101
|
Sangle GV, Shen GX. Signaling mechanisms for oxidized LDL-induced oxidative stress and the upregulation of plasminogen activator inhibitor-1 in vascular cells. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
102
|
Taye A, Sawamura T, Morawietz H. Aldosterone augments LOX-1-mediated low-density lipoprotein uptake in human umbilical artery endothelial cells. Pharmacol Rep 2010; 62:311-8. [DOI: 10.1016/s1734-1140(10)70271-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/29/2010] [Indexed: 11/16/2022]
|
103
|
Kojima C, Ino J, Ishii H, Nitta K, Yoshida M. MMP-9 inhibition by ACE inhibitor reduces oxidized LDL-mediated foam-cell formation. J Atheroscler Thromb 2010; 17:97-105. [PMID: 20093780 DOI: 10.5551/jat.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Angiotensin-converting enzyme inhibitors (ACEIs) have been shown to block matrix metalloproteinase (MMP)-9 activity, which plays a role in atherogenesis. MMP-9 activity of macrophages is increased during foam cell formation. To investigate the contribution of ACEIs to foam cell formation, we studied the effects of an ACEI, imidaprilat, on THP-1 macrophages and the underlying molecular mechanisms in vitro. METHODS AND RESULTS Pre-treatment of THP-1 macrophages with imidaprilat (100 nmol/L, 4 hours) significantly decreased foam cell formation induced by oxidized LDL (OxLDL). Imidaprilat reduced the protein level of MMP-9 in THP-1 macrophages and attenuated OxLDL-induced MMP-9 activity in the culture supernatants. Indeed, pretreatment of THP-1 macrophages with an MMP-2/9 inhibitor (20 micromol/L, 4 hours) attenuated OxLDL-induced foam-cell formation. Imidaprilat or the MMP-2/9 inhibitor blocked OxLDL-induced expressions of LOX-1 and scavenger receptor-A (SR-A), but not that of CD36, in THP-1 macrophages. In addition, OxLDL-induced activation of p38 mitogen-activated protein kinase (MAPK) and ERK, but not JNK, was blunted by imidaprilat or the MMP-2/9 inhibitor. Finally, siRNA against MMP-9 inhibited foam cell formation as well as lipid accumulation in THP-1 macrophages. CONCLUSION These findings suggest that imidaprilat reduces OxLDL-triggered foam-cell formation in THP-1 macrophages via modulation of MMP-9 activity and may indicate a novel antiinflamma-tory mechanism of imidaprilat in atherogenesis.
Collapse
Affiliation(s)
- Chiari Kojima
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
104
|
Navarra T, Del Turco S, Berti S, Basta G. The lectin-like oxidized low-density lipoprotein receptor-1 and its soluble form: cardiovascular implications. J Atheroscler Thromb 2009; 17:317-31. [PMID: 20009416 DOI: 10.5551/jat.3228] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) is a multiligand receptor, whose repertoire of ligands includes oxidized low-density lipoprotein, advanced glycation endproducts, platelets, neutrophils, apoptotic/aged cells and bacteria. Sustained expression of LOX-1 by critical target cells, including endothelial cells, smooth muscle cells and macrophages in proximity to these ligands, sets the stage for chronic cellular activation and tissue damage suggesting the interaction of cellular LOX-1 with its ligands to contribute to the formation and development of atherosclerotic plaques. Studies with transgenic and knockout mouse models have elucidated in part the role of LOX-1 in the pathogenesis of atherosclerosis and cardiac remodeling. Recently, a circulating soluble form of LOX-1 (sLOX-1), corresponding solely to its extracellular domain, has been identified in human serum. Circulating levels of sLOX-1 are increased in inflammatory and atherosclerotic conditions and are associated with acute coronary syndrome, with the severity of coronary artery disease, and with serum biomarkers for oxidative stress and inflammation, suggesting that they could be a useful marker for vascular injury. However, many interesting questions have not yet been answered and in this review, we provide an updated overview of the literature on this receptor and on likely future directions.
