101
|
Negro R, Greco EL, Greco G. Active Stromal Cell-Derived Factor 1α and Endothelial Progenitor Cells are Equally Increased by Alogliptin in Good and Poor Diabetes Control. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2017; 10:1179551417743980. [PMID: 29225483 PMCID: PMC5714079 DOI: 10.1177/1179551417743980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Abstract
Background: It is postulated that the ability of dipeptidyl peptidase-4 inhibitors (DPP-4-i) to increase circulating endothelial progenitor cells (EPCs) may be at least partly mediated by active stromal cell–derived factor 1α (SDF-1α) (a pivotal mediator of stem cell mobilization from the bone marrow). As other DPP-4-i were demonstrated to increase EPC concentrations, in this study, we sought to investigate the ability of the DPP-4-i alogliptin in modifying EPCs and SDF-1α, in patients with good and poor diabetes control. Methods: Two groups of diabetic patients on metformin were divided by hemoglobin A1c (HbA1c): Group A—those with HbA1c ≤6.5% (28 patients) and Group B—those with HbA1c 7.5% to 8.5% (31 patients). Both groups received alogliptin 25 mg/daily for 4 months. At baseline and 4 months later, clinical, laboratory parameters, EPCs, and active SDF-1α were determined. Results: After 4-month treatment with alogliptin, either Group A or Group B showed reduced HbA1c levels and concomitant similar increase in EPCs and active SDF-1α. Conclusions: Alogliptin showed significant benefits in increasing EPCs and active SDF-1α either in good or poor diabetes control. The study demonstrated that similar to other DPP-4-i, also alogliptin is able to increase EPC concentrations, suggesting the existence of a class effect mediated by SDF-1α. The extent of increase in EPCs is independent from baseline diabetes control.
Collapse
Affiliation(s)
- Roberto Negro
- Division of Endocrinology, "V. Fazzi" Hospital, Lecce, Italy
| | | | - Giacomo Greco
- Faculty of Medicine, San Raffaele Hospital, Milano, Italy
| |
Collapse
|
102
|
Invited commentary. J Vasc Surg 2017; 66:1863. [PMID: 29169541 DOI: 10.1016/j.jvs.2017.03.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 11/22/2022]
|
103
|
Sradnick J, Tselmin S, Wagner A, Julius U, Todorov V, Hugo C, Hohenstein B. H.E.L.P apheresis exerts long term effects on the capacity of circulating proangiogenic cells. ATHEROSCLEROSIS SUPP 2017; 30:232-237. [PMID: 29096843 DOI: 10.1016/j.atherosclerosissup.2017.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Severe forms of mono- and polygenetic hypercholesterolemia as well as elevated Lipoprotein (a) (LP(a)) with progressing cardiovascular (CV) disease are indication for lipoprotein apheresis (LA) in Germany. Many studies investigated pleiotropic effects of LA that might contribute to beneficial effects in advanced atherosclerosis. The present study aimed at investigating the potential role of Proangiogenic Cells (PAC) in patients with new onset or chronic LA using the heparin induced extracorporeal LDL-precipitation (H.E.L.P.) apheresis system. METHODS Patients (n = 10) new to LA and HELP treatment were investigated immediately before, shortly after, 24 h later and 4 weeks following LA. Peripheral blood was used to count PAC in circulation via flow cytometry. In a second step, blood cells from patients were cultured in endothelial selective medium and further evaluated for adhesion in fibronectin coated chamber slides and migratory capacity (stromal cell-derived factor-1 (SDF-1) induced migration). RESULTS Cells expressing typical EPC markers were rarely detected in blood samples. No differences occurred over time in CD34+; CD34+ CD133+ CD45-; CD34+/KDR+ and CXCR4+/CD14+ positive PAC. We found no differences in cell adhesion at the different time points, while significantly more cells migrated into the SDF-1 medium following four weeks of continuing apheresis therapy. CONCLUSION Using well established systems, this study was not able to demonstrate relevant acute effects of LA on PAC in patients new to LA. The increased migratory capacity of PAC might be an indicator of chronic beneficial pleiotropic effects in patients undergoing H.E.L.P. apheresis.
Collapse
Affiliation(s)
- Jan Sradnick
- Division of Nephrology, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany
| | - Sergey Tselmin
- Extracorporeal Treatment and Apheresis Center, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany
| | - Andrea Wagner
- Division of Nephrology, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany
| | - Ulrich Julius
- Extracorporeal Treatment and Apheresis Center, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany
| | - Vladimir Todorov
- Division of Nephrology, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany; Extracorporeal Treatment and Apheresis Center, Department of Internal Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus at the Technische Universität, Dresden, Germany.
| |
Collapse
|
104
|
Li J, Zhang K, Huang N. Engineering Cardiovascular Implant Surfaces to Create a Vascular Endothelial Growth Microenvironment. Biotechnol J 2017; 12. [PMID: 28941232 DOI: 10.1002/biot.201600401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease (CVD) is generally accepted as the leading cause of morbidity and mortality worldwide, and an increasing number of patients suffer from atherosclerosis and thrombosis annually. To treat these disorders and prolong the sufferers' life, several cardiovascular implants have been developed and applied clinically. Nevertheless, thrombosis and hyperplasia at the site of cardiovascular implants are recognized as long-term problems in the practice of interventional cardiology. Here, we start this review from the clinical requirement of the implants, such as anti-hyperplasia, anti-thrombosis, and pro-endothelialization, wherein particularly focus on the natural factors which influence functional endothelialization in situ, including the healthy smooth muscle cells (SMCs) environment, blood flow shear stress (BFSS), and the extracellular matrix (ECM) microenvironment. Then, the currently available strategies on surface modification of cardiovascular biomaterials to create vascular endothelial growth microenvironment are introduced as the main topic, e.g., BFSS effect simulation by surface micro-patterning, ECM rational construction and SMCs phenotype maintain. Finally, the prospects for extending use of the in situ construction of endothelial cells growth microenvironment are discussed and summarized in designing the next generation of vascular implants.
Collapse
Affiliation(s)
- Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.,Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Kun Zhang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.,School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
105
|
Moriya J, Minamino T. Angiogenesis, Cancer, and Vascular Aging. Front Cardiovasc Med 2017; 4:65. [PMID: 29114540 PMCID: PMC5660731 DOI: 10.3389/fcvm.2017.00065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD) among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.
Collapse
Affiliation(s)
- Junji Moriya
- Office of Cellular and Tissue-Based Products, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
106
|
Shafiee A, Patel J, Lee JS, Hutmacher DW, Fisk NM, Khosrotehrani K. Mesenchymal stem/stromal cells enhance engraftment, vasculogenic and pro-angiogenic activities of endothelial colony forming cells in immunocompetent hosts. Sci Rep 2017; 7:13558. [PMID: 29051567 PMCID: PMC5648925 DOI: 10.1038/s41598-017-13971-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023] Open
Abstract
The clinical use of endothelial colony forming cells (ECFC) is hampered by their restricted engraftment. We aimed to assess engraftment, vasculogenic and pro-angiogenic activities of ECFC in immunocompetent (C57BL/6: WT) or immunodeficient (rag1 -/- C57BL/6: Rag1) mice. In addition, the impact of host immune system was investigated where ECFC were co-implanted with mesenchymal stem/stromal cells (MSC) from adult bone marrow (AdBM-MSC), fetal bone marrow (fBM-MSC), fetal placental (fPL-MSC), or maternal placental (MPL-MSC). Transplantation of ECFCs in Matrigel plugs resulted in less cell engraftment in WT mice compared to Rag1 mice. Co-implantation with different MSCs resulted in a significant increase in cell engraftment up to 9 fold in WT mice reaching levels of engraftment observed when using ECFCs alone in Rag1 mice but well below levels of engraftment with MSC-ECFC combination in Rag1 recipients. Furthermore, MSCs did not reduce murine splenic T cell proliferation in response to ECFCs in vitro. ECFCs enhanced the murine neo-vascularization through paracrine effect, but with no difference between Rag1 and WT mice. In conclusions, the host adaptive immune system affects the engraftment of ECFCs. MSC co-implantation improves ECFC engraftment and function even in immunocompetent hosts mostly through non-immune mechanisms.
Collapse
Affiliation(s)
- Abbas Shafiee
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, 4029, QLD, Australia
- Queensland University of Technology, Brisbane, 4000, QLD, Australia
| | - Jatin Patel
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, 4029, QLD, Australia
- The University of Queensland, UQ Diamantina Institute, Brisbane, 4102, QLD, Australia
| | - James S Lee
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, 4029, QLD, Australia
- The University of Queensland, UQ Diamantina Institute, Brisbane, 4102, QLD, Australia
| | | | - Nicholas M Fisk
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, 4029, QLD, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Brisbane, 4029, QLD, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, 4029, QLD, Australia.
