK1/2 activation via a distinct mechanism. To determine the contributions of beta-arrestin 2, transactivated EGF receptors, and ERK1/2 to LPA-stimulated transcriptional responses, we employed gene expression arrays containing cDNA markers for G protein-coupled receptor-mediated signaling. In the beta-arrestin 1/2 null background, 1 h of exposure to LPA significantly increased transcription of seven marker genes. Six of these responses were EGF receptor-dependent, and two required ERK1/2 activation. In beta-arrestin 2 expressing cells, three of the seven LPA-stimulated transcriptional responses observed in the beta-arrestin 1/2 null background were lost. The four residual responses were independent of EGF receptor transactivation, but all were ERK1/2-dependent. These data indicate that beta-arrestin 2 functions both to attenuate EGF receptor transactivation-dependent signaling and to promote a distinct subset of ERK1/2-mediated responses to LPA receptor activation.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
113
|
Abstract
The Frodo/dapper (Frd) proteins are recently discovered signaling adaptors, which functionally and physically interact with Wnt and Nodal signaling pathways during vertebrate development. The Frd1 and Frd2 genes are expressed in dynamic patterns in early embryos, frequently in cells undergoing epithelial-mesenchymal transition. The Frd proteins function in multiple developmental processes, including mesoderm and neural tissue specification, early morphogenetic cell movements, and organogenesis. Loss-of-function studies using morpholino antisense oligonucleotides demonstrate that the Frd proteins regulate Wnt signal transduction in a context-dependent manner and may be involved in Nodal signaling. The identification of Frd-associated factors and cellular targets of the Frd proteins should shed light on the molecular mechanisms underlying Frd functions in embryonic development and in cancer.
Collapse
Affiliation(s)
- Barbara K Brott
- Department of Molecular Cell and Developmental Biology Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
114
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
115
|
Ianoul A, Grant DD, Rouleau Y, Bani-Yaghoub M, Johnston LJ, Pezacki JP. Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes. Nat Chem Biol 2005; 1:196-202. [PMID: 16408035 DOI: 10.1038/nchembio726] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 07/18/2005] [Indexed: 01/08/2023]
Abstract
The contraction of cardiac myocytes is initiated by ligand binding to adrenergic receptors contained in nanoscale multiprotein complexes called signalosomes. The composition and number of functional signalosomes within cardiac myocytes defines the molecular basis of the response to adrenergic stimuli. For the first time, we demonstrated the ability of near-field scanning optical microscopy to visualize beta-adrenergic receptors at the nanoscale in situ. On H9C2 cells, mouse neonatal and mouse embryonic cardiac myocytes, we showed that functional receptors are organized into multiprotein domains of approximately 140 nm average diameter. Colocalization experiments in primary cells at the nanometer scale showed that 15-20% of receptors were preassociated in caveolae. These nanoscale complexes were sufficient to effect changes in ligand-induced contraction rate without the requirement for substantial changes in receptor distribution in the cellular membrane. Using fluorescence intensities associated with these nanodomains, we estimated the receptor density within the observed nanometer features and established a lower limit for the number of receptors in the signalosome.
Collapse
MESH Headings
- Animals
- Caveolae/chemistry
- Caveolae/metabolism
- Caveolae/ultrastructure
- Cell Line
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Fluorescent Dyes
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Multiprotein Complexes/biosynthesis
- Multiprotein Complexes/ultrastructure
- Myocytes, Cardiac/chemistry
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/chemistry
Collapse
Affiliation(s)
- Anatoli Ianoul
- The Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Canada K1A 0R6
| | | | | | | | | | | |
Collapse
|
116
|
Landon EJ, Inagami T. Beyond the G protein: the saga of the type 2 angiotensin II receptor. Arterioscler Thromb Vasc Biol 2005; 25:15-6. [PMID: 15626769 DOI: 10.1161/01.atv.0000153047.93274.5c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
117
|
|
118
|
P2Y1 receptor signaling is controlled by interaction with the PDZ scaffold NHERF-2. Proc Natl Acad Sci U S A 2005; 102:8042-7. [PMID: 15901899 DOI: 10.1073/pnas.0408818102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P2Y(1) purinergic receptors (P2Y(1)Rs) mediate rises in intracellular Ca(2+) in response to ATP, but the duration and characteristics of this Ca(2+) response are known to vary markedly in distinct cell types. We screened the P2Y(1)R carboxyl terminus against a recently created proteomic array of PDZ (PSD-95/Drosophila Discs large/ZO-1 homology) domains and identified a previously unrecognized, specific interaction with the second PDZ domain of the scaffold NHERF-2 (Na(+)/H(+) exchanger regulatory factor type 2). Furthermore, we found that P2Y(1)R and NHERF-2 associate in cells, allowing NHERF-2-mediated tethering of P2Y(1)R to key downstream effectors such as phospholipase Cbeta. Finally, we found that coexpression of P2Y(1)R with NHERF-2 in glial cells prolongs P2Y(1)R-mediated Ca(2+) signaling, whereas disruption of the P2Y(1)R-NHERF-2 interaction by point mutations attenuates the duration of P2Y(1)R-mediated Ca(2+) responses. These findings reveal that NHERF-2 is a key regulator of the cellular activity of P2Y(1)R and may therefore determine cell-specific differences in P2Y(1)R-mediated signaling.
Collapse
|
119
|
Malbon CC, Tao J, Shumay E, Wang HY. AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling. Biochem Soc Trans 2005; 32:861-4. [PMID: 15494034 DOI: 10.1042/bst0320861] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AKAPs (A-kinase anchoring proteins) are members of a diverse family of scaffold proteins that minimally possess a characteristic binding domain for the RI/RII regulatory subunit of protein kinase A and play critical roles in establishing spatial constraints for multivalent signalling assemblies. Especially for G-protein-coupled receptors, the AKAPs provide an organizing centre about which various protein kinases and phosphatases can be assembled to create solid-state signalling devices that can signal, be modulated and trafficked within the cell. The structure of AKAP250 (also known as gravin or AKAP12), based on analyses of milligram quantities of recombinant protein expressed in Escherichia coli, suggests that the AKAP is probably an unordered scaffold, acting as a necklace on which 'jewels' of structure-function (e.g. the RII-binding domain) that provide docking sites on which signalling components can be assembled. Recent results suggest that AKAP250 provides not only a 'tool box' for assembling signalling elements, but may indeed provide a basis for spatial constraint observed for many signalling paradigms. The spatial dimension of the integration of cell signalling will probably reflect many functions performed by members of the AKAP family.