Collapse
|
105
|
Vincent AM, Hinder LM, Pop-Busui R, Feldman EL. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst 2009; 14:257-67. [PMID: 20021567 PMCID: PMC4239691 DOI: 10.1111/j.1529-8027.2009.00237.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Emerging data establish dyslipidemia as a significant contributor to the development of diabetic neuropathy. In this review, we discuss how separate metabolic imbalances, including hyperglycemia and hyperlipidemia, converge on mechanisms leading to oxidative stress in dorsal root ganglia (DRG) sensory neurons. We conclude with suggestions for novel therapeutic strategies to prevent or reverse diabetes-induced nerve degeneration.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
106
|
Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri A, Pennathur S, Feldman EL. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes 2009; 58:2376-85. [PMID: 19592619 PMCID: PMC2750230 DOI: 10.2337/db09-0047] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Neuropathy is a frequent and severe complication of diabetes. Multiple metabolic defects in type 2 diabetic patients result in oxidative injury of dorsal root ganglia (DRG) neurons. Our previous work focused on hyperglycemia clearly demonstrates induction of mitochondrial oxidative stress and acute injury in DRG neurons; however, this mechanism is not the only factor that produces neuropathy in vivo. Dyslipidemia also correlates with the development of neuropathy, even in pre-diabetic patients. This study was designed to explore the contribution of dyslipidemia in neuropathy. RESEARCH DESIGN AND METHODS Mice (n = 10) were fed a control (10% kcal %fat) or high-fat (45% kcal %fat) diet to explore the impact of plasma lipids on the development of neuropathy. We also examined oxidized lipid-mediated injury in cultured DRG neurons from adult rat using oxidized LDLs (oxLDLs). RESULTS Mice on a high-fat diet have increased oxLDLs and systemic and nerve oxidative stress. They develop nerve conduction velocity (NCV) and sensory deficits prior to impaired glucose tolerance. In vitro, oxLDLs lead to severe DRG neuron oxidative stress via interaction with the receptor lectin-like oxLDL receptor (LOX)-1 and subsequent NAD(P)H oxidase activity. Oxidative stress resulting from oxLDLs and high glucose is additive. CONCLUSIONS Multiple metabolic defects in type 2 diabetes directly injure DRG neurons through different mechanisms that all result in oxidative stress. Dyslipidemia leads to high levels of oxLDLs that may injure DRG neurons via LOX-1 and contribute to the development of diabetic neuropathy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Ishiyama J, Taguchi R, Yamamoto A, Murakami K. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis 2009; 209:118-24. [PMID: 19782984 DOI: 10.1016/j.atherosclerosis.2009.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/26/2009] [Accepted: 09/02/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Elevated levels of nonesterified fatty acids (NEFA) in obesity and type 2 diabetes may contribute to the development of atherosclerosis. Therefore, we examined whether NEFA could regulate expression of scavenger receptors responsible for uptake of oxidized LDL (oxLDL) in macrophages, a critical step in atherogenesis. METHODS AND RESULTS Expression level of scavenger receptors in NEFA-treated macrophage-like THP-1 and Raw264.7 cells were analyzed by real-time PCR. Palmitic acid showed the greatest enhancement of expression of lectin-like oxidized LDL receptor (LOX-1) among 7 NEFA examined (4 saturated and 3 unsaturated fatty acids). Upregulation of LOX-1 was selective as increases in expression level of other scavenger receptors (CD36, SR-AI, SR-BI, and CD68) were not observed. Western blotting analysis indicated that upregulation of LOX-1 also occurred at the protein level. Uptake of oxLDL by Raw264.7 cells was promoted by palmitic acid, and the enhanced uptake was abrogated when the cells were transfected with siRNA against LOX-1. Downregulation of Toll-like receptor (TLR) 2, TLR4, or IRAK4 with siRNA did not prevent LOX-1 upregulation, whereas inhibitors of p38 MAPK (p38) and reactive oxygen species (ROS) signal inhibited the upregulation of LOX-1 induced by palmitic acid. CONCLUSIONS These results suggest that elevated level of palmitic acid may contribute to development of atherosclerosis through enhanced uptake of oxLDL via upregulation of LOX-1 in macrophages. The effects of palmitic acid may be mediated by ROS-p38 pathway rather than TLRs.
Collapse
Affiliation(s)
- Junichi Ishiyama
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | | | | | | |
Collapse
|
108
|
Ethier-Chiasson M, Forest JC, Giguère Y, Masse A, Marseille-Tremblay C, Lévy E, Lafond J. Modulation of placental protein expression of OLR1: implication in pregnancy-related disorders or pathologies. Reproduction 2008; 136:491-502. [PMID: 18599643 DOI: 10.1530/rep-08-0082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR1) is a newly described receptor for oxidatively modified LDL. The human pregnancy is associated with hyperlipidemia and oxidative stress. It has been reported that modification in maternal lipid profile can induce disturbance during pregnancy. In this study, we have evaluated the expression protein level of OLR1 in human term placenta of women having plasma cholesterol level lower to 7 mM or higher to 8 mM and women of gestational diabetes mellitus (GDM) by western blot analysis. The present study demonstrates that the maternal lipid profile is associated with placental protein expression of OLR1. A significant increase in the protein expression of OLR1 was observed in placenta of women with elevated plasmatic total cholesterol level (>8 mM). In addition, the placental protein expression of OLR1 is increased in mothers having the highest pre-pregnancy body mass index (BMI) and low (<7 mM) plasmatic total cholesterol level at term. Interestingly, the placental protein expression of OLR1 is increased in the presence of GDM pregnancies compared with normal lipids level pregnancies, without the modification of mRNA expression. In conclusion, placental OLR1 protein expression is associated with maternal lipid profile, pre-pregnancy BMI, and pathology of GDM.