- The University of Queensland, UQ Diamantina Institute, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
107
|
Wang D, Song Y, Zhang J, Pang W, Wang X, Zhu Y, Li X. AMPK-KLF2 signaling pathway mediates the proangiogenic effect of erythropoietin in endothelial colony-forming cells. Am J Physiol Cell Physiol 2017; 313:C674-C685. [PMID: 28978525 DOI: 10.1152/ajpcell.00257.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelial colony-forming cells (ECFCs) were proved to take part in postnatal vasculogenesis and injury repair. The angiogenic properties of ECFCs could be influenced by various cytokines, chemokines, and growth factors. Erythropoietin (EPO) is a promising cytokine participating in angiogenesis. However, the mechanisms for EPO's proangiogenic effect still remain largely elusive. Here, we investigated the role of the AMP-activated protein kinase (AMPK)-Krüppel-like factor 2 (KLF2) signaling pathway in the proangiogenic effect of EPO in ECFCs. Human ECFCs were isolated from cord blood and cultured. EPO significantly enhanced the migration and tube formation capacities of ECFCs and markedly increased the expression of endothelial markers and vascular endothelial growth factor (VEGF). Further, EPO caused the phosphorylation of AMPK and endothelial nitric oxide synthase, a process in which KLF2 was also upregulated on both mRNA and protein levels. The upregulation of KLF2 was blocked by inhibiting AMPK with Compound C or Ad-AMPK-DN, a recombinant adenovirus that encoded a dominant-negative mutant of AMPK. Furthermore, knockdown of KLF2 showed no effect on AMPK but abolished the EPO-enhanced migration and tube formation capacities of ECFCs. Of note, knockdown of KLF2 also diminished the EPO-induced expression of endothelial markers and VEGF; overexpression of KLF2 promoted the expression of endothelial markers and VEGF and enhanced the migration and tube formation capacities of ECFCs. These data suggest that upregulation of KLF2 by AMPK plays an essential role in EPO-induced angiogenesis.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University , Beijing , China
| | - Yimeng Song
- Urology Department, Peking University Third Hospital , Beijing , China
| | - Jianshu Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center , Beijing , China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University , Beijing , China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University , Beijing , China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University , Tianjin , China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University , Beijing , China
| |
Collapse
|
108
|
Phase 1-2 pilot clinical trial in patients with decompensated liver cirrhosis treated with bone marrow-derived endothelial progenitor cells. Transl Res 2017; 188:80-91.e2. [PMID: 26972567 DOI: 10.1016/j.trsl.2016.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/13/2023]
Abstract
The aim of this nonrandomized, open label, phase 1 clinical trial was to evaluate the safety and the feasibility of the treatment with autologous bone marrow-derived endothelial progenitor cells (EPC) in decompensated liver cirrhosis. In addition, the changes in liver function and hepatic venous pressure gradient (HVPG) and their relation with the characteristics of the cellular product were analyzed. Twelve patients with Child-Pugh ≥8 liver cirrhosis underwent bone marrow harvest for ex vivo differentiation of EPC. The final product was administered through the hepatic artery in a single administration. Patients underwent clinical and radiologic follow-up for 12 months. The phenotype and the ability to produce cytokines and growth factors of the final cellular suspension were analyzed. Eleven patients were treated (feasibility 91%). No treatment-related severe adverse events were observed as consequence of any study procedure or treatment. Model for end-stage liver disease score improved significantly (P 0.042) in the first 90 days after cells administration and 5 of the 9 patients alive at 90 days showed a decreased of HVPG. There was a direct correlation between the expression of acetylated-low density lipoprotein and von Willebrand factor in the cellular product and the improvement in liver function and HVPG. The treatment with EPCs in patients with decompensated liver cirrhosis is safe and feasible and might have therapeutic potential. Patients receiving a higher amount of functionally active EPC showed an improvement of liver function and portal hypertension suggesting that the potential usefulness of these cells for the treatment of liver cirrhosis deserves further evaluation.
Collapse
|
109
|
Synthetic microparticles conjugated with VEGF 165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition. Nat Commun 2017; 8:747. [PMID: 28963481 PMCID: PMC5622042 DOI: 10.1038/s41467-017-00746-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Several cell-based therapies are under pre-clinical and clinical evaluation for the treatment of ischemic diseases. Poor survival and vascular engraftment rates of transplanted cells force them to work mainly via time-limited paracrine actions. Although several approaches, including the use of soluble vascular endothelial growth factor (sVEGF)—VEGF165, have been developed in the last 10 years to enhance cell survival, they showed limited efficacy. Here, we report a pro-survival approach based on VEGF-immobilized microparticles (VEGF-MPs). VEGF-MPs prolong VEGFR-2 and Akt phosphorylation in cord blood-derived late outgrowth endothelial progenitor cells (OEPCs). In vivo, OEPC aggregates containing VEGF-MPs show higher survival than those treated with sVEGF. Additionally, VEGF-MPs decrease miR-17 expression in OEPCs, thus increasing the expression of its target genes CDKN1A and ZNF652. The therapeutic effect of OEPCs is improved in vivo by inhibiting miR-17. Overall, our data show an experimental approach to improve therapeutic efficacy of proangiogenic cells for the treatment of ischemic diseases. Soluble vascular endothelial growth factor (VEGF) enhances vascular engraftment of transplanted cells but the efficacy is low. Here, the authors show that VEGF-immobilized microparticles prolong survival of endothelial progenitors in vitro and in vivo by downregulating miR17 and upregulating CDKN1A and ZNF652.
Collapse
|
110
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
111
|
Ravishankar P, Zeballos MA, Balachandran K. Isolation of Endothelial Progenitor Cells from Human Umbilical Cord Blood. J Vis Exp 2017. [PMID: 28994769 DOI: 10.3791/56021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The existence of endothelial progenitor cells (EPCs) in peripheral blood and its involvement in vasculogenesis was first reported by Ashara and colleagues1. Later, others documented the existence of similar types of EPCs originating from bone marrow2,3. More recently, Yoder and Ingram showed that EPCs derived from umbilical cord blood had a higher proliferative potential compared to ones isolated from adult peripheral blood4,5,6. Apart from being involved in postnatal vasculogenesis, EPCs have also shown promise as a cell source for creating tissue-engineered vascular and heart valve constructs7,8. Various isolation protocols exist, some of which involve the cell sorting of mononuclear cells (MNCs) derived from the sources mentioned earlier with the help of endothelial and hematopoietic markers, or culturing these MNCs with specialized endothelial growth medium, or a combination of these techniques9. Here, we present a protocol for the isolation and culture of EPCs using specialized endothelial medium supplemented with growth factors, without the use of immunosorting, followed by the characterization of the isolated cells using Western blotting and immunostaining.
Collapse
|
112
|
Harris E, Rakobowchuk M, Birch KM. Interval exercise increases angiogenic cell function in postmenopausal women. BMJ Open Sport Exerc Med 2017; 3:e000248. [PMID: 29021911 PMCID: PMC5633736 DOI: 10.1136/bmjsem-2017-000248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Exercise can help to negate the increased cardiovascular disease risk observed in women after the menopausal transition. This study sought to determine whether interval or continuous exercise has differential effects on endothelial function and circulating angiogenic cell (CAC) number and function in postmenopausal women. METHODS Fifteen healthy postmenopausal women completed a 30 min acute moderate-intensity continuous (CON) and interval exercise (MOD-INT) session on a cycle ergometer on separate days. Nine participants completed a further single 30 min acute heavy-intensity interval (HEAVY-INT) exercise session. Brachial artery flow-mediated dilation (FMD) was assessed pre-exercise and 15 min post-exercise session. CAC number and colony-forming capacity in vitro were assessed post exercise and compared with resting levels. RESULTS FMD and CAC number did not change post exercise regardless of exercise type (p>0.05). However, the number (mean±SD) of colony-forming units (CFUs) increased from visit 1 (12±10 CFUs/well) to post MOD-INT (32±30 CFUs/well) and post HEAVY-INT (38±23 CFUs/well) but not post CON (13±14 CFUs/well). CONCLUSION A single session of interval exercise is more effective than a continuous exercise session for increasing the intercellular communication of CACs, regardless of exercise intensity. The enhanced ability of CACs to form colonies may reflect an increased number and/or function of angiogenic T-cells. The repeated exertions to higher work rates during interval exercise may explain this response. Repeated exercise sessions might be required to improve FMD in postmenopausal women.
Collapse
Affiliation(s)
- Emma Harris
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Mark Rakobowchuk
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Karen M Birch
- Multidisciplinary Cardiovascular Research Centre, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
113
|
Abraham E, Gadish O, Franses JW, Chitalia VC, Artzi N, Edelman ER. Matrix-Embedded Endothelial Cells Attain a Progenitor-Like Phenotype. ACTA ACUST UNITED AC 2017; 1. [PMID: 29862313 DOI: 10.1002/adbi.201700057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Culture of endothelial cells (ECs) embedded in 3D scaffolds of denatured collagen has shown tremendous therapeutic potential in clinical trials of tissue repair. It is postulated that these matrix-embedded ECs (MEECs) attain a differential phenotype similar to early progenitor forms, which cannot be attained in 2D culture. MEECs are compared to 2D-ECs and endothelial progenitor cells (EPCs) by secretome, phenotype, and genetic fingerprint, and are found to be altered from 2D-ECs on all levels, adopting an EPC-like phenotype. This manifests in elevation of CD34 expression-a progenitor cell marker-and protein secretion and gene expression pro-files that are similar to EPCs. Even more striking is that EPCs in 2D lose their phenotype, evident by the loss of CD34 expression, but are able to regain expression over time when embedded in the same 3D matrices, suggesting that future in vitro EPC work should use ME-EPCs to recapitulate in vivo phenotype. These findings elucidate the relationship between EPCs and the substratum-dependent regulation imparted by ECs which is critical to understand in order to optimize MEEC therapy and propel it into the clinic.