Collapse
Affiliation(s)
- C C Malbon
- Department of Pharmacology, Diabetes & Metabolic Diseases Research Center, School of Medicine-HSC, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | | | |
Collapse
|
120
|
Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 2005; 92:949-66. [PMID: 15258918 DOI: 10.1002/jcb.20094] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.
Collapse
Affiliation(s)
- Julie Radeff-Huang
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
121
|
Bezard E, Gross CE, Qin L, Gurevich VV, Benovic JL, Gurevich EV. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis 2005; 18:323-335. [PMID: 15686961 DOI: 10.1016/j.nbd.2004.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/04/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
Dysregulation of dopamine receptors (DARs) is believed to contribute to Parkinson disease (PD) pathology. G protein-coupled receptors (GPCR) undergo desensitization via activation-dependent phosphorylation by G protein-coupled receptor kinases (GRKs) followed by arrestin binding. Using quantitative Western blotting, we detected profound differences in the expression of arrestin2 and GRKs among four experimental groups of nonhuman primates: (1) normal, (2) parkinsonian, (3) parkinsonian treated with levodopa without or (4) with dyskinesia. Arrestin2 and GRK6 expression was significantly elevated in the MPTP-lesioned group in most brain regions; GRK2 was increased in caudal caudate and internal globus pallidus. Neither levodopa-treated group differed significantly from control. The only dyskinesia-specific change was an elevation of GRK3 in the ventral striatum of the dyskinetic group. Changes in arrestin and GRK expression in the MPTP group were accompanied by enhanced ERK activation and elevated total ERK expression, which were also reversed by L-DOPA. The data suggest the involvement of arrestins and GRKs in Parkinson disease pathology and the effects of levodopa treatment.
Collapse
Affiliation(s)
- E Bezard
- Basal Gang, CNRS UMR 5543, Université Victor Segalen-Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
122
|
Baurand A, Eckly A, Hechler B, Kauffenstein G, Galzi JL, Cazenave JP, Léon C, Gachet C. Differential regulation and relocalization of the platelet P2Y receptors after activation: a way to avoid loss of hemostatic properties? Mol Pharmacol 2005; 67:721-33. [PMID: 15602005 DOI: 10.1124/mol.104.004846] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the desensitization and trafficking of the P2Y1 and P2Y12 receptors after agonist-induced stimulation of platelets or astrocytoma cells transfected with the P2Y1 or P2Y12 receptors fused to green fluorescent protein. In platelets and in transfected cells, exposure to 10 microM ADP caused desensitization of the P2Y1 receptor-driven calcium signal, whereas the P2Y12 receptor-mediated inhibition of cAMP formation was not affected. Plasma membranes from ADP-stimulated platelets also retained P2Y12 activity. Agonist-induced P2Y1 receptor desensitization was accompanied by its internalization in platelets and transfected cells. In contrast, although a substantial fraction of P2Y12 receptors was rapidly and transiently internalized, most of the P2Y12 receptors remained at the plasma membrane. Activated P2Y1 receptors were internalized through a clathrin-dependent pathway in cells and platelets, whereas the P2Y12 receptors seemed to use a distinct, clathrin-independent pathway. Together, these data indicate that the P2Y1 and P2Y12 receptors are differentially regulated upon activation. The absence of desensitization of the Gi protein-coupled P2Y12 receptor-dependent responses could represent a mechanism to preserve the hemostatic properties of otherwise unresponsive platelets.
Collapse
Affiliation(s)
- Anthony Baurand
- Laboratoire de Biologie et de Pharmacologie de l'Hémostase et de la Thrombose, INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, BP 36, 67065 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Dinh DT, Qian H, Seeber R, Lim E, Pfleger K, Eidne KA, Thomas WG. Helix I of beta-arrestin is involved in postendocytic trafficking but is not required for membrane translocation, receptor binding, and internalization. Mol Pharmacol 2005; 67:375-82. [PMID: 15523053 DOI: 10.1124/mol.104.004721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
beta-Arrestins bind to phosphorylated, seven-transmembrane-spanning, G protein-coupled receptors (GPCRs), including the type 1 angiotensin II receptor (AT(1)R), to promote receptor desensitization and internalization. The AT(1) R is a class B GPCR that recruits both beta-arrestin1 and beta-arrestin2, forming stable complexes that cotraffic to deep-core endocytic vesicles. beta-Arrestins contain one amphipathic and potentially amphitropic (membrane-targeting) alpha-helix (helix I) that may promote translocation to the membrane or influence receptor internalization or trafficking. Here, we investigated the trafficking and function of beta-arrestin1 and beta-arrestin2 mutants bearing substitutions in both the hydrophobic and positively charged faces of helix I. The level of expression of these mutants and their cytoplasmic localization (in the absence of receptor activation) was similar to wild-type beta-arrestins. After angiotensin II stimulation, both wild-type and beta-arrestin mutants translocated to the cell membrane, although recruitment was weaker for mutants of the hydrophobic face of helix I. For all beta-arrestin mutants, the formation of deep-core vesicles was less observed compared with wild-type beta-arrestins. Furthermore, helix I conjugated to green fluorescent protein is not membrane-localized, suggesting that helix I, in isolation, is not amphitropic. Bioluminescence resonance energy transfer analysis revealed that both wild-type and beta-arrestin mutants retained a capacity to interact with the AT(1)R, although the interaction with the mutants was less stable. Finally, wild-type and mutant beta-arrestins fully supported receptor internalization in human embryonic kidney cells and mouse embryonic fibroblasts deficient in beta-arrestin1 and -2. Thus, helix I is implicated in postmembrane trafficking but is not strongly amphitropic.