Collapse
Affiliation(s)
- M Ethier-Chiasson
- Laboratoire de Physiologie Materno-Foetale, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
109
|
Mauldin JP, Nagelin MH, Wojcik AJ, Srinivasan S, Skaflen MD, Ayers CR, McNamara CA, Hedrick CC. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation 2008; 117:2785-92. [PMID: 18490524 PMCID: PMC2748102 DOI: 10.1161/circulationaha.107.741314] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Patients with type 2 diabetes mellitus are at increased risk for the development of atherosclerosis. A pivotal event in the development of atherosclerosis is macrophage foam cell formation. The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 regulate macrophage cholesterol efflux and hence play a vital role in macrophage foam cell formation. We have previously found that chronic elevated glucose reduces ABCG1 expression. In the present study, we examined whether patients with type 2 diabetes mellitus had decreased ABCG1 and/or ABCA1, impaired cholesterol efflux, and increased macrophage foam cell formation. METHODS AND RESULTS Blood was collected from patients with and without type 2 diabetes mellitus. Peripheral blood monocytes were differentiated into macrophages, and cholesterol efflux assays, immunoblots, histological analysis, and intracellular cholesteryl ester measurements were performed. Macrophages from patients with type 2 diabetes mellitus had a 30% reduction in cholesterol efflux with a corresponding 60% increase in cholesterol accumulation relative to control subjects. ABCG1 was present in macrophages from control subjects but was undetectable in macrophages from patients with type 2 diabetes mellitus. In contrast, ABCA1 expression in macrophages was similar in both control subjects and patients with type 2 diabetes mellitus. Macrophage expression of ABCG1 in both patients and control subjects was induced by treatment with the liver X receptor agonist TO-901317. Upregulation of liver X receptor dramatically reduced foam cell formation in macrophages from patients with type 2 diabetes mellitus. CONCLUSIONS ABCG1 expression and cholesterol efflux are reduced in patients with type 2 diabetes mellitus. This impaired ABCG1-mediated cholesterol efflux significantly correlates with increased intracellular cholesterol accumulation. Strategies to upregulate ABCG1 expression and function in type 2 diabetes mellitus could have therapeutic potential for limiting the accelerated vascular disease observed in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jeremy P. Mauldin
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa H. Nagelin
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Allison J. Wojcik
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Suseela Srinivasan
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Marcus D. Skaflen
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Carlos R. Ayers
- the Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Coleen A. McNamara
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
- the Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Catherine C. Hedrick
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
- the Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
110
|
Singh U, Dasu MR, Yancey PG, Afify A, Devaraj S, Jialal I. Human C-reactive protein promotes oxidized low density lipoprotein uptake and matrix metalloproteinase-9 release in Wistar rats. J Lipid Res 2008; 49:1015-23. [PMID: 18245817 PMCID: PMC2311439 DOI: 10.1194/jlr.m700535-jlr200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/14/2008] [Indexed: 11/20/2022] Open
Abstract
C-reactive protein (CRP) is present in the atherosclerotic plaques and appears to promote atherogenesis. Intraplaque CRP colocalizes with oxidized low density lipoprotein (OxLDL) and macrophages in human atherosclerotic lesions. Matrix metalloproteinase-9 (MMP-9) has been implicated in plaque rupture. CRP promotes OxLDL uptake and MMP induction in vitro; however, these have not been investigated in vivo. We examined the effect of CRP on OxLDL uptake and MMP-9 production in vivo in Wistar rats. CRP significantly increased OxLDL uptake in the peritoneal and sterile pouch macrophages compared with human serum albumin (huSA). CRP also significantly increased intracellular cholesteryl ester accumulation compared with huSA. The increased uptake of OxLDL by CRP was inhibited by pretreatment with antibodies to CD32, CD64, CD36, and fucoidin, suggesting uptake by both scavenger receptors and Fc-gamma receptors. Furthermore, CRP treatment increased MMP-9 activity in macrophages compared with huSA, which was abrogated by inhibitors to p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), and nuclear factor (NF)-kappaB but not Jun N-terminal kinase (JNK) before human CRP treatment. Because OxLDL uptake by macrophages contributes to foam cell formation and MMP release contributes to plaque instability, this study provides novel in vivo evidence for the role of CRP in atherosclerosis.
Collapse
Affiliation(s)
- U Singh
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
111
|
Tan KCB, Shiu SWM, Wong Y, Leng L, Bucala R. Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus. J Lipid Res 2008; 49:1438-44. [PMID: 18408244 DOI: 10.1194/jlr.m700551-jlr200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) can be proteolytically cleaved and released as soluble forms (sLOX-1). We have determined serums LOX-1 in type 2 diabetes and evaluated the effect of glucose and advanced glycation end products (AGEs) on sLOX-1 in vitro and in vivo. Endothelial cells were incubated with glucose or AGEs, and sLOX-1 in cell medium was measured. Serum sLOX-1 was measured in 219 diabetic patients and 187 controls by ELISA. The effect of lowering glucose and AGEs on sLOX-1 was determined in 38 poorly controlled diabetic patients after improvement in glycemic control. Incubation of endothelial cells with AGE-BSA led to a dose-dependent increase in sLOX-1, whereas the effect of glucose on sLOX-1 was less marked. Serum sLOX-1 was 9% higher in diabetic patients compared with controls (P<0.01). In the poorly controlled patients, serum sLOX-1 decreased by 12.5% after improvement in glycemic control (P<0.05). The magnitude of reduction in sLOX-1 correlated with the improvement in hemoglobin A1c and AGEs but not with the reduction in oxidized LDL. sLOX-1 level is increased in type 2 diabetes. Both glucose and AGEs are important determinants of LOX-1 expression, and lowering glucose and AGEs leads to a reduction in sLOX-1.
Collapse
Affiliation(s)
- Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
112
|
Yang WS, Seo JW, Han NJ, Choi J, Lee KU, Ahn H, Lee SK, Park SK. High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am J Physiol Renal Physiol 2008; 294:F1065-75. [PMID: 18353872 DOI: 10.1152/ajprenal.00381.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of nuclear factor-kappaB (NF-kappaB) occurs by dissociation from IkappaB after serine or tyrosine phosphorylation of IkappaBalpha, but the way of NF-kappaB activation by high glucose has not been defined. High glucose is known to activate NF-kappaB via protein kinase C and reactive oxygen species (ROS). In this study, we investigated how high glucose activates NF-kappaB for CC chemokine ligand 2 production in cultured human glomerular endothelial cells. High glucose increased nuclear translocation of p65 and also increased NF-kappaB DNA binding activity. High glucose-induced NF-kappaB activation occurred without degradation of IkappaBalpha. In agreement with this, there was no increase in serine phosphorylation of IkappaBalpha, while tyrosine phosphorylation of IkappaBalpha was increased by high glucose. High glucose increased the generation of ROS, whereas both alpha-lipoic acid and N-acetylcysteine scavenged the ROS and decreased high glucose-induced tyrosine phosphorylation of IkappaBalpha, nuclear translocation of p65, and NF-kappaB DNA binding activity. Protein kinase C pseudosubstrate inhibited high glucose-induced ROS production, tyrosine phosphorylation of IkappaBalpha, and nuclear translocation of p65. Both BAY 61-3606, a specific inhibitor of Syk protein-tyrosine kinase, and small interfering RNA directed against Syk inhibited high glucose-induced tyrosine phosphorylation of IkappaBalpha as well as p65 nuclear translocation. High glucose increased tyrosine phosphorylation of Syk, while it was inhibited by alpha-lipoic acid and protein kinase C pseudosubstrate. In summary, high glucose-induced NF-kappaB activation occurred not by serine phosphorylation of IkappaBalpha. Our data suggest that ROS-mediated tyrosine phosphorylation of IkappaBalpha is the mechanism for high glucose-induced NF-kappaB activation, and Syk may play a role in tyrosine phosphorylation of IkappaBalpha.