Collapse
Affiliation(s)
- Eytan Abraham
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, E25-438, Cambridge, MA 02139, USA. Department of Medicine, Brigham and Women's Hospital, Cardiovascular Division, Harvard Medical School, Boston, MA 02115, USA
| | - Or Gadish
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, E25-438, Cambridge, MA 02139, USA
| | - Joseph W Franses
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, E25-438, Cambridge, MA 02139, USA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, E25-438, Cambridge, MA 02139, USA. Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, E25-438, Cambridge, MA 02139, USA. Department of Medicine, Brigham and Women's Hospital, Cardiovascular Division, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
114
|
Peters EB. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:1-24. [PMID: 28548628 DOI: 10.1089/ten.teb.2017.0127] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled microvasculature from cocultures of endothelial cells (ECs) and stromal cells has significantly advanced efforts to vascularize engineered tissues by enhancing perfusion rates in vivo and producing investigative platforms for microvascular morphogenesis in vitro. However, to clinically translate prevascularized constructs, the issue of EC source must be resolved. Endothelial progenitor cells (EPCs) can be noninvasively supplied from the recipient through adult peripheral and umbilical cord blood, as well as derived from induced pluripotent stem cells, alleviating antigenicity issues. EPCs can also differentiate into all tissue endothelium, and have demonstrated potential for therapeutic vascularization. Yet, EPCs are not the standard EC choice to vascularize tissue constructs in vitro. Possible reasons include unresolved issues with EPC identity and characterization, as well as uncertainty in the selection of coculture, scaffold, and culture media combinations that promote EPC microvessel formation. This review addresses these issues through a summary of EPC vascular biology and the effects of tissue engineering design parameters upon EPC microvessel formation. Also included are perspectives to integrate EPCs with emerging technologies to produce functional, organotypic vascularized tissues.
Collapse
Affiliation(s)
- Erica B Peters
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado
| |
Collapse
|
115
|
Parlato M, Molenda J, Murphy WL. Specific recruitment of circulating angiogenic cells using biomaterials as filters. Acta Biomater 2017; 56:65-79. [PMID: 28373084 DOI: 10.1016/j.actbio.2017.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 02/08/2023]
Abstract
Endogenous recruitment of circulating angiogenic cells (CACs) is an emerging strategy to induce angiogenesis within a defect site, and multiple recent strategies have deployed soluble protein releasing biomaterials for this purpose. However, the way in which the design of biomaterials affects CAC recruitment and invasion are poorly understood. Here we used an enhanced-throughput cell invasion assay to systematically examine the effects of biomaterial design on CAC recruitment. The screens co-optimized hydrogel presentation of a stromal-derived factor-1α (SDF-1α) gradient, hydrogel degradability, and hydrogel stiffness for maximal CAC invasion. We also examined the specificity of this invasion by assessing dermal fibroblast, mesenchymal stem cell, and lymphocyte invasion individually and in co-culture with CACs to identify hydrogels specific to CAC invasion. These screens suggested a subset of MMP-degradable hydrogels presenting a specific range of SDF-1α gradient slopes that induced specific invasion of CACs, and we posit that the design parameters of this subset of hydrogels may serve as instructive templates for the future design of biomaterials to specifically recruit CACs. We also posit that this design concept may be applied more broadly in that it may be possible to utilize these specific subsets of biomaterials as "filters" to control which types of cell populations invade into and populate the biomaterial. STATEMENT OF SIGNIFICANCE The recruitment of specific cell types for cell-based therapies in vivo is of great interest to the regenerative medicine community. Circulating angiogenic cells (CACs), CD133+ cells derived from the blood stream, are of particular interest for induction of angiogenesis in ischemic tissues, and recent studies utilizing soluble-factor releasing biomaterials to recruit these cells in vivo show great promise. However, these studies are largely "proof of concept" and are not systematic in nature. Thus, little is currently known about how biomaterial design affects the recruitment of CACs. In the present work, we use a high throughput cell invasion screening platform to systematically examine the effects of biomaterial design on circulating angiogenic cell (CAC) recruitment, and we successfully screened 263 conditions at 3 replicates each. Our results identify a particular subset of conditions that robustly recruit CACs. Additionally, we found that these conditions also specifically recruited CACs and excluded the other tested cells types of dermal fibroblasts, mesenchymal stem cells, and lymphocytes. This suggests an intriguing new role for biomaterials as "filters" to control the types of cells that invade and populate that biomaterial.
Collapse
|
116
|
Green L, Ofstein RH, Rapp B, Saadatzadeh MR, Bhavsar JR, Fajardo A, Dalsing MC, Ingram DA, Murphy MP. Adult venous endothelium is a niche for highly proliferative and vasculogenic endothelial colony-forming cells. J Vasc Surg 2017; 66:1854-1863. [PMID: 28655551 DOI: 10.1016/j.jvs.2016.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Postnatal resident endothelium of blood vessels has been proposed to represent terminally differentiated tissue that does not replicate. We previously isolated endothelial colony-forming cells (ECFCs) from human umbilical cord blood (CB) and term placenta by using colony-forming assays and immunocytochemistry. We showed that ECFCs are highly proliferative and form functioning vessels in vivo, the defining characteristics of a true endothelial progenitor cell. This exploratory investigation was conducted to determine whether the endothelium of healthy adult blood vessels contained resident ECFCs. METHODS The endothelium of great saphenous vein (GSV) obtained from vein stripping procedures was collected with mechanical scraping, and ECFCs were isolated according to established protocols. RESULTS GSV ECFCs incorporated acetylated low-density lipoprotein, formed tubules in Matrigel (BD Biosciences, San Jose, Calif) at 24 hours, and expressed endothelial antigens cluster of differentiation (CD) 144, CD31, CD105, and kinase insert domain receptor but not hematopoietic antigen CD45. Using cumulative population doublings and single-cell assays, we demonstrated that GSV ECFCs exhibited comparable proliferative capacities compared with CB ECFCs, including similar numbers of highly proliferative cells. When injected in collagen/fibronectin gels implanted in nonobese diabetic/severe combined immune deficiency mice, GSV ECFCs formed blood vessels with circulating murine red blood cells, demonstrating their vasculogenic potential. CONCLUSIONS The ECFCs of the GSV contain a hierarchy of progenitor cells with a comparable number of highly proliferative clones as ECFCs of CB. The results of this investigation demonstrate that the adult endothelium contains resident progenitor cells that may have a critical role in vascular homeostasis and repair and could potentially be used as a source of autologous cells for cell therapies focusing on vasculogenesis.
Collapse
Affiliation(s)
- Linden Green
- Health Center for Aortic Disease, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Cellular and Integrative Physiology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind.
| | - Richard H Ofstein
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Brian Rapp
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - M Reza Saadatzadeh
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Janak R Bhavsar
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Andres Fajardo
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Michael C Dalsing
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - David A Ingram
- Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Biochemistry and Molecular Biology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Michael P Murphy
- Health Center for Aortic Disease, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Cellular and Integrative Physiology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| |
Collapse
|
117
|
Sass FA, Schmidt-Bleek K, Ellinghaus A, Filter S, Rose A, Preininger B, Reinke S, Geissler S, Volk HD, Duda GN, Dienelt A. CD31+ Cells From Peripheral Blood Facilitate Bone Regeneration in Biologically Impaired Conditions Through Combined Effects on Immunomodulation and Angiogenesis. J Bone Miner Res 2017; 32:902-912. [PMID: 27976803 DOI: 10.1002/jbmr.3062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
Abstract
Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood-derived cell subsets, such as regulatory T-helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB-CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB-CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti-inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB-CD31+ subsets. In summary, an intraoperative enrichment of PB-CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- F Andrea Sass
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Sebastian Filter
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander Rose
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Bernd Preininger
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Simon Reinke
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
118
|
Munoz-Pinto DJ, Erndt-Marino JD, Becerra-Bayona SM, Guiza-Arguello VR, Samavedi S, Malmut S, Reichert WM, Russell B, Höök M, Hahn MS. Evaluation of late outgrowth endothelial progenitor cell and umbilical vein endothelial cell responses to thromboresistant collagen-mimetic hydrogels. J Biomed Mater Res A 2017; 105:1712-1724. [PMID: 28218444 DOI: 10.1002/jbm.a.36045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
Bioactive coatings which support the adhesion of late-outgrowth peripheral blood endothelial progenitor cells (EOCs) are actively being investigated as a means to promote rapid endothelialization of "off-the-shelf," small-caliber arterial graft prostheses following implantation. In the present work, we evaluated the behavior of EOCs on thromboresistant graft coatings based on the collagen-mimetic protein Scl2-2 and poly(ethylene glycol) (PEG) diacrylate. Specifically, the attachment, proliferation, migration, and phenotype of EOCs on PEG-Scl2-2 hydrogels were evaluated as a function of Scl2-2 concentration (4, 8, and 12 mg/mL) relative to human umbilical vein endothelial cells (HUVECs). Results demonstrate the ability of each PEG-Scl2-2 hydrogel formulation to support EOC and HUVEC adhesion, proliferation, and spreading. However, only the 8 and 12 mg/mL PEG-Scl2-2 hydrogels were able to support stable EOC and HUVEC confluence. These PEG-Scl2-2 formulations were, therefore, selected for evaluation of their impact on EOC and HUVEC phenotype relative to PEG-collagen hydrogels. Cumulatively, both gene and protein level data indicated that 8 mg/mL PEG-Scl2-2 hydrogels supported similar or improved levels of EOC maturation relative to PEG-collagen controls based on evaluation of CD34, VEGFR2, PECAM-1, and VE-Cadherin. The 8 mg/mL PEG-Scl2-2 hydrogels also appeared to support similar or improved levels of EOC homeostatic marker expression relative to PEG-collagen hydrogels based on von Willebrand factor, collagen IV, NOS3, thrombomodulin, and E-selectin assessment. Combined, the present results indicate that PEG-Scl2-2 hydrogels warrant further investigation as "off-the-shelf" graft coatings. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1712-1724, 2017.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Engineering Science, Trinity University, San Antonio, Texas
| | - Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Sarah Malmut
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - William M Reichert
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Brooke Russell
- Center for Infectious and Inflammatory Diseases, TAM Health Science Center, Houston, Texas
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, TAM Health Science Center, Houston, Texas
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
119
|
Mandraffino G, Aragona CO, Cairo V, Scuruchi M, Lo Gullo A, D’Ascola A, Alibrandi A, Loddo S, Quartuccio S, Morace C, Mormina E, Basile G, Saitta A, Imbalzano E. Circulating progenitor cells in hypertensive subjects: Effectiveness of a treatment with olmesartan in improving cell number and miR profile in addition to expected pharmacological effects. PLoS One 2017; 12:e0173030. [PMID: 28301500 PMCID: PMC5354372 DOI: 10.1371/journal.pone.0173030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
CD34+ circulating progenitor cells (CD34+CPCs) are a population of multipotent cells which can delay the development of atherosclerosis and cardiovascular disease (CVD) in conditions of increased CV risk. MicroRNAs (miRs) 221 and 222 modulate different genes regulating angiogenesis and inflammation; moreover, miR221/22 have beenshown to participate in differentiation and proliferation of CD34+CPCs, inhibiting cell migration and homing. miR221/222 in CD34+CPCs from hypertensive subjects are also increased and associated with CD34+cell number and reactive oxygen species (ROS). We evaluated CD34+CPC number, intracellular miR221/222 and ROS levels, arterial stiffness (AS)and echocardiography indices at baseline (T0).Then, after a six-month treatment with olmesartan, 20 mg/day (T1), in 57 hypertensive patients with left ventricular hypertrophy (LVH) and with no additional risk factor for CVD, and in 29 healthy controls (baseline),fibrinogen, C-reactive protein (CRP), glucose and lipid profiles were also evaluated.At T1, blood pressure values, CRP and fibrinogen levels, ROS and miR221/222 were significantly decreased (all p <0.001), as were AS indices and LV mass index (p<0.001), while cell number was increased (p<0.001). Olmesartan is effective in reducing miR and ROS levels in CD34+CPCs from hypertensive subjects, as well as in increasing CD34+CPC number, providing multilevel CV protection, in addition to its expected pharmacological effects.