Collapse
Affiliation(s)
- Diem T Dinh
- Baker Heart Research Institute, St. Kilda Road Central, Melbourne 8008, Australia
| | | | | | | | | | | | | |
Collapse
|
124
|
Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev 2005; 26:78-113. [PMID: 15689574 DOI: 10.1210/er.2003-0024] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of the concentrations of calcium, phosphate, and active vitamin D metabolites in blood and of cellular activity in bone. Intermittently administered PTH and amino-terminal PTH peptide fragments or analogs also augment bone mass and currently are being introduced into clinical practice as therapies for osteoporosis. The amino-terminal region of PTH is known to be both necessary and sufficient for full activity at PTH/PTHrP receptors (PTH1Rs), which mediate the classical biological actions of the hormone. It is well known that multiple carboxyl-terminal fragments of PTH are present in blood, where they comprise the major form(s) of circulating hormone, but these fragments have long been regarded as inert by-products of PTH metabolism because they neither bind to nor activate PTH1Rs. New in vitro and in vivo evidence, together with older observations extending over the past 20 yr, now points strongly to the existence of novel large carboxyl-terminal PTH fragments in blood and to receptors for these fragments that appear to mediate unique biological actions in bone. This review traces the development of this field in the context of the evolution of our understanding of the "classical" receptor for amino-terminal PTH and the now convincing evidence for these receptors for carboxyl-terminal PTH. The review summarizes current knowledge of the structure, secretion, and metabolism of PTH and its circulating fragments, details available information concerning the pharmacology and actions of carboxyl-terminal PTH receptors, and frames their likely biological and clinical significance. It seems likely that physiological parathyroid regulation of calcium and bone metabolism may involve receptors for circulating carboxy-terminal PTH ligands as well as the action of amino-terminal determinants within the PTH molecule on the classical PTH1R.
Collapse
Affiliation(s)
- Timothy M Murray
- Department of Medicine, University of Toronto, and the Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
125
|
Guo S, Lopez-Ilasaca M, Dzau VJ. Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin II-mediated nuclear factor of activated T cells (NFAT) activation. J Biol Chem 2005; 280:12536-41. [PMID: 15668245 DOI: 10.1074/jbc.m500296200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (Ang II) plays a central role in cardiovascular physiology and disease. Ang II type I receptor (AT1) is thought to mediate most actions of Ang II. A novel AT1 receptor intracellular partner called AT1 receptor-associated protein (ATRAP) was identified, but its exact function has not been elucidated. A yeast two-hybrid screen using ATRAP as bait identified calcium-modulating cyclophilin ligand (CAML) as an ATRAP partner. Yeast two-hybrid and coimmunoprecipitation analysis demonstrated that the N-terminal hydrophilic domain of CAML (amino acids (aa) 1-189) mediates a specific interaction between ATRAP and CAML. Our analysis also showed that aa 40-82 of ATRAP contribute to this interaction. Bioluminescence resonance energy transfer and intracellular colocalization analysis by immunofluorescence in HEK293 cells verified this association within endoplasmic reticulum vesicular structures. Functionally, transcriptional reporter assays and RNA interference ATRAP experiments demonstrated that ATRAP knockdown increased nuclear factor of activated T cells (NFAT) activity. Overexpression of ATRAP decreased Ang II- or CAML-induced NFAT transcriptional activation, whereas an ATRAP-interacting domain of CAML (aa 1-189) sensitized NFAT activation in response to Ang II. These results indicate that CAML is an important signal transducer for the actions of Ang II in regulating the calcineurin-NFAT pathway and suggest that the interaction of CAML with ATRAP may mediate the Ang II actions in vascular physiology.
Collapse
Affiliation(s)
- Shaodong Guo
- Cardiovascular Research Laboratories, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
126
|
Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K. Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 2005; 96:308-18. [PMID: 15662032 DOI: 10.1161/01.res.0000156273.30274.f7] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glycogen-Synthase Kinase 3beta (GSK3beta) has been shown to function as a nodal point of converging signaling pathways in endothelial cells to regulate vessel growth, but the signaling mechanisms downstream from GSK3beta have not been identified. Here, we show that beta-catenin is an important downstream target for GSK3beta action in angiogenesis and dissect the signal transduction pathways involved in the angiogenic phenotype. Transduction of human umbilical vein endothelial cells (HUVECs) with a kinase-mutant form of the enzyme (KM-GSK3beta) increased cytosolic beta-catenin levels, whereas constitutively active GSK3beta (S9A-GSK3beta) reduced beta-catenin levels. Lymphoid enhancer factor/T-cell factor promoter activity was upregulated by KM-GSK3beta and diminished by S9A-GSK3beta, whereas manipulation of Akt signaling had no effect on this parameter. beta-Catenin transduction induced capillary formation in a Matrigel-plug assay in vivo and promoted endothelial cell differentiation into network structures on Matrigel-coated plates in vitro. beta-Catenin activated the expression of vascular endothelial growth factor (VEGF)-A and VEGF-C in endothelial cells, and these effects were mediated at the levels of protein, mRNA, and promoter activity. Consistent with these data, beta-catenin increased the phosphorylation of the VEGF receptor 2 (VEGF-R2) and promoted its association with PI3-kinase, leading to a dose-dependent activation of the serine-threonine kinase Akt. Inhibition of PI3-kinase or Akt signaling led to a significant reduction in the pro-angiogenic activity of beta-catenin. Collectively, these data show that the growth factor-PI3-kinase-Akt axis functions downstream of GSK3beta/beta-catenin signaling in endothelial cells to promote angiogenesis.
Collapse
Affiliation(s)
- Carsten Skurk
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Mass 02118, USA
| | | | | | | | | | | |
Collapse
|
127
|
Chen J, Sidhu A. The role of D1 dopamine receptors and phospho-ERK in mediating cytotoxicity. Commentary. Neurotox Res 2005; 7:179-81. [PMID: 15897152 DOI: 10.1007/bf03036447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Striatal neurodegeneration observed in several neurological diseases, occurs through unknown mechanisms. Recent evidence suggests that its pathogenesis may be linked, in part, to high synaptic levels of dopamine (DA), which can then cause neurotoxicity of striatal neurons through mitogen-activated protein kinases (MAPKs). Here we comment on the role of extracellular signal-regulated kinase (ERK) activation in the cytotoxicity mediated upon activation of the D1 DA receptor, and describe a possible mechanism for phospho-ERK (p-ERK) in inducing cytotoxicity.