Collapse
Affiliation(s)
- Won Seok Yang
- Department of Internal Medicine, Asan Medical Center, Univ. of Ulsan, Song-Pa, PO Box 145, Seoul 138-736, Korea
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Dominguez JH, Mehta JL, Li D, Wu P, Kelly KJ, Packer CS, Temm C, Goss E, Cheng L, Zhang S, Patterson CE, Hawes JW, Peterson R. Anti-LOX-1 therapy in rats with diabetes and dyslipidemia: ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol 2008; 294:F110-9. [DOI: 10.1152/ajprenal.00013.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
LOX-1 is a multifunctional membrane receptor that binds and internalizes oxidized LDL (oxLDL). We tested the hypothesis that blockade of LOX-1 with an anti-LOX-1 antibody limits nephropathy in male rats with diabetes and dyslipidemia (ZS rats; F1hybrid product of Zucker fatty diabetic rats and spontaneous hypertensive heart failure rats). Lean ZS rats were controls, while untreated obese ZS (OM), ZS obese rats injected with nonspecific rabbit IgG (OM-IgG; 2 μg intravenous injection given weekly), and obese ZS rats given anti-LOX-1 rabbit antibody (OM-Ab; 2 μg intravenous injection given weekly) were the experimental groups. The rats were treated from 6 to 21 wk of age. All obese groups had severe dyslipidemia and hyperglycemia. Kidneys of obese rats expressed LOX-1 in capillaries and tubules, were larger, accumulated lipid, had intense oxidative stress, leukocyte infiltration, depressed mitochondrial enzyme level and function, and peritubular fibrosis (all P < 0.05 vs. lean ZS rats). Injections with LOX-1 antibody limited these abnormalities ( P < 0.01 vs. data in OM or OM-lgG rats). In vitro, renal epithelial LOX-1 expression was verified in a cultured proximal tubule cell line. Our study indicates that anti-LOX-1 (vascular and epithelial) therapy may effectively reverse critical pathogenic elements of nephropathy in diabetes and dyslipidemia.
Collapse
|
114
|
Hara Y, Kusumi Y, Mitsumata M, Li XK, Fujino M. Lysophosphatidylcholine upregulates LOX-1, chemokine receptors, and activation-related transcription factors in human T-cell line Jurkat. J Thromb Thrombolysis 2007; 26:113-8. [DOI: 10.1007/s11239-007-0158-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 10/09/2007] [Indexed: 11/27/2022]
|
115
|
Abstract
OBJECTIVE Macrophages that contain abundant intracytoplasmic lipid are called 'foam cells'. In four canine globes submitted to the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), foam cells formed a solid intraocular mass. The purpose of this study was to describe the histopathologic findings in these cases. PROCEDURE The electronic COPLOW database (1993-2006) was searched for the diagnosis of 'foam cell tumor'. Clinical history, gross pathology and histopathology (5-micron sections, hematoxylin and eosin and Alcian blue periodic acid Schiff) were reviewed in all cases. Cases were included if the globe was grossly filled by a solid mass and if all intraocular structures were effaced by lipid-laden foam cell macrophages admixed with birefringent, Alcian blue-positive crystals oriented in stellate patterns. RESULTS All three patients (four globes) satisfying the selection criteria were Miniature Schnauzers. In all cases the clinical history included diabetes mellitus, hyperlipidemia and chronic bilateral uveitis that was interpreted to be lens-induced. All globes were enucleated because of glaucoma. CONCLUSIONS The term solid intraocular xanthogranuloma was used to describe these cases because the intraocular contents were effaced by a solid mass of foam cells and birefringent crystals. The cases in this report suggest that diabetic Miniature Schnauzers with hyperlipidemia are at risk for lipid and macrophage-rich uveitis, which may in some cases form a solid inflammatory intraocular mass, precipitate glaucoma, and lead to enucleation.
Collapse
Affiliation(s)
- Mitzi K Zarfoss
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
116
|
Vohra RS, Murphy JE, Walker JH, Ponnambalam S, Homer-Vanniasinkam S. Atherosclerosis and the Lectin-like OXidized low-density lipoprotein scavenger receptor. Trends Cardiovasc Med 2007; 16:60-4. [PMID: 16473764 DOI: 10.1016/j.tcm.2005.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 12/17/2022]
Abstract
The Lectin-like OXidized low-density lipoprotein scavenger receptor (LOX-1) is implicated in vascular inflammation and atherosclerotic plaque initiation, progression, and destabilization. LOX-1 levels are elevated upon recognition of oxidized low-density lipoprotein, a key pro-atherogenic substance in the vasculature. Recent evidence indicates this gene product is a biomarker of inflammation and disease status. We review and assess the role of LOX-1 in atherosclerotic plaque formation, physiologic regulation, and as a biomarker and target in cardiovascular disease diagnosis and prevention.