Collapse
Affiliation(s)
- Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- * E-mail:
| | | | - Valentina Cairo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Scuruchi
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy
| | - Alberto Lo Gullo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angela D’Ascola
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy
| | | | - Saverio Loddo
- Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy
| | - Sebastiano Quartuccio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmela Morace
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Enricomaria Mormina
- Department of Biomedical Sciences and of Morphologic and Functional Images, University of Messina, Messina, Italy
| | - Giorgio Basile
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
120
|
Fakoya AOJ. New Delivery Systems of Stem Cells for Vascular Regeneration in Ischemia. Front Cardiovasc Med 2017; 4:7. [PMID: 28286751 PMCID: PMC5323391 DOI: 10.3389/fcvm.2017.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
The finances of patients and countries are increasingly overwhelmed with the plague of cardiovascular diseases as a result of having to chronically manage the associated complications of ischemia such as heart failures, neurological deficits, chronic limb ulcers, gangrenes, and amputations. Hence, scientific research has sought for alternate therapies since pharmacological and surgical treatments have fallen below expectations in providing the desired quality of life. The advent of stem cells research has raised expectations with respect to vascular regeneration and tissue remodeling, hence assuring the patients of the possibility of an improved quality of life. However, these supposed encouraging results have been short-lived as the retention, survival, and engraftment rates of these cells appear to be inadequate; hence, the long-term beneficial effects of these cells cannot be ascertained. These drawbacks have led to the relentless research into better ways to deliver stem cells or angiogenic factors (which mobilize stem cells) to the regions of interest to facilitate increased retention, survival, engraftment, and regeneration. This review considered methods, such as the use of scaffolds, retrograde coronary delivery, improved combinations, stem cell pretreatment, preconditioning, stem cell exosomes, mannitol, magnet, and ultrasound-enhanced delivery, homing techniques, and stem cell modulation. Furthermore, the study appraised the possibility of a combination therapy of stem cells and macrophages, considering the enormous role macrophages play in repair, remodeling, and angiogenesis.
Collapse
|
121
|
Maeda K, Alarcon EI, Suuronen EJ, Ruel M. Optimizing the host substrate environment for cardiac angiogenesis, arteriogenesis, and myogenesis. Expert Opin Biol Ther 2017; 17:435-447. [PMID: 28274146 DOI: 10.1080/14712598.2017.1293038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The diseased host milieu, such as endothelial dysfunction (ED), decreased NO bioavailability, and ischemic/inflammatory post-MI environment, hamper the clinical success of existing cardiac regenerative therapies. Area covered: In this article, current strategies including pharmacological and nonpharmacological approaches for improving the diseased host milieu are reviewed. Specifically, the authors provide focus on: i) the mechanism of ED in patients with cardiovascular diseases, ii) the current results of ED improving strategies in pre-clinical and clinical studies, and iii) the use of biomaterials as a novel modulator in damaged post-MI environment. Expert opinion: Adjunct therapies which improve host endothelial function have demonstrated promising outcomes, potentially overcoming disappointing results of cell therapy in human studies. In the future, elucidation of the interactions between the host tissue and therapeutic agents, as well as downstream signaling pathways, will be the next challenges in enhancing regenerative therapy. More careful investigations are also required to establish these agents' safety and efficacy for wide usage in humans.
Collapse
Affiliation(s)
- Kay Maeda
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Emilio I Alarcon
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Erik J Suuronen
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Marc Ruel
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|
122
|
Emontzpohl C, Simons D, Kraemer S, Goetzenich A, Marx G, Bernhagen J, Stoppe C. Isolation of Endothelial Progenitor Cells from Healthy Volunteers and Their Migratory Potential Influenced by Serum Samples After Cardiac Surgery. J Vis Exp 2017. [PMID: 28287533 DOI: 10.3791/55192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are recruited from the bone marrow under pathological conditions like hypoxia and are crucially involved in the neovascularization of ischemic tissues. The origin, classification and characterization of EPCs are complex; notwithstanding, two prominent sub-types of EPCs have been established: so-called "early" EPCs (subsequently referred to as early-EPCs) and late-outgrowth EPCs (late-EPCs). They can be classified by biological properties as well as by their appearance during in vitro culture. While "early" EPCs appear in less than a week after culture of peripheral blood-derived mononuclear cells in EC-specific media, late-outgrowth EPCs can be found after 2-3 weeks. Late-outgrowth EPCs have been recognized to be directly involved in neovascularization, mainly through their ability to differentiate into mature endothelial cells, whereas "early" EPCs express various angiogenic factors as endogenous cargo to promote angiogenesis in a paracrine manner. During myocardial ischemia/reperfusion (I/R), various factors control the homing of EPCs to regions of blood vessel formation. Macrophage migration inhibitory factor (MIF) is a chemokine-like pro-inflammatory and ubiquitously expressed cytokine and was recently described to function as key regulator of EPCs migration at physiological concentrations1. Interestingly, MIF is stored in intracellular pools and can rapidly be released into the blood stream after several stimuli (e.g. myocardial infarction). This protocol describes a method for the reliable isolation and culture of early-EPCs from adult human peripheral blood based on CD34-positive selection with subsequent culture in medium containing endothelial growth factors on fibronectin-coated plates for use in in vitro migration assays against serum samples of cardiac surgical patients. Furthermore, the migratory influence of MIF on chemotaxis of EPCs compared to other well-known angiogenesis-stimulating cytokines is demonstrated.
Collapse
Affiliation(s)
- Christoph Emontzpohl
- Department of Intensive Care Medicine, University Hospital Aachen; Institute of Biochemistry and Molecular Biology, University Hospital Aachen
| | - David Simons
- Department of Radiology, German Cancer Research Center
| | - Sandra Kraemer
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital Aachen
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München; Deutsches Zentrum für Herz-/Kreislaufkrankheiten (DZHK), Munich Heart Alliance
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital Aachen;
| |
Collapse
|
123
|
Patschan D, Schwarze K, Tampe B, Zeisberg M, Patschan S, Müller GA. Endothelial Colony Forming Cells (ECFCs) in murine AKI - implications for future cell-based therapies. BMC Nephrol 2017; 18:53. [PMID: 28166726 PMCID: PMC5294892 DOI: 10.1186/s12882-017-0471-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, early Endothelial Progenitor Cells (eEPCs) have been proven as effective tool in murine ischemic AKI and in diabetic nephropathy. The mechanisms of eEPC-mediated vasoprotection have been elucidated in detail. Besides producing a diverse range of humoral factors, the cells also act by secreting vasomodulatory microvesicles. Only few data in contrast have been published about the role of so-called Endothelial Colony Forming Cells (ECFCs - late EPCs) in ischemic AKI. We thus aimed to investigate ECFC effects on postischemic kidney function over several weeks. Our special interest focused on endothelial-to-mesenchymal transition (EndoMT), peritubular capillary density (PTCD), endothelial alpha-Tubulin (aT - cytoskeletal integrity), and endothelial p62 (marker of autophagocytic flux). Methods Eight to twelve weeks old male C57Bl/6 N mice were subjected to bilateral renal pedicle clamping for 35 or 45 min, respectively. Donor-derived syngeneic ECFCs (0.5 × 106) were i.v. injected at the end of ischemia. Animals were analyzed 1, 4 and 6 weeks later. Results Cell therapy improved kidney function exclusively at week 1 (35 and 45 min). Ischemia-induced fibrosis was diminished in all experimental groups by ECFCs, while PTCD loss remained unaffected. Significant EndoMT was detected in only two of 6 groups (35 min, week 4 and 45 min, week 6), ECFCs reduced EndoMT only in the latter. Endothelial aT declined under almost all experimental conditions and these effects were further aggravated by ECFCs. p62 was elevated in endothelial cells, more so after 45 than after 35 min of ischemia. Cell therapy did not modulate p62 abundances at any time point. Conclusion A single dose of ECFCs administered shortly post-ischemia is capable to reduce interstitial fibrosis in the mid- to long-term whereas excretory dysfunction is improved only in a transient manner. There are certain differences in renal outcome parameters between eEPCs and ECFC. The latter do not prevent animals from peritubular capillary loss and they also do not further elevate endothelial p62. We conclude that differences between eEPCs and ECFCs result from certain mechanisms by which the cells act around and within vessels. Overall, ECFC treatment was not as efficient as eEPC therapy in preventing mice from ischemia-induced mid- to long-term damage.