Collapse
Affiliation(s)
- J Chen
- Department of Pediatrics, Georgetown University, Washington D.C. 20007, USA
| | | |
Collapse
|
128
|
Affiliation(s)
- Gökhan M Mutlu
- Northwestern University Feinberg School of Medicine, Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
129
|
Affiliation(s)
- Blaine N Armbruster
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
130
|
Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 expression selectively increases during neural differentiation. J Neurochem 2004; 91:1404-1416. [PMID: 15584917 DOI: 10.1111/j.1471-4159.2004.02830.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arrestins and G protein-coupled receptor kinases (GRKs) are key players in homologous desensitization of G protein-coupled receptors. Two non-visual arrestins, arrestin2 and 3, and five GRKs (GRK2, 3, 4, 5 and 6) are involved in desensitization of many receptors. Here, we demonstrate a steady increase in arrestin2 expression during prenatal development. The density of arrestin2 mRNA is higher in differentiated areas as compared with proliferative zones, whereas arrestin3 mRNA shows the opposite distribution. At embryonic day 14, concentrations of arrestin proteins are similar (32-34 nM). Later in development, arrestin2 expression rises, leading to a fourfold excess of arrestin2 over arrestin3 at birth (48 vs. 11 ng/mg protein or 102 vs. 25 nM). Among GRKs, only GRK5 increased with embryonic age from 124 nm at E14 to 359 nM at birth. Similarly, in vitro differentiation of cultured precursor cells, neurospheres, leads to a significant up-regulation of arrestin2 resulting in > 20-fold excess of arrestin2 (160 vs. 7 nM). GRK5 is the only subtype increased with neurosphere differentiation, although the change is only about twofold. The data demonstrate selective increases in the expression of arrestin2 associated with neural development and suggest specific yet unappreciated roles for arrestin2 in neural differentiation.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
131
|
Claing A. Regulation of G protein-coupled receptor endocytosis by ARF6 GTP-binding proteins. Biochem Cell Biol 2004; 82:610-7. [PMID: 15674428 DOI: 10.1139/o04-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of G protein-coupled receptors is regulated by a broad variety of membrane-bound and intracellular proteins. These act in concert to activate signaling pathways that will lead to the desensitization of activated receptors and, for most receptor types, their trafficking to intracellular compartments. This review focuses mainly on the endocytic pathways used by a G protein-coupled receptor and on the proteins that play an essential role in the regulation of the internalization process, most specifically the ADP-ribosylation factors. This family of proteins has been shown to be important for vesicle trafficking between different cellular membranes. The latest findings regarding the molecular mechanisms that regulate internalization of an agonist-stimulated receptor are presented here. Finally, a perspective on how ARF6 proteins might regulate the internalization process is also proposed.Key words: G protein-coupled receptors, endocytosis, ADP-ribosylation factor.
Collapse
Affiliation(s)
- Audrey Claing
- Department of Pharmacology, School of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
132
|
Stropes MPM, Miller WE. Signaling and regulation of G-protein coupled receptors encoded by cytomegaloviruses. Biochem Cell Biol 2004; 82:636-42. [PMID: 15674431 DOI: 10.1139/o04-115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytomegaloviruses (CMVs) are species-specific β-herpesviruses whose replicative success is largely due to establishment of novel mechanisms for altering the host immune response. CMV encodes 3 families of putative G-protein coupled receptors (GPCRs) likely pirated from the host cell. While the functions of these virally encoded GPCRs remain unclear, the receptors possess potent signaling abilities. Understanding the molecular regulation of these GPCRs will provide important insight into CMV pathogenesis.Key words: GPCRs, HCMV, GRKs, β-arrestin, US28.
Collapse
Affiliation(s)
- Melissa P M Stropes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|
133
|
Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 2004; 103:21-80. [PMID: 15251227 DOI: 10.1016/j.pharmthera.2004.05.002] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The superfamily of G-protein-coupled receptors (GPCRs) could be subclassified into 7 families (A, B, large N-terminal family B-7 transmembrane helix, C, Frizzled/Smoothened, taste 2, and vomeronasal 1 receptors) among mammalian species. Cloning and functional studies of GPCRs have revealed that the superfamily of GPCRs comprises receptors for chemically diverse native ligands including (1) endogenous compounds like amines, peptides, and Wnt proteins (i.e., secreted proteins activating Frizzled receptors); (2) endogenous cell surface adhesion molecules; and (3) photons and exogenous compounds like odorants. The combined use of site-directed mutagenesis and molecular modeling approaches have provided detailed insight into molecular mechanisms of ligand binding, receptor folding, receptor activation, G-protein coupling, and regulation of GPCRs. The vast majority of family A, B, C, vomeronasal 1, and taste 2 receptors are able to transduce signals into cells through G-protein coupling. However, G-protein-independent signaling mechanisms have also been reported for many GPCRs. Specific interaction motifs in the intracellular parts of these receptors allow them to interact with scaffold proteins. Protein engineering techniques have provided information on molecular mechanisms of GPCR-accessory protein, GPCR-GPCR, and GPCR-scaffold protein interactions. Site-directed mutagenesis and molecular dynamics simulations have revealed that the inactive state conformations are stabilized by specific interhelical and intrahelical salt bridge interactions and hydrophobic-type interactions. Constitutively activating mutations or agonist binding disrupts such constraining interactions leading to receptor conformations that associates with and activate G-proteins.