Collapse
Affiliation(s)
- Ravinder S Vohra
- Leeds Vascular Institute, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EX, UK
| | | | | | | | | |
Collapse
|
117
|
Nowicki M, Zabirnyk O, Duerrschmidt N, Borlak J, Spanel-Borowski K. No upregulation of lectin-like oxidized low-density lipoprotein receptor-1 in serum-deprived EA.hy926 endothelial cells under oxLDL exposure, but increase in autophagy. Eur J Cell Biol 2007; 86:605-16. [PMID: 17643551 DOI: 10.1016/j.ejcb.2007.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 06/14/2007] [Accepted: 06/20/2007] [Indexed: 02/03/2023] Open
Abstract
The oxidized low-density lipoprotein (oxLDL)-dependent activation of the lectin-like oxLDL receptor-1 (LOX-1) triggers apoptosis in vascular cells and appears to be involved in atherosclerosis. Autophagy might be an alternate to apoptosis in endothelial cells. The EA.hy926 endothelial cell line has been reported to undergo necrosis under oxLDL stimulation. For this reason, we studied the expression of LOX-1 and its oxLDL-dependent function in EA.hy926 cells under serum starvation. Untreated and oxLDL-treated cells expressed the LOX-1 protein at similar levels 6h after starvation. After 24h without oxLDL and with native LDL (nLDL), statistically significant higher levels were found in LOX-1 than in the oxLDL-treated probes. The oxLDL cultures with low LOX-1 expression displayed stronger features of autophagy than those with nLDL as there were remodelling of actin filaments, disrupture of adherens junctions (immunofluorescence staining), and autophagosomes with the characteristic double membrane at the ultrastructural level. For the advanced oxLDL exposure times (18 and 24 h), autophagic vacuoles/autophagolysosomes were morphologically identified accompanied by a decrease in lysosomes. The autophagosome marker protein MAP LC3-II (Western blotting) was significantly augmented 6 and 18 h after oxLDL treatment compared with cultures treated with nLDL and medium alone. Signs of apoptosis were undetectable in cultures under oxLDL exposure, yet present under staurosporin (apoptosis inducer), i.e. presence of apoptotic bodies and cleaved caspase 3. We conclude that serum starvation upregulates LOX-1 in EA.hy926 cells, whereas the additional oxLDL treatment downregulates the receptor and intensifies autophagy probably by increase in oxidative stress.
Collapse
Affiliation(s)
- Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstrasse 13, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
118
|
Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ Res 2007; 100:769-81. [PMID: 17395883 DOI: 10.1161/01.res.0000259589.34348.74] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly clear that suboptimal blood glucose control results in adverse effects on large blood vessels, thereby accelerating atherosclerosis and cardiovascular disease, manifested as myocardial infarction, stroke, and peripheral vascular disease. Cardiovascular disease is accelerated by both type 1 and type 2 diabetes. In type 1 diabetes, hyperglycemia generally occurs in the absence of elevated blood lipid levels, whereas type 2 diabetes is frequently associated with dyslipidemia. In this review article, we discuss hyperglycemia versus hyperlipidemia as culprits in diabetes-accelerated atherosclerosis and cardiovascular disease, with emphasis on studies in mouse models and isolated vascular cells. Recent studies on LDL receptor-deficient mice that are hyperglycemic, but exhibit no marked dyslipidemia compared with nondiabetic controls, show that diabetes in the absence of diabetes-induced hyperlipidemia is associated with an accelerated formation of atherosclerotic lesions, similar to what is seen in fat-fed nondiabetic mice. These effects of diabetes are masked in severely dyslipidemic mice, suggesting that the effects of glucose and lipids on lesion initiation might be mediated by similar mechanisms. Recent evidence from isolated endothelial cells demonstrates that glucose and lipids can induce endothelial dysfunction through similar intracellular mechanisms. Analogous effects of glucose and lipids are also seen in macrophages. Furthermore, glucose exerts many of its cellular effects through lipid mediators. We propose that diabetes without associated dyslipidemia accelerates atherosclerosis by mechanisms that can also be activated by hyperlipidemia.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | |
Collapse
|
119
|
Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, Newby AC. Genomics of Foam Cells and Nonfoamy Macrophages From Rabbits Identifies Arginase-I as a Differential Regulator of Nitric Oxide Production. Arterioscler Thromb Vasc Biol 2007; 27:571-7. [PMID: 17194896 DOI: 10.1161/01.atv.0000256470.23842.94] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Conversion of macrophages to foam cells is a critical step in the initiation and progression of atherosclerosis. We sought to identify genes differentially regulated in foam cells, since these are likely to include new targets for intervention.
Methods and Results—
We used suppression subtraction hybridization to compare foam cells and nonfoamy macrophages isolated from subcutaneous granulomas of rabbits fed a cholesterol-rich or normal chow diet and confirmed upregulation of 3 genes, including matrix metalloproteinase-12 (mRNA 2.0-fold,
P
<0.005; protein 3.9-fold,
P
<0.03). Arginase-I mRNA showed the biggest decrease among 11 downregulated genes in foam cells (2.7-fold,
P
<0.001) and was accompanied by significantly reduced arginase enzymatic activity (60-fold,
P
<0.01). Arginase-I competes for substrate L-arginine with nitric oxide synthase and consequently nitric oxide production was significantly increased (3-fold,
P
<0.02) in foam cells compared with nonfoamy macrophages despite no difference in nitric oxide synthase isoenzyme expression. We validated upregulation of matrix metalloproteinase-12 and downregulation of arginase-1 in foam cells of rabbit and human atherosclerotic plaques.