Collapse
Affiliation(s)
- D Patschan
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - K Schwarze
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - B Tampe
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - M Zeisberg
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - S Patschan
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
124
|
Sandhu K, Mamas M, Butler R. Endothelial progenitor cells: Exploring the pleiotropic effects of statins. World J Cardiol 2017; 9:1-13. [PMID: 28163831 PMCID: PMC5253189 DOI: 10.4330/wjc.v9.i1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/29/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Statins have become a cornerstone of risk modification for ischaemic heart disease patients. A number of studies have shown that they are effective and safe. However studies have observed an early benefit in terms of a reduction in recurrent infarct and or death after a myocardial infarction, prior to any significant change in lipid profile. Therefore, pleiotropic mechanisms, other than lowering lipid profile alone, must account for this effect. One such proposed pleiotropic mechanism is the ability of statins to augment both number and function of endothelial progenitor cells. The ability to augment repair and maintenance of a functioning endothelium may have profound beneficial effect on vascular repair and potentially a positive impact on clinical outcomes in patients with cardiovascular disease. The following literature review will discuss issues surrounding endothelial progenitor cell (EPC) identification, role in vascular repair, factors affecting EPC numbers, the role of statins in current medical practice and their effects on EPC number.
Collapse
|
125
|
Munisso MC, Yamaoka T. Novel peptides for small-caliber graft functionalization selected by a phage display of endothelial-positive/platelet-negative combined selection. J Mater Chem B 2017; 5:9354-9364. [DOI: 10.1039/c7tb02652h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new protocol to identify peptides with EPCs high affinity and at the same time the ability to suppress the interaction with platelets was presented.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Suita
- Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center Research Institute
- Suita
- Japan
| |
Collapse
|
126
|
Aschbacher K, Milush JM, Gilbert A, Almeida C, Sinclair E, Epling L, Grenon SM, Marco EJ, Puterman E, Epel E. Chronic stress is associated with reduced circulating hematopoietic progenitor cell number: A maternal caregiving model. Brain Behav Immun 2017; 59:245-252. [PMID: 27622676 PMCID: PMC5154768 DOI: 10.1016/j.bbi.2016.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/08/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chronic psychological stress is a risk factor for cardiovascular disease and mortality. Circulating hematopoietic progenitor cells (CPCs) maintain vascular homeostasis, correlate with preclinical atherosclerosis, and prospectively predict cardiovascular events. We hypothesize that (1) chronic caregiving stress is related to reduced CPC number, and (2) this may be explained in part by negative interactions within the family. METHODS We investigated levels of stress and CPCs in 68 healthy mothers - 31 of these had children with an autism spectrum disorder (M-ASD) and 37 had neurotypical children (M-NT). Participants provided fasting blood samples, and CD45+CD34+KDR+ and CD45+CD133+KDR+ CPCs were assayed by flow cytometry. We averaged the blom-transformed scores of both CPCs to create one index. Participants completed the perceived stress scale (PSS), the inventory for depressive symptoms (IDS), and reported on daily interactions with their children and partners, averaged over 7 nights. RESULTS M-ASD exhibited lower CPCs than M-NT (Cohen's d=0.83; p⩽0.01), controlling for age, BMI, and physical activity. Across the whole sample, positive interactions were related to higher CPCs, and negative interactions to lower CPCs (allp's<0.05). The adverse effects of group on CPCs were significantly mediated through negative interactions with the child (indirect β=-0.24, p⩽0.01). In the full model, greater age (β=-0.19, p=0.04), BMI (β=-0.18, p=0.04), and negative interactions with the child (β=-0.33, p<0.01) were independently associated with lower CPCs. M-ASD had a less healthy lipid profile (total cholesterol/HDL), which in turn, was associated with lower CPCs. CONCLUSIONS Chronic stress adversely impacts CPC number, an early-stage biomarker that predicts subclinical atherosclerosis and future CVD events, independent of traditional cardiovascular risk factors and inflammatory factors. Among maternal caregivers, child-related interpersonal stress appears to be a key psychological predictor of stress-related CVD risk.
Collapse
Affiliation(s)
- Kirstin Aschbacher
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States; The Institute for Integrative Health, Baltimore, MD, United States.
| | - Jeffrey M. Milush
- Core Immunology Laboratory, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA
| | - Amanda Gilbert
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Carlos Almeida
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Elizabeth Sinclair
- Core Immunology Laboratory, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA
| | - Lorrie Epling
- Core Immunology Laboratory, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA
| | - S. Marlene Grenon
- Department of Surgery, University of California San Francisco, San Francisco, California; CA, Department of Surgery, Veterans Affairs Medical Center, San Francisco, CA,Viperx Lab, San Francisco
| | - Elysa J. Marco
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Canada
| | - Elissa Epel
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| |
Collapse
|
127
|
Lee SH, Manandhar S, Lee YM. Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:449-469. [PMID: 28299673 DOI: 10.1007/978-981-10-3233-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past two decades, Runt domain transcription factors (RUNX1, 2, and 3) have been investigated in regard to their function, structural elements, genetic variants, and roles in normal development and pathological conditions. The Runt family proteins are evolutionarily conserved from Drosophila to mammals, emphasizing their physiological importance. A hypoxic microenvironment caused by insufficient blood supply is frequently observed in developing organs, growing tumors, and tissues that become ischemic due to impairment or blockage of blood vessels. During embryonic development and tumor growth, hypoxia triggers a stress response that overcomes low-oxygen conditions by increasing erythropoiesis and angiogenesis and triggering metabolic changes. This review briefly introduces hypoxic conditions and cellular responses, as well as angiogenesis and its related signaling pathways, and then describes our current knowledge on the functions and molecular mechanisms of Runx family proteins in hypoxic responses, especially in angiogenesis.
Collapse
Affiliation(s)
- Sun Hee Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Sarala Manandhar
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - You Mie Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
128
|
Odent Grigorescu G, Rosca AM, Preda MB, Tutuianu R, Simionescu M, Burlacu A. Synergic effects of VEGF-A and SDF-1 on the angiogenic properties of endothelial progenitor cells. J Tissue Eng Regen Med 2016; 11:3241-3252. [PMID: 27943613 DOI: 10.1002/term.2233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 11/08/2022]
Abstract
Here we investigated the impact of hypoxic environment on the angiogenic properties of early-outgrowth endothelial progenitor cells (EPCs), with particular focus on the role of secreted vascular endothelial growth factor-A (VEGF-A) and stromal derived factor-1 (SDF-1) in mediating these effects. We found that cultured EPCs secreted factors with paracrine effects on chemotaxis, migration, proliferation and tube formation of mature endothelial cells (ECs), and these properties were not affected by hypoxia. Depletion of VEGF-A did not change the ability of EPC-conditioned medium (CM) to promote EC migration and tube formation in vitro, suggesting that the pro-angiogenic paracrine effects of EPCs did not totally rely on the presence of VEGF-A. These findings were confirmed by in vivo experiments, on a mouse model of hind limb ischaemia, which showed that VEGF-depleted EPC-CM sustained tissue perfusion at the same level as complete EPC-CM. However, concomitant deletion of VEGF-A and SDF-1 in EPC-CM impaired the pro-angiogenic properties of EPC-CM, by inhibition of EC spreading in culture, tube-like structure formation on Matrigel support, in vivo neovessels formation and ischaemic hind limb regeneration. Taken together, our data demonstrate that: (i) hypoxia does not affect the capacity of EPCs to support the angiogenic process; (ii) the absence of either VEGF-A or SDF-1 from EPC-CM can be rescued by the presence of the other one, so that the overall angiogenic effects remain unchanged; and (iii) and the concomitant deletion of VEGF-A and SDF-1 from EPC-CM impairs its pro-angiogenic effect, both in vitro and in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Ana-Maria Rosca
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Raluca Tutuianu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| |
Collapse
|
129
|
Patel J, Seppanen EJ, Rodero MP, Wong HY, Donovan P, Neufeld Z, Fisk NM, Francois M, Khosrotehrani K. Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process. Circulation 2016; 135:786-805. [PMID: 27899395 DOI: 10.1161/circulationaha.116.024754] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND During adult life, blood vessel formation is thought to occur via angiogenic processes involving branching from existing vessels. An alternate proposal suggests that neovessels form from endothelial progenitors able to assemble the intimal layers. We here aimed to define vessel-resident endothelial progenitors in vivo in a variety of tissues in physiological and pathological situations such as normal aorta, lungs, and wound healing, tumors, and placenta, as well. METHODS Based on protein expression levels of common endothelial markers using flow cytometry, 3 subpopulations of endothelial cells could be identified among VE-Cadherin+ and CD45- cells. RESULTS Lineage tracing by using Cdh5creERt2/Rosa-YFP reporter strategy demonstrated that the CD31-/loVEGFR2lo/intracellular endothelial population was indeed an endovascular progenitor (EVP) of an intermediate CD31intVEGFR2lo/intracellular transit amplifying (TA) and a definitive differentiated (D) CD31hiVEGFR2hi/extracellular population. EVP cells arose from vascular-resident beds that could not be transferred by bone marrow transplantation. Furthermore, EVP displayed progenitor-like status with a high proportion of cells in a quiescent cell cycle phase as assessed in wounds, tumors, and aorta. Only EVP cells and not TA and D cells had self-renewal capacity as demonstrated by colony-forming capacity in limiting dilution and by transplantation in Matrigel plugs in recipient mice. RNA sequencing revealed prominent gene expression differences between EVP and D cells. In particular, EVP cells highly expressed genes related to progenitor function including Sox9, Il33, Egfr, and Pdfgrα. Conversely, D cells highly expressed genes related to differentiated endothelium including Ets1&2, Gata2, Cd31, Vwf, and Notch. The RNA sequencing also pointed to an essential role of the Sox18 transcription factor. The role of SOX18 in the differentiation process was validated by using lineage-tracing experiments based on Sox18CreERt2/Rosa-YFP mice. Besides, in the absence of functional SOX18/SOXF, EVP progenitors were still present, but TA and D populations were significantly reduced. CONCLUSIONS Our findings support an entirely novel endothelial hierarchy, from EVP to TA to D, as defined by self-renewal, differentiation, and molecular profiling of an endothelial progenitor. This paradigm shift in our understanding of vascular-resident endothelial progenitors in tissue regeneration opens new avenues for better understanding of cardiovascular biology.