Collapse
Affiliation(s)
- Kurt Kristiansen
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| |
Collapse
|
134
|
Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 2004; 117:5367-79. [PMID: 15466885 DOI: 10.1242/jcs.01379] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 5-hydroxytryptamine type 4 receptor (5-HT4R) is involved in learning, feeding, respiratory control and gastrointestinal transit. This receptor is one of the G-protein-coupled receptors for which alternative mRNA splicing generates the most variants that differ in their C-terminal extremities. Some 5-HT4R variants (a, e and f) express canonical PDZ ligands at their C-termini. Here, we have examined whether some mouse 5-HT4R variants associate with specific sets of proteins, using a proteomic approach based on peptide-affinity chromatography, two-dimensional electrophoresis and mass spectrometry. We have identified ten proteins that interact specifically with the 5-HT4(a)R and three that only associate with the 5-HT4(e)R. Most of them are PDZ proteins. Among the proteins that associated specifically with the 5-HT4(a)R variant, NHERF greatly modified its subcellular localization. Moreover, NHERF recruited the 5-HT4(a)R to microvilli, where it localized with activated ezrin, consistent with the role of 5-HT4(a)R in cytoskeleton remodelling. The 5-HT4(a)R also interacted with both the constitutive and inducible (upon methamphetamine treatment) forms of the recently cloned sorting nexin 27 (SNX27a and b, respectively). We found that SNX27a redirected part of 5-HT4(a)R to early endosomes. The interaction of the 5-HT4R splice variants with distinct sets of PDZ proteins might specify their cellular localization as well as their signal transduction properties.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Brain/metabolism
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Line, Tumor
- Chromatography
- Cytoskeletal Proteins
- Cytoskeleton/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Immunoprecipitation
- Mass Spectrometry
- Methamphetamine/pharmacology
- Mice
- Microscopy, Confocal
- Molecular Sequence Data
- NIH 3T3 Cells
- Neurons/metabolism
- Peptides/chemistry
- Phosphoproteins/chemistry
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Proteomics
- Receptors, Serotonin, 5-HT4/metabolism
- Receptors, Serotonin, 5-HT4/physiology
- Signal Transduction
- Sodium-Hydrogen Exchangers
- Sorting Nexins
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Lara Joubert
- Laboratoire de Génomique Fonctionnelle, CNRS UPR2580, CCIPE, 141 rue de la Cardonille, 34094 Montpellier CEDEX 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Kotarsky K, Nilsson NE. Reverse pharmacology and the de-orphanization of 7TM receptors. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:99-104. [PMID: 24981378 DOI: 10.1016/j.ddtec.2004.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Approximately 800 genes coding for seven-transmembrane, G-protein-coupled receptors have so far been recognized. In spite of this, many of these receptors are defined by their sequence only, and are therefore classified as orphan receptors. Without knowing what their endogenous ligands are, we lack the information needed to understand their physiological role and hence cannot make use of them as drug targets. In this communication, we discuss different strategies, as well as difficulties in the deorphanizing process.:
Collapse
Affiliation(s)
- Knut Kotarsky
- Section of Immunology, Department of Cellular and Molecular Biology, Lund University, BMC I13, Tornavägen 10 221 84 Lund, Sweden.
| | - Niclas E Nilsson
- Division of Molecular Neurobiology, Department of Physiological Sciences, Lund University, BMC A12, Tornavagen 10 221 84 Lund, Sweden. http://www.mphy.lu.se/mnb
| |
Collapse
|
136
|
Baumgartner M, Patel H, Barber DL. Na+/H+exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am J Physiol Cell Physiol 2004; 287:C844-50. [PMID: 15355855 DOI: 10.1152/ajpcell.00094.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane Na+/H+exchanger NHE1 has an established function in intracellular pH and cell volume homeostasis by catalyzing electroneutral influx of extracellular Na+and efflux of intracellular H+. A second function of NHE1 as a structural anchor for actin filaments through its direct binding of the ezrin, radixin, and moesin (ERM) family of actin-binding proteins was recently identified. ERM protein binding and actin anchoring by NHE1 are necessary to retain the localization of NHE1 in specialized plasma membrane domains and to promote cytoskeleton-dependent processes, including actin filament bundling and cell-substrate adhesions. This review explores a third function of NHE1, as a plasma membrane scaffold in the assembly of signaling complexes. Through its coordinate functions in H+efflux, actin anchoring, and scaffolding, we propose that NHE1 promotes protein interactions and activities, assembles signaling complexes in specialized plasma membrane domains, and coordinates divergent signaling pathways.
Collapse
Affiliation(s)
- Martin Baumgartner
- University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | | | | |
Collapse
|
137
|
Kerchner KR, Clay RL, McCleery G, Watson N, McIntire WE, Myung CS, Garrison JC. Differential Sensitivity of Phosphatidylinositol 3-Kinase p110γ to Isoforms of G Protein βγ Dimers. J Biol Chem 2004; 279:44554-62. [PMID: 15322106 DOI: 10.1074/jbc.m406071200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ability of G protein alpha and betagamma subunits to activate the p110gamma isoform of phosphatidylinositol 3-kinase (PtdIns 3-kinase) was examined using pure, recombinant G proteins and the p101/p110gamma form of PtdIns 3-kinase reconstituted into synthetic lipid vesicles. GTP-activated Gs, Gi, Gq, or Go alpha subunits were unable to activate PtdIns 3-kinase. Dimers containing Gbeta(1-4) complexed with gamma2-stimulated PtdIns 3-kinase activity about 26-fold with EC50 values ranging from 4 to 7 nm. Gbeta5gamma2 was not able to stimulate PtdIns 3-kinase despite producing a 10-fold activation of avian phospholipase Cbeta. A series of dimers with beta subunits containing point mutations in the amino acids that undergo a conformational change upon interaction of betagamma with phosducin (beta1H311Agamma2, beta1R314Agamma2, and beta1W332Agamma2) was tested, and only beta1W332Agamma2 inhibited the ability of the dimer to stimulate PtdIns 3-kinase. Dimers containing the beta1 subunit complexed with a panel of different Ggamma subunits displayed variation in their ability to stimulate PtdIns 3-kinase. The beta1gamma2, beta1gamma10, beta1gamma12, and beta1gamma13 dimers all activated PtdIns 3-kinase about 26-fold with 4-25 nm EC50 values. The beta1gamma11 dimer, which contains the farnesyl isoprenoid group and is highly expressed in tissues containing the p101/p110gamma form of PtdIns 3-kinase, was ineffective. The role of the prenyl group on the gamma subunit in determining the activation of PtdIns 3-kinase was examined using gamma subunits with altered CAAX boxes directing the addition of farnesyl to the gamma2 subunit and geranylgeranyl to the gamma1 and gamma11 subunits. Replacement of the geranylgeranyl group of the gamma2 subunit with farnesyl inhibited the activity of beta1gamma2 on PtdIns 3-kinase. Conversely, replacement of the farnesyl group on the gamma1 and gamma11 subunit with geranylgeranyl restored almost full activity. These findings suggest that all beta subunits, with the exception of beta5, interact equally well with PtdIns 3-kinase. In contrast, the composition of the gamma subunit and its prenyl group markedly affects the ability of the betagamma dimer to stimulate PtdIns 3-kinase.