Conclusions—
Our study identified several differentially expressed genes in foam cells and nonfoamy macrophages derived from live rabbits. The altered pattern of gene expression in foam cells is likely to influence atherosclerosis formation and stability.
Collapse
Affiliation(s)
- Anita C Thomas
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | | | | | | | | |
Collapse
|
120
|
Schwartz EA, Reaven PD. Molecular and signaling mechanisms of atherosclerosis in insulin resistance. Endocrinol Metab Clin North Am 2006; 35:525-49, viii. [PMID: 16959584 DOI: 10.1016/j.ecl.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the prevalence of cardiovascular complications is increased in insulin-resistant individuals, the underlying causes of this link have been elusive. Recent work suggests that several intracellular signal transduction pathways are inappropriately activated by hyperinsulinemia, hyperglycemia, increased free fatty acids, dyslipidemia, various inflammatory cytokines and adipokines--factors that are increased in insulin resistance. Once activated, substantial cross talk occurs between these pathways, especially a self-reinforcing cascade of vascular inflammation and cell dysfunction, greatly increasing the risk and severity of atherosclerosis in the insulin-resistant individual. We review several key cell-signalling pathways, describe how they are activated in they insulin-resistant state and the damage they induce, and discusses possible therapeutic approaches to limit vascular damage.
Collapse
Affiliation(s)
- Eric A Schwartz
- Division of Research, Carl T. Hayden VA Medical Center, 650 East Indian School Road, Phoenix, AZ 85012, USA
| | | |
Collapse
|
121
|
Robertson LA, Kim AJ, Werstuck GH. Mechanisms linking diabetes mellitus to the development of atherosclerosis: a role for endoplasmic reticulum stress and glycogen synthase kinase-3. Can J Physiol Pharmacol 2006; 84:39-48. [PMID: 16845889 DOI: 10.1139/y05-142] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent decades have seen a significant increase in the incidence of diabetes mellitus. The number of individuals with diabetes is projected to reach 300 million by the year 2025. Diabetes is a leading cause of blindness, renal failure, lower limb amputation, and an independent risk factor for atherosclerotic cardiovascular disease (CVD)--a leading cause of death in Western society. Understanding the molecular and cellular mechanisms by which diabetes mellitus promotes atherosclerosis is essential to developing methods to treat and prevent diabetes-associated CVD. This review summarizes our current knowledge of the mechanisms by which diabetes may promote atherogenesis and specifically focuses on a novel pathway linking these 2 conditions. We hypothesize that the accumulation of intracellular glucosamine observed in conditions of chronic hyperglycaemia may promote atherogenesis via a mechanism involving dysregulated protein folding, activation of endoplasmic reticulum (ER) stress, and increased glycogen synthase kinase (GSK)-3 activity. The identification of this novel mechanism provides a promising hypothesis and multiple new targets for potential therapeutic intervention in the treatment of diabetes mellitus and accelerated atherosclerosis.
Collapse
|
122
|
Avignon A, Sultan A. PKC-ɛ inhibition: a new therapeutic approach for diabetic complications? DIABETES & METABOLISM 2006; 32:205-13. [PMID: 16799396 DOI: 10.1016/s1262-3636(07)70270-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PKC comprises a superfamily of isoenzymes that is activated in response to various stimuli. Hyperglycaemia induces the activation of different PKC isoforms. However, the PKC-B isoform appears to be preferentially activated by high glucose levels and has been shown to be associated with diabetic vascular complications. In vitro and in vivo animal studies have shown that ruboxistaurin mesylate, a novel selective inhibitor of PKC-B ameliorates the biochemical and functional consequences of PKC activation and may have the potential to reduce the burden of vascular complications associated with diabetes. Results of the first phase-II and phase-III trials evaluating the efficacy of this compound on diabetic microvascular complications have been published recently. They confirm that this compound may favorably influence the evolution of diabetic microvascular complications.
Collapse
Affiliation(s)
- A Avignon
- Metabolic Disease Department, Lapeyronie Hospital, Montpellier, France.
| | | |
Collapse
|
123
|
Mauldin JP, Srinivasan S, Mulya A, Gebre A, Parks JS, Daugherty A, Hedrick CC. Reduction in ABCG1 in Type 2 diabetic mice increases macrophage foam cell formation. J Biol Chem 2006; 281:21216-21224. [PMID: 16723355 DOI: 10.1074/jbc.m510952200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis development is accelerated severalfold in patients with Type 2 diabetes. In the initial stages of disease, monocytes transmigrate into the subendothelial space and differentiate into foam cells. Scavenger receptors and ATP binding cassette (ABC) Transporters play an important role in foam cell formation as they regulate the influx and efflux of oxidized lipids. Here, we show that peritoneal macrophages isolated from Type 2 diabetic db/db mice have decreased expression of the ABC transporter ABCG1 and increased expression of the scavenger receptor CD36. We found a 2-fold increase in accumulation of esterified cholesterol in diabetic db/db macrophages compared with wild-type control macrophages. Diabetic db/db macrophages also had impaired cholesterol efflux to high density lipoprotein but not to lipid-free apo A-I, suggesting that the increased esterified cholesterol in diabetic db/db macrophages was due to a selective loss of ABCG1-mediated efflux to high density lipoprotein. Additionally, we were able to confirm down-regulation of ABCG1 using C57BL/6J peritoneal macrophages cultured in elevated glucose in vitro (25 mM glucose for 7 days), suggesting that ABCG1 expression in diabetic macrophages is regulated by chronic exposure to elevated glucose. Diabetic KK(ay) mice were also studied and were found to have decreased ABCG1 expression without an increase in CD36. These observations demonstrate that ABCG1 plays a major role in macrophage cholesterol efflux and that decreased ABCG1 function can facilitate foam cell formation in Type 2 diabetic mice.