Collapse
Affiliation(s)
- Jatin Patel
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Elke J Seppanen
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Mathieu P Rodero
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Ho Yi Wong
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Prudence Donovan
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Zoltan Neufeld
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Nicholas M Fisk
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Mathias Francois
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.)
| | - Kiarash Khosrotehrani
- From The University of Queensland, UQ Centre for Clinical Research, Experimental Dermatology Group, Brisbane, QLD, Australia (J.P., E.J.S., M.P.R., H.Y.W., N.M.F., K.K.); The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia (P.D., K.K.); The University of Queensland, School of Mathematics and Physics, Brisbane, QLD, Australia (Z.N.); and The University of Queensland, Institute of Molecular Biosciences, Brisbane, QLD, Australia (M.F.).
| |
Collapse
|
130
|
Abplanalp WT, Conklin DJ, Cantor JM, Ginsberg MH, Wysoczynski M, Bhatnagar A, O'Toole TE. Enhanced Integrin α4β1-Mediated Adhesion Contributes to a Mobilization Defect of Endothelial Progenitor Cells in Diabetes. Diabetes 2016; 65:3505-3515. [PMID: 27495221 PMCID: PMC5079633 DOI: 10.2337/db16-0634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
Diabetes is associated with a deficit of circulating endothelial progenitor cells (EPCs), which has been attributed to their defective mobilization from the bone marrow. The basis for this mobilization defect is not completely understood, and we sought to determine if hyperglycemic conditions enhanced EPC adhesion. We found that culturing EPCs in high glucose media increased adhesion to bone marrow stromal cells. This enhanced adhesion was associated with decreased expression of protein kinase A regulatory subunit 1β (PRKAR1β), activation of protein kinase A (PKA), and phosphorylation of α4-integrin on serine 988. This potentiated adhesion was reversed by treatment with a PKA inhibitor, overexpression of PRKAR1β, or expression of a phosphorylation-defective α4-integrin variant (α4[S988A]). Using a model of type 1 diabetes, we showed that α4(S988A)-expressing mice have more circulating EPCs than their wild-type counterparts. Moreover, diabetic α4(S988A) mice demonstrate enhanced revascularization after hind limb ischemia. Thus, we have identified a novel signaling mechanism activating PKA in diabetes (downregulation of an inhibitory regulatory subunit) that leads to deficits of circulating EPCs and impaired vascular repair, which could be reversed by α4-integrin mutation.
Collapse
Affiliation(s)
- Wesley T Abplanalp
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
| | - Joseph M Cantor
- Department of Medicine, University of California, San Diego, San Diego, CA
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, San Diego, CA
| | | | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Timothy E O'Toole
- Diabetes and Obesity Center, University of Louisville, Louisville, KY
| |
Collapse
|
131
|
Shafiee A, Patel J, Wong HY, Donovan P, Hutmacher DW, Fisk NM, Khosrotehrani K. Priming of endothelial colony-forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling. FASEB J 2016; 31:610-624. [PMID: 28045376 DOI: 10.1096/fj.201600937] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Abstract
The prospect of using endothelial progenitors is currently hampered by their low engraftment upon transplantation. We report that mesenchymal stem/stromal cells (MSCs), independent of source and age, improve the engraftment of endothelial colony forming cells (ECFCs). MSC coculture altered ECFC appearance to an elongated mesenchymal morphology with reduced proliferation. ECFC primed via MSC contact had reduced self-renewal potential, but improved capacity to form tube structures in vitro and engraftment in vivo Primed ECFCs displayed major differences in transcriptome compared to ECFCs never exposed to MSCs, affecting genes involved in the cell cycle, up-regulating of genes influencing mesenchymal transition, adhesion, extracellular matrix. Inhibition of NOTCH signaling, a potential upstream regulator of mesenchymal transition, in large part modulated this gene expression pattern and functionally reversed the mesenchymal morphology of ECFCs. The collective results showed that primed ECFCs survive better and undergo a mesenchymal transition that is dependent on NOTCH signaling, resulting in significantly increased vasculogenic potential.-Shafiee, A., Patel, J., Wong, H. Y., Donovan, P., Hutmacher, D. W., Fisk, N. M., Khosrotehrani, K. Priming of endothelial colony-forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling.
Collapse
Affiliation(s)
- Abbas Shafiee
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jatin Patel
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Ho Yi Wong
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Prudence Donovan
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas M Fisk
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia.,Centre for Advanced Prenatal Care, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- University of Queensland (UQ) Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia; .,UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia; and
| |
Collapse
|
132
|
Qu Q, Liu L, Chen G, Xu Y, Wu X, Wu D. Endothelial progenitor cells promote efficient ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells. Cytotherapy 2016; 18:452-64. [PMID: 26857234 DOI: 10.1016/j.jcyt.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/27/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Cord blood (CB) hematopoietic stem cell transplantation has often been limited by the scarcity of stem cells. Therefore, the number of CB hematopoietic stem/progenitor cells (HSPCs) should be increased while maintaining the stem cell characteristics. METHODS We designed an ex vivo culture system using endothelial progenitor cells (EPCs) as stroma to determine the capacity of expanding CB-HSPCs in a defined medium, the effect on engraftment of the expanded cells in a mouse model and the underlying mechanism. RESULTS After 7 days of culture, compared with those cultured with cytokines alone (3.25 ± 0.59), CD34+ cells under contact and non-contact co-culture with EPCs were expanded by 5.38 ± 0.61 (P = 0.003) and 4.06 ± 0.43 (P = 0.025)-fold, respectively. Direct cell-to-cell contact co-culture with EPCs resulted in more primitive CD34+ CD38- cells than stroma-free culture (156.17 ± 21.32 versus 79.12 ± 19.77-fold; P = 0.010). Comparable engraftment of day 7 co-cultured HSPCs with respect to HSPCs at day 0 in nonobese diabetic-severe combined immunodeficiency disease (NOD/SCID) mice was measured as a percentage of chimerism (13.3% ± 11.0% versus 16.0% ± 14.3%; P = 0.750). EPCs highly expressed interleukin 6 (IL6) and angiopoietin 1 (ANGPT1), the hematopoietic- related cytokines. A higher transcriptional level of WNT5A genes in EPCs and co-cultured HSPCs suggests that the activation of Wnt signaling pathway may play a role in HSPCs' expansion ex vivo. DISCUSSION These data demonstrated that EPCs improve the CD34+ population but do not compromise the repopulating efficacy of the amplified HSPCs, possibly via cytokine secretion and Wnt signaling pathway activation.