Collapse
Affiliation(s)
- Kristi R Kerchner
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908-0735, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Heydorn A, Søndergaard BP, Ersbøll B, Holst B, Nielsen FC, Haft CR, Whistler J, Schwartz TW. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem 2004; 279:54291-303. [PMID: 15452121 DOI: 10.1074/jbc.m406169200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adaptor and scaffolding proteins determine the cellular targeting, the spatial, and thereby the functional association of G protein-coupled seven-transmembrane receptors with co-receptors, transducers, and downstream effectors and the adaptors determine post-signaling events such as receptor sequestration through interactions, mainly with the C-terminal intracellular tails of the receptors. A library of tails from 59 representative members of the super family of seven-transmembrane receptors was probed as glutathione S-transferase fusion proteins for interactions with four different adaptor proteins previously proposed to be involved in post-endocytotic sorting of receptors. Of the two proteins suggested to target receptors for recycling to the cell membrane, which is the route believed to be taken by a majority of receptors, ERM (ezrin-radixin-moesin)-binding phosphoprotein 50 (EBP50) bound only a single receptor tail, i.e. the beta(2)-adrenergic receptor, whereas N-ethylmaleimide-sensitive factor bound 11 of the tail-fusion proteins. Of the two proteins proposed to target receptors for lysosomal degradation, sorting nexin 1 (SNX1) bound 10 and the C-terminal domain of G protein-coupled receptor-associated sorting protein bound 23 of the 59 tail proteins. Surface plasmon resonance analysis of the binding kinetics of selected hits from the glutathione S-transferase pull-down experiments, i.e. the tails of the virally encoded receptor US28 and the delta-opioid receptor, confirmed the expected nanomolar affinities for interaction with SNX1. Truncations of the NK(1) receptor revealed that an extended binding epitope is responsible for the interaction with both SNX1 and G protein-coupled receptor-associated sorting protein as well as with N-ethylmaleimide-sensitive factor. It is concluded that the tail library provides useful information on the general importance of certain adaptor proteins, for example, in this case, ruling out EBP50 as being a broad spectrum-recycling adaptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Carrier Proteins/metabolism
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Endocytosis
- Gene Deletion
- Glutathione Transferase/genetics
- Humans
- Lysosomes/metabolism
- Molecular Sequence Data
- Mutagenesis
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptide Library
- Phosphoproteins
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Tachykinin/chemistry
- Receptors, Tachykinin/genetics
- Receptors, Tachykinin/metabolism
- Recombinant Fusion Proteins/metabolism
- Sodium-Hydrogen Exchangers/metabolism
- Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins
- Surface Plasmon Resonance
- Vesicular Transport Proteins/metabolism
Collapse
Affiliation(s)
- Arne Heydorn
- Laboratory for Molecular Pharmacology, Department of Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Terrillon S, Bouvier M. Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. EMBO J 2004; 23:3950-61. [PMID: 15385966 PMCID: PMC524336 DOI: 10.1038/sj.emboj.7600387] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/03/2004] [Indexed: 01/07/2023] Open
Abstract
The roles of betaarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, betaarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with betaarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the betaarrestin/receptor complexes. Interestingly, betaarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating betaarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of betaarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by betaarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that betaarrestin2 can act as a 'bonafide' signalling molecule even in the absence of activated receptor.
Collapse
Affiliation(s)
- Sonia Terrillon
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Québec, Canada
| | - Michel Bouvier
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Québec, Canada
- Département de Biochimie, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7. Tel.: +1 514 343 6372; Fax: +1 514 343 2210; E-mail:
| |
Collapse
|
140
|
Chen J, Rusnak M, Luedtke RR, Sidhu A. D1 Dopamine Receptor Mediates Dopamine-induced Cytotoxicity via the ERK Signal Cascade. J Biol Chem 2004; 279:39317-30. [PMID: 15247297 DOI: 10.1074/jbc.m403891200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Postsynaptic striatal neurodegeneration occurs through unknown mechanisms, but it is linked to high extracellular levels of synaptic dopamine. Dopamine-mediated cytotoxicity of striatal neurons occurs through two distinct pathways: autoxidation and the D1 dopamine receptor-linked signaling pathway. Here we investigated the mitogen-activated protein kinase (MAPK) signaling pathways activated upon the acute stimulation of D1 dopamine receptors. In SK-N-MC neuroblastoma cells, endogenously expressing D1 dopamine receptors, dopamine caused activation of phosphorylated (p-)ERK1/2 and of the stress-signaling kinases, p-JNK and p-p38 MAPK, in a time- and dose-dependent manner. Selective stimulation of D1 receptors with the agonist SKF R-38393 caused p-ERK1/2, but not p-JNK or p-p38 MAPK activation, in a manner sensitive to the receptor-selective antagonist SCH 23390, protein kinase A inhibition (KT5720), and MEK1/2 inhibition (U0126 or PD98059). Activation of ERK by D1 dopamine receptors resulted in oxidative stress and cytotoxicity. In cells transfected with a catalytically defective mutant of MEK1, the upstream ERK-specific kinase, both dopamine- and SKF R-38393-mediated cytotoxicity was markedly attenuated, confirming the participation of the ERK signaling pathway. Cell fractionation studies showed that only a small amount of p-ERK1/2 was translocated to the nucleus, with the majority retained in the cytoplasm. From coimmunoprecipitation studies, p-ERK was found to form stable heterotrimeric complexes with the D1 dopamine receptor and beta-arrestin2. In cells transfected with the dominant negative mutant of beta-arrestin2, the formation of such complexes was substantially inhibited. These data provide novel mechanistic insights into the role of ERK in the cytotoxicity mediated upon activation of the D1 dopamine receptor.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
141
|
Kule CE, Karoor V, Day JNE, Thomas WG, Baker KM, Dinh D, Acker KA, Booz GW. Agonist-dependent internalization of the angiotensin II type one receptor (AT1): role of C-terminus phosphorylation in recruitment of β-arrestins. ACTA ACUST UNITED AC 2004; 120:141-8. [PMID: 15177932 DOI: 10.1016/j.regpep.2004.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/27/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Beta-arrestins play a role in AT1 endocytosis by binding the cytoplasmic, C-terminus region T332-S338, the major site of angiotensin II (Ang II)-induced phosphorylation. However, the processes responsible for recruiting beta-arrestin to the activated receptor are poorly defined. In this study, we used CHO-K1 and HEK 293 cells expressing wild-type or mutant AT1 to investigate two possibilities: activated AT1 induces global relocation of beta-arrestins to the plasma membrane or the phosphorylated C-terminus acts as bait to attract beta-arrestins. Results obtained using high osmolarity and dominant-negative beta-arrestin confirmed that internalization of AT1 in both CHO-K1 and HEK 293 cells is predominately via clathrin-mediated endocytosis involving beta-arrestin, and substitution of T332, S335, T336 and S338 with alanine to preclude phosphorylation markedly attenuated AT1 internalization. Confocal microscopy revealed that wild-type AT1 induced a time-dependent translocation of GFP-tagged beta-arrestins 1 and 2 to the cell surface. In contrast, the TSTS/A mutant did not traffic beta-arrestin 1 at all, and only trafficked beta-arrestin 2 weakly. Results of rescue-type experiments were consistent with the idea that both beta-arrestins are able to interact with the non-phosphorylated receptor, albeit with much lower affinity and beta-arrestin 1 less so than beta-arrestin 2. In conclusion, this study shows that the high affinity binding of beta-arrestins to the phosphorylated C-terminus is the predominant mechanism of agonist-induced beta-arrestin recruitment to the cell surface and AT1 receptor.