Collapse
Affiliation(s)
- Jeremy P Mauldin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908; Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Suseela Srinivasan
- Division of Endocrinology & Metabolism, University of Virginia, Charlottesville, Virginia 22908; Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Anny Mulya
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27106
| | - Abraham Gebre
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27106
| | - John S Parks
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27106
| | - Alan Daugherty
- Gill Heart Institute, Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40506
| | - Catherine C Hedrick
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908; Division of Endocrinology & Metabolism, University of Virginia, Charlottesville, Virginia 22908; Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
124
|
Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 2006; 40:183-92. [PMID: 16413400 DOI: 10.1016/j.freeradbiomed.2005.06.018] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/15/2005] [Indexed: 02/07/2023]
Abstract
Diabetes diagnoses are increasing at an alarming rate worldwide. The majority of diabetes-related deaths arise from cardiovascular complications such as myocardial infarction, stroke, and peripheral vascular disease. Oxidative stress has been demonstrated to be present in animal models as well as in patients with diabetes and has been suggested as a possible contributor to the accelerated atherosclerosis seen in diabetics. The generation of reactive oxygen species in diabetes occurs via several mechanisms and is initiated not only by glucose, but also by other substances that are found at elevated levels in diabetic patients. The resulting oxidative stress leads to a number of proatherogenic events. The elucidation of the mechanisms of oxidative stress in diabetes and their relationship with atherosclerosis could potentially identify molecular targets of therapy for this condition and its cardiovascular consequences.
Collapse
Affiliation(s)
- Desmond Jay
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
125
|
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in people with diabetes. Vascular abnormalities can be observed long before atherosclerosis develops and in sites not usually prone to atherosclerosis. These vascular abnormalities are known to be due to endothelial dysfunctions, one of the most frequent of which is depressed endothelium-dependent dilation. In patients with diabetes, this is mainly linked to decreased bioavailability of nitric oxide. Although inactivation of tetrahydrobiopterin, a co-factor of NO-synthase, may depress nitric oxide production, the latter is more likely due to the inactivation of nitric oxide by superoxide anions: enhanced oxidative stress increases their production in people with diabetes. Moreover, hyperglycemia directly activates oxidative stress, which in turn depresses endothelium-dependent vasodilation. Glycemia and oxidative stress are positively correlated in people with diabetes. However, while depression of endothelium-dependent dilation may be a visible functional manifestation of oxidative stress, the oxidative stress itself is mainly responsible for the cascade of endothelial events that play a key role in development of vascular atherosclerosis and its complications. Especially important among these events are the activation of NF-kappaB and the oxidation of LDL-cholesterol. Although antioxidants provide short-term improvement of endothelial function in humans, all studies of the effectiveness of preventive antioxidant therapy have been disappointing. Control of hyperglycemia thus remains the best way to improve endothelial function and to prevent atherosclerosis and other cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- A Nitenberg
- Service de physiologie et d'explorations fonctionnelles, Hôpital Jean Verdier, avenue du 14-Juillet, 93143 Bondy Cedex.
| |
Collapse
|
126
|
Rosenblat M, Hayek T, Aviram M. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis 2005; 187:363-71. [PMID: 16226266 DOI: 10.1016/j.atherosclerosis.2005.09.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/18/2005] [Accepted: 09/10/2005] [Indexed: 02/09/2023]
Abstract
Diabetes is associated with increased oxidative stress and atherosclerosis development. In the present study, we investigated the effects of pomegranate juice (PJ; which contains sugars and potent anti-oxidants) consumption by diabetic patients on blood diabetic parameters, and on oxidative stress in their serum and macrophages. Ten healthy subjects (controls) and 10 non-insulin dependent diabetes mellitus (NIDDM) patients who consumed PJ (50ml per day for 3 months) participated in the study. In the patients versus controls serum levels of lipid peroxides and thiobarbituric acid reactive substances (TBARS) were both increased, by 350% and 51%, respectively, whereas serum SH groups content and paraoxonase 1 (PON1) activity, were both decreased (by 23%). PJ consumption did not affect serum glucose, cholesterol and triglyceride levels, but it resulted in a significant reduction in serum lipid peroxides and TBARS levels by 56% and 28%, whereas serum SH groups and PON1 activity significantly increased by 12% and 24%, respectively. In the patients versus controls monocytes-derived macrophages (HMDM), we observed increased level of cellular peroxides (by 36%), and decreased glutathione content (by 64%). PJ consumption significantly reduced cellular peroxides (by 71%), and increased glutathione levels (by 141%) in the patients' HMDM. The patients' versus control HMDM took up oxidized LDL (Ox-LDL) at enhanced rate (by 37%) and PJ consumption significantly decreased the extent of Ox-LDL cellular uptake (by 39%). We thus conclude that PJ consumption by diabetic patients did not worsen the diabetic parameters, but rather resulted in anti-oxidative effects on serum and macrophages, which could contribute to attenuation of atherosclerosis development in these patients.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, 31096 Haifa, Israel