Collapse
Affiliation(s)
- Qi Qu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Limin Liu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanghua Chen
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojin Wu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, Suzhou Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
133
|
Siavashi V, Asadian S, Taheri-Asl M, Babaei H, Keshavarz S, Bazaei M, Nassiri SM. The Improvement of Respiratory Performance After Phototherapy-Induced EPC Mobilization in Preterm Infants With RDS. J Cell Biochem 2016; 118:594-604. [DOI: 10.1002/jcb.25745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Vahid Siavashi
- Department of Clinical Pathology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Simin Asadian
- Imam Reza Hospitals; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Masoud Taheri-Asl
- Departments of Radiology; Faculty of Paramedicine; AJA University of Medical Sciences; Tehran Iran
| | - Homa Babaei
- Department of Pediatrics; Imam Reza Hospital; Kermanshah University of Medical Science; Kermanshah Iran
| | | | - Mohammad Bazaei
- Department of Clinical Pathology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| |
Collapse
|
134
|
Yang D, Wang J, Xiao M, Zhou T, Shi X. Role of Mir-155 in Controlling HIF-1α Level and Promoting Endothelial Cell Maturation. Sci Rep 2016; 6:35316. [PMID: 27731397 PMCID: PMC5059686 DOI: 10.1038/srep35316] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Stem-cell-based therapy for cardiovascular disease, especially ischemic heart disease (IHD), is a promising approach to facilitating neovascularization through the migration of stem cells to the ischemic site and their subsequent differentiation into endothelial cells (ECs). Hypoxia is a chief feature of IHD and the stem cell niche. However, whether hypoxia promotes stem cell differentiation into ECs or causes them to retain their stemness is controversial. Here, the differentiation of pluripotent stem cells (iPSCs) into endothelial cells (ECs) was induced under hypoxia. Though the angiogenic capability and angiogenesis-related autocrine/paracrine factors of the ECs were improved under hypoxia, the level of hypoxia inducible factor 1α (HIF-1α) was nonetheless found to be restricted along with the EC differentiation. The down-regulation of HIF-1α was found to have been caused by VEGF-induced microRNA-155 (miR-155). Moreover, miR-155 was also found to enhance the angiogenic capability of induced ECs by targeting E2F2 transcription factor. Hence, miR-155 not only contributes to controlling HIF-1α expression under hypoxia but also promotes angiogenesis, which is a key feature of mature ECs. Revealing the real role of hypoxia and clarifying the function of miR-155 in EC differentiation may facilitate improvement of angiogenic gene- and stem-cell-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Deguang Yang
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Jinhong Wang
- Department of Respiration, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Meng Xiao
- Department of Nursing, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Tao Zhou
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Xu Shi
- Central Laboratory, the First Hospital of Jilin University, Changchun, 130032, China
| |
Collapse
|
135
|
Nielsen N, Laustsen C, Bertelsen LB. 13C dynamic nuclear polarization for measuring metabolic flux in endothelial progenitor cells. Exp Cell Res 2016; 349:95-100. [PMID: 27720669 DOI: 10.1016/j.yexcr.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022]
Abstract
Endothelial progenitor cells (EPCs) represent a heterogeneous cell population that is believed to be involved in vasculogenesis. With the purpose of enhancing endothelial repair, EPCs could have a potential for future cell therapies. Due to the low amount of EPCs in the peripheral circulating blood, in vitro expansion is needed before administration to recipients and the effects of in vitro culturing is still an under-evaluated field with little knowledge of how the cells change over time in culture. The aim of this study was to use hyperpolarised carbon-13 magnetic resonance spectroscopy to profile important metabolic pathways in a population of progenitor cells and to show that cell culturing in 3D scaffolds seem to block the metabolic processes that leads to cell senescence. The metabolic breakdown of hyperpolarized [1-13C]pyruvate was followed after injection of the substrate to a bioreactor system with EPCs either adhered to 3D printed scaffolds or kept in cell suspension. The pyruvate-to-lactate conversion was elevated in suspension of EPCs compared to the EPCs adhered to scaffolds. Furthermore in the setup with EPCs in suspension, an increase in lactate production was seen over time indicating that the older the cultures of EPCs was before using the cells for cell suspension experiments, the more lactate they produce, compared to a constant lactate level in the cells adhered to scaffolds. It could therefore be stated that cells grown first in 2D culture and subsequent prepared for cell suspension show a metabolism with higher lactate production consistent with cells senescence processes compared to cells grown first at 2D culture and subsequent in the 3D printed scaffolds, where metabolism shows no sign of metabolic shifting during the monitored period.
Collapse
Affiliation(s)
- Nathalie Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
136
|
Recchioni R, Marcheselli F, Antonicelli R, Lazzarini R, Mensà E, Testa R, Procopio AD, Olivieri F. Physical activity and progenitor cell-mediated endothelial repair in chronic heart failure: Is there a role for epigenetics? Mech Ageing Dev 2016; 159:71-80. [DOI: 10.1016/j.mad.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/09/2023]
|
137
|
Son Y, Lee B, Choi YJ, Jeon SA, Kim JH, Lee HK, Kwon SM, Cho JY. Nectin-2 (CD112) Is Expressed on Outgrowth Endothelial Cells and Regulates Cell Proliferation and Angiogenic Function. PLoS One 2016; 11:e0163301. [PMID: 27676263 PMCID: PMC5038973 DOI: 10.1371/journal.pone.0163301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022] Open
Abstract
Outgrowth endothelial cells (OECs) are a subpopulation of endothelial progenitor cells (EPCs) that have the capacity for proliferation and the ability to promote angiogenesis. In this study, we identified Nectin-2 as a surface protein of OECs through unbiased quantitative proteomics analysis. Using immunocytochemistry and flow cytometry, we confirmed that Nectin-2 is highly expressed on OECs. Nectin-2 (CD112) expression was limited or lower on mononuclear cells (MNCs) and mature tube-forming endothelial cells (ECs). Blocking Nectin-2 with a neutralizing monoclonal antibody significantly increased the trans-well migration and tube forming capacity of OECs. Similarly, Nectin-2 knockdown resulted in enhanced tube formation, cell migration and proliferation with p-Erk activation. Moreover, Nectin-2 deficiency resulted in compensatory increase of other Nectin family genes including Nectin-3 and Necl-4 which promote VEGFR signaling. These results indicate that Nectin-2 is a surface marker and an important regulator of OECs, with significant implications for the isolation of OECs and blocking Nectin-2 on OECs by an antibody for angiogenic applications.
Collapse
Affiliation(s)
- YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - BomNaeRin Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Young-Jin Choi
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Seon Ae Jeon
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Ju-Hyun Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Hoo-Keun Lee
- College of Pharmacy, Gachon University, Incheon 406–840, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, school of Medicine, Pusan National University, Yangsan, 626–870 Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
- * E-mail:
| |
Collapse
|
138
|
Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016; 143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elvira Forte
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
139
|
Siavashi V, Asadian S, Sharifi A, Esmaeilivand M, Norouzinia R, Azadbakht M, Nassiri SM. Circulation Enrichment of Functional Endothelial Progenitor Cells by Infantile Phototherapy. J Cell Biochem 2016; 118:330-340. [DOI: 10.1002/jcb.25640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Vahid Siavashi
- Department of Clinical Pathology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Simin Asadian
- Imam Reza Hospital; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Azam Sharifi
- Faculty Member, School of Nahavand Paramedical; Hamadan University of Medical Sciences; Hamadan Iran
| | - Masoumeh Esmaeilivand
- School of Nursing and Midwifery; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Roohangiz Norouzinia
- Faculty Member, School of Paramedical Sciences; ALborz University of Medical Sciences; Karaj Iran
| | - Mohammad Azadbakht
- Department of Clinical Pathology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| |
Collapse
|
140
|
Frueh FS, Menger MD, Lindenblatt N, Giovanoli P, Laschke MW. Current and emerging vascularization strategies in skin tissue engineering. Crit Rev Biotechnol 2016; 37:613-625. [PMID: 27439727 DOI: 10.1080/07388551.2016.1209157] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascularization is a key process in skin tissue engineering, determining the biological function of artificial skin implants. Hence, efficient vascularization strategies are a major prerequisite for the safe application of these implants in clinical practice. Current approaches include (i) modification of structural and physicochemical properties of dermal scaffolds, (ii) biological scaffold activation with growth factor-releasing systems or gene vectors, and (iii) generation of prevascularized skin substitutes by seeding scaffolds with vessel-forming cells. These conventional approaches may be further supplemented by emerging strategies, such as transplantation of adipose tissue-derived microvascular fragments, 3D bioprinting and microfluidics, miRNA modulation, cell sheet engineering, and fabrication of photosynthetic scaffolds. The successful translation of these vascularization strategies from bench to bedside may pave the way for a broad clinical implementation of skin tissue engineering.
Collapse
Affiliation(s)
- Florian S Frueh
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany.,b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Michael D Menger
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany
| | - Nicole Lindenblatt
- b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Pietro Giovanoli
- b Division of Plastic Surgery and Hand Surgery , University Hospital Zurich , Zurich , Switzerland
| | - Matthias W Laschke
- a Institute for Clinical and Experimental Surgery , Saarland University , Homburg (Saar) , Germany
| |
Collapse
|
141
|
Vergori L, Lauret E, Soleti R, Martinez MC, Andriantsitohaina R. Low concentration of ethanol favors progenitor cell differentiation and neovascularization in high-fat diet-fed mice model. Int J Biochem Cell Biol 2016; 78:43-51. [PMID: 27412816 DOI: 10.1016/j.biocel.2016.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/27/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Abstract
Endothelial progenitor cells (EPCs) and monocytic cells from bone marrow (BM) can be recruited to the injured endothelium and contribute to its regeneration. During metabolic diseases such as obesity and diabetes, progenitor cell function is impaired. Several studies have shown that moderate alcohol consumption prevents the development and progression of atherosclerosis in a variety of animal/mouse models and increases mobilization of progenitor cells. Along with these studies, we identify ethanol at low concentration as therapeutic tool to in vitro expand progenitor cells in order to obtain an adequate number of cells for their use in the treatment of cardiovascular diseases. We evaluated the effects of ethanol on the phenotype of BM-derived cells from mice fed with high-fat diet (HFD). HFD did not induce changes in weight of mice but induced metabolic alterations. HFD feeding increased the differentiation of monocytic progenitors but not EPCs. Whereas ethanol at 0.6% is able to increase monocytic progenitor differentiation, 1% ethanol diminished it. Furthermore, ethanol at 0.6% increased the ability of progenitor cells to promote in vivo angiogenesis as well as secretome of BM-derived cells from mice fed with HFD, but not in mice fed normal diet. In conclusion, ethanol at low concentration is able to increase angiogenic abilities of progenitor cells from animals with early metabolic alterations.