Collapse
Affiliation(s)
- Chris E Kule
- Science Department, Cabrini College, Radnor, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Cardiovascular function relies on complex servo-controlled regulation mechanisms that involve both fast-acting feedback responses and long-lasting adaptations affecting the gene expression. The adrenergic system, with its specific receptor subtypes and intracellular signalling cascades provides the major regulatory system, while the parasympathetic system plays a minor role. At the molecular level, Ca(2+) acts as the general signal trigger for the majority of cell activities including contraction, metabolism and growth. During recent years, important new results have emerged allowing an integrated view of how the multifarious Ca(2+)-signalling mechanisms transmit adrenergic impulses to intracellular target sites. These insights into cellular and molecular mechanisms are pivotal in improving pharmacological control of the sympathetic responses to surgical trauma and perioperative stress. They are examined in detail in this review, with particular emphasis being given to the differences in intracellular signalling between cardiomyocytes and vascular smooth muscle cells.
Collapse
Affiliation(s)
- M Zaugg
- Institute of Anaesthesiology, University Hospital Zurich, Switzerland. michael.zaugg.usz.ch
| | | |
Collapse
|
143
|
Oh YS, Jo NW, Choi JW, Kim HS, Seo SW, Kang KO, Hwang JI, Heo K, Kim SH, Kim YH, Kim IH, Kim JH, Banno Y, Ryu SH, Suh PG. NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation. Mol Cell Biol 2004; 24:5069-79. [PMID: 15143197 PMCID: PMC416407 DOI: 10.1128/mcb.24.11.5069-5079.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2). In addition, the interaction between them requires the C-terminal PDZ domain-binding motif of LPA(2) and the second PDZ domain of NHERF2. Moreover, the stable expression of NHERF2 potentiated LPA-induced phospholipase C-beta (PLC-beta) activation, which was markedly attenuated by either a mutation in the PDZ-binding motif of LPA(2) or by the gene silencing of NHERF2. Using its second PDZ domain, NHERF2 was found to indirectly link LPA(2) to PLC-beta3 to form a complex, and the other PLC-beta isozymes were not included in the protein complex. Consistently, LPA(2)-mediated PLC-beta activation was specifically inhibited by the gene silencing of PLC-beta3. In addition, NHERF2 increases LPA-induced ERK activation, which is followed by cyclooxygenase-2 induction via a PLC-dependent pathway. Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway.
Collapse
Affiliation(s)
- Yong-Seok Oh
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Clark MC, Dever TE, Dever JJ, Xu P, Rehder V, Sosa MA, Baro DJ. Arthropod 5-HT2 receptors: a neurohormonal receptor in decapod crustaceans that displays agonist independent activity resulting from an evolutionary alteration to the DRY motif. J Neurosci 2004; 24:3421-35. [PMID: 15056722 PMCID: PMC6730010 DOI: 10.1523/jneurosci.0062-04.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stomatogastric nervous system (STNS) is a premiere model for studying modulation of motor pattern generation. Whereas the cellular and network responses to monoamines have been particularly well characterized electrophysiologically, the transduction mechanisms that link the different monoaminergic signals to specific intracellular responses are presently unknown in this system. To begin to elucidate monoaminergic signal transduction in pyloric neurons, we used a bioinformatics approach to predict the existence of 18 monoamine receptors in arthropods, 9 of which have been previously cloned in Drosophila and other insects. We then went on to use the two existing insect databases to clone and characterize the 10th putative arthropod receptor from the spiny lobster, Panulirus interruptus. This receptor is most homologous to the 5-HT2 subtype and shows a dose-dependent response to 5-HT but not to any of the other monoamines present in the STNS. Through a series of pharmacological experiments, we demonstrate that this newly described receptor, 5-HT2betaPan, couples with the traditional G(q) pathway when expressed in HEK293 cells, but not to G(s) or G(i/o). Moreover, it is constitutively active, because the highly conserved DRY motif in transmembrane region 3 has evolved into DRF. Site-directed mutagenesis that reverts the motif back to DRY abolishes this agonist-independent activity. We further demonstrate that this receptor most likely participates in the modulation of stomatogastric motor output, because it is found in neurites in the synaptic neuropil of the stomatogastric ganglion as well as in the axon terminals at identified pyloric neuromuscular junctions.