| | | | | |
Collapse
|
127
|
Barbato JE, Zuckerbraun BS, Overhaus M, Raman KG, Tzeng E. Nitric oxide modulates vascular inflammation and intimal hyperplasia in insulin resistance and the metabolic syndrome. Am J Physiol Heart Circ Physiol 2005; 289:H228-36. [PMID: 15734883 DOI: 10.1152/ajpheart.00982.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes mellitus (DM) and the metabolic syndrome, both characterized by insulin resistance, are associated with an accelerated form of atherosclerotic vascular disease and poor outcomes following vascular interventions. These vascular effects are thought to stem from a heightened inflammatory environment and reduced bioavailability of nitric oxide (NO). To better understand this process, we characterized the vascular injury response in the obese Zucker rat by examining the expression of adhesion molecules, the recruitment of inflammatory cells, and the development of intimal hyperplasia. We also evaluated the ability of exogenous NO to inhibit the sequela of vascular injury in the metabolic syndrome. Obese and lean Zucker rats underwent carotid artery balloon injury. ICAM-1 and P-selectin expression were increased following injury in the obese animals compared with the lean rats. The obese rats also responded with increased macrophage infiltration of the vascular wall as well as increased neointima formation compared with their lean counterparts (intima/media = 0.91 vs. 0.52, P = 0.001). After adenovirus-mediated inducible NO synthase (iNOS) gene transfer, ICAM-1, P-selectin, inflammatory cell influx, and oxidized low-density lipoprotein (LDL) receptor expression were all markedly reduced versus injury alone. iNOS gene transfer also significantly inhibited proliferative activity (54% and 73%; P < 0.05) and neointima formation (53% and 67%; P < 0.05) in lean and obese animals, respectively. The vascular injury response in the face of obesity and the metabolic syndrome is associated with increased adhesion molecule expression, inflammatory cell infiltration, oxidized LDL receptor expression, and proliferation. iNOS gene transfer is able to effectively inhibit this heightened injury response and reduce neointima formation in this proinflammatory environment.
Collapse
Affiliation(s)
- Joel E Barbato
- Dept. of Surgery, Univ. of Pittsburgh, A1010 PUH, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
128
|
Fukuhara-Takaki K, Sakai M, Sakamoto YI, Takeya M, Horiuchi S. Expression of Class A Scavenger Receptor Is Enhanced by High Glucose in Vitro and under Diabetic Conditions in Vivo. J Biol Chem 2005; 280:3355-64. [PMID: 15556945 DOI: 10.1074/jbc.m408715200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the early stage of atherosclerosis, macrophages take up chemically modified low density lipoproteins (LDL) through the scavenger receptors, leading to foam cell formation in atherosclerotic lesions. To get insight into a role of the scavenger receptors in diabetes-enhanced atherosclerotic complications, the effects on class A scavenger receptor (SR-A) of high glucose exposure in vitro as well as the diabetic conditions in vivo were determined in the present study. The in vitro experiments demonstrated that high glucose exposure to human monocyte-derived macrophages led to an increased SR-A expression with a concomitant increase in the endocytic uptake of acetylated LDL and oxidized LDL. The endocytic process was significantly suppressed by an anti-SR-A neutralizing antibody. Stability analyses revealed a significant increased stability of SR-A at a mRNA level but not a protein level, indicating that high glucose-induced up-regulation of SR-A is due largely to increased stability of SR-A mRNA. High glucose-enhanced SR-A expression was prevented by protein kinase C and NAD(P)H oxidase inhibitors as well as antioxidants. High glucose-enhanced production of intracellular peroxides was visualized in these cells, which was attenuated by an antioxidant. The in vivo experiments demonstrated that peritoneal macrophages from streptozotocin-induced diabetic mice increased SR-A expression when compared with those from nondiabetic mice. Endocytic degradation of acetylated LDL and oxidized LDL were also increased with these macrophages but not with the corresponding macrophages from diabetic SR-A knock-out mice. These in vitro and in vivo results probably suggest that reactive oxygen species generated from a protein kinase C-dependent NAD(P)H oxidase pathway plays a role in the high glucose-induced up-regulation of SR-A, leading to the increased endocytic degradation of modified LDL for foam cell formation. This could be one mechanism for an increased rate of atherosclerosis in patients with diabetes.
Collapse
Affiliation(s)
- Kaori Fukuhara-Takaki
- Department of Medical Biochemistry, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | | | | | |
Collapse
|
129
|
Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol 2005; 25:487-96. [PMID: 15637306 DOI: 10.1161/01.atv.0000155325.41507.e0] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In diabetes and insulin resistance, activation of protein kinase C (PKC) in vascular cells may be a key link between elevated plasma and tissue concentrations of glucose and nonesterified fatty acids and abnormal vascular cell signaling. Initial studies of PKC activation in diabetes focused on microvascular complications, but increasing evidence supports that PKC plays a role in several mechanisms promoting atherosclerosis. This review explains how PKC is thought to be activated in diabetes and insulin resistance through de novo synthesis of diacylglycerol. Furthermore, the review summarizes studies that implicate PKC in promoting proatherogenic mechanisms or inhibiting antiatherogenic mechanisms, including studies of endothelial dysfunction; gene induction and activation of vascular NAD(P)H oxidase; endothelial nitric oxide synthase expression and function; endothelin-1 expression; growth, migration, and apoptosis of vascular smooth muscle cells; induction of adhesion molecules; and oxidized low-density lipoprotein uptake by monocyte-derived macrophages.
Collapse
|