Collapse
Affiliation(s)
- Luisa Vergori
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Emilie Lauret
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Raffaella Soleti
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Maria Carmen Martinez
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France
| | - Ramaroson Andriantsitohaina
- UMR INSERM 1063, Stress oxydant et pathologies métaboliques, Institut de Biologie en Santé, Université dAngers, France; CHU dAngers, 4 rue Larrey, 49933 Angers cedex, France.
| |
Collapse
|
142
|
Fadini GP, Ciciliot S, Albiero M. Concise Review: Perspectives and Clinical Implications of Bone Marrow and Circulating Stem Cell Defects in Diabetes. Stem Cells 2016; 35:106-116. [PMID: 27401837 DOI: 10.1002/stem.2445] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a complex systemic disease characterized by severe morbidity and excess mortality. The burden of its multiorgan complications relies on an imbalance between hyperglycemic cell damage and defective endogenous reparative mechanisms. Inflammation and abnormalities in several hematopoietic components are typically found in diabetes. The discovery that diabetes reduces circulating stem/progenitor cells and impairs their function has opened an entire new field of study where diabetology comes into contact with hematology and regenerative medicine. It is being progressively recognized that such rare circulating cell populations mirror finely regulated processes involved in hematopoiesis, immunosurveillance, and peripheral tissue homeostasis. From a clinical perspective, pauperization of circulating stem cells predicts adverse outcomes and death. Furthermore, studies in murine models and humans have identified the bone marrow (BM) as a previously neglected site of diabetic end-organ damage, characterized by microangiopathy, neuropathy, fat deposition, and inflammation. As a result, diabetes impairs the mobilization of BM stem/progenitor cells, a defect known as mobilopathy or myelokathexis, with negative consequences for physiologic hematopoiesis, immune regulation, and tissue regeneration. A better understanding of the molecular and cellular processes that govern the BM stem cell niche, cell mobilization, and kinetics in peripheral tissues may uncover new therapeutic strategies for patients with diabetes. This concise review summarizes the current knowledge on the interplay between the BM, circulating stem cells, and diabetes, and sets the stages for future developments in the field. Stem Cells 2017;35:106-116.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| | - Stefano Ciciliot
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| |
Collapse
|
143
|
Wiegmann B, von Seggern H, Höffler K, Korossis S, Dipresa D, Pflaum M, Schmeckebier S, Seume J, Haverich A. Developing a biohybrid lung – sufficient endothelialization of poly-4-methly-1-pentene gas exchange hollow-fiber membranes. J Mech Behav Biomed Mater 2016; 60:301-311. [DOI: 10.1016/j.jmbbm.2016.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 11/29/2022]
|
144
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
145
|
Aman J, Weijers EM, van Nieuw Amerongen GP, Malik AB, van Hinsbergh VWM. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities. Am J Physiol Lung Cell Mol Physiol 2016; 311:L453-66. [PMID: 27343194 DOI: 10.1152/ajplung.00393.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Pulmonary Diseases, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands;
| | - Ester M Weijers
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
146
|
Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:281-306. [PMID: 27451101 DOI: 10.1016/bs.apha.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review.
Collapse
|
147
|
Trinh TLP, Li Calzi S, Shaw LC, Yoder MC, Grant MB. Promoting vascular repair in the retina: can stem/progenitor cells help? Eye Brain 2016; 8:113-122. [PMID: 28539806 PMCID: PMC5398749 DOI: 10.2147/eb.s94451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since its first epidemic in the 1940s, retinopathy of prematurity (ROP) has been a challenging illness in neonatology. Higher than physiological oxygen levels impede the development of the immature retinal neuropil and vasculature. Current treatment regimens include cryotherapy, laser photocoagulation, and anti-VEGF agents. Unfortunately, none of these approaches can rescue the normal retinal vasculature, and each has significant safety concerns. The limitations of these approaches have led to new efforts to understand the pathological characteristics in each phase of ROP and to find a safer and more effective therapeutic approach. In the era of stem cell biology and with the need for new treatments for ROP, this review discusses the possible future use of unique populations of proangiogenic cells for therapeutic revascularization of the preterm retina.
Collapse
Affiliation(s)
| | | | | | - Mervin C Yoder
- Department of Pediatrics.,Herman B. Wells Center for Pediatric Research.,Department of Biochemistry and Molecular Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | | |
Collapse
|
148
|
Patschan D, Kribben A, Müller GA. Postischemic microvasculopathy and endothelial progenitor cell-based therapy in ischemic AKI: update and perspectives. Am J Physiol Renal Physiol 2016; 311:F382-94. [PMID: 27194716 DOI: 10.1152/ajprenal.00232.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) dramatically increases mortality of hospitalized patients. Incidences have been increased in recent years. The most frequent cause is transient renal hypoperfusion or ischemia which induces significant tubular cell dysfunction/damage. In addition, two further events take place: interstitial inflammation and microvasculopathy (MV). The latter evolves within minutes to hours postischemia and may result in permanent deterioration of the peritubular capillary network, ultimately increasing the risk for chronic kidney disease (CKD) in the long term. In recent years, our understanding of the molecular/cellular processes responsible for acute and sustained microvasculopathy has increasingly been expanded. The methodical approaches for visualizing impaired peritubular blood flow and increased vascular permeability have been optimized, even allowing the depiction of tissue abnormalities in a three-dimensional manner. In addition, endothelial dysfunction, a hallmark of MV, has increasingly been recognized as an inductor of both vascular malfunction and interstitial inflammation. In this regard, so-called regulated necrosis of the endothelium could potentially play a role in postischemic inflammation. Endothelial progenitor cells (EPCs), represented by at least two major subpopulations, have been shown to promote vascular repair in experimental AKI, not only in the short but also in the long term. The discussion about the true biology of the cells continues. It has been proposed that early EPCs are most likely myelomonocytic in nature, and thus they may simply be termed proangiogenic cells (PACs). Nevertheless, they reliably protect certain types of tissues/organs from ischemia-induced damage, mostly by modulating the perivascular microenvironment in an indirect manner. The aim of the present review is to summarize the current knowledge on postischemic MV and EPC-mediated renal repair.
Collapse
Affiliation(s)
- D Patschan
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Georg-August-University, Göttingen, Germany; and
| | - A Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Georg-August-University, Göttingen, Germany; and
| |
Collapse
|
149
|
Nie Z, Xu L, Li C, Tian T, Xie P, Chen X, Li B. Association of endothelial progenitor cells and peptic ulcer treatment in patients with type 2 diabetes mellitus. Exp Ther Med 2016; 11:1581-1586. [PMID: 27168776 PMCID: PMC4840543 DOI: 10.3892/etm.2016.3114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/17/2015] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to investigate the association between endothelial progenitor cells (EPCs) and peptic ulcers in patients with or without type 2 diabetes mellitus (T2DM), in association with the efficiency of peptic ulcer treatment. The study recruited healthy subjects and peptic ulcer patients with or without T2DM. All the ulcer patients, including those with and without T2DM, were administered omeprazole for 8 weeks. Peptic ulcer patients with T2DM were additionally treated with glipizide and novolin. Blood samples were then obtained from the three groups following ulcer treatment. CD133+ cells were isolated from the blood samples using magnetic bead selection, and cultured in complete medium 199. Morphological and quantity changes in EPCs were observed by light and fluorescence microscopy. In addition, flow cytometric analysis was used to quantify the number of vascular endothelial cells. The treatment was partially effective in 7 of the 32 peptic ulcer patients without T2DM and 12 of the 32 peptic ulcer patients with T2DM. However, this treatment was ineffective in 20 of the 32 peptic ulcer patients with T2DM. Notably, 25 peptic ulcer patients without T2DM were defined as completely recovered following treatment. In addition, the number of circulating EPCs as well as their colony forming ability was significantly reduced (P<0.05) in the peptic ulcer patients with T2DM following ulcer treatment, compared with the other groups. Circulating EPC counts were significantly increased in peptic ulcer patients without T2DM, as compared with the healthy controls. With regards to colony formation, peptic ulcer patients without T2DM did not exhibit improved colony formation ability. In conclusion, the number of circulating EPCs and their colony-forming ability was significantly reduced in peptic ulcer patients with T2DM following ulcer treatment when compared with the other groups. This suggests that the poor curative effect of peptic ulcer treatment in these patients is associated with impairment of EPCs.
Collapse
Affiliation(s)
- Zhihong Nie
- Department of Gastroenterology, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| | - Limin Xu
- Department of Laboratory Medicine, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| | - Chuanyuan Li
- Department of Gastroenterology, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| | - Tao Tian
- Department of Gastroenterology, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| | - Pingping Xie
- Department of Gastroenterology, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| | - Xia Chen
- Department of Gastroenterology, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| | - Bojing Li
- Department of Gastroenterology, Gongli Hospital, The Second Military Medicine University, Shanghai 200135, P.R. China
| |
Collapse
|
150
|
Tasev D, Koolwijk P, van Hinsbergh VWM. Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:371-382. [PMID: 27032435 DOI: 10.1089/ten.teb.2016.0050] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Tissue regeneration requires proper vascularization. In vivo studies identified that the endothelial colony-forming cells (ECFCs), a subtype of endothelial progenitor cells that can be isolated from umbilical cord or peripheral blood, represent a promising cell source for therapeutic neovascularization. ECFCs not only are able to initiate and facilitate neovascularization in diseased tissue but also can, by acting in a paracrine manner, contribute to the creation of favorable conditions for efficient and appropriate differentiation of tissue-resident stem or progenitor cells. This review outlines the progress in the field of in vivo regenerative and tissue engineering studies and surveys why, when, and how ECFCs can be used for tissue regeneration. RECENT FINDINGS Reviewed literature that regard human-derived ECFCs in xenogeneic animal models implicates that ECFCs should be considered as an endothelial cell source of preference for induction of neovascularization. Their neovascularization and regenerative potential is augmented in combination with other types of stem or progenitor cells. Biocompatible scaffolds prevascularized with ECFCs interconnect faster and better with the host vasculature. The physical incorporation of ECFCs in newly formed blood vessels grants prolonged release of trophic factors of interest, which also makes ECFCs an interesting cell source candidate for gene therapy and delivery of bioactive compounds in targeted area. SUMMARY ECFCs possess all biological features to be considered as a cell source of preference for tissue engineering and repair of blood supply. Investigation of regenerative potential of ECFCs in autologous settings in large animal models before clinical application is the next step to clearly outline the most efficient strategy for using ECFCs as treatment.
Collapse
Affiliation(s)
- Dimitar Tasev
- 1 Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam , Amsterdam, The Netherlands .,2 A-Skin Nederland BV , Amsterdam, The Netherlands
| | - Pieter Koolwijk
- 1 Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam , Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- 1 Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|