Collapse
MESH Headings
- Amino Acid Motifs/physiology
- Amino Acid Sequence
- Animals
- Biogenic Amines/pharmacology
- Biogenic Amines/physiology
- Cell Line
- Cloning, Molecular
- Computational Biology/methods
- Conserved Sequence/physiology
- Digestive System/innervation
- Drosophila/genetics
- Evolution, Molecular
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nerve Net/metabolism
- Nerve Net/physiology
- Neurotransmitter Agents/metabolism
- Palinuridae/genetics
- Palinuridae/physiology
- Protein Kinase C/metabolism
- Receptors, Neurotransmitter/agonists
- Receptors, Neurotransmitter/metabolism
- Receptors, Serotonin, 5-HT2/genetics
- Receptors, Serotonin, 5-HT2/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Structure-Activity Relationship
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Merry C Clark
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
The biological effects of epinephrine and norepinephrine are mediated via 9 different adrenergic receptor subtypes, which all belong to the superfamily of G protein-coupled receptors. Although pharmacological ligands for adrenergic receptors have an important place in medical therapy, the full therapeutic potential of the 9 adrenergic receptor subtypes has not been explored yet. To dissect the physiological relevance of adrenergic receptor subtype diversity, gene-targeted mouse models carrying deletions in these receptor genes ("knockout mice") have been generated. This review gives an overview of the phenotypes observed in mice deficient in adrenergic receptors and discusses the therapeutic relevance of subtype-specific drug therapy.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Knockout
- Models, Animal
- Receptors, Adrenergic, alpha/genetics
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Melanie Philipp
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078, Würzburg, Germany
| | | |
Collapse
|
146
|
Affiliation(s)
- Wesley K Kroeze
- Departments of Biochemistry, Neurosciences and Psychiatry, NIMH Psychoactive Drug Screening Program, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
147
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
148
|
Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, Alleaume AM, Di Benedetto M, Boden C, Masson M, Strosberg AD, Horiuchi M, Couraud PO, Nahmias C. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 2004; 279:28989-97. [PMID: 15123706 DOI: 10.1074/jbc.m403880200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative regulation of mitogenic pathways is a fundamental process that remains poorly characterized. The angiotensin II AT2 receptor is a rare example of a 7-transmembrane domain receptor that negatively cross-talks with receptor tyrosine kinases to inhibit cell growth. In the present study, we report the molecular cloning of a novel protein, ATIP1 (AT2-interacting protein), which interacts with the C-terminal tail of the AT2 receptor, but not with those of other receptors such as angiotensin AT1, bradykinin BK2, and adrenergic beta(2) receptor. ATIP1 defines a family of at least four members that possess the same domain of interaction with the AT2 receptor, contain a large coiled-coil region, and are able to dimerize. Ectopic expression of ATIP1 in eukaryotic cells leads to inhibition of insulin, basic fibroblast growth factor, and epidermal growth factor-induced ERK2 activation and DNA synthesis, and attenuates insulin receptor autophosphorylation, in the same way as the AT2 receptor. The inhibitory effect of ATIP1 requires expression, but not ligand activation, of the AT2 receptor and is further increased in the presence of Ang II, indicating that ATIP1 cooperates with AT2 to transinactivate receptor tyrosine kinases. Our findings therefore identify ATIP1 as a novel early component of growth inhibitory signaling cascade.
Collapse
Affiliation(s)
- Sandrine Nouet
- Department of Cell Biology, Institut Cochin, INSERM U567-CNRS UMR8104, 22 rue Méchain, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Kowanetz K, Husnjak K, Höller D, Kowanetz M, Soubeyran P, Hirsch D, Schmidt MHH, Pavelic K, De Camilli P, Randazzo PA, Dikic I. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol Biol Cell 2004; 15:3155-66. [PMID: 15090612 PMCID: PMC452573 DOI: 10.1091/mbc.e03-09-0683] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CIN85 is a multidomain adaptor protein involved in Cbl-mediated down-regulation of epidermal growth factor (EGF) receptors. CIN85 src homology 3 domains specifically bind to a proline-arginine (PxxxPR) motif in Cbl, and this association seems to be important for EGF receptor endocytosis. Here, we report identification of novel CIN85 effectors, all containing one or more PxxxPR motifs, that are indispensable for their mutual interactions. These effectors include phosphatidyl-inositol phosphatases SHIP-1 and synaptojanin 2B1, Arf GTPase-activating proteins ASAP1 and ARAP3, adaptor proteins Hip1R and STAP1, and a Rho exchange factor, p115Rho GEF. Acting as a molecular scaffold, CIN85 clusters its effectors and recruits them to high-molecular-weight complexes in cytosolic extracts of cells. Further characterization of CIN85 binding to ASAP1 revealed that formation of the complex is independent on cell stimulation. Overexpression of ASAP1 increased EGF receptor recycling, whereas ASAP1 containing mutated PxxxPR motif failed to promote this event. We propose that CIN85 functions as a scaffold molecule that binds to numerous endocytic accessory proteins, thus controlling distinct steps in trafficking of EGF receptors along the endocytic and recycling pathways.
Collapse
Affiliation(s)
- Katarzyna Kowanetz
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Prather PL. Inverse agonists: tools to reveal ligand-specific conformations of G protein-coupled receptors. Sci Signal 2004; 2004:pe1. [PMID: 14722344 DOI: 10.1126/stke.2152004pe1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
G protein-coupled receptors (GPCRs) traverse the plasma membrane seven times and produce intracellular effects through interaction with G proteins. Three classes of ligands bind and regulate the activity of GPCRs: agonists, antagonists, and inverse agonists. To describe the activity of these ligands at GPCRs, a two-state receptor model has been proposed in which receptors exist in an equilibrium between inactive (R) and active (R*) states. Agonists preferentially bind and stabilize the active (R*) state. This results in an enrichment of the proportion of active receptors, producing an increase in receptor activity. In contrast, inverse agonists preferentially bind and stabilize receptors in the inactive (R) state. This results in an enrichment of the proportion of inactive receptors, producing a reduction in spontaneous receptor activity. Neutral antagonists have equal preferences for both R and R* states, lack any intrinsic activity, and are able to block actions produced by either agonists or inverse agonists. Exciting observations reported in two recent manuscripts by Gbahou et al. and Azzi et al. indicate that some inverse agonists act not only in opposition to agonists by suppressing constitutive receptor activity, but may also initiate unique signal transduction cascades as well. Specifically, it is proposed that these unique ligands are able to enrich several distinct active receptor conformations, each demonstrating a preference for regulation of a discrete intracellular effector. This suggests that inverse agonists are not merely "the opposite of agonists," but instead may serve as useful tools to investigate ligand-specific conformations of GPCRs.
Collapse
Affiliation(s)
- Paul L Prather
- Department of Pharmacology and Toxicology, Mail Slot 611, